Ashwin Chaugule | 337aadf | 2015-10-02 10:01:19 -0400 | [diff] [blame^] | 1 | /* |
| 2 | * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers. |
| 3 | * |
| 4 | * (C) Copyright 2014, 2015 Linaro Ltd. |
| 5 | * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU General Public License |
| 9 | * as published by the Free Software Foundation; version 2 |
| 10 | * of the License. |
| 11 | * |
| 12 | * CPPC describes a few methods for controlling CPU performance using |
| 13 | * information from a per CPU table called CPC. This table is described in |
| 14 | * the ACPI v5.0+ specification. The table consists of a list of |
| 15 | * registers which may be memory mapped or hardware registers and also may |
| 16 | * include some static integer values. |
| 17 | * |
| 18 | * CPU performance is on an abstract continuous scale as against a discretized |
| 19 | * P-state scale which is tied to CPU frequency only. In brief, the basic |
| 20 | * operation involves: |
| 21 | * |
| 22 | * - OS makes a CPU performance request. (Can provide min and max bounds) |
| 23 | * |
| 24 | * - Platform (such as BMC) is free to optimize request within requested bounds |
| 25 | * depending on power/thermal budgets etc. |
| 26 | * |
| 27 | * - Platform conveys its decision back to OS |
| 28 | * |
| 29 | * The communication between OS and platform occurs through another medium |
| 30 | * called (PCC) Platform Communication Channel. This is a generic mailbox like |
| 31 | * mechanism which includes doorbell semantics to indicate register updates. |
| 32 | * See drivers/mailbox/pcc.c for details on PCC. |
| 33 | * |
| 34 | * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and |
| 35 | * above specifications. |
| 36 | */ |
| 37 | |
| 38 | #define pr_fmt(fmt) "ACPI CPPC: " fmt |
| 39 | |
| 40 | #include <linux/cpufreq.h> |
| 41 | #include <linux/delay.h> |
| 42 | |
| 43 | #include <acpi/cppc_acpi.h> |
| 44 | /* |
| 45 | * Lock to provide mutually exclusive access to the PCC |
| 46 | * channel. e.g. When the remote updates the shared region |
| 47 | * with new data, the reader needs to be protected from |
| 48 | * other CPUs activity on the same channel. |
| 49 | */ |
| 50 | static DEFINE_SPINLOCK(pcc_lock); |
| 51 | |
| 52 | /* |
| 53 | * The cpc_desc structure contains the ACPI register details |
| 54 | * as described in the per CPU _CPC tables. The details |
| 55 | * include the type of register (e.g. PCC, System IO, FFH etc.) |
| 56 | * and destination addresses which lets us READ/WRITE CPU performance |
| 57 | * information using the appropriate I/O methods. |
| 58 | */ |
| 59 | static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr); |
| 60 | |
| 61 | /* This layer handles all the PCC specifics for CPPC. */ |
| 62 | static struct mbox_chan *pcc_channel; |
| 63 | static void __iomem *pcc_comm_addr; |
| 64 | static u64 comm_base_addr; |
| 65 | static int pcc_subspace_idx = -1; |
| 66 | static u16 pcc_cmd_delay; |
| 67 | static bool pcc_channel_acquired; |
| 68 | |
| 69 | /* |
| 70 | * Arbitrary Retries in case the remote processor is slow to respond |
| 71 | * to PCC commands. |
| 72 | */ |
| 73 | #define NUM_RETRIES 500 |
| 74 | |
| 75 | static int send_pcc_cmd(u16 cmd) |
| 76 | { |
| 77 | int retries, result = -EIO; |
| 78 | struct acpi_pcct_hw_reduced *pcct_ss = pcc_channel->con_priv; |
| 79 | struct acpi_pcct_shared_memory *generic_comm_base = |
| 80 | (struct acpi_pcct_shared_memory *) pcc_comm_addr; |
| 81 | u32 cmd_latency = pcct_ss->latency; |
| 82 | |
| 83 | /* Min time OS should wait before sending next command. */ |
| 84 | udelay(pcc_cmd_delay); |
| 85 | |
| 86 | /* Write to the shared comm region. */ |
| 87 | writew(cmd, &generic_comm_base->command); |
| 88 | |
| 89 | /* Flip CMD COMPLETE bit */ |
| 90 | writew(0, &generic_comm_base->status); |
| 91 | |
| 92 | /* Ring doorbell */ |
| 93 | result = mbox_send_message(pcc_channel, &cmd); |
| 94 | if (result < 0) { |
| 95 | pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n", |
| 96 | cmd, result); |
| 97 | return result; |
| 98 | } |
| 99 | |
| 100 | /* Wait for a nominal time to let platform process command. */ |
| 101 | udelay(cmd_latency); |
| 102 | |
| 103 | /* Retry in case the remote processor was too slow to catch up. */ |
| 104 | for (retries = NUM_RETRIES; retries > 0; retries--) { |
| 105 | if (readw_relaxed(&generic_comm_base->status) & PCC_CMD_COMPLETE) { |
| 106 | result = 0; |
| 107 | break; |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | mbox_client_txdone(pcc_channel, result); |
| 112 | return result; |
| 113 | } |
| 114 | |
| 115 | static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret) |
| 116 | { |
| 117 | if (ret) |
| 118 | pr_debug("TX did not complete: CMD sent:%x, ret:%d\n", |
| 119 | *(u16 *)msg, ret); |
| 120 | else |
| 121 | pr_debug("TX completed. CMD sent:%x, ret:%d\n", |
| 122 | *(u16 *)msg, ret); |
| 123 | } |
| 124 | |
| 125 | struct mbox_client cppc_mbox_cl = { |
| 126 | .tx_done = cppc_chan_tx_done, |
| 127 | .knows_txdone = true, |
| 128 | }; |
| 129 | |
| 130 | static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle) |
| 131 | { |
| 132 | int result = -EFAULT; |
| 133 | acpi_status status = AE_OK; |
| 134 | struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; |
| 135 | struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"}; |
| 136 | struct acpi_buffer state = {0, NULL}; |
| 137 | union acpi_object *psd = NULL; |
| 138 | struct acpi_psd_package *pdomain; |
| 139 | |
| 140 | status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer, |
| 141 | ACPI_TYPE_PACKAGE); |
| 142 | if (ACPI_FAILURE(status)) |
| 143 | return -ENODEV; |
| 144 | |
| 145 | psd = buffer.pointer; |
| 146 | if (!psd || psd->package.count != 1) { |
| 147 | pr_debug("Invalid _PSD data\n"); |
| 148 | goto end; |
| 149 | } |
| 150 | |
| 151 | pdomain = &(cpc_ptr->domain_info); |
| 152 | |
| 153 | state.length = sizeof(struct acpi_psd_package); |
| 154 | state.pointer = pdomain; |
| 155 | |
| 156 | status = acpi_extract_package(&(psd->package.elements[0]), |
| 157 | &format, &state); |
| 158 | if (ACPI_FAILURE(status)) { |
| 159 | pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id); |
| 160 | goto end; |
| 161 | } |
| 162 | |
| 163 | if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) { |
| 164 | pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id); |
| 165 | goto end; |
| 166 | } |
| 167 | |
| 168 | if (pdomain->revision != ACPI_PSD_REV0_REVISION) { |
| 169 | pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id); |
| 170 | goto end; |
| 171 | } |
| 172 | |
| 173 | if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL && |
| 174 | pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY && |
| 175 | pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) { |
| 176 | pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id); |
| 177 | goto end; |
| 178 | } |
| 179 | |
| 180 | result = 0; |
| 181 | end: |
| 182 | kfree(buffer.pointer); |
| 183 | return result; |
| 184 | } |
| 185 | |
| 186 | /** |
| 187 | * acpi_get_psd_map - Map the CPUs in a common freq domain. |
| 188 | * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info. |
| 189 | * |
| 190 | * Return: 0 for success or negative value for err. |
| 191 | */ |
| 192 | int acpi_get_psd_map(struct cpudata **all_cpu_data) |
| 193 | { |
| 194 | int count_target; |
| 195 | int retval = 0; |
| 196 | unsigned int i, j; |
| 197 | cpumask_var_t covered_cpus; |
| 198 | struct cpudata *pr, *match_pr; |
| 199 | struct acpi_psd_package *pdomain; |
| 200 | struct acpi_psd_package *match_pdomain; |
| 201 | struct cpc_desc *cpc_ptr, *match_cpc_ptr; |
| 202 | |
| 203 | if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL)) |
| 204 | return -ENOMEM; |
| 205 | |
| 206 | /* |
| 207 | * Now that we have _PSD data from all CPUs, lets setup P-state |
| 208 | * domain info. |
| 209 | */ |
| 210 | for_each_possible_cpu(i) { |
| 211 | pr = all_cpu_data[i]; |
| 212 | if (!pr) |
| 213 | continue; |
| 214 | |
| 215 | if (cpumask_test_cpu(i, covered_cpus)) |
| 216 | continue; |
| 217 | |
| 218 | cpc_ptr = per_cpu(cpc_desc_ptr, i); |
| 219 | if (!cpc_ptr) |
| 220 | continue; |
| 221 | |
| 222 | pdomain = &(cpc_ptr->domain_info); |
| 223 | cpumask_set_cpu(i, pr->shared_cpu_map); |
| 224 | cpumask_set_cpu(i, covered_cpus); |
| 225 | if (pdomain->num_processors <= 1) |
| 226 | continue; |
| 227 | |
| 228 | /* Validate the Domain info */ |
| 229 | count_target = pdomain->num_processors; |
| 230 | if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL) |
| 231 | pr->shared_type = CPUFREQ_SHARED_TYPE_ALL; |
| 232 | else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL) |
| 233 | pr->shared_type = CPUFREQ_SHARED_TYPE_HW; |
| 234 | else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY) |
| 235 | pr->shared_type = CPUFREQ_SHARED_TYPE_ANY; |
| 236 | |
| 237 | for_each_possible_cpu(j) { |
| 238 | if (i == j) |
| 239 | continue; |
| 240 | |
| 241 | match_cpc_ptr = per_cpu(cpc_desc_ptr, j); |
| 242 | if (!match_cpc_ptr) |
| 243 | continue; |
| 244 | |
| 245 | match_pdomain = &(match_cpc_ptr->domain_info); |
| 246 | if (match_pdomain->domain != pdomain->domain) |
| 247 | continue; |
| 248 | |
| 249 | /* Here i and j are in the same domain */ |
| 250 | if (match_pdomain->num_processors != count_target) { |
| 251 | retval = -EFAULT; |
| 252 | goto err_ret; |
| 253 | } |
| 254 | |
| 255 | if (pdomain->coord_type != match_pdomain->coord_type) { |
| 256 | retval = -EFAULT; |
| 257 | goto err_ret; |
| 258 | } |
| 259 | |
| 260 | cpumask_set_cpu(j, covered_cpus); |
| 261 | cpumask_set_cpu(j, pr->shared_cpu_map); |
| 262 | } |
| 263 | |
| 264 | for_each_possible_cpu(j) { |
| 265 | if (i == j) |
| 266 | continue; |
| 267 | |
| 268 | match_pr = all_cpu_data[j]; |
| 269 | if (!match_pr) |
| 270 | continue; |
| 271 | |
| 272 | match_cpc_ptr = per_cpu(cpc_desc_ptr, j); |
| 273 | if (!match_cpc_ptr) |
| 274 | continue; |
| 275 | |
| 276 | match_pdomain = &(match_cpc_ptr->domain_info); |
| 277 | if (match_pdomain->domain != pdomain->domain) |
| 278 | continue; |
| 279 | |
| 280 | match_pr->shared_type = pr->shared_type; |
| 281 | cpumask_copy(match_pr->shared_cpu_map, |
| 282 | pr->shared_cpu_map); |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | err_ret: |
| 287 | for_each_possible_cpu(i) { |
| 288 | pr = all_cpu_data[i]; |
| 289 | if (!pr) |
| 290 | continue; |
| 291 | |
| 292 | /* Assume no coordination on any error parsing domain info */ |
| 293 | if (retval) { |
| 294 | cpumask_clear(pr->shared_cpu_map); |
| 295 | cpumask_set_cpu(i, pr->shared_cpu_map); |
| 296 | pr->shared_type = CPUFREQ_SHARED_TYPE_ALL; |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | free_cpumask_var(covered_cpus); |
| 301 | return retval; |
| 302 | } |
| 303 | EXPORT_SYMBOL_GPL(acpi_get_psd_map); |
| 304 | |
| 305 | static int register_pcc_channel(unsigned pcc_subspace_idx) |
| 306 | { |
| 307 | struct acpi_pcct_subspace *cppc_ss; |
| 308 | unsigned int len; |
| 309 | |
| 310 | if (pcc_subspace_idx >= 0) { |
| 311 | pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl, |
| 312 | pcc_subspace_idx); |
| 313 | |
| 314 | if (IS_ERR(pcc_channel)) { |
| 315 | pr_err("Failed to find PCC communication channel\n"); |
| 316 | return -ENODEV; |
| 317 | } |
| 318 | |
| 319 | /* |
| 320 | * The PCC mailbox controller driver should |
| 321 | * have parsed the PCCT (global table of all |
| 322 | * PCC channels) and stored pointers to the |
| 323 | * subspace communication region in con_priv. |
| 324 | */ |
| 325 | cppc_ss = pcc_channel->con_priv; |
| 326 | |
| 327 | if (!cppc_ss) { |
| 328 | pr_err("No PCC subspace found for CPPC\n"); |
| 329 | return -ENODEV; |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | * This is the shared communication region |
| 334 | * for the OS and Platform to communicate over. |
| 335 | */ |
| 336 | comm_base_addr = cppc_ss->base_address; |
| 337 | len = cppc_ss->length; |
| 338 | pcc_cmd_delay = cppc_ss->min_turnaround_time; |
| 339 | |
| 340 | pcc_comm_addr = acpi_os_ioremap(comm_base_addr, len); |
| 341 | if (!pcc_comm_addr) { |
| 342 | pr_err("Failed to ioremap PCC comm region mem\n"); |
| 343 | return -ENOMEM; |
| 344 | } |
| 345 | |
| 346 | /* Set flag so that we dont come here for each CPU. */ |
| 347 | pcc_channel_acquired = true; |
| 348 | } |
| 349 | |
| 350 | return 0; |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | * An example CPC table looks like the following. |
| 355 | * |
| 356 | * Name(_CPC, Package() |
| 357 | * { |
| 358 | * 17, |
| 359 | * NumEntries |
| 360 | * 1, |
| 361 | * // Revision |
| 362 | * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)}, |
| 363 | * // Highest Performance |
| 364 | * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)}, |
| 365 | * // Nominal Performance |
| 366 | * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)}, |
| 367 | * // Lowest Nonlinear Performance |
| 368 | * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)}, |
| 369 | * // Lowest Performance |
| 370 | * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)}, |
| 371 | * // Guaranteed Performance Register |
| 372 | * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)}, |
| 373 | * // Desired Performance Register |
| 374 | * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)}, |
| 375 | * .. |
| 376 | * .. |
| 377 | * .. |
| 378 | * |
| 379 | * } |
| 380 | * Each Register() encodes how to access that specific register. |
| 381 | * e.g. a sample PCC entry has the following encoding: |
| 382 | * |
| 383 | * Register ( |
| 384 | * PCC, |
| 385 | * AddressSpaceKeyword |
| 386 | * 8, |
| 387 | * //RegisterBitWidth |
| 388 | * 8, |
| 389 | * //RegisterBitOffset |
| 390 | * 0x30, |
| 391 | * //RegisterAddress |
| 392 | * 9 |
| 393 | * //AccessSize (subspace ID) |
| 394 | * 0 |
| 395 | * ) |
| 396 | * } |
| 397 | */ |
| 398 | |
| 399 | /** |
| 400 | * acpi_cppc_processor_probe - Search for per CPU _CPC objects. |
| 401 | * @pr: Ptr to acpi_processor containing this CPUs logical Id. |
| 402 | * |
| 403 | * Return: 0 for success or negative value for err. |
| 404 | */ |
| 405 | int acpi_cppc_processor_probe(struct acpi_processor *pr) |
| 406 | { |
| 407 | struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL}; |
| 408 | union acpi_object *out_obj, *cpc_obj; |
| 409 | struct cpc_desc *cpc_ptr; |
| 410 | struct cpc_reg *gas_t; |
| 411 | acpi_handle handle = pr->handle; |
| 412 | unsigned int num_ent, i, cpc_rev; |
| 413 | acpi_status status; |
| 414 | int ret = -EFAULT; |
| 415 | |
| 416 | /* Parse the ACPI _CPC table for this cpu. */ |
| 417 | status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output, |
| 418 | ACPI_TYPE_PACKAGE); |
| 419 | if (ACPI_FAILURE(status)) { |
| 420 | ret = -ENODEV; |
| 421 | goto out_buf_free; |
| 422 | } |
| 423 | |
| 424 | out_obj = (union acpi_object *) output.pointer; |
| 425 | |
| 426 | cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL); |
| 427 | if (!cpc_ptr) { |
| 428 | ret = -ENOMEM; |
| 429 | goto out_buf_free; |
| 430 | } |
| 431 | |
| 432 | /* First entry is NumEntries. */ |
| 433 | cpc_obj = &out_obj->package.elements[0]; |
| 434 | if (cpc_obj->type == ACPI_TYPE_INTEGER) { |
| 435 | num_ent = cpc_obj->integer.value; |
| 436 | } else { |
| 437 | pr_debug("Unexpected entry type(%d) for NumEntries\n", |
| 438 | cpc_obj->type); |
| 439 | goto out_free; |
| 440 | } |
| 441 | |
| 442 | /* Only support CPPCv2. Bail otherwise. */ |
| 443 | if (num_ent != CPPC_NUM_ENT) { |
| 444 | pr_debug("Firmware exports %d entries. Expected: %d\n", |
| 445 | num_ent, CPPC_NUM_ENT); |
| 446 | goto out_free; |
| 447 | } |
| 448 | |
| 449 | /* Second entry should be revision. */ |
| 450 | cpc_obj = &out_obj->package.elements[1]; |
| 451 | if (cpc_obj->type == ACPI_TYPE_INTEGER) { |
| 452 | cpc_rev = cpc_obj->integer.value; |
| 453 | } else { |
| 454 | pr_debug("Unexpected entry type(%d) for Revision\n", |
| 455 | cpc_obj->type); |
| 456 | goto out_free; |
| 457 | } |
| 458 | |
| 459 | if (cpc_rev != CPPC_REV) { |
| 460 | pr_debug("Firmware exports revision:%d. Expected:%d\n", |
| 461 | cpc_rev, CPPC_REV); |
| 462 | goto out_free; |
| 463 | } |
| 464 | |
| 465 | /* Iterate through remaining entries in _CPC */ |
| 466 | for (i = 2; i < num_ent; i++) { |
| 467 | cpc_obj = &out_obj->package.elements[i]; |
| 468 | |
| 469 | if (cpc_obj->type == ACPI_TYPE_INTEGER) { |
| 470 | cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER; |
| 471 | cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value; |
| 472 | } else if (cpc_obj->type == ACPI_TYPE_BUFFER) { |
| 473 | gas_t = (struct cpc_reg *) |
| 474 | cpc_obj->buffer.pointer; |
| 475 | |
| 476 | /* |
| 477 | * The PCC Subspace index is encoded inside |
| 478 | * the CPC table entries. The same PCC index |
| 479 | * will be used for all the PCC entries, |
| 480 | * so extract it only once. |
| 481 | */ |
| 482 | if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { |
| 483 | if (pcc_subspace_idx < 0) |
| 484 | pcc_subspace_idx = gas_t->access_width; |
| 485 | else if (pcc_subspace_idx != gas_t->access_width) { |
| 486 | pr_debug("Mismatched PCC ids.\n"); |
| 487 | goto out_free; |
| 488 | } |
| 489 | } else if (gas_t->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) { |
| 490 | /* Support only PCC and SYS MEM type regs */ |
| 491 | pr_debug("Unsupported register type: %d\n", gas_t->space_id); |
| 492 | goto out_free; |
| 493 | } |
| 494 | |
| 495 | cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER; |
| 496 | memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t)); |
| 497 | } else { |
| 498 | pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id); |
| 499 | goto out_free; |
| 500 | } |
| 501 | } |
| 502 | /* Store CPU Logical ID */ |
| 503 | cpc_ptr->cpu_id = pr->id; |
| 504 | |
| 505 | /* Plug it into this CPUs CPC descriptor. */ |
| 506 | per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr; |
| 507 | |
| 508 | /* Parse PSD data for this CPU */ |
| 509 | ret = acpi_get_psd(cpc_ptr, handle); |
| 510 | if (ret) |
| 511 | goto out_free; |
| 512 | |
| 513 | /* Register PCC channel once for all CPUs. */ |
| 514 | if (!pcc_channel_acquired) { |
| 515 | ret = register_pcc_channel(pcc_subspace_idx); |
| 516 | if (ret) |
| 517 | goto out_free; |
| 518 | } |
| 519 | |
| 520 | /* Everything looks okay */ |
| 521 | pr_debug("Parsed CPC struct for CPU: %d\n", pr->id); |
| 522 | |
| 523 | kfree(output.pointer); |
| 524 | return 0; |
| 525 | |
| 526 | out_free: |
| 527 | cpc_ptr = per_cpu(cpc_desc_ptr, pr->id); |
| 528 | kfree(cpc_ptr); |
| 529 | |
| 530 | out_buf_free: |
| 531 | kfree(output.pointer); |
| 532 | return ret; |
| 533 | } |
| 534 | EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe); |
| 535 | |
| 536 | /** |
| 537 | * acpi_cppc_processor_exit - Cleanup CPC structs. |
| 538 | * @pr: Ptr to acpi_processor containing this CPUs logical Id. |
| 539 | * |
| 540 | * Return: Void |
| 541 | */ |
| 542 | void acpi_cppc_processor_exit(struct acpi_processor *pr) |
| 543 | { |
| 544 | struct cpc_desc *cpc_ptr; |
| 545 | cpc_ptr = per_cpu(cpc_desc_ptr, pr->id); |
| 546 | kfree(cpc_ptr); |
| 547 | } |
| 548 | EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit); |
| 549 | |
| 550 | static u64 get_phys_addr(struct cpc_reg *reg) |
| 551 | { |
| 552 | /* PCC communication addr space begins at byte offset 0x8. */ |
| 553 | if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) |
| 554 | return (u64)comm_base_addr + 0x8 + reg->address; |
| 555 | else |
| 556 | return reg->address; |
| 557 | } |
| 558 | |
| 559 | static void cpc_read(struct cpc_reg *reg, u64 *val) |
| 560 | { |
| 561 | u64 addr = get_phys_addr(reg); |
| 562 | |
| 563 | acpi_os_read_memory((acpi_physical_address)addr, |
| 564 | val, reg->bit_width); |
| 565 | } |
| 566 | |
| 567 | static void cpc_write(struct cpc_reg *reg, u64 val) |
| 568 | { |
| 569 | u64 addr = get_phys_addr(reg); |
| 570 | |
| 571 | acpi_os_write_memory((acpi_physical_address)addr, |
| 572 | val, reg->bit_width); |
| 573 | } |
| 574 | |
| 575 | /** |
| 576 | * cppc_get_perf_caps - Get a CPUs performance capabilities. |
| 577 | * @cpunum: CPU from which to get capabilities info. |
| 578 | * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h |
| 579 | * |
| 580 | * Return: 0 for success with perf_caps populated else -ERRNO. |
| 581 | */ |
| 582 | int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) |
| 583 | { |
| 584 | struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); |
| 585 | struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf, |
| 586 | *nom_perf; |
| 587 | u64 high, low, ref, nom; |
| 588 | int ret = 0; |
| 589 | |
| 590 | if (!cpc_desc) { |
| 591 | pr_debug("No CPC descriptor for CPU:%d\n", cpunum); |
| 592 | return -ENODEV; |
| 593 | } |
| 594 | |
| 595 | highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF]; |
| 596 | lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF]; |
| 597 | ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF]; |
| 598 | nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF]; |
| 599 | |
| 600 | spin_lock(&pcc_lock); |
| 601 | |
| 602 | /* Are any of the regs PCC ?*/ |
| 603 | if ((highest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || |
| 604 | (lowest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || |
| 605 | (ref_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || |
| 606 | (nom_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) { |
| 607 | /* Ring doorbell once to update PCC subspace */ |
| 608 | if (send_pcc_cmd(CMD_READ)) { |
| 609 | ret = -EIO; |
| 610 | goto out_err; |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | cpc_read(&highest_reg->cpc_entry.reg, &high); |
| 615 | perf_caps->highest_perf = high; |
| 616 | |
| 617 | cpc_read(&lowest_reg->cpc_entry.reg, &low); |
| 618 | perf_caps->lowest_perf = low; |
| 619 | |
| 620 | cpc_read(&ref_perf->cpc_entry.reg, &ref); |
| 621 | perf_caps->reference_perf = ref; |
| 622 | |
| 623 | cpc_read(&nom_perf->cpc_entry.reg, &nom); |
| 624 | perf_caps->nominal_perf = nom; |
| 625 | |
| 626 | if (!ref) |
| 627 | perf_caps->reference_perf = perf_caps->nominal_perf; |
| 628 | |
| 629 | if (!high || !low || !nom) |
| 630 | ret = -EFAULT; |
| 631 | |
| 632 | out_err: |
| 633 | spin_unlock(&pcc_lock); |
| 634 | return ret; |
| 635 | } |
| 636 | EXPORT_SYMBOL_GPL(cppc_get_perf_caps); |
| 637 | |
| 638 | /** |
| 639 | * cppc_get_perf_ctrs - Read a CPUs performance feedback counters. |
| 640 | * @cpunum: CPU from which to read counters. |
| 641 | * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h |
| 642 | * |
| 643 | * Return: 0 for success with perf_fb_ctrs populated else -ERRNO. |
| 644 | */ |
| 645 | int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) |
| 646 | { |
| 647 | struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); |
| 648 | struct cpc_register_resource *delivered_reg, *reference_reg; |
| 649 | u64 delivered, reference; |
| 650 | int ret = 0; |
| 651 | |
| 652 | if (!cpc_desc) { |
| 653 | pr_debug("No CPC descriptor for CPU:%d\n", cpunum); |
| 654 | return -ENODEV; |
| 655 | } |
| 656 | |
| 657 | delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR]; |
| 658 | reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR]; |
| 659 | |
| 660 | spin_lock(&pcc_lock); |
| 661 | |
| 662 | /* Are any of the regs PCC ?*/ |
| 663 | if ((delivered_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || |
| 664 | (reference_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) { |
| 665 | /* Ring doorbell once to update PCC subspace */ |
| 666 | if (send_pcc_cmd(CMD_READ)) { |
| 667 | ret = -EIO; |
| 668 | goto out_err; |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | cpc_read(&delivered_reg->cpc_entry.reg, &delivered); |
| 673 | cpc_read(&reference_reg->cpc_entry.reg, &reference); |
| 674 | |
| 675 | if (!delivered || !reference) { |
| 676 | ret = -EFAULT; |
| 677 | goto out_err; |
| 678 | } |
| 679 | |
| 680 | perf_fb_ctrs->delivered = delivered; |
| 681 | perf_fb_ctrs->reference = reference; |
| 682 | |
| 683 | perf_fb_ctrs->delivered -= perf_fb_ctrs->prev_delivered; |
| 684 | perf_fb_ctrs->reference -= perf_fb_ctrs->prev_reference; |
| 685 | |
| 686 | perf_fb_ctrs->prev_delivered = delivered; |
| 687 | perf_fb_ctrs->prev_reference = reference; |
| 688 | |
| 689 | out_err: |
| 690 | spin_unlock(&pcc_lock); |
| 691 | return ret; |
| 692 | } |
| 693 | EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs); |
| 694 | |
| 695 | /** |
| 696 | * cppc_set_perf - Set a CPUs performance controls. |
| 697 | * @cpu: CPU for which to set performance controls. |
| 698 | * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h |
| 699 | * |
| 700 | * Return: 0 for success, -ERRNO otherwise. |
| 701 | */ |
| 702 | int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls) |
| 703 | { |
| 704 | struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu); |
| 705 | struct cpc_register_resource *desired_reg; |
| 706 | int ret = 0; |
| 707 | |
| 708 | if (!cpc_desc) { |
| 709 | pr_debug("No CPC descriptor for CPU:%d\n", cpu); |
| 710 | return -ENODEV; |
| 711 | } |
| 712 | |
| 713 | desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; |
| 714 | |
| 715 | spin_lock(&pcc_lock); |
| 716 | |
| 717 | /* |
| 718 | * Skip writing MIN/MAX until Linux knows how to come up with |
| 719 | * useful values. |
| 720 | */ |
| 721 | cpc_write(&desired_reg->cpc_entry.reg, perf_ctrls->desired_perf); |
| 722 | |
| 723 | /* Is this a PCC reg ?*/ |
| 724 | if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { |
| 725 | /* Ring doorbell so Remote can get our perf request. */ |
| 726 | if (send_pcc_cmd(CMD_WRITE)) |
| 727 | ret = -EIO; |
| 728 | } |
| 729 | |
| 730 | spin_unlock(&pcc_lock); |
| 731 | |
| 732 | return ret; |
| 733 | } |
| 734 | EXPORT_SYMBOL_GPL(cppc_set_perf); |