blob: c33d0ba7e300097f569a826642a6189fa9a3ac90 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Extensible Firmware Interface
3 *
4 * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
5 *
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2003 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
Bjorn Helgaas32e62c62006-05-05 17:19:50 -060011 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
12 * Bjorn Helgaas <bjorn.helgaas@hp.com>
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
14 * All EFI Runtime Services are not implemented yet as EFI only
15 * supports physical mode addressing on SoftSDV. This is to be fixed
16 * in a future version. --drummond 1999-07-20
17 *
18 * Implemented EFI runtime services and virtual mode calls. --davidm
19 *
20 * Goutham Rao: <goutham.rao@intel.com>
21 * Skip non-WB memory and ignore empty memory ranges.
22 */
23#include <linux/config.h>
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/init.h>
27#include <linux/types.h>
28#include <linux/time.h>
29#include <linux/efi.h>
30
31#include <asm/io.h>
32#include <asm/kregs.h>
33#include <asm/meminit.h>
34#include <asm/pgtable.h>
35#include <asm/processor.h>
36#include <asm/mca.h>
37
38#define EFI_DEBUG 0
39
40extern efi_status_t efi_call_phys (void *, ...);
41
42struct efi efi;
43EXPORT_SYMBOL(efi);
44static efi_runtime_services_t *runtime;
45static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
46
47#define efi_call_virt(f, args...) (*(f))(args)
48
49#define STUB_GET_TIME(prefix, adjust_arg) \
50static efi_status_t \
51prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
52{ \
53 struct ia64_fpreg fr[6]; \
54 efi_time_cap_t *atc = NULL; \
55 efi_status_t ret; \
56 \
57 if (tc) \
58 atc = adjust_arg(tc); \
59 ia64_save_scratch_fpregs(fr); \
60 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
61 ia64_load_scratch_fpregs(fr); \
62 return ret; \
63}
64
65#define STUB_SET_TIME(prefix, adjust_arg) \
66static efi_status_t \
67prefix##_set_time (efi_time_t *tm) \
68{ \
69 struct ia64_fpreg fr[6]; \
70 efi_status_t ret; \
71 \
72 ia64_save_scratch_fpregs(fr); \
73 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
74 ia64_load_scratch_fpregs(fr); \
75 return ret; \
76}
77
78#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
79static efi_status_t \
80prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
81{ \
82 struct ia64_fpreg fr[6]; \
83 efi_status_t ret; \
84 \
85 ia64_save_scratch_fpregs(fr); \
86 ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
87 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
88 ia64_load_scratch_fpregs(fr); \
89 return ret; \
90}
91
92#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
93static efi_status_t \
94prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
95{ \
96 struct ia64_fpreg fr[6]; \
97 efi_time_t *atm = NULL; \
98 efi_status_t ret; \
99 \
100 if (tm) \
101 atm = adjust_arg(tm); \
102 ia64_save_scratch_fpregs(fr); \
103 ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
104 enabled, atm); \
105 ia64_load_scratch_fpregs(fr); \
106 return ret; \
107}
108
109#define STUB_GET_VARIABLE(prefix, adjust_arg) \
110static efi_status_t \
111prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
112 unsigned long *data_size, void *data) \
113{ \
114 struct ia64_fpreg fr[6]; \
115 u32 *aattr = NULL; \
116 efi_status_t ret; \
117 \
118 if (attr) \
119 aattr = adjust_arg(attr); \
120 ia64_save_scratch_fpregs(fr); \
121 ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
122 adjust_arg(name), adjust_arg(vendor), aattr, \
123 adjust_arg(data_size), adjust_arg(data)); \
124 ia64_load_scratch_fpregs(fr); \
125 return ret; \
126}
127
128#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
129static efi_status_t \
130prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
131{ \
132 struct ia64_fpreg fr[6]; \
133 efi_status_t ret; \
134 \
135 ia64_save_scratch_fpregs(fr); \
136 ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
137 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
138 ia64_load_scratch_fpregs(fr); \
139 return ret; \
140}
141
142#define STUB_SET_VARIABLE(prefix, adjust_arg) \
143static efi_status_t \
144prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
145 unsigned long data_size, void *data) \
146{ \
147 struct ia64_fpreg fr[6]; \
148 efi_status_t ret; \
149 \
150 ia64_save_scratch_fpregs(fr); \
151 ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
152 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
153 adjust_arg(data)); \
154 ia64_load_scratch_fpregs(fr); \
155 return ret; \
156}
157
158#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
159static efi_status_t \
160prefix##_get_next_high_mono_count (u32 *count) \
161{ \
162 struct ia64_fpreg fr[6]; \
163 efi_status_t ret; \
164 \
165 ia64_save_scratch_fpregs(fr); \
166 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
167 __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
168 ia64_load_scratch_fpregs(fr); \
169 return ret; \
170}
171
172#define STUB_RESET_SYSTEM(prefix, adjust_arg) \
173static void \
174prefix##_reset_system (int reset_type, efi_status_t status, \
175 unsigned long data_size, efi_char16_t *data) \
176{ \
177 struct ia64_fpreg fr[6]; \
178 efi_char16_t *adata = NULL; \
179 \
180 if (data) \
181 adata = adjust_arg(data); \
182 \
183 ia64_save_scratch_fpregs(fr); \
184 efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
185 reset_type, status, data_size, adata); \
186 /* should not return, but just in case... */ \
187 ia64_load_scratch_fpregs(fr); \
188}
189
190#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
191
192STUB_GET_TIME(phys, phys_ptr)
193STUB_SET_TIME(phys, phys_ptr)
194STUB_GET_WAKEUP_TIME(phys, phys_ptr)
195STUB_SET_WAKEUP_TIME(phys, phys_ptr)
196STUB_GET_VARIABLE(phys, phys_ptr)
197STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
198STUB_SET_VARIABLE(phys, phys_ptr)
199STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
200STUB_RESET_SYSTEM(phys, phys_ptr)
201
202#define id(arg) arg
203
204STUB_GET_TIME(virt, id)
205STUB_SET_TIME(virt, id)
206STUB_GET_WAKEUP_TIME(virt, id)
207STUB_SET_WAKEUP_TIME(virt, id)
208STUB_GET_VARIABLE(virt, id)
209STUB_GET_NEXT_VARIABLE(virt, id)
210STUB_SET_VARIABLE(virt, id)
211STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
212STUB_RESET_SYSTEM(virt, id)
213
214void
215efi_gettimeofday (struct timespec *ts)
216{
217 efi_time_t tm;
218
219 memset(ts, 0, sizeof(ts));
220 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
221 return;
222
223 ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
224 ts->tv_nsec = tm.nanosecond;
225}
226
227static int
228is_available_memory (efi_memory_desc_t *md)
229{
230 if (!(md->attribute & EFI_MEMORY_WB))
231 return 0;
232
233 switch (md->type) {
234 case EFI_LOADER_CODE:
235 case EFI_LOADER_DATA:
236 case EFI_BOOT_SERVICES_CODE:
237 case EFI_BOOT_SERVICES_DATA:
238 case EFI_CONVENTIONAL_MEMORY:
239 return 1;
240 }
241 return 0;
242}
243
Tony Luckd8c97d52005-09-08 12:39:59 -0700244typedef struct kern_memdesc {
245 u64 attribute;
246 u64 start;
247 u64 num_pages;
248} kern_memdesc_t;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249
Tony Luckd8c97d52005-09-08 12:39:59 -0700250static kern_memdesc_t *kern_memmap;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700251
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800252#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
253
254static inline u64
255kmd_end(kern_memdesc_t *kmd)
256{
257 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
258}
259
260static inline u64
261efi_md_end(efi_memory_desc_t *md)
262{
263 return (md->phys_addr + efi_md_size(md));
264}
265
266static inline int
267efi_wb(efi_memory_desc_t *md)
268{
269 return (md->attribute & EFI_MEMORY_WB);
270}
271
272static inline int
273efi_uc(efi_memory_desc_t *md)
274{
275 return (md->attribute & EFI_MEMORY_UC);
276}
277
Linus Torvalds1da177e2005-04-16 15:20:36 -0700278static void
Tony Luckd8c97d52005-09-08 12:39:59 -0700279walk (efi_freemem_callback_t callback, void *arg, u64 attr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280{
Tony Luckd8c97d52005-09-08 12:39:59 -0700281 kern_memdesc_t *k;
282 u64 start, end, voff;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700283
Tony Luckd8c97d52005-09-08 12:39:59 -0700284 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
285 for (k = kern_memmap; k->start != ~0UL; k++) {
286 if (k->attribute != attr)
287 continue;
288 start = PAGE_ALIGN(k->start);
289 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
290 if (start < end)
291 if ((*callback)(start + voff, end + voff, arg) < 0)
292 return;
293 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294}
295
296/*
297 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
298 * has memory that is available for OS use.
299 */
300void
301efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
302{
Tony Luckd8c97d52005-09-08 12:39:59 -0700303 walk(callback, arg, EFI_MEMORY_WB);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700304}
305
306/*
Tony Luckd8c97d52005-09-08 12:39:59 -0700307 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
308 * has memory that is available for uncached allocator.
Jes Sorensenf14f75b2005-06-21 17:15:02 -0700309 */
Tony Luckd8c97d52005-09-08 12:39:59 -0700310void
311efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
Jes Sorensenf14f75b2005-06-21 17:15:02 -0700312{
Tony Luckd8c97d52005-09-08 12:39:59 -0700313 walk(callback, arg, EFI_MEMORY_UC);
Jes Sorensenf14f75b2005-06-21 17:15:02 -0700314}
315
Jes Sorensenf14f75b2005-06-21 17:15:02 -0700316/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700317 * Look for the PAL_CODE region reported by EFI and maps it using an
318 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
319 * Abstraction Layer chapter 11 in ADAG
320 */
321
322void *
323efi_get_pal_addr (void)
324{
325 void *efi_map_start, *efi_map_end, *p;
326 efi_memory_desc_t *md;
327 u64 efi_desc_size;
328 int pal_code_count = 0;
329 u64 vaddr, mask;
330
331 efi_map_start = __va(ia64_boot_param->efi_memmap);
332 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
333 efi_desc_size = ia64_boot_param->efi_memdesc_size;
334
335 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
336 md = p;
337 if (md->type != EFI_PAL_CODE)
338 continue;
339
340 if (++pal_code_count > 1) {
341 printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
342 md->phys_addr);
343 continue;
344 }
345 /*
346 * The only ITLB entry in region 7 that is used is the one installed by
347 * __start(). That entry covers a 64MB range.
348 */
349 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
350 vaddr = PAGE_OFFSET + md->phys_addr;
351
352 /*
353 * We must check that the PAL mapping won't overlap with the kernel
354 * mapping.
355 *
356 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
357 * 256KB and that only one ITR is needed to map it. This implies that the
358 * PAL code is always aligned on its size, i.e., the closest matching page
359 * size supported by the TLB. Therefore PAL code is guaranteed never to
360 * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
361 * now the following test is enough to determine whether or not we need a
362 * dedicated ITR for the PAL code.
363 */
364 if ((vaddr & mask) == (KERNEL_START & mask)) {
365 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
366 __FUNCTION__);
367 continue;
368 }
369
370 if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
371 panic("Woah! PAL code size bigger than a granule!");
372
373#if EFI_DEBUG
374 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
375
376 printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
377 smp_processor_id(), md->phys_addr,
378 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
379 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
380#endif
381 return __va(md->phys_addr);
382 }
383 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
384 __FUNCTION__);
385 return NULL;
386}
387
388void
389efi_map_pal_code (void)
390{
391 void *pal_vaddr = efi_get_pal_addr ();
392 u64 psr;
393
394 if (!pal_vaddr)
395 return;
396
397 /*
398 * Cannot write to CRx with PSR.ic=1
399 */
400 psr = ia64_clear_ic();
401 ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
402 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
403 IA64_GRANULE_SHIFT);
404 ia64_set_psr(psr); /* restore psr */
405 ia64_srlz_i();
406}
407
408void __init
409efi_init (void)
410{
411 void *efi_map_start, *efi_map_end;
412 efi_config_table_t *config_tables;
413 efi_char16_t *c16;
414 u64 efi_desc_size;
Zou Nan hai9d78f432006-02-07 11:35:46 +0800415 char *cp, vendor[100] = "unknown";
Linus Torvalds1da177e2005-04-16 15:20:36 -0700416 extern char saved_command_line[];
417 int i;
418
419 /* it's too early to be able to use the standard kernel command line support... */
420 for (cp = saved_command_line; *cp; ) {
421 if (memcmp(cp, "mem=", 4) == 0) {
Zou Nan hai9d78f432006-02-07 11:35:46 +0800422 mem_limit = memparse(cp + 4, &cp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700423 } else if (memcmp(cp, "max_addr=", 9) == 0) {
Zou Nan hai9d78f432006-02-07 11:35:46 +0800424 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700425 } else {
426 while (*cp != ' ' && *cp)
427 ++cp;
428 while (*cp == ' ')
429 ++cp;
430 }
431 }
432 if (max_addr != ~0UL)
433 printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
434
435 efi.systab = __va(ia64_boot_param->efi_systab);
436
437 /*
438 * Verify the EFI Table
439 */
440 if (efi.systab == NULL)
441 panic("Woah! Can't find EFI system table.\n");
442 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
443 panic("Woah! EFI system table signature incorrect\n");
444 if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
445 printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
446 "got %d.%02d, expected %d.%02d\n",
447 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
448 EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
449
450 config_tables = __va(efi.systab->tables);
451
452 /* Show what we know for posterity */
453 c16 = __va(efi.systab->fw_vendor);
454 if (c16) {
Zou Nan haiecdd5da2006-02-07 11:25:55 +0800455 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700456 vendor[i] = *c16++;
457 vendor[i] = '\0';
458 }
459
460 printk(KERN_INFO "EFI v%u.%.02u by %s:",
461 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
462
Bjorn Helgaasb2c99e32006-03-26 01:37:08 -0800463 efi.mps = EFI_INVALID_TABLE_ADDR;
464 efi.acpi = EFI_INVALID_TABLE_ADDR;
465 efi.acpi20 = EFI_INVALID_TABLE_ADDR;
466 efi.smbios = EFI_INVALID_TABLE_ADDR;
467 efi.sal_systab = EFI_INVALID_TABLE_ADDR;
468 efi.boot_info = EFI_INVALID_TABLE_ADDR;
469 efi.hcdp = EFI_INVALID_TABLE_ADDR;
470 efi.uga = EFI_INVALID_TABLE_ADDR;
471
Linus Torvalds1da177e2005-04-16 15:20:36 -0700472 for (i = 0; i < (int) efi.systab->nr_tables; i++) {
473 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
Bjorn Helgaasb2c99e32006-03-26 01:37:08 -0800474 efi.mps = config_tables[i].table;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700475 printk(" MPS=0x%lx", config_tables[i].table);
476 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
Bjorn Helgaasb2c99e32006-03-26 01:37:08 -0800477 efi.acpi20 = config_tables[i].table;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700478 printk(" ACPI 2.0=0x%lx", config_tables[i].table);
479 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
Bjorn Helgaasb2c99e32006-03-26 01:37:08 -0800480 efi.acpi = config_tables[i].table;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700481 printk(" ACPI=0x%lx", config_tables[i].table);
482 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
Bjorn Helgaasb2c99e32006-03-26 01:37:08 -0800483 efi.smbios = config_tables[i].table;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484 printk(" SMBIOS=0x%lx", config_tables[i].table);
485 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
Bjorn Helgaasb2c99e32006-03-26 01:37:08 -0800486 efi.sal_systab = config_tables[i].table;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700487 printk(" SALsystab=0x%lx", config_tables[i].table);
488 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
Bjorn Helgaasb2c99e32006-03-26 01:37:08 -0800489 efi.hcdp = config_tables[i].table;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700490 printk(" HCDP=0x%lx", config_tables[i].table);
491 }
492 }
493 printk("\n");
494
495 runtime = __va(efi.systab->runtime);
496 efi.get_time = phys_get_time;
497 efi.set_time = phys_set_time;
498 efi.get_wakeup_time = phys_get_wakeup_time;
499 efi.set_wakeup_time = phys_set_wakeup_time;
500 efi.get_variable = phys_get_variable;
501 efi.get_next_variable = phys_get_next_variable;
502 efi.set_variable = phys_set_variable;
503 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
504 efi.reset_system = phys_reset_system;
505
506 efi_map_start = __va(ia64_boot_param->efi_memmap);
507 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
508 efi_desc_size = ia64_boot_param->efi_memdesc_size;
509
510#if EFI_DEBUG
511 /* print EFI memory map: */
512 {
513 efi_memory_desc_t *md;
514 void *p;
515
516 for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
517 md = p;
518 printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
519 i, md->type, md->attribute, md->phys_addr,
520 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
521 md->num_pages >> (20 - EFI_PAGE_SHIFT));
522 }
523 }
524#endif
525
526 efi_map_pal_code();
527 efi_enter_virtual_mode();
528}
529
530void
531efi_enter_virtual_mode (void)
532{
533 void *efi_map_start, *efi_map_end, *p;
534 efi_memory_desc_t *md;
535 efi_status_t status;
536 u64 efi_desc_size;
537
538 efi_map_start = __va(ia64_boot_param->efi_memmap);
539 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
540 efi_desc_size = ia64_boot_param->efi_memdesc_size;
541
542 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
543 md = p;
544 if (md->attribute & EFI_MEMORY_RUNTIME) {
545 /*
546 * Some descriptors have multiple bits set, so the order of
547 * the tests is relevant.
548 */
549 if (md->attribute & EFI_MEMORY_WB) {
550 md->virt_addr = (u64) __va(md->phys_addr);
551 } else if (md->attribute & EFI_MEMORY_UC) {
552 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
553 } else if (md->attribute & EFI_MEMORY_WC) {
554#if 0
555 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
556 | _PAGE_D
557 | _PAGE_MA_WC
558 | _PAGE_PL_0
559 | _PAGE_AR_RW));
560#else
561 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
562 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
563#endif
564 } else if (md->attribute & EFI_MEMORY_WT) {
565#if 0
566 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
567 | _PAGE_D | _PAGE_MA_WT
568 | _PAGE_PL_0
569 | _PAGE_AR_RW));
570#else
571 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
572 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
573#endif
574 }
575 }
576 }
577
578 status = efi_call_phys(__va(runtime->set_virtual_address_map),
579 ia64_boot_param->efi_memmap_size,
580 efi_desc_size, ia64_boot_param->efi_memdesc_version,
581 ia64_boot_param->efi_memmap);
582 if (status != EFI_SUCCESS) {
583 printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
584 "(status=%lu)\n", status);
585 return;
586 }
587
588 /*
589 * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
590 */
591 efi.get_time = virt_get_time;
592 efi.set_time = virt_set_time;
593 efi.get_wakeup_time = virt_get_wakeup_time;
594 efi.set_wakeup_time = virt_set_wakeup_time;
595 efi.get_variable = virt_get_variable;
596 efi.get_next_variable = virt_get_next_variable;
597 efi.set_variable = virt_set_variable;
598 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
599 efi.reset_system = virt_reset_system;
600}
601
602/*
603 * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
604 * this type, other I/O port ranges should be described via ACPI.
605 */
606u64
607efi_get_iobase (void)
608{
609 void *efi_map_start, *efi_map_end, *p;
610 efi_memory_desc_t *md;
611 u64 efi_desc_size;
612
613 efi_map_start = __va(ia64_boot_param->efi_memmap);
614 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
615 efi_desc_size = ia64_boot_param->efi_memdesc_size;
616
617 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
618 md = p;
619 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
620 if (md->attribute & EFI_MEMORY_UC)
621 return md->phys_addr;
622 }
623 }
624 return 0;
625}
626
Bjorn Helgaas32e62c62006-05-05 17:19:50 -0600627static struct kern_memdesc *
628kern_memory_descriptor (unsigned long phys_addr)
629{
630 struct kern_memdesc *md;
631
632 for (md = kern_memmap; md->start != ~0UL; md++) {
633 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
634 return md;
635 }
636 return 0;
637}
638
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800639static efi_memory_desc_t *
640efi_memory_descriptor (unsigned long phys_addr)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700641{
642 void *efi_map_start, *efi_map_end, *p;
643 efi_memory_desc_t *md;
644 u64 efi_desc_size;
645
646 efi_map_start = __va(ia64_boot_param->efi_memmap);
647 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
648 efi_desc_size = ia64_boot_param->efi_memdesc_size;
649
650 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
651 md = p;
652
653 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800654 return md;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700655 }
656 return 0;
657}
658
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800659u32
660efi_mem_type (unsigned long phys_addr)
661{
662 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
663
664 if (md)
665 return md->type;
666 return 0;
667}
668
Linus Torvalds1da177e2005-04-16 15:20:36 -0700669u64
670efi_mem_attributes (unsigned long phys_addr)
671{
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800672 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700673
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800674 if (md)
675 return md->attribute;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700676 return 0;
677}
678EXPORT_SYMBOL(efi_mem_attributes);
679
Bjorn Helgaas32e62c62006-05-05 17:19:50 -0600680u64
681efi_mem_attribute (unsigned long phys_addr, unsigned long size)
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800682{
Bjorn Helgaas136939a2006-03-26 01:37:05 -0800683 unsigned long end = phys_addr + size;
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800684 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
Bjorn Helgaas32e62c62006-05-05 17:19:50 -0600685 u64 attr;
686
687 if (!md)
688 return 0;
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800689
Bjorn Helgaas136939a2006-03-26 01:37:05 -0800690 /*
Bjorn Helgaas32e62c62006-05-05 17:19:50 -0600691 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
692 * the kernel that firmware needs this region mapped.
Bjorn Helgaas136939a2006-03-26 01:37:05 -0800693 */
Bjorn Helgaas32e62c62006-05-05 17:19:50 -0600694 attr = md->attribute & ~EFI_MEMORY_RUNTIME;
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800695 do {
Bjorn Helgaas136939a2006-03-26 01:37:05 -0800696 unsigned long md_end = efi_md_end(md);
697
698 if (end <= md_end)
Bjorn Helgaas32e62c62006-05-05 17:19:50 -0600699 return attr;
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800700
701 md = efi_memory_descriptor(md_end);
Bjorn Helgaas32e62c62006-05-05 17:19:50 -0600702 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
Bjorn Helgaas136939a2006-03-26 01:37:05 -0800703 return 0;
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800704 } while (md);
705 return 0;
706}
707
Bjorn Helgaas32e62c62006-05-05 17:19:50 -0600708u64
709kern_mem_attribute (unsigned long phys_addr, unsigned long size)
710{
711 unsigned long end = phys_addr + size;
712 struct kern_memdesc *md;
713 u64 attr;
714
715 /*
716 * This is a hack for ioremap calls before we set up kern_memmap.
717 * Maybe we should do efi_memmap_init() earlier instead.
718 */
719 if (!kern_memmap) {
720 attr = efi_mem_attribute(phys_addr, size);
721 if (attr & EFI_MEMORY_WB)
722 return EFI_MEMORY_WB;
723 return 0;
724 }
725
726 md = kern_memory_descriptor(phys_addr);
727 if (!md)
728 return 0;
729
730 attr = md->attribute;
731 do {
732 unsigned long md_end = kmd_end(md);
733
734 if (end <= md_end)
735 return attr;
736
737 md = kern_memory_descriptor(md_end);
738 if (!md || md->attribute != attr)
739 return 0;
740 } while (md);
741 return 0;
742}
743EXPORT_SYMBOL(kern_mem_attribute);
744
Linus Torvalds1da177e2005-04-16 15:20:36 -0700745int
Bjorn Helgaas136939a2006-03-26 01:37:05 -0800746valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700747{
Bjorn Helgaas32e62c62006-05-05 17:19:50 -0600748 u64 attr;
749
750 /*
751 * /dev/mem reads and writes use copy_to_user(), which implicitly
752 * uses a granule-sized kernel identity mapping. It's really
753 * only safe to do this for regions in kern_memmap. For more
754 * details, see Documentation/ia64/aliasing.txt.
755 */
756 attr = kern_mem_attribute(phys_addr, size);
757 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
758 return 1;
759 return 0;
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800760}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700761
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800762int
Bjorn Helgaas136939a2006-03-26 01:37:05 -0800763valid_mmap_phys_addr_range (unsigned long phys_addr, unsigned long size)
Bjorn Helgaas80851ef2006-01-08 01:04:13 -0800764{
Bjorn Helgaas32e62c62006-05-05 17:19:50 -0600765 /*
766 * MMIO regions are often missing from the EFI memory map.
767 * We must allow mmap of them for programs like X, so we
768 * currently can't do any useful validation.
769 */
770 return 1;
771}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700772
Bjorn Helgaas32e62c62006-05-05 17:19:50 -0600773pgprot_t
774phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
775 pgprot_t vma_prot)
776{
777 unsigned long phys_addr = pfn << PAGE_SHIFT;
778 u64 attr;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700779
Bjorn Helgaas32e62c62006-05-05 17:19:50 -0600780 /*
781 * For /dev/mem mmap, we use user mappings, but if the region is
782 * in kern_memmap (and hence may be covered by a kernel mapping),
783 * we must use the same attribute as the kernel mapping.
784 */
785 attr = kern_mem_attribute(phys_addr, size);
786 if (attr & EFI_MEMORY_WB)
787 return pgprot_cacheable(vma_prot);
788 else if (attr & EFI_MEMORY_UC)
789 return pgprot_noncached(vma_prot);
790
791 /*
792 * Some chipsets don't support UC access to memory. If
793 * WB is supported, we prefer that.
794 */
795 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
796 return pgprot_cacheable(vma_prot);
797
798 return pgprot_noncached(vma_prot);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700799}
800
801int __init
802efi_uart_console_only(void)
803{
804 efi_status_t status;
805 char *s, name[] = "ConOut";
806 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
807 efi_char16_t *utf16, name_utf16[32];
808 unsigned char data[1024];
809 unsigned long size = sizeof(data);
810 struct efi_generic_dev_path *hdr, *end_addr;
811 int uart = 0;
812
813 /* Convert to UTF-16 */
814 utf16 = name_utf16;
815 s = name;
816 while (*s)
817 *utf16++ = *s++ & 0x7f;
818 *utf16 = 0;
819
820 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
821 if (status != EFI_SUCCESS) {
822 printk(KERN_ERR "No EFI %s variable?\n", name);
823 return 0;
824 }
825
826 hdr = (struct efi_generic_dev_path *) data;
827 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
828 while (hdr < end_addr) {
829 if (hdr->type == EFI_DEV_MSG &&
830 hdr->sub_type == EFI_DEV_MSG_UART)
831 uart = 1;
832 else if (hdr->type == EFI_DEV_END_PATH ||
833 hdr->type == EFI_DEV_END_PATH2) {
834 if (!uart)
835 return 0;
836 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
837 return 1;
838 uart = 0;
839 }
840 hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
841 }
842 printk(KERN_ERR "Malformed %s value\n", name);
843 return 0;
844}
Tony Luckd8c97d52005-09-08 12:39:59 -0700845
Tony Luckd8c97d52005-09-08 12:39:59 -0700846/*
847 * Look for the first granule aligned memory descriptor memory
848 * that is big enough to hold EFI memory map. Make sure this
849 * descriptor is atleast granule sized so it does not get trimmed
850 */
851struct kern_memdesc *
852find_memmap_space (void)
853{
854 u64 contig_low=0, contig_high=0;
855 u64 as = 0, ae;
856 void *efi_map_start, *efi_map_end, *p, *q;
857 efi_memory_desc_t *md, *pmd = NULL, *check_md;
858 u64 space_needed, efi_desc_size;
859 unsigned long total_mem = 0;
860
861 efi_map_start = __va(ia64_boot_param->efi_memmap);
862 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
863 efi_desc_size = ia64_boot_param->efi_memdesc_size;
864
865 /*
866 * Worst case: we need 3 kernel descriptors for each efi descriptor
867 * (if every entry has a WB part in the middle, and UC head and tail),
868 * plus one for the end marker.
869 */
870 space_needed = sizeof(kern_memdesc_t) *
871 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
872
873 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
874 md = p;
875 if (!efi_wb(md)) {
876 continue;
877 }
878 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
879 contig_low = GRANULEROUNDUP(md->phys_addr);
880 contig_high = efi_md_end(md);
881 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
882 check_md = q;
883 if (!efi_wb(check_md))
884 break;
885 if (contig_high != check_md->phys_addr)
886 break;
887 contig_high = efi_md_end(check_md);
888 }
889 contig_high = GRANULEROUNDDOWN(contig_high);
890 }
891 if (!is_available_memory(md) || md->type == EFI_LOADER_DATA)
892 continue;
893
894 /* Round ends inward to granule boundaries */
895 as = max(contig_low, md->phys_addr);
896 ae = min(contig_high, efi_md_end(md));
897
898 /* keep within max_addr= command line arg */
899 ae = min(ae, max_addr);
900 if (ae <= as)
901 continue;
902
903 /* avoid going over mem= command line arg */
904 if (total_mem + (ae - as) > mem_limit)
905 ae -= total_mem + (ae - as) - mem_limit;
906
907 if (ae <= as)
908 continue;
909
910 if (ae - as > space_needed)
911 break;
912 }
913 if (p >= efi_map_end)
914 panic("Can't allocate space for kernel memory descriptors");
915
916 return __va(as);
917}
918
919/*
920 * Walk the EFI memory map and gather all memory available for kernel
921 * to use. We can allocate partial granules only if the unavailable
922 * parts exist, and are WB.
923 */
924void
925efi_memmap_init(unsigned long *s, unsigned long *e)
926{
927 struct kern_memdesc *k, *prev = 0;
928 u64 contig_low=0, contig_high=0;
929 u64 as, ae, lim;
930 void *efi_map_start, *efi_map_end, *p, *q;
931 efi_memory_desc_t *md, *pmd = NULL, *check_md;
932 u64 efi_desc_size;
933 unsigned long total_mem = 0;
934
935 k = kern_memmap = find_memmap_space();
936
937 efi_map_start = __va(ia64_boot_param->efi_memmap);
938 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
939 efi_desc_size = ia64_boot_param->efi_memdesc_size;
940
941 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
942 md = p;
943 if (!efi_wb(md)) {
944 if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
945 md->type == EFI_BOOT_SERVICES_DATA)) {
946 k->attribute = EFI_MEMORY_UC;
947 k->start = md->phys_addr;
948 k->num_pages = md->num_pages;
949 k++;
950 }
951 continue;
952 }
953 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
954 contig_low = GRANULEROUNDUP(md->phys_addr);
955 contig_high = efi_md_end(md);
956 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
957 check_md = q;
958 if (!efi_wb(check_md))
959 break;
960 if (contig_high != check_md->phys_addr)
961 break;
962 contig_high = efi_md_end(check_md);
963 }
964 contig_high = GRANULEROUNDDOWN(contig_high);
965 }
966 if (!is_available_memory(md))
967 continue;
968
969 /*
970 * Round ends inward to granule boundaries
971 * Give trimmings to uncached allocator
972 */
973 if (md->phys_addr < contig_low) {
974 lim = min(efi_md_end(md), contig_low);
975 if (efi_uc(md)) {
976 if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
977 kmd_end(k-1) == md->phys_addr) {
978 (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
979 } else {
980 k->attribute = EFI_MEMORY_UC;
981 k->start = md->phys_addr;
982 k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
983 k++;
984 }
985 }
986 as = contig_low;
987 } else
988 as = md->phys_addr;
989
990 if (efi_md_end(md) > contig_high) {
991 lim = max(md->phys_addr, contig_high);
992 if (efi_uc(md)) {
993 if (lim == md->phys_addr && k > kern_memmap &&
994 (k-1)->attribute == EFI_MEMORY_UC &&
995 kmd_end(k-1) == md->phys_addr) {
996 (k-1)->num_pages += md->num_pages;
997 } else {
998 k->attribute = EFI_MEMORY_UC;
999 k->start = lim;
1000 k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
1001 k++;
1002 }
1003 }
1004 ae = contig_high;
1005 } else
1006 ae = efi_md_end(md);
1007
1008 /* keep within max_addr= command line arg */
1009 ae = min(ae, max_addr);
1010 if (ae <= as)
1011 continue;
1012
1013 /* avoid going over mem= command line arg */
1014 if (total_mem + (ae - as) > mem_limit)
1015 ae -= total_mem + (ae - as) - mem_limit;
1016
1017 if (ae <= as)
1018 continue;
1019 if (prev && kmd_end(prev) == md->phys_addr) {
1020 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1021 total_mem += ae - as;
1022 continue;
1023 }
1024 k->attribute = EFI_MEMORY_WB;
1025 k->start = as;
1026 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1027 total_mem += ae - as;
1028 prev = k++;
1029 }
1030 k->start = ~0L; /* end-marker */
1031
1032 /* reserve the memory we are using for kern_memmap */
1033 *s = (u64)kern_memmap;
1034 *e = (u64)++k;
1035}
Khalid Azizbe379122005-09-19 15:42:36 -07001036
1037void
1038efi_initialize_iomem_resources(struct resource *code_resource,
1039 struct resource *data_resource)
1040{
1041 struct resource *res;
1042 void *efi_map_start, *efi_map_end, *p;
1043 efi_memory_desc_t *md;
1044 u64 efi_desc_size;
1045 char *name;
1046 unsigned long flags;
1047
1048 efi_map_start = __va(ia64_boot_param->efi_memmap);
1049 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1050 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1051
1052 res = NULL;
1053
1054 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1055 md = p;
1056
1057 if (md->num_pages == 0) /* should not happen */
1058 continue;
1059
1060 flags = IORESOURCE_MEM;
1061 switch (md->type) {
1062
1063 case EFI_MEMORY_MAPPED_IO:
1064 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1065 continue;
1066
1067 case EFI_LOADER_CODE:
1068 case EFI_LOADER_DATA:
1069 case EFI_BOOT_SERVICES_DATA:
1070 case EFI_BOOT_SERVICES_CODE:
1071 case EFI_CONVENTIONAL_MEMORY:
1072 if (md->attribute & EFI_MEMORY_WP) {
1073 name = "System ROM";
1074 flags |= IORESOURCE_READONLY;
1075 } else {
1076 name = "System RAM";
1077 }
1078 break;
1079
1080 case EFI_ACPI_MEMORY_NVS:
1081 name = "ACPI Non-volatile Storage";
1082 flags |= IORESOURCE_BUSY;
1083 break;
1084
1085 case EFI_UNUSABLE_MEMORY:
1086 name = "reserved";
1087 flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
1088 break;
1089
1090 case EFI_RESERVED_TYPE:
1091 case EFI_RUNTIME_SERVICES_CODE:
1092 case EFI_RUNTIME_SERVICES_DATA:
1093 case EFI_ACPI_RECLAIM_MEMORY:
1094 default:
1095 name = "reserved";
1096 flags |= IORESOURCE_BUSY;
1097 break;
1098 }
1099
Panagiotis Issarisbaf47fb2005-11-09 02:08:42 +01001100 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
Khalid Azizbe379122005-09-19 15:42:36 -07001101 printk(KERN_ERR "failed to alocate resource for iomem\n");
1102 return;
1103 }
1104
1105 res->name = name;
1106 res->start = md->phys_addr;
1107 res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
1108 res->flags = flags;
1109
1110 if (insert_resource(&iomem_resource, res) < 0)
1111 kfree(res);
1112 else {
1113 /*
1114 * We don't know which region contains
1115 * kernel data so we try it repeatedly and
1116 * let the resource manager test it.
1117 */
1118 insert_resource(res, code_resource);
1119 insert_resource(res, data_resource);
1120 }
1121 }
1122}