blob: a58e84f1a63b76cc3e96856d10736a1c03ba6872 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/alpha/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
5 *
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14 * "A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09 Adrian Sun
16 * use interval timer if CONFIG_RTC=y
17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
18 * fixed tick loss calculation in timer_interrupt
19 * (round system clock to nearest tick instead of truncating)
20 * fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
22 * fixed algorithm in do_gettimeofday() for calculating the precise time
23 * from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * Fixed time_init to be aware of epoches != 1900. This prevents
26 * booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070030#include <linux/errno.h>
31#include <linux/module.h>
32#include <linux/sched.h>
33#include <linux/kernel.h>
34#include <linux/param.h>
35#include <linux/string.h>
36#include <linux/mm.h>
37#include <linux/delay.h>
38#include <linux/ioport.h>
39#include <linux/irq.h>
40#include <linux/interrupt.h>
41#include <linux/init.h>
42#include <linux/bcd.h>
43#include <linux/profile.h>
Peter Zijlstrae360adb2010-10-14 14:01:34 +080044#include <linux/irq_work.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070045
46#include <asm/uaccess.h>
47#include <asm/io.h>
48#include <asm/hwrpb.h>
49#include <asm/8253pit.h>
Ivan Kokshaysky5f7dc5d2009-01-15 13:51:19 -080050#include <asm/rtc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070051
52#include <linux/mc146818rtc.h>
53#include <linux/time.h>
54#include <linux/timex.h>
John Stultz9ce34c82010-03-19 12:23:57 -040055#include <linux/clocksource.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070056
57#include "proto.h"
58#include "irq_impl.h"
59
Linus Torvalds1da177e2005-04-16 15:20:36 -070060static int set_rtc_mmss(unsigned long);
61
62DEFINE_SPINLOCK(rtc_lock);
Al Virocff52da2006-10-11 17:40:22 +010063EXPORT_SYMBOL(rtc_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -070064
65#define TICK_SIZE (tick_nsec / 1000)
66
67/*
68 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
69 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
70 * for large CPU clock rates.
71 */
72#define FIX_SHIFT 48
73
74/* lump static variables together for more efficient access: */
75static struct {
76 /* cycle counter last time it got invoked */
77 __u32 last_time;
78 /* ticks/cycle * 2^48 */
79 unsigned long scaled_ticks_per_cycle;
Linus Torvalds1da177e2005-04-16 15:20:36 -070080 /* partial unused tick */
81 unsigned long partial_tick;
82} state;
83
84unsigned long est_cycle_freq;
85
Peter Zijlstrae360adb2010-10-14 14:01:34 +080086#ifdef CONFIG_IRQ_WORK
Michael Cree979f8672010-08-09 17:20:08 -070087
Peter Zijlstrae360adb2010-10-14 14:01:34 +080088DEFINE_PER_CPU(u8, irq_work_pending);
Michael Cree979f8672010-08-09 17:20:08 -070089
Peter Zijlstrae360adb2010-10-14 14:01:34 +080090#define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
91#define test_irq_work_pending() __get_cpu_var(irq_work_pending)
92#define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
Michael Cree979f8672010-08-09 17:20:08 -070093
Peter Zijlstrae360adb2010-10-14 14:01:34 +080094void set_irq_work_pending(void)
Michael Cree979f8672010-08-09 17:20:08 -070095{
Peter Zijlstrae360adb2010-10-14 14:01:34 +080096 set_irq_work_pending_flag();
Michael Cree979f8672010-08-09 17:20:08 -070097}
98
Peter Zijlstrae360adb2010-10-14 14:01:34 +080099#else /* CONFIG_IRQ_WORK */
Michael Cree979f8672010-08-09 17:20:08 -0700100
Peter Zijlstrae360adb2010-10-14 14:01:34 +0800101#define test_irq_work_pending() 0
102#define clear_irq_work_pending()
Michael Cree979f8672010-08-09 17:20:08 -0700103
Peter Zijlstrae360adb2010-10-14 14:01:34 +0800104#endif /* CONFIG_IRQ_WORK */
Michael Cree979f8672010-08-09 17:20:08 -0700105
Linus Torvalds1da177e2005-04-16 15:20:36 -0700106
107static inline __u32 rpcc(void)
108{
109 __u32 result;
110 asm volatile ("rpcc %0" : "=r"(result));
111 return result;
112}
113
John Stultz1e871be2010-03-03 19:57:16 -0800114int update_persistent_clock(struct timespec now)
115{
116 return set_rtc_mmss(now.tv_sec);
117}
118
119void read_persistent_clock(struct timespec *ts)
120{
121 unsigned int year, mon, day, hour, min, sec, epoch;
122
123 sec = CMOS_READ(RTC_SECONDS);
124 min = CMOS_READ(RTC_MINUTES);
125 hour = CMOS_READ(RTC_HOURS);
126 day = CMOS_READ(RTC_DAY_OF_MONTH);
127 mon = CMOS_READ(RTC_MONTH);
128 year = CMOS_READ(RTC_YEAR);
129
130 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
131 sec = bcd2bin(sec);
132 min = bcd2bin(min);
133 hour = bcd2bin(hour);
134 day = bcd2bin(day);
135 mon = bcd2bin(mon);
136 year = bcd2bin(year);
137 }
138
139 /* PC-like is standard; used for year >= 70 */
140 epoch = 1900;
141 if (year < 20)
142 epoch = 2000;
143 else if (year >= 20 && year < 48)
144 /* NT epoch */
145 epoch = 1980;
146 else if (year >= 48 && year < 70)
147 /* Digital UNIX epoch */
148 epoch = 1952;
149
150 printk(KERN_INFO "Using epoch = %d\n", epoch);
151
152 if ((year += epoch) < 1970)
153 year += 100;
154
155 ts->tv_sec = mktime(year, mon, day, hour, min, sec);
156}
157
158
159
Linus Torvalds1da177e2005-04-16 15:20:36 -0700160/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700161 * timer_interrupt() needs to keep up the real-time clock,
Torben Hohn1340f3e02011-01-27 15:59:15 +0100162 * as well as call the "xtime_update()" routine every clocktick
Linus Torvalds1da177e2005-04-16 15:20:36 -0700163 */
Al Viro8774cb82006-10-07 14:17:31 +0100164irqreturn_t timer_interrupt(int irq, void *dev)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700165{
166 unsigned long delta;
167 __u32 now;
168 long nticks;
169
170#ifndef CONFIG_SMP
171 /* Not SMP, do kernel PC profiling here. */
Al Viro8774cb82006-10-07 14:17:31 +0100172 profile_tick(CPU_PROFILING);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700173#endif
174
Linus Torvalds1da177e2005-04-16 15:20:36 -0700175 /*
176 * Calculate how many ticks have passed since the last update,
177 * including any previous partial leftover. Save any resulting
178 * fraction for the next pass.
179 */
180 now = rpcc();
181 delta = now - state.last_time;
182 state.last_time = now;
183 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
184 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
185 nticks = delta >> FIX_SHIFT;
186
Peter Zijlstraaa02cd22008-02-13 21:33:16 +0100187 if (nticks)
Torben Hohn1340f3e02011-01-27 15:59:15 +0100188 xtime_update(nticks);
Peter Zijlstraaa02cd22008-02-13 21:33:16 +0100189
Peter Zijlstrae360adb2010-10-14 14:01:34 +0800190 if (test_irq_work_pending()) {
191 clear_irq_work_pending();
192 irq_work_run();
Michael Cree979f8672010-08-09 17:20:08 -0700193 }
194
Michael Creebdc8b892010-09-19 02:05:40 -0400195#ifndef CONFIG_SMP
196 while (nticks--)
197 update_process_times(user_mode(get_irq_regs()));
198#endif
199
Linus Torvalds1da177e2005-04-16 15:20:36 -0700200 return IRQ_HANDLED;
201}
202
Sam Ravnborgebaf4fc2007-07-15 23:38:37 -0700203void __init
Linus Torvalds1da177e2005-04-16 15:20:36 -0700204common_init_rtc(void)
205{
206 unsigned char x;
207
208 /* Reset periodic interrupt frequency. */
209 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
210 /* Test includes known working values on various platforms
211 where 0x26 is wrong; we refuse to change those. */
212 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
213 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
214 CMOS_WRITE(0x26, RTC_FREQ_SELECT);
215 }
216
217 /* Turn on periodic interrupts. */
218 x = CMOS_READ(RTC_CONTROL);
219 if (!(x & RTC_PIE)) {
220 printk("Turning on RTC interrupts.\n");
221 x |= RTC_PIE;
222 x &= ~(RTC_AIE | RTC_UIE);
223 CMOS_WRITE(x, RTC_CONTROL);
224 }
225 (void) CMOS_READ(RTC_INTR_FLAGS);
226
227 outb(0x36, 0x43); /* pit counter 0: system timer */
228 outb(0x00, 0x40);
229 outb(0x00, 0x40);
230
231 outb(0xb6, 0x43); /* pit counter 2: speaker */
232 outb(0x31, 0x42);
233 outb(0x13, 0x42);
234
235 init_rtc_irq();
236}
237
Ivan Kokshaysky5f7dc5d2009-01-15 13:51:19 -0800238unsigned int common_get_rtc_time(struct rtc_time *time)
239{
240 return __get_rtc_time(time);
241}
242
243int common_set_rtc_time(struct rtc_time *time)
244{
245 return __set_rtc_time(time);
246}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700247
248/* Validate a computed cycle counter result against the known bounds for
249 the given processor core. There's too much brokenness in the way of
250 timing hardware for any one method to work everywhere. :-(
251
252 Return 0 if the result cannot be trusted, otherwise return the argument. */
253
254static unsigned long __init
255validate_cc_value(unsigned long cc)
256{
257 static struct bounds {
258 unsigned int min, max;
259 } cpu_hz[] __initdata = {
260 [EV3_CPU] = { 50000000, 200000000 }, /* guess */
261 [EV4_CPU] = { 100000000, 300000000 },
262 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */
263 [EV45_CPU] = { 200000000, 300000000 },
264 [EV5_CPU] = { 250000000, 433000000 },
265 [EV56_CPU] = { 333000000, 667000000 },
266 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */
267 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */
268 [EV6_CPU] = { 466000000, 600000000 },
269 [EV67_CPU] = { 600000000, 750000000 },
270 [EV68AL_CPU] = { 750000000, 940000000 },
271 [EV68CB_CPU] = { 1000000000, 1333333333 },
272 /* None of the following are shipping as of 2001-11-01. */
273 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
274 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
275 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */
276 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
277 };
278
279 /* Allow for some drift in the crystal. 10MHz is more than enough. */
280 const unsigned int deviation = 10000000;
281
282 struct percpu_struct *cpu;
283 unsigned int index;
284
285 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
286 index = cpu->type & 0xffffffff;
287
288 /* If index out of bounds, no way to validate. */
Tobias Klauser25c87162006-07-30 03:03:23 -0700289 if (index >= ARRAY_SIZE(cpu_hz))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700290 return cc;
291
292 /* If index contains no data, no way to validate. */
293 if (cpu_hz[index].max == 0)
294 return cc;
295
296 if (cc < cpu_hz[index].min - deviation
297 || cc > cpu_hz[index].max + deviation)
298 return 0;
299
300 return cc;
301}
302
303
304/*
305 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
306 * arch/i386/time.c.
307 */
308
309#define CALIBRATE_LATCH 0xffff
310#define TIMEOUT_COUNT 0x100000
311
312static unsigned long __init
313calibrate_cc_with_pit(void)
314{
315 int cc, count = 0;
316
317 /* Set the Gate high, disable speaker */
318 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
319
320 /*
321 * Now let's take care of CTC channel 2
322 *
323 * Set the Gate high, program CTC channel 2 for mode 0,
324 * (interrupt on terminal count mode), binary count,
325 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
326 */
327 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
328 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
329 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
330
331 cc = rpcc();
332 do {
333 count++;
334 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
335 cc = rpcc() - cc;
336
337 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
338 if (count <= 1 || count == TIMEOUT_COUNT)
339 return 0;
340
341 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
342}
343
344/* The Linux interpretation of the CMOS clock register contents:
345 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
346 RTC registers show the second which has precisely just started.
347 Let's hope other operating systems interpret the RTC the same way. */
348
349static unsigned long __init
350rpcc_after_update_in_progress(void)
351{
352 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
353 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
354
355 return rpcc();
356}
357
John Stultz9ce34c82010-03-19 12:23:57 -0400358#ifndef CONFIG_SMP
359/* Until and unless we figure out how to get cpu cycle counters
360 in sync and keep them there, we can't use the rpcc. */
361static cycle_t read_rpcc(struct clocksource *cs)
362{
363 cycle_t ret = (cycle_t)rpcc();
364 return ret;
365}
366
367static struct clocksource clocksource_rpcc = {
368 .name = "rpcc",
369 .rating = 300,
370 .read = read_rpcc,
371 .mask = CLOCKSOURCE_MASK(32),
372 .flags = CLOCK_SOURCE_IS_CONTINUOUS
373};
374
375static inline void register_rpcc_clocksource(long cycle_freq)
376{
377 clocksource_calc_mult_shift(&clocksource_rpcc, cycle_freq, 4);
378 clocksource_register(&clocksource_rpcc);
379}
380#else /* !CONFIG_SMP */
381static inline void register_rpcc_clocksource(long cycle_freq)
382{
383}
384#endif /* !CONFIG_SMP */
385
Linus Torvalds1da177e2005-04-16 15:20:36 -0700386void __init
387time_init(void)
388{
John Stultz1e871be2010-03-03 19:57:16 -0800389 unsigned int cc1, cc2;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390 unsigned long cycle_freq, tolerance;
391 long diff;
392
393 /* Calibrate CPU clock -- attempt #1. */
394 if (!est_cycle_freq)
395 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
396
Matt Mackall4c2e6f62006-03-28 01:56:09 -0800397 cc1 = rpcc();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700398
399 /* Calibrate CPU clock -- attempt #2. */
400 if (!est_cycle_freq) {
Matt Mackall4c2e6f62006-03-28 01:56:09 -0800401 cc1 = rpcc_after_update_in_progress();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402 cc2 = rpcc_after_update_in_progress();
403 est_cycle_freq = validate_cc_value(cc2 - cc1);
404 cc1 = cc2;
405 }
406
407 cycle_freq = hwrpb->cycle_freq;
408 if (est_cycle_freq) {
409 /* If the given value is within 250 PPM of what we calculated,
410 accept it. Otherwise, use what we found. */
411 tolerance = cycle_freq / 4000;
412 diff = cycle_freq - est_cycle_freq;
413 if (diff < 0)
414 diff = -diff;
415 if ((unsigned long)diff > tolerance) {
416 cycle_freq = est_cycle_freq;
417 printk("HWRPB cycle frequency bogus. "
418 "Estimated %lu Hz\n", cycle_freq);
419 } else {
420 est_cycle_freq = 0;
421 }
422 } else if (! validate_cc_value (cycle_freq)) {
423 printk("HWRPB cycle frequency bogus, "
424 "and unable to estimate a proper value!\n");
425 }
426
427 /* From John Bowman <bowman@math.ualberta.ca>: allow the values
428 to settle, as the Update-In-Progress bit going low isn't good
429 enough on some hardware. 2ms is our guess; we haven't found
430 bogomips yet, but this is close on a 500Mhz box. */
431 __delay(1000000);
432
Linus Torvalds1da177e2005-04-16 15:20:36 -0700433
434 if (HZ > (1<<16)) {
435 extern void __you_loose (void);
436 __you_loose();
437 }
438
John Stultz9ce34c82010-03-19 12:23:57 -0400439 register_rpcc_clocksource(cycle_freq);
440
Linus Torvalds1da177e2005-04-16 15:20:36 -0700441 state.last_time = cc1;
442 state.scaled_ticks_per_cycle
443 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444 state.partial_tick = 0L;
445
446 /* Startup the timer source. */
447 alpha_mv.init_rtc();
448}
449
450/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700451 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
452 * called 500 ms after the second nowtime has started, because when
453 * nowtime is written into the registers of the CMOS clock, it will
454 * jump to the next second precisely 500 ms later. Check the Motorola
455 * MC146818A or Dallas DS12887 data sheet for details.
456 *
457 * BUG: This routine does not handle hour overflow properly; it just
458 * sets the minutes. Usually you won't notice until after reboot!
459 */
460
461
462static int
463set_rtc_mmss(unsigned long nowtime)
464{
465 int retval = 0;
466 int real_seconds, real_minutes, cmos_minutes;
467 unsigned char save_control, save_freq_select;
468
469 /* irq are locally disabled here */
470 spin_lock(&rtc_lock);
471 /* Tell the clock it's being set */
472 save_control = CMOS_READ(RTC_CONTROL);
473 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
474
475 /* Stop and reset prescaler */
476 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
477 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
478
479 cmos_minutes = CMOS_READ(RTC_MINUTES);
480 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
Adrian Bunk18b1bd02008-10-18 20:28:39 -0700481 cmos_minutes = bcd2bin(cmos_minutes);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700482
483 /*
484 * since we're only adjusting minutes and seconds,
485 * don't interfere with hour overflow. This avoids
486 * messing with unknown time zones but requires your
487 * RTC not to be off by more than 15 minutes
488 */
489 real_seconds = nowtime % 60;
490 real_minutes = nowtime / 60;
491 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
492 /* correct for half hour time zone */
493 real_minutes += 30;
494 }
495 real_minutes %= 60;
496
497 if (abs(real_minutes - cmos_minutes) < 30) {
498 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
Adrian Bunk18b1bd02008-10-18 20:28:39 -0700499 real_seconds = bin2bcd(real_seconds);
500 real_minutes = bin2bcd(real_minutes);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700501 }
502 CMOS_WRITE(real_seconds,RTC_SECONDS);
503 CMOS_WRITE(real_minutes,RTC_MINUTES);
504 } else {
Stephen Hemminger3e5c1242011-01-12 16:59:31 -0800505 printk_once(KERN_NOTICE
Linus Torvalds1da177e2005-04-16 15:20:36 -0700506 "set_rtc_mmss: can't update from %d to %d\n",
507 cmos_minutes, real_minutes);
508 retval = -1;
509 }
510
511 /* The following flags have to be released exactly in this order,
512 * otherwise the DS12887 (popular MC146818A clone with integrated
513 * battery and quartz) will not reset the oscillator and will not
514 * update precisely 500 ms later. You won't find this mentioned in
515 * the Dallas Semiconductor data sheets, but who believes data
516 * sheets anyway ... -- Markus Kuhn
517 */
518 CMOS_WRITE(save_control, RTC_CONTROL);
519 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
520 spin_unlock(&rtc_lock);
521
522 return retval;
523}