blob: 1423c04a1c90047363064ed9331eda718a6ba1a0 [file] [log] [blame]
Thomas Gleixner1802d0b2019-05-27 08:55:21 +02001// SPDX-License-Identifier: GPL-2.0-only
Laurent Pinchart0b27c812012-02-25 13:24:50 -03002/*
3 * Aptina Sensor PLL Configuration
4 *
5 * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Laurent Pinchart0b27c812012-02-25 13:24:50 -03006 */
7
8#include <linux/device.h>
9#include <linux/gcd.h>
10#include <linux/kernel.h>
11#include <linux/lcm.h>
12#include <linux/module.h>
13
14#include "aptina-pll.h"
15
16int aptina_pll_calculate(struct device *dev,
17 const struct aptina_pll_limits *limits,
18 struct aptina_pll *pll)
19{
20 unsigned int mf_min;
21 unsigned int mf_max;
22 unsigned int p1_min;
23 unsigned int p1_max;
24 unsigned int p1;
25 unsigned int div;
26
27 dev_dbg(dev, "PLL: ext clock %u pix clock %u\n",
28 pll->ext_clock, pll->pix_clock);
29
30 if (pll->ext_clock < limits->ext_clock_min ||
31 pll->ext_clock > limits->ext_clock_max) {
32 dev_err(dev, "pll: invalid external clock frequency.\n");
33 return -EINVAL;
34 }
35
36 if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) {
37 dev_err(dev, "pll: invalid pixel clock frequency.\n");
38 return -EINVAL;
39 }
40
41 /* Compute the multiplier M and combined N*P1 divisor. */
42 div = gcd(pll->pix_clock, pll->ext_clock);
43 pll->m = pll->pix_clock / div;
44 div = pll->ext_clock / div;
45
46 /* We now have the smallest M and N*P1 values that will result in the
47 * desired pixel clock frequency, but they might be out of the valid
48 * range. Compute the factor by which we should multiply them given the
49 * following constraints:
50 *
51 * - minimum/maximum multiplier
52 * - minimum/maximum multiplier output clock frequency assuming the
53 * minimum/maximum N value
54 * - minimum/maximum combined N*P1 divisor
55 */
56 mf_min = DIV_ROUND_UP(limits->m_min, pll->m);
57 mf_min = max(mf_min, limits->out_clock_min /
58 (pll->ext_clock / limits->n_min * pll->m));
59 mf_min = max(mf_min, limits->n_min * limits->p1_min / div);
60 mf_max = limits->m_max / pll->m;
61 mf_max = min(mf_max, limits->out_clock_max /
62 (pll->ext_clock / limits->n_max * pll->m));
63 mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div));
64
65 dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max);
66 if (mf_min > mf_max) {
67 dev_err(dev, "pll: no valid combined N*P1 divisor.\n");
68 return -EINVAL;
69 }
70
71 /*
72 * We're looking for the highest acceptable P1 value for which a
73 * multiplier factor MF exists that fulfills the following conditions:
74 *
75 * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
76 * even
77 * 2. mf is in the [mf_min, mf_max] range computed above
78 * 3. div * mf is a multiple of p1, in order to compute
79 * n = div * mf / p1
80 * m = pll->m * mf
81 * 4. the internal clock frequency, given by ext_clock / n, is in the
82 * [int_clock_min, int_clock_max] range given by the limits
83 * 5. the output clock frequency, given by ext_clock / n * m, is in the
84 * [out_clock_min, out_clock_max] range given by the limits
85 *
86 * The first naive approach is to iterate over all p1 values acceptable
87 * according to (1) and all mf values acceptable according to (2), and
88 * stop at the first combination that fulfills (3), (4) and (5). This
89 * has a O(n^2) complexity.
90 *
91 * Instead of iterating over all mf values in the [mf_min, mf_max] range
92 * we can compute the mf increment between two acceptable values
93 * according to (3) with
94 *
95 * mf_inc = p1 / gcd(div, p1) (6)
96 *
97 * and round the minimum up to the nearest multiple of mf_inc. This will
98 * restrict the number of mf values to be checked.
99 *
100 * Furthermore, conditions (4) and (5) only restrict the range of
101 * acceptable p1 and mf values by modifying the minimum and maximum
102 * limits. (5) can be expressed as
103 *
104 * ext_clock / (div * mf / p1) * m * mf >= out_clock_min
105 * ext_clock / (div * mf / p1) * m * mf <= out_clock_max
106 *
107 * or
108 *
109 * p1 >= out_clock_min * div / (ext_clock * m) (7)
110 * p1 <= out_clock_max * div / (ext_clock * m)
111 *
112 * Similarly, (4) can be expressed as
113 *
114 * mf >= ext_clock * p1 / (int_clock_max * div) (8)
115 * mf <= ext_clock * p1 / (int_clock_min * div)
116 *
117 * We can thus iterate over the restricted p1 range defined by the
118 * combination of (1) and (7), and then compute the restricted mf range
119 * defined by the combination of (2), (6) and (8). If the resulting mf
120 * range is not empty, any value in the mf range is acceptable. We thus
121 * select the mf lwoer bound and the corresponding p1 value.
122 */
123 if (limits->p1_min == 0) {
124 dev_err(dev, "pll: P1 minimum value must be >0.\n");
125 return -EINVAL;
126 }
127
128 p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div,
129 pll->ext_clock * pll->m));
130 p1_max = min(limits->p1_max, limits->out_clock_max * div /
131 (pll->ext_clock * pll->m));
132
133 for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) {
134 unsigned int mf_inc = p1 / gcd(div, p1);
135 unsigned int mf_high;
136 unsigned int mf_low;
137
Laurent Pinchart31ed29f2012-04-23 09:59:25 -0300138 mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1,
139 limits->int_clock_max * div)), mf_inc);
Laurent Pinchart0b27c812012-02-25 13:24:50 -0300140 mf_high = min(mf_max, pll->ext_clock * p1 /
141 (limits->int_clock_min * div));
142
143 if (mf_low > mf_high)
144 continue;
145
146 pll->n = div * mf_low / p1;
147 pll->m *= mf_low;
148 pll->p1 = p1;
149 dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1);
150 return 0;
151 }
152
153 dev_err(dev, "pll: no valid N and P1 divisors found.\n");
154 return -EINVAL;
155}
156EXPORT_SYMBOL_GPL(aptina_pll_calculate);
157
158MODULE_DESCRIPTION("Aptina PLL Helpers");
159MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
160MODULE_LICENSE("GPL v2");