Thomas Gleixner | 1802d0b | 2019-05-27 08:55:21 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Laurent Pinchart | 0b27c81 | 2012-02-25 13:24:50 -0300 | [diff] [blame] | 2 | /* |
| 3 | * Aptina Sensor PLL Configuration |
| 4 | * |
| 5 | * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com> |
Laurent Pinchart | 0b27c81 | 2012-02-25 13:24:50 -0300 | [diff] [blame] | 6 | */ |
| 7 | |
| 8 | #include <linux/device.h> |
| 9 | #include <linux/gcd.h> |
| 10 | #include <linux/kernel.h> |
| 11 | #include <linux/lcm.h> |
| 12 | #include <linux/module.h> |
| 13 | |
| 14 | #include "aptina-pll.h" |
| 15 | |
| 16 | int aptina_pll_calculate(struct device *dev, |
| 17 | const struct aptina_pll_limits *limits, |
| 18 | struct aptina_pll *pll) |
| 19 | { |
| 20 | unsigned int mf_min; |
| 21 | unsigned int mf_max; |
| 22 | unsigned int p1_min; |
| 23 | unsigned int p1_max; |
| 24 | unsigned int p1; |
| 25 | unsigned int div; |
| 26 | |
| 27 | dev_dbg(dev, "PLL: ext clock %u pix clock %u\n", |
| 28 | pll->ext_clock, pll->pix_clock); |
| 29 | |
| 30 | if (pll->ext_clock < limits->ext_clock_min || |
| 31 | pll->ext_clock > limits->ext_clock_max) { |
| 32 | dev_err(dev, "pll: invalid external clock frequency.\n"); |
| 33 | return -EINVAL; |
| 34 | } |
| 35 | |
| 36 | if (pll->pix_clock == 0 || pll->pix_clock > limits->pix_clock_max) { |
| 37 | dev_err(dev, "pll: invalid pixel clock frequency.\n"); |
| 38 | return -EINVAL; |
| 39 | } |
| 40 | |
| 41 | /* Compute the multiplier M and combined N*P1 divisor. */ |
| 42 | div = gcd(pll->pix_clock, pll->ext_clock); |
| 43 | pll->m = pll->pix_clock / div; |
| 44 | div = pll->ext_clock / div; |
| 45 | |
| 46 | /* We now have the smallest M and N*P1 values that will result in the |
| 47 | * desired pixel clock frequency, but they might be out of the valid |
| 48 | * range. Compute the factor by which we should multiply them given the |
| 49 | * following constraints: |
| 50 | * |
| 51 | * - minimum/maximum multiplier |
| 52 | * - minimum/maximum multiplier output clock frequency assuming the |
| 53 | * minimum/maximum N value |
| 54 | * - minimum/maximum combined N*P1 divisor |
| 55 | */ |
| 56 | mf_min = DIV_ROUND_UP(limits->m_min, pll->m); |
| 57 | mf_min = max(mf_min, limits->out_clock_min / |
| 58 | (pll->ext_clock / limits->n_min * pll->m)); |
| 59 | mf_min = max(mf_min, limits->n_min * limits->p1_min / div); |
| 60 | mf_max = limits->m_max / pll->m; |
| 61 | mf_max = min(mf_max, limits->out_clock_max / |
| 62 | (pll->ext_clock / limits->n_max * pll->m)); |
| 63 | mf_max = min(mf_max, DIV_ROUND_UP(limits->n_max * limits->p1_max, div)); |
| 64 | |
| 65 | dev_dbg(dev, "pll: mf min %u max %u\n", mf_min, mf_max); |
| 66 | if (mf_min > mf_max) { |
| 67 | dev_err(dev, "pll: no valid combined N*P1 divisor.\n"); |
| 68 | return -EINVAL; |
| 69 | } |
| 70 | |
| 71 | /* |
| 72 | * We're looking for the highest acceptable P1 value for which a |
| 73 | * multiplier factor MF exists that fulfills the following conditions: |
| 74 | * |
| 75 | * 1. p1 is in the [p1_min, p1_max] range given by the limits and is |
| 76 | * even |
| 77 | * 2. mf is in the [mf_min, mf_max] range computed above |
| 78 | * 3. div * mf is a multiple of p1, in order to compute |
| 79 | * n = div * mf / p1 |
| 80 | * m = pll->m * mf |
| 81 | * 4. the internal clock frequency, given by ext_clock / n, is in the |
| 82 | * [int_clock_min, int_clock_max] range given by the limits |
| 83 | * 5. the output clock frequency, given by ext_clock / n * m, is in the |
| 84 | * [out_clock_min, out_clock_max] range given by the limits |
| 85 | * |
| 86 | * The first naive approach is to iterate over all p1 values acceptable |
| 87 | * according to (1) and all mf values acceptable according to (2), and |
| 88 | * stop at the first combination that fulfills (3), (4) and (5). This |
| 89 | * has a O(n^2) complexity. |
| 90 | * |
| 91 | * Instead of iterating over all mf values in the [mf_min, mf_max] range |
| 92 | * we can compute the mf increment between two acceptable values |
| 93 | * according to (3) with |
| 94 | * |
| 95 | * mf_inc = p1 / gcd(div, p1) (6) |
| 96 | * |
| 97 | * and round the minimum up to the nearest multiple of mf_inc. This will |
| 98 | * restrict the number of mf values to be checked. |
| 99 | * |
| 100 | * Furthermore, conditions (4) and (5) only restrict the range of |
| 101 | * acceptable p1 and mf values by modifying the minimum and maximum |
| 102 | * limits. (5) can be expressed as |
| 103 | * |
| 104 | * ext_clock / (div * mf / p1) * m * mf >= out_clock_min |
| 105 | * ext_clock / (div * mf / p1) * m * mf <= out_clock_max |
| 106 | * |
| 107 | * or |
| 108 | * |
| 109 | * p1 >= out_clock_min * div / (ext_clock * m) (7) |
| 110 | * p1 <= out_clock_max * div / (ext_clock * m) |
| 111 | * |
| 112 | * Similarly, (4) can be expressed as |
| 113 | * |
| 114 | * mf >= ext_clock * p1 / (int_clock_max * div) (8) |
| 115 | * mf <= ext_clock * p1 / (int_clock_min * div) |
| 116 | * |
| 117 | * We can thus iterate over the restricted p1 range defined by the |
| 118 | * combination of (1) and (7), and then compute the restricted mf range |
| 119 | * defined by the combination of (2), (6) and (8). If the resulting mf |
| 120 | * range is not empty, any value in the mf range is acceptable. We thus |
| 121 | * select the mf lwoer bound and the corresponding p1 value. |
| 122 | */ |
| 123 | if (limits->p1_min == 0) { |
| 124 | dev_err(dev, "pll: P1 minimum value must be >0.\n"); |
| 125 | return -EINVAL; |
| 126 | } |
| 127 | |
| 128 | p1_min = max(limits->p1_min, DIV_ROUND_UP(limits->out_clock_min * div, |
| 129 | pll->ext_clock * pll->m)); |
| 130 | p1_max = min(limits->p1_max, limits->out_clock_max * div / |
| 131 | (pll->ext_clock * pll->m)); |
| 132 | |
| 133 | for (p1 = p1_max & ~1; p1 >= p1_min; p1 -= 2) { |
| 134 | unsigned int mf_inc = p1 / gcd(div, p1); |
| 135 | unsigned int mf_high; |
| 136 | unsigned int mf_low; |
| 137 | |
Laurent Pinchart | 31ed29f | 2012-04-23 09:59:25 -0300 | [diff] [blame] | 138 | mf_low = roundup(max(mf_min, DIV_ROUND_UP(pll->ext_clock * p1, |
| 139 | limits->int_clock_max * div)), mf_inc); |
Laurent Pinchart | 0b27c81 | 2012-02-25 13:24:50 -0300 | [diff] [blame] | 140 | mf_high = min(mf_max, pll->ext_clock * p1 / |
| 141 | (limits->int_clock_min * div)); |
| 142 | |
| 143 | if (mf_low > mf_high) |
| 144 | continue; |
| 145 | |
| 146 | pll->n = div * mf_low / p1; |
| 147 | pll->m *= mf_low; |
| 148 | pll->p1 = p1; |
| 149 | dev_dbg(dev, "PLL: N %u M %u P1 %u\n", pll->n, pll->m, pll->p1); |
| 150 | return 0; |
| 151 | } |
| 152 | |
| 153 | dev_err(dev, "pll: no valid N and P1 divisors found.\n"); |
| 154 | return -EINVAL; |
| 155 | } |
| 156 | EXPORT_SYMBOL_GPL(aptina_pll_calculate); |
| 157 | |
| 158 | MODULE_DESCRIPTION("Aptina PLL Helpers"); |
| 159 | MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>"); |
| 160 | MODULE_LICENSE("GPL v2"); |