blob: faf81b8c1a3a37e377d7cc81bc45c89406bc4e88 [file] [log] [blame]
Andy Kingd021c342013-02-06 14:23:56 +00001/*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16#include <linux/types.h>
Andy Kingd021c342013-02-06 14:23:56 +000017#include <linux/bitops.h>
18#include <linux/cred.h>
19#include <linux/init.h>
20#include <linux/io.h>
21#include <linux/kernel.h>
22#include <linux/kmod.h>
23#include <linux/list.h>
24#include <linux/miscdevice.h>
25#include <linux/module.h>
26#include <linux/mutex.h>
27#include <linux/net.h>
28#include <linux/poll.h>
29#include <linux/skbuff.h>
30#include <linux/smp.h>
31#include <linux/socket.h>
32#include <linux/stddef.h>
33#include <linux/unistd.h>
34#include <linux/wait.h>
35#include <linux/workqueue.h>
36#include <net/sock.h>
37
38#include "af_vsock.h"
39#include "vmci_transport_notify.h"
40
41static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
42static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
43static void vmci_transport_peer_attach_cb(u32 sub_id,
44 const struct vmci_event_data *ed,
45 void *client_data);
46static void vmci_transport_peer_detach_cb(u32 sub_id,
47 const struct vmci_event_data *ed,
48 void *client_data);
49static void vmci_transport_recv_pkt_work(struct work_struct *work);
50static int vmci_transport_recv_listen(struct sock *sk,
51 struct vmci_transport_packet *pkt);
52static int vmci_transport_recv_connecting_server(
53 struct sock *sk,
54 struct sock *pending,
55 struct vmci_transport_packet *pkt);
56static int vmci_transport_recv_connecting_client(
57 struct sock *sk,
58 struct vmci_transport_packet *pkt);
59static int vmci_transport_recv_connecting_client_negotiate(
60 struct sock *sk,
61 struct vmci_transport_packet *pkt);
62static int vmci_transport_recv_connecting_client_invalid(
63 struct sock *sk,
64 struct vmci_transport_packet *pkt);
65static int vmci_transport_recv_connected(struct sock *sk,
66 struct vmci_transport_packet *pkt);
67static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
68static u16 vmci_transport_new_proto_supported_versions(void);
69static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
70 bool old_pkt_proto);
71
72struct vmci_transport_recv_pkt_info {
73 struct work_struct work;
74 struct sock *sk;
75 struct vmci_transport_packet pkt;
76};
77
78static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
79 VMCI_INVALID_ID };
80static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
81
82static int PROTOCOL_OVERRIDE = -1;
83
84#define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN 128
85#define VMCI_TRANSPORT_DEFAULT_QP_SIZE 262144
86#define VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX 262144
87
88/* The default peer timeout indicates how long we will wait for a peer response
89 * to a control message.
90 */
91#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
92
93#define SS_LISTEN 255
94
95/* Helper function to convert from a VMCI error code to a VSock error code. */
96
97static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
98{
99 int err;
100
101 switch (vmci_error) {
102 case VMCI_ERROR_NO_MEM:
103 err = ENOMEM;
104 break;
105 case VMCI_ERROR_DUPLICATE_ENTRY:
106 case VMCI_ERROR_ALREADY_EXISTS:
107 err = EADDRINUSE;
108 break;
109 case VMCI_ERROR_NO_ACCESS:
110 err = EPERM;
111 break;
112 case VMCI_ERROR_NO_RESOURCES:
113 err = ENOBUFS;
114 break;
115 case VMCI_ERROR_INVALID_RESOURCE:
116 err = EHOSTUNREACH;
117 break;
118 case VMCI_ERROR_INVALID_ARGS:
119 default:
120 err = EINVAL;
121 }
122
123 return err > 0 ? -err : err;
124}
125
Reilly Grant2a89f922013-03-14 11:55:41 +0000126static u32 vmci_transport_peer_rid(u32 peer_cid)
127{
128 if (VMADDR_CID_HYPERVISOR == peer_cid)
129 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
130
131 return VMCI_TRANSPORT_PACKET_RID;
132}
133
Andy Kingd021c342013-02-06 14:23:56 +0000134static inline void
135vmci_transport_packet_init(struct vmci_transport_packet *pkt,
136 struct sockaddr_vm *src,
137 struct sockaddr_vm *dst,
138 u8 type,
139 u64 size,
140 u64 mode,
141 struct vmci_transport_waiting_info *wait,
142 u16 proto,
143 struct vmci_handle handle)
144{
145 /* We register the stream control handler as an any cid handle so we
146 * must always send from a source address of VMADDR_CID_ANY
147 */
148 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
149 VMCI_TRANSPORT_PACKET_RID);
150 pkt->dg.dst = vmci_make_handle(dst->svm_cid,
Reilly Grant2a89f922013-03-14 11:55:41 +0000151 vmci_transport_peer_rid(dst->svm_cid));
Andy Kingd021c342013-02-06 14:23:56 +0000152 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
153 pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
154 pkt->type = type;
155 pkt->src_port = src->svm_port;
156 pkt->dst_port = dst->svm_port;
157 memset(&pkt->proto, 0, sizeof(pkt->proto));
158 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
159
160 switch (pkt->type) {
161 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
162 pkt->u.size = 0;
163 break;
164
165 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
166 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
167 pkt->u.size = size;
168 break;
169
170 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
171 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
172 pkt->u.handle = handle;
173 break;
174
175 case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
176 case VMCI_TRANSPORT_PACKET_TYPE_READ:
177 case VMCI_TRANSPORT_PACKET_TYPE_RST:
178 pkt->u.size = 0;
179 break;
180
181 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
182 pkt->u.mode = mode;
183 break;
184
185 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
186 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
187 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
188 break;
189
190 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
191 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
192 pkt->u.size = size;
193 pkt->proto = proto;
194 break;
195 }
196}
197
198static inline void
199vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
200 struct sockaddr_vm *local,
201 struct sockaddr_vm *remote)
202{
203 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
204 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
205}
206
207static int
208__vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
209 struct sockaddr_vm *src,
210 struct sockaddr_vm *dst,
211 enum vmci_transport_packet_type type,
212 u64 size,
213 u64 mode,
214 struct vmci_transport_waiting_info *wait,
215 u16 proto,
216 struct vmci_handle handle,
217 bool convert_error)
218{
219 int err;
220
221 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
222 proto, handle);
223 err = vmci_datagram_send(&pkt->dg);
224 if (convert_error && (err < 0))
225 return vmci_transport_error_to_vsock_error(err);
226
227 return err;
228}
229
230static int
231vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
232 enum vmci_transport_packet_type type,
233 u64 size,
234 u64 mode,
235 struct vmci_transport_waiting_info *wait,
236 struct vmci_handle handle)
237{
238 struct vmci_transport_packet reply;
239 struct sockaddr_vm src, dst;
240
241 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
242 return 0;
243 } else {
244 vmci_transport_packet_get_addresses(pkt, &src, &dst);
245 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
246 type,
247 size, mode, wait,
248 VSOCK_PROTO_INVALID,
249 handle, true);
250 }
251}
252
253static int
254vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
255 struct sockaddr_vm *dst,
256 enum vmci_transport_packet_type type,
257 u64 size,
258 u64 mode,
259 struct vmci_transport_waiting_info *wait,
260 struct vmci_handle handle)
261{
262 /* Note that it is safe to use a single packet across all CPUs since
263 * two tasklets of the same type are guaranteed to not ever run
264 * simultaneously. If that ever changes, or VMCI stops using tasklets,
265 * we can use per-cpu packets.
266 */
267 static struct vmci_transport_packet pkt;
268
269 return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
270 size, mode, wait,
271 VSOCK_PROTO_INVALID, handle,
272 false);
273}
274
275static int
276vmci_transport_send_control_pkt(struct sock *sk,
277 enum vmci_transport_packet_type type,
278 u64 size,
279 u64 mode,
280 struct vmci_transport_waiting_info *wait,
281 u16 proto,
282 struct vmci_handle handle)
283{
284 struct vmci_transport_packet *pkt;
285 struct vsock_sock *vsk;
286 int err;
287
288 vsk = vsock_sk(sk);
289
290 if (!vsock_addr_bound(&vsk->local_addr))
291 return -EINVAL;
292
293 if (!vsock_addr_bound(&vsk->remote_addr))
294 return -EINVAL;
295
296 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
297 if (!pkt)
298 return -ENOMEM;
299
300 err = __vmci_transport_send_control_pkt(pkt, &vsk->local_addr,
301 &vsk->remote_addr, type, size,
302 mode, wait, proto, handle,
303 true);
304 kfree(pkt);
305
306 return err;
307}
308
309static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
310 struct sockaddr_vm *src,
311 struct vmci_transport_packet *pkt)
312{
313 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
314 return 0;
315 return vmci_transport_send_control_pkt_bh(
316 dst, src,
317 VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
318 0, NULL, VMCI_INVALID_HANDLE);
319}
320
321static int vmci_transport_send_reset(struct sock *sk,
322 struct vmci_transport_packet *pkt)
323{
324 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
325 return 0;
326 return vmci_transport_send_control_pkt(sk,
327 VMCI_TRANSPORT_PACKET_TYPE_RST,
328 0, 0, NULL, VSOCK_PROTO_INVALID,
329 VMCI_INVALID_HANDLE);
330}
331
332static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
333{
334 return vmci_transport_send_control_pkt(
335 sk,
336 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
337 size, 0, NULL,
338 VSOCK_PROTO_INVALID,
339 VMCI_INVALID_HANDLE);
340}
341
342static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
343 u16 version)
344{
345 return vmci_transport_send_control_pkt(
346 sk,
347 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
348 size, 0, NULL, version,
349 VMCI_INVALID_HANDLE);
350}
351
352static int vmci_transport_send_qp_offer(struct sock *sk,
353 struct vmci_handle handle)
354{
355 return vmci_transport_send_control_pkt(
356 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
357 0, NULL,
358 VSOCK_PROTO_INVALID, handle);
359}
360
361static int vmci_transport_send_attach(struct sock *sk,
362 struct vmci_handle handle)
363{
364 return vmci_transport_send_control_pkt(
365 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
366 0, 0, NULL, VSOCK_PROTO_INVALID,
367 handle);
368}
369
370static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
371{
372 return vmci_transport_reply_control_pkt_fast(
373 pkt,
374 VMCI_TRANSPORT_PACKET_TYPE_RST,
375 0, 0, NULL,
376 VMCI_INVALID_HANDLE);
377}
378
379static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
380 struct sockaddr_vm *src)
381{
382 return vmci_transport_send_control_pkt_bh(
383 dst, src,
384 VMCI_TRANSPORT_PACKET_TYPE_INVALID,
385 0, 0, NULL, VMCI_INVALID_HANDLE);
386}
387
388int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
389 struct sockaddr_vm *src)
390{
391 return vmci_transport_send_control_pkt_bh(
392 dst, src,
393 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
394 0, NULL, VMCI_INVALID_HANDLE);
395}
396
397int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
398 struct sockaddr_vm *src)
399{
400 return vmci_transport_send_control_pkt_bh(
401 dst, src,
402 VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
403 0, NULL, VMCI_INVALID_HANDLE);
404}
405
406int vmci_transport_send_wrote(struct sock *sk)
407{
408 return vmci_transport_send_control_pkt(
409 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
410 0, NULL, VSOCK_PROTO_INVALID,
411 VMCI_INVALID_HANDLE);
412}
413
414int vmci_transport_send_read(struct sock *sk)
415{
416 return vmci_transport_send_control_pkt(
417 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
418 0, NULL, VSOCK_PROTO_INVALID,
419 VMCI_INVALID_HANDLE);
420}
421
422int vmci_transport_send_waiting_write(struct sock *sk,
423 struct vmci_transport_waiting_info *wait)
424{
425 return vmci_transport_send_control_pkt(
426 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
427 0, 0, wait, VSOCK_PROTO_INVALID,
428 VMCI_INVALID_HANDLE);
429}
430
431int vmci_transport_send_waiting_read(struct sock *sk,
432 struct vmci_transport_waiting_info *wait)
433{
434 return vmci_transport_send_control_pkt(
435 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
436 0, 0, wait, VSOCK_PROTO_INVALID,
437 VMCI_INVALID_HANDLE);
438}
439
440static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
441{
442 return vmci_transport_send_control_pkt(
443 &vsk->sk,
444 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
445 0, mode, NULL,
446 VSOCK_PROTO_INVALID,
447 VMCI_INVALID_HANDLE);
448}
449
450static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
451{
452 return vmci_transport_send_control_pkt(sk,
453 VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
454 size, 0, NULL,
455 VSOCK_PROTO_INVALID,
456 VMCI_INVALID_HANDLE);
457}
458
459static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
460 u16 version)
461{
462 return vmci_transport_send_control_pkt(
463 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
464 size, 0, NULL, version,
465 VMCI_INVALID_HANDLE);
466}
467
468static struct sock *vmci_transport_get_pending(
469 struct sock *listener,
470 struct vmci_transport_packet *pkt)
471{
472 struct vsock_sock *vlistener;
473 struct vsock_sock *vpending;
474 struct sock *pending;
475
476 vlistener = vsock_sk(listener);
477
478 list_for_each_entry(vpending, &vlistener->pending_links,
479 pending_links) {
480 struct sockaddr_vm src;
481 struct sockaddr_vm dst;
482
483 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
484 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
485
486 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
487 vsock_addr_equals_addr(&dst, &vpending->local_addr)) {
488 pending = sk_vsock(vpending);
489 sock_hold(pending);
490 goto found;
491 }
492 }
493
494 pending = NULL;
495found:
496 return pending;
497
498}
499
500static void vmci_transport_release_pending(struct sock *pending)
501{
502 sock_put(pending);
503}
504
505/* We allow two kinds of sockets to communicate with a restricted VM: 1)
506 * trusted sockets 2) sockets from applications running as the same user as the
507 * VM (this is only true for the host side and only when using hosted products)
508 */
509
510static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
511{
512 return vsock->trusted ||
513 vmci_is_context_owner(peer_cid, vsock->owner->uid);
514}
515
516/* We allow sending datagrams to and receiving datagrams from a restricted VM
517 * only if it is trusted as described in vmci_transport_is_trusted.
518 */
519
520static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
521{
Reilly Grant2a89f922013-03-14 11:55:41 +0000522 if (VMADDR_CID_HYPERVISOR == peer_cid)
523 return true;
524
Andy Kingd021c342013-02-06 14:23:56 +0000525 if (vsock->cached_peer != peer_cid) {
526 vsock->cached_peer = peer_cid;
527 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
528 (vmci_context_get_priv_flags(peer_cid) &
529 VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
530 vsock->cached_peer_allow_dgram = false;
531 } else {
532 vsock->cached_peer_allow_dgram = true;
533 }
534 }
535
536 return vsock->cached_peer_allow_dgram;
537}
538
539static int
540vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
541 struct vmci_handle *handle,
542 u64 produce_size,
543 u64 consume_size,
544 u32 peer, u32 flags, bool trusted)
545{
546 int err = 0;
547
548 if (trusted) {
549 /* Try to allocate our queue pair as trusted. This will only
550 * work if vsock is running in the host.
551 */
552
553 err = vmci_qpair_alloc(qpair, handle, produce_size,
554 consume_size,
555 peer, flags,
556 VMCI_PRIVILEGE_FLAG_TRUSTED);
557 if (err != VMCI_ERROR_NO_ACCESS)
558 goto out;
559
560 }
561
562 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
563 peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
564out:
565 if (err < 0) {
566 pr_err("Could not attach to queue pair with %d\n",
567 err);
568 err = vmci_transport_error_to_vsock_error(err);
569 }
570
571 return err;
572}
573
574static int
575vmci_transport_datagram_create_hnd(u32 resource_id,
576 u32 flags,
577 vmci_datagram_recv_cb recv_cb,
578 void *client_data,
579 struct vmci_handle *out_handle)
580{
581 int err = 0;
582
583 /* Try to allocate our datagram handler as trusted. This will only work
584 * if vsock is running in the host.
585 */
586
587 err = vmci_datagram_create_handle_priv(resource_id, flags,
588 VMCI_PRIVILEGE_FLAG_TRUSTED,
589 recv_cb,
590 client_data, out_handle);
591
592 if (err == VMCI_ERROR_NO_ACCESS)
593 err = vmci_datagram_create_handle(resource_id, flags,
594 recv_cb, client_data,
595 out_handle);
596
597 return err;
598}
599
600/* This is invoked as part of a tasklet that's scheduled when the VMCI
601 * interrupt fires. This is run in bottom-half context and if it ever needs to
602 * sleep it should defer that work to a work queue.
603 */
604
605static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
606{
607 struct sock *sk;
608 size_t size;
609 struct sk_buff *skb;
610 struct vsock_sock *vsk;
611
612 sk = (struct sock *)data;
613
614 /* This handler is privileged when this module is running on the host.
615 * We will get datagrams from all endpoints (even VMs that are in a
616 * restricted context). If we get one from a restricted context then
617 * the destination socket must be trusted.
618 *
619 * NOTE: We access the socket struct without holding the lock here.
620 * This is ok because the field we are interested is never modified
621 * outside of the create and destruct socket functions.
622 */
623 vsk = vsock_sk(sk);
624 if (!vmci_transport_allow_dgram(vsk, dg->src.context))
625 return VMCI_ERROR_NO_ACCESS;
626
627 size = VMCI_DG_SIZE(dg);
628
629 /* Attach the packet to the socket's receive queue as an sk_buff. */
630 skb = alloc_skb(size, GFP_ATOMIC);
631 if (skb) {
632 /* sk_receive_skb() will do a sock_put(), so hold here. */
633 sock_hold(sk);
634 skb_put(skb, size);
635 memcpy(skb->data, dg, size);
636 sk_receive_skb(sk, skb, 0);
637 }
638
639 return VMCI_SUCCESS;
640}
641
642static bool vmci_transport_stream_allow(u32 cid, u32 port)
643{
644 static const u32 non_socket_contexts[] = {
Andy Kingd021c342013-02-06 14:23:56 +0000645 VMADDR_CID_RESERVED,
646 };
647 int i;
648
649 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
650
651 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
652 if (cid == non_socket_contexts[i])
653 return false;
654 }
655
656 return true;
657}
658
659/* This is invoked as part of a tasklet that's scheduled when the VMCI
660 * interrupt fires. This is run in bottom-half context but it defers most of
661 * its work to the packet handling work queue.
662 */
663
664static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
665{
666 struct sock *sk;
667 struct sockaddr_vm dst;
668 struct sockaddr_vm src;
669 struct vmci_transport_packet *pkt;
670 struct vsock_sock *vsk;
671 bool bh_process_pkt;
672 int err;
673
674 sk = NULL;
675 err = VMCI_SUCCESS;
676 bh_process_pkt = false;
677
678 /* Ignore incoming packets from contexts without sockets, or resources
679 * that aren't vsock implementations.
680 */
681
682 if (!vmci_transport_stream_allow(dg->src.context, -1)
Reilly Grant2a89f922013-03-14 11:55:41 +0000683 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
Andy Kingd021c342013-02-06 14:23:56 +0000684 return VMCI_ERROR_NO_ACCESS;
685
686 if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
687 /* Drop datagrams that do not contain full VSock packets. */
688 return VMCI_ERROR_INVALID_ARGS;
689
690 pkt = (struct vmci_transport_packet *)dg;
691
692 /* Find the socket that should handle this packet. First we look for a
693 * connected socket and if there is none we look for a socket bound to
694 * the destintation address.
695 */
696 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
697 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
698
699 sk = vsock_find_connected_socket(&src, &dst);
700 if (!sk) {
701 sk = vsock_find_bound_socket(&dst);
702 if (!sk) {
703 /* We could not find a socket for this specified
704 * address. If this packet is a RST, we just drop it.
705 * If it is another packet, we send a RST. Note that
706 * we do not send a RST reply to RSTs so that we do not
707 * continually send RSTs between two endpoints.
708 *
709 * Note that since this is a reply, dst is src and src
710 * is dst.
711 */
712 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
713 pr_err("unable to send reset\n");
714
715 err = VMCI_ERROR_NOT_FOUND;
716 goto out;
717 }
718 }
719
720 /* If the received packet type is beyond all types known to this
721 * implementation, reply with an invalid message. Hopefully this will
722 * help when implementing backwards compatibility in the future.
723 */
724 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
725 vmci_transport_send_invalid_bh(&dst, &src);
726 err = VMCI_ERROR_INVALID_ARGS;
727 goto out;
728 }
729
730 /* This handler is privileged when this module is running on the host.
731 * We will get datagram connect requests from all endpoints (even VMs
732 * that are in a restricted context). If we get one from a restricted
733 * context then the destination socket must be trusted.
734 *
735 * NOTE: We access the socket struct without holding the lock here.
736 * This is ok because the field we are interested is never modified
737 * outside of the create and destruct socket functions.
738 */
739 vsk = vsock_sk(sk);
740 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
741 err = VMCI_ERROR_NO_ACCESS;
742 goto out;
743 }
744
745 /* We do most everything in a work queue, but let's fast path the
746 * notification of reads and writes to help data transfer performance.
747 * We can only do this if there is no process context code executing
748 * for this socket since that may change the state.
749 */
750 bh_lock_sock(sk);
751
752 if (!sock_owned_by_user(sk) && sk->sk_state == SS_CONNECTED)
753 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
754 sk, pkt, true, &dst, &src,
755 &bh_process_pkt);
756
757 bh_unlock_sock(sk);
758
759 if (!bh_process_pkt) {
760 struct vmci_transport_recv_pkt_info *recv_pkt_info;
761
762 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
763 if (!recv_pkt_info) {
764 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
765 pr_err("unable to send reset\n");
766
767 err = VMCI_ERROR_NO_MEM;
768 goto out;
769 }
770
771 recv_pkt_info->sk = sk;
772 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
773 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
774
775 schedule_work(&recv_pkt_info->work);
776 /* Clear sk so that the reference count incremented by one of
777 * the Find functions above is not decremented below. We need
778 * that reference count for the packet handler we've scheduled
779 * to run.
780 */
781 sk = NULL;
782 }
783
784out:
785 if (sk)
786 sock_put(sk);
787
788 return err;
789}
790
791static void vmci_transport_peer_attach_cb(u32 sub_id,
792 const struct vmci_event_data *e_data,
793 void *client_data)
794{
795 struct sock *sk = client_data;
796 const struct vmci_event_payload_qp *e_payload;
797 struct vsock_sock *vsk;
798
799 e_payload = vmci_event_data_const_payload(e_data);
800
801 vsk = vsock_sk(sk);
802
803 /* We don't ask for delayed CBs when we subscribe to this event (we
804 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no
805 * guarantees in that case about what context we might be running in,
806 * so it could be BH or process, blockable or non-blockable. So we
807 * need to account for all possible contexts here.
808 */
809 local_bh_disable();
810 bh_lock_sock(sk);
811
812 /* XXX This is lame, we should provide a way to lookup sockets by
813 * qp_handle.
814 */
815 if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle,
816 e_payload->handle)) {
817 /* XXX This doesn't do anything, but in the future we may want
818 * to set a flag here to verify the attach really did occur and
819 * we weren't just sent a datagram claiming it was.
820 */
821 goto out;
822 }
823
824out:
825 bh_unlock_sock(sk);
826 local_bh_enable();
827}
828
829static void vmci_transport_handle_detach(struct sock *sk)
830{
831 struct vsock_sock *vsk;
832
833 vsk = vsock_sk(sk);
834 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
835 sock_set_flag(sk, SOCK_DONE);
836
837 /* On a detach the peer will not be sending or receiving
838 * anymore.
839 */
840 vsk->peer_shutdown = SHUTDOWN_MASK;
841
842 /* We should not be sending anymore since the peer won't be
843 * there to receive, but we can still receive if there is data
844 * left in our consume queue.
845 */
846 if (vsock_stream_has_data(vsk) <= 0) {
847 if (sk->sk_state == SS_CONNECTING) {
848 /* The peer may detach from a queue pair while
849 * we are still in the connecting state, i.e.,
850 * if the peer VM is killed after attaching to
851 * a queue pair, but before we complete the
852 * handshake. In that case, we treat the detach
853 * event like a reset.
854 */
855
856 sk->sk_state = SS_UNCONNECTED;
857 sk->sk_err = ECONNRESET;
858 sk->sk_error_report(sk);
859 return;
860 }
861 sk->sk_state = SS_UNCONNECTED;
862 }
863 sk->sk_state_change(sk);
864 }
865}
866
867static void vmci_transport_peer_detach_cb(u32 sub_id,
868 const struct vmci_event_data *e_data,
869 void *client_data)
870{
871 struct sock *sk = client_data;
872 const struct vmci_event_payload_qp *e_payload;
873 struct vsock_sock *vsk;
874
875 e_payload = vmci_event_data_const_payload(e_data);
876 vsk = vsock_sk(sk);
877 if (vmci_handle_is_invalid(e_payload->handle))
878 return;
879
880 /* Same rules for locking as for peer_attach_cb(). */
881 local_bh_disable();
882 bh_lock_sock(sk);
883
884 /* XXX This is lame, we should provide a way to lookup sockets by
885 * qp_handle.
886 */
887 if (vmci_handle_is_equal(vmci_trans(vsk)->qp_handle,
888 e_payload->handle))
889 vmci_transport_handle_detach(sk);
890
891 bh_unlock_sock(sk);
892 local_bh_enable();
893}
894
895static void vmci_transport_qp_resumed_cb(u32 sub_id,
896 const struct vmci_event_data *e_data,
897 void *client_data)
898{
899 vsock_for_each_connected_socket(vmci_transport_handle_detach);
900}
901
902static void vmci_transport_recv_pkt_work(struct work_struct *work)
903{
904 struct vmci_transport_recv_pkt_info *recv_pkt_info;
905 struct vmci_transport_packet *pkt;
906 struct sock *sk;
907
908 recv_pkt_info =
909 container_of(work, struct vmci_transport_recv_pkt_info, work);
910 sk = recv_pkt_info->sk;
911 pkt = &recv_pkt_info->pkt;
912
913 lock_sock(sk);
914
915 switch (sk->sk_state) {
916 case SS_LISTEN:
917 vmci_transport_recv_listen(sk, pkt);
918 break;
919 case SS_CONNECTING:
920 /* Processing of pending connections for servers goes through
921 * the listening socket, so see vmci_transport_recv_listen()
922 * for that path.
923 */
924 vmci_transport_recv_connecting_client(sk, pkt);
925 break;
926 case SS_CONNECTED:
927 vmci_transport_recv_connected(sk, pkt);
928 break;
929 default:
930 /* Because this function does not run in the same context as
931 * vmci_transport_recv_stream_cb it is possible that the
932 * socket has closed. We need to let the other side know or it
933 * could be sitting in a connect and hang forever. Send a
934 * reset to prevent that.
935 */
936 vmci_transport_send_reset(sk, pkt);
937 goto out;
938 }
939
940out:
941 release_sock(sk);
942 kfree(recv_pkt_info);
943 /* Release reference obtained in the stream callback when we fetched
944 * this socket out of the bound or connected list.
945 */
946 sock_put(sk);
947}
948
949static int vmci_transport_recv_listen(struct sock *sk,
950 struct vmci_transport_packet *pkt)
951{
952 struct sock *pending;
953 struct vsock_sock *vpending;
954 int err;
955 u64 qp_size;
956 bool old_request = false;
957 bool old_pkt_proto = false;
958
959 err = 0;
960
961 /* Because we are in the listen state, we could be receiving a packet
962 * for ourself or any previous connection requests that we received.
963 * If it's the latter, we try to find a socket in our list of pending
964 * connections and, if we do, call the appropriate handler for the
965 * state that that socket is in. Otherwise we try to service the
966 * connection request.
967 */
968 pending = vmci_transport_get_pending(sk, pkt);
969 if (pending) {
970 lock_sock(pending);
971 switch (pending->sk_state) {
972 case SS_CONNECTING:
973 err = vmci_transport_recv_connecting_server(sk,
974 pending,
975 pkt);
976 break;
977 default:
978 vmci_transport_send_reset(pending, pkt);
979 err = -EINVAL;
980 }
981
982 if (err < 0)
983 vsock_remove_pending(sk, pending);
984
985 release_sock(pending);
986 vmci_transport_release_pending(pending);
987
988 return err;
989 }
990
991 /* The listen state only accepts connection requests. Reply with a
992 * reset unless we received a reset.
993 */
994
995 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
996 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
997 vmci_transport_reply_reset(pkt);
998 return -EINVAL;
999 }
1000
1001 if (pkt->u.size == 0) {
1002 vmci_transport_reply_reset(pkt);
1003 return -EINVAL;
1004 }
1005
1006 /* If this socket can't accommodate this connection request, we send a
1007 * reset. Otherwise we create and initialize a child socket and reply
1008 * with a connection negotiation.
1009 */
1010 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1011 vmci_transport_reply_reset(pkt);
1012 return -ECONNREFUSED;
1013 }
1014
1015 pending = __vsock_create(sock_net(sk), NULL, sk, GFP_KERNEL,
1016 sk->sk_type);
1017 if (!pending) {
1018 vmci_transport_send_reset(sk, pkt);
1019 return -ENOMEM;
1020 }
1021
1022 vpending = vsock_sk(pending);
1023
1024 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1025 pkt->dst_port);
1026 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1027 pkt->src_port);
1028
1029 /* If the proposed size fits within our min/max, accept it. Otherwise
1030 * propose our own size.
1031 */
1032 if (pkt->u.size >= vmci_trans(vpending)->queue_pair_min_size &&
1033 pkt->u.size <= vmci_trans(vpending)->queue_pair_max_size) {
1034 qp_size = pkt->u.size;
1035 } else {
1036 qp_size = vmci_trans(vpending)->queue_pair_size;
1037 }
1038
1039 /* Figure out if we are using old or new requests based on the
1040 * overrides pkt types sent by our peer.
1041 */
1042 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1043 old_request = old_pkt_proto;
1044 } else {
1045 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1046 old_request = true;
1047 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1048 old_request = false;
1049
1050 }
1051
1052 if (old_request) {
1053 /* Handle a REQUEST (or override) */
1054 u16 version = VSOCK_PROTO_INVALID;
1055 if (vmci_transport_proto_to_notify_struct(
1056 pending, &version, true))
1057 err = vmci_transport_send_negotiate(pending, qp_size);
1058 else
1059 err = -EINVAL;
1060
1061 } else {
1062 /* Handle a REQUEST2 (or override) */
1063 int proto_int = pkt->proto;
1064 int pos;
1065 u16 active_proto_version = 0;
1066
1067 /* The list of possible protocols is the intersection of all
1068 * protocols the client supports ... plus all the protocols we
1069 * support.
1070 */
1071 proto_int &= vmci_transport_new_proto_supported_versions();
1072
1073 /* We choose the highest possible protocol version and use that
1074 * one.
1075 */
1076 pos = fls(proto_int);
1077 if (pos) {
1078 active_proto_version = (1 << (pos - 1));
1079 if (vmci_transport_proto_to_notify_struct(
1080 pending, &active_proto_version, false))
1081 err = vmci_transport_send_negotiate2(pending,
1082 qp_size,
1083 active_proto_version);
1084 else
1085 err = -EINVAL;
1086
1087 } else {
1088 err = -EINVAL;
1089 }
1090 }
1091
1092 if (err < 0) {
1093 vmci_transport_send_reset(sk, pkt);
1094 sock_put(pending);
1095 err = vmci_transport_error_to_vsock_error(err);
1096 goto out;
1097 }
1098
1099 vsock_add_pending(sk, pending);
1100 sk->sk_ack_backlog++;
1101
1102 pending->sk_state = SS_CONNECTING;
1103 vmci_trans(vpending)->produce_size =
1104 vmci_trans(vpending)->consume_size = qp_size;
1105 vmci_trans(vpending)->queue_pair_size = qp_size;
1106
1107 vmci_trans(vpending)->notify_ops->process_request(pending);
1108
1109 /* We might never receive another message for this socket and it's not
1110 * connected to any process, so we have to ensure it gets cleaned up
1111 * ourself. Our delayed work function will take care of that. Note
1112 * that we do not ever cancel this function since we have few
1113 * guarantees about its state when calling cancel_delayed_work().
1114 * Instead we hold a reference on the socket for that function and make
1115 * it capable of handling cases where it needs to do nothing but
1116 * release that reference.
1117 */
1118 vpending->listener = sk;
1119 sock_hold(sk);
1120 sock_hold(pending);
1121 INIT_DELAYED_WORK(&vpending->dwork, vsock_pending_work);
1122 schedule_delayed_work(&vpending->dwork, HZ);
1123
1124out:
1125 return err;
1126}
1127
1128static int
1129vmci_transport_recv_connecting_server(struct sock *listener,
1130 struct sock *pending,
1131 struct vmci_transport_packet *pkt)
1132{
1133 struct vsock_sock *vpending;
1134 struct vmci_handle handle;
1135 struct vmci_qp *qpair;
1136 bool is_local;
1137 u32 flags;
1138 u32 detach_sub_id;
1139 int err;
1140 int skerr;
1141
1142 vpending = vsock_sk(pending);
1143 detach_sub_id = VMCI_INVALID_ID;
1144
1145 switch (pkt->type) {
1146 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1147 if (vmci_handle_is_invalid(pkt->u.handle)) {
1148 vmci_transport_send_reset(pending, pkt);
1149 skerr = EPROTO;
1150 err = -EINVAL;
1151 goto destroy;
1152 }
1153 break;
1154 default:
1155 /* Close and cleanup the connection. */
1156 vmci_transport_send_reset(pending, pkt);
1157 skerr = EPROTO;
1158 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1159 goto destroy;
1160 }
1161
1162 /* In order to complete the connection we need to attach to the offered
1163 * queue pair and send an attach notification. We also subscribe to the
1164 * detach event so we know when our peer goes away, and we do that
1165 * before attaching so we don't miss an event. If all this succeeds,
1166 * we update our state and wakeup anything waiting in accept() for a
1167 * connection.
1168 */
1169
1170 /* We don't care about attach since we ensure the other side has
1171 * attached by specifying the ATTACH_ONLY flag below.
1172 */
1173 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1174 vmci_transport_peer_detach_cb,
1175 pending, &detach_sub_id);
1176 if (err < VMCI_SUCCESS) {
1177 vmci_transport_send_reset(pending, pkt);
1178 err = vmci_transport_error_to_vsock_error(err);
1179 skerr = -err;
1180 goto destroy;
1181 }
1182
1183 vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1184
1185 /* Now attach to the queue pair the client created. */
1186 handle = pkt->u.handle;
1187
1188 /* vpending->local_addr always has a context id so we do not need to
1189 * worry about VMADDR_CID_ANY in this case.
1190 */
1191 is_local =
1192 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1193 flags = VMCI_QPFLAG_ATTACH_ONLY;
1194 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1195
1196 err = vmci_transport_queue_pair_alloc(
1197 &qpair,
1198 &handle,
1199 vmci_trans(vpending)->produce_size,
1200 vmci_trans(vpending)->consume_size,
1201 pkt->dg.src.context,
1202 flags,
1203 vmci_transport_is_trusted(
1204 vpending,
1205 vpending->remote_addr.svm_cid));
1206 if (err < 0) {
1207 vmci_transport_send_reset(pending, pkt);
1208 skerr = -err;
1209 goto destroy;
1210 }
1211
1212 vmci_trans(vpending)->qp_handle = handle;
1213 vmci_trans(vpending)->qpair = qpair;
1214
1215 /* When we send the attach message, we must be ready to handle incoming
1216 * control messages on the newly connected socket. So we move the
1217 * pending socket to the connected state before sending the attach
1218 * message. Otherwise, an incoming packet triggered by the attach being
1219 * received by the peer may be processed concurrently with what happens
1220 * below after sending the attach message, and that incoming packet
1221 * will find the listening socket instead of the (currently) pending
1222 * socket. Note that enqueueing the socket increments the reference
1223 * count, so even if a reset comes before the connection is accepted,
1224 * the socket will be valid until it is removed from the queue.
1225 *
1226 * If we fail sending the attach below, we remove the socket from the
1227 * connected list and move the socket to SS_UNCONNECTED before
1228 * releasing the lock, so a pending slow path processing of an incoming
1229 * packet will not see the socket in the connected state in that case.
1230 */
1231 pending->sk_state = SS_CONNECTED;
1232
1233 vsock_insert_connected(vpending);
1234
1235 /* Notify our peer of our attach. */
1236 err = vmci_transport_send_attach(pending, handle);
1237 if (err < 0) {
1238 vsock_remove_connected(vpending);
1239 pr_err("Could not send attach\n");
1240 vmci_transport_send_reset(pending, pkt);
1241 err = vmci_transport_error_to_vsock_error(err);
1242 skerr = -err;
1243 goto destroy;
1244 }
1245
1246 /* We have a connection. Move the now connected socket from the
1247 * listener's pending list to the accept queue so callers of accept()
1248 * can find it.
1249 */
1250 vsock_remove_pending(listener, pending);
1251 vsock_enqueue_accept(listener, pending);
1252
1253 /* Callers of accept() will be be waiting on the listening socket, not
1254 * the pending socket.
1255 */
1256 listener->sk_state_change(listener);
1257
1258 return 0;
1259
1260destroy:
1261 pending->sk_err = skerr;
1262 pending->sk_state = SS_UNCONNECTED;
1263 /* As long as we drop our reference, all necessary cleanup will handle
1264 * when the cleanup function drops its reference and our destruct
1265 * implementation is called. Note that since the listen handler will
1266 * remove pending from the pending list upon our failure, the cleanup
1267 * function won't drop the additional reference, which is why we do it
1268 * here.
1269 */
1270 sock_put(pending);
1271
1272 return err;
1273}
1274
1275static int
1276vmci_transport_recv_connecting_client(struct sock *sk,
1277 struct vmci_transport_packet *pkt)
1278{
1279 struct vsock_sock *vsk;
1280 int err;
1281 int skerr;
1282
1283 vsk = vsock_sk(sk);
1284
1285 switch (pkt->type) {
1286 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1287 if (vmci_handle_is_invalid(pkt->u.handle) ||
1288 !vmci_handle_is_equal(pkt->u.handle,
1289 vmci_trans(vsk)->qp_handle)) {
1290 skerr = EPROTO;
1291 err = -EINVAL;
1292 goto destroy;
1293 }
1294
1295 /* Signify the socket is connected and wakeup the waiter in
1296 * connect(). Also place the socket in the connected table for
1297 * accounting (it can already be found since it's in the bound
1298 * table).
1299 */
1300 sk->sk_state = SS_CONNECTED;
1301 sk->sk_socket->state = SS_CONNECTED;
1302 vsock_insert_connected(vsk);
1303 sk->sk_state_change(sk);
1304
1305 break;
1306 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1307 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1308 if (pkt->u.size == 0
1309 || pkt->dg.src.context != vsk->remote_addr.svm_cid
1310 || pkt->src_port != vsk->remote_addr.svm_port
1311 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1312 || vmci_trans(vsk)->qpair
1313 || vmci_trans(vsk)->produce_size != 0
1314 || vmci_trans(vsk)->consume_size != 0
1315 || vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID
1316 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1317 skerr = EPROTO;
1318 err = -EINVAL;
1319
1320 goto destroy;
1321 }
1322
1323 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1324 if (err) {
1325 skerr = -err;
1326 goto destroy;
1327 }
1328
1329 break;
1330 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1331 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1332 if (err) {
1333 skerr = -err;
1334 goto destroy;
1335 }
1336
1337 break;
1338 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1339 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1340 * continue processing here after they sent an INVALID packet.
1341 * This meant that we got a RST after the INVALID. We ignore a
1342 * RST after an INVALID. The common code doesn't send the RST
1343 * ... so we can hang if an old version of the common code
1344 * fails between getting a REQUEST and sending an OFFER back.
1345 * Not much we can do about it... except hope that it doesn't
1346 * happen.
1347 */
1348 if (vsk->ignore_connecting_rst) {
1349 vsk->ignore_connecting_rst = false;
1350 } else {
1351 skerr = ECONNRESET;
1352 err = 0;
1353 goto destroy;
1354 }
1355
1356 break;
1357 default:
1358 /* Close and cleanup the connection. */
1359 skerr = EPROTO;
1360 err = -EINVAL;
1361 goto destroy;
1362 }
1363
1364 return 0;
1365
1366destroy:
1367 vmci_transport_send_reset(sk, pkt);
1368
1369 sk->sk_state = SS_UNCONNECTED;
1370 sk->sk_err = skerr;
1371 sk->sk_error_report(sk);
1372 return err;
1373}
1374
1375static int vmci_transport_recv_connecting_client_negotiate(
1376 struct sock *sk,
1377 struct vmci_transport_packet *pkt)
1378{
1379 int err;
1380 struct vsock_sock *vsk;
1381 struct vmci_handle handle;
1382 struct vmci_qp *qpair;
1383 u32 attach_sub_id;
1384 u32 detach_sub_id;
1385 bool is_local;
1386 u32 flags;
1387 bool old_proto = true;
1388 bool old_pkt_proto;
1389 u16 version;
1390
1391 vsk = vsock_sk(sk);
1392 handle = VMCI_INVALID_HANDLE;
1393 attach_sub_id = VMCI_INVALID_ID;
1394 detach_sub_id = VMCI_INVALID_ID;
1395
1396 /* If we have gotten here then we should be past the point where old
1397 * linux vsock could have sent the bogus rst.
1398 */
1399 vsk->sent_request = false;
1400 vsk->ignore_connecting_rst = false;
1401
1402 /* Verify that we're OK with the proposed queue pair size */
1403 if (pkt->u.size < vmci_trans(vsk)->queue_pair_min_size ||
1404 pkt->u.size > vmci_trans(vsk)->queue_pair_max_size) {
1405 err = -EINVAL;
1406 goto destroy;
1407 }
1408
1409 /* At this point we know the CID the peer is using to talk to us. */
1410
1411 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1412 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1413
1414 /* Setup the notify ops to be the highest supported version that both
1415 * the server and the client support.
1416 */
1417
1418 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1419 old_proto = old_pkt_proto;
1420 } else {
1421 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1422 old_proto = true;
1423 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1424 old_proto = false;
1425
1426 }
1427
1428 if (old_proto)
1429 version = VSOCK_PROTO_INVALID;
1430 else
1431 version = pkt->proto;
1432
1433 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1434 err = -EINVAL;
1435 goto destroy;
1436 }
1437
1438 /* Subscribe to attach and detach events first.
1439 *
1440 * XXX We attach once for each queue pair created for now so it is easy
1441 * to find the socket (it's provided), but later we should only
1442 * subscribe once and add a way to lookup sockets by queue pair handle.
1443 */
1444 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_ATTACH,
1445 vmci_transport_peer_attach_cb,
1446 sk, &attach_sub_id);
1447 if (err < VMCI_SUCCESS) {
1448 err = vmci_transport_error_to_vsock_error(err);
1449 goto destroy;
1450 }
1451
1452 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1453 vmci_transport_peer_detach_cb,
1454 sk, &detach_sub_id);
1455 if (err < VMCI_SUCCESS) {
1456 err = vmci_transport_error_to_vsock_error(err);
1457 goto destroy;
1458 }
1459
1460 /* Make VMCI select the handle for us. */
1461 handle = VMCI_INVALID_HANDLE;
1462 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1463 flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1464
1465 err = vmci_transport_queue_pair_alloc(&qpair,
1466 &handle,
1467 pkt->u.size,
1468 pkt->u.size,
1469 vsk->remote_addr.svm_cid,
1470 flags,
1471 vmci_transport_is_trusted(
1472 vsk,
1473 vsk->
1474 remote_addr.svm_cid));
1475 if (err < 0)
1476 goto destroy;
1477
1478 err = vmci_transport_send_qp_offer(sk, handle);
1479 if (err < 0) {
1480 err = vmci_transport_error_to_vsock_error(err);
1481 goto destroy;
1482 }
1483
1484 vmci_trans(vsk)->qp_handle = handle;
1485 vmci_trans(vsk)->qpair = qpair;
1486
1487 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1488 pkt->u.size;
1489
1490 vmci_trans(vsk)->attach_sub_id = attach_sub_id;
1491 vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1492
1493 vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1494
1495 return 0;
1496
1497destroy:
1498 if (attach_sub_id != VMCI_INVALID_ID)
1499 vmci_event_unsubscribe(attach_sub_id);
1500
1501 if (detach_sub_id != VMCI_INVALID_ID)
1502 vmci_event_unsubscribe(detach_sub_id);
1503
1504 if (!vmci_handle_is_invalid(handle))
1505 vmci_qpair_detach(&qpair);
1506
1507 return err;
1508}
1509
1510static int
1511vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1512 struct vmci_transport_packet *pkt)
1513{
1514 int err = 0;
1515 struct vsock_sock *vsk = vsock_sk(sk);
1516
1517 if (vsk->sent_request) {
1518 vsk->sent_request = false;
1519 vsk->ignore_connecting_rst = true;
1520
1521 err = vmci_transport_send_conn_request(
1522 sk, vmci_trans(vsk)->queue_pair_size);
1523 if (err < 0)
1524 err = vmci_transport_error_to_vsock_error(err);
1525 else
1526 err = 0;
1527
1528 }
1529
1530 return err;
1531}
1532
1533static int vmci_transport_recv_connected(struct sock *sk,
1534 struct vmci_transport_packet *pkt)
1535{
1536 struct vsock_sock *vsk;
1537 bool pkt_processed = false;
1538
1539 /* In cases where we are closing the connection, it's sufficient to
1540 * mark the state change (and maybe error) and wake up any waiting
1541 * threads. Since this is a connected socket, it's owned by a user
1542 * process and will be cleaned up when the failure is passed back on
1543 * the current or next system call. Our system call implementations
1544 * must therefore check for error and state changes on entry and when
1545 * being awoken.
1546 */
1547 switch (pkt->type) {
1548 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1549 if (pkt->u.mode) {
1550 vsk = vsock_sk(sk);
1551
1552 vsk->peer_shutdown |= pkt->u.mode;
1553 sk->sk_state_change(sk);
1554 }
1555 break;
1556
1557 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1558 vsk = vsock_sk(sk);
1559 /* It is possible that we sent our peer a message (e.g a
1560 * WAITING_READ) right before we got notified that the peer had
1561 * detached. If that happens then we can get a RST pkt back
1562 * from our peer even though there is data available for us to
1563 * read. In that case, don't shutdown the socket completely but
1564 * instead allow the local client to finish reading data off
1565 * the queuepair. Always treat a RST pkt in connected mode like
1566 * a clean shutdown.
1567 */
1568 sock_set_flag(sk, SOCK_DONE);
1569 vsk->peer_shutdown = SHUTDOWN_MASK;
1570 if (vsock_stream_has_data(vsk) <= 0)
1571 sk->sk_state = SS_DISCONNECTING;
1572
1573 sk->sk_state_change(sk);
1574 break;
1575
1576 default:
1577 vsk = vsock_sk(sk);
1578 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1579 sk, pkt, false, NULL, NULL,
1580 &pkt_processed);
1581 if (!pkt_processed)
1582 return -EINVAL;
1583
1584 break;
1585 }
1586
1587 return 0;
1588}
1589
1590static int vmci_transport_socket_init(struct vsock_sock *vsk,
1591 struct vsock_sock *psk)
1592{
1593 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1594 if (!vsk->trans)
1595 return -ENOMEM;
1596
1597 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1598 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1599 vmci_trans(vsk)->qpair = NULL;
1600 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1601 vmci_trans(vsk)->attach_sub_id = vmci_trans(vsk)->detach_sub_id =
1602 VMCI_INVALID_ID;
1603 vmci_trans(vsk)->notify_ops = NULL;
1604 if (psk) {
1605 vmci_trans(vsk)->queue_pair_size =
1606 vmci_trans(psk)->queue_pair_size;
1607 vmci_trans(vsk)->queue_pair_min_size =
1608 vmci_trans(psk)->queue_pair_min_size;
1609 vmci_trans(vsk)->queue_pair_max_size =
1610 vmci_trans(psk)->queue_pair_max_size;
1611 } else {
1612 vmci_trans(vsk)->queue_pair_size =
1613 VMCI_TRANSPORT_DEFAULT_QP_SIZE;
1614 vmci_trans(vsk)->queue_pair_min_size =
1615 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MIN;
1616 vmci_trans(vsk)->queue_pair_max_size =
1617 VMCI_TRANSPORT_DEFAULT_QP_SIZE_MAX;
1618 }
1619
1620 return 0;
1621}
1622
1623static void vmci_transport_destruct(struct vsock_sock *vsk)
1624{
1625 if (vmci_trans(vsk)->attach_sub_id != VMCI_INVALID_ID) {
1626 vmci_event_unsubscribe(vmci_trans(vsk)->attach_sub_id);
1627 vmci_trans(vsk)->attach_sub_id = VMCI_INVALID_ID;
1628 }
1629
1630 if (vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1631 vmci_event_unsubscribe(vmci_trans(vsk)->detach_sub_id);
1632 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1633 }
1634
1635 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
1636 vmci_qpair_detach(&vmci_trans(vsk)->qpair);
1637 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1638 vmci_trans(vsk)->produce_size = 0;
1639 vmci_trans(vsk)->consume_size = 0;
1640 }
1641
1642 if (vmci_trans(vsk)->notify_ops)
1643 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1644
1645 kfree(vsk->trans);
1646 vsk->trans = NULL;
1647}
1648
1649static void vmci_transport_release(struct vsock_sock *vsk)
1650{
1651 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1652 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1653 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1654 }
1655}
1656
1657static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1658 struct sockaddr_vm *addr)
1659{
1660 u32 port;
1661 u32 flags;
1662 int err;
1663
1664 /* VMCI will select a resource ID for us if we provide
1665 * VMCI_INVALID_ID.
1666 */
1667 port = addr->svm_port == VMADDR_PORT_ANY ?
1668 VMCI_INVALID_ID : addr->svm_port;
1669
1670 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1671 return -EACCES;
1672
1673 flags = addr->svm_cid == VMADDR_CID_ANY ?
1674 VMCI_FLAG_ANYCID_DG_HND : 0;
1675
1676 err = vmci_transport_datagram_create_hnd(port, flags,
1677 vmci_transport_recv_dgram_cb,
1678 &vsk->sk,
1679 &vmci_trans(vsk)->dg_handle);
1680 if (err < VMCI_SUCCESS)
1681 return vmci_transport_error_to_vsock_error(err);
1682 vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1683 vmci_trans(vsk)->dg_handle.resource);
1684
1685 return 0;
1686}
1687
1688static int vmci_transport_dgram_enqueue(
1689 struct vsock_sock *vsk,
1690 struct sockaddr_vm *remote_addr,
1691 struct iovec *iov,
1692 size_t len)
1693{
1694 int err;
1695 struct vmci_datagram *dg;
1696
1697 if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1698 return -EMSGSIZE;
1699
1700 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1701 return -EPERM;
1702
1703 /* Allocate a buffer for the user's message and our packet header. */
1704 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1705 if (!dg)
1706 return -ENOMEM;
1707
1708 memcpy_fromiovec(VMCI_DG_PAYLOAD(dg), iov, len);
1709
1710 dg->dst = vmci_make_handle(remote_addr->svm_cid,
1711 remote_addr->svm_port);
1712 dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1713 vsk->local_addr.svm_port);
1714 dg->payload_size = len;
1715
1716 err = vmci_datagram_send(dg);
1717 kfree(dg);
1718 if (err < 0)
1719 return vmci_transport_error_to_vsock_error(err);
1720
1721 return err - sizeof(*dg);
1722}
1723
1724static int vmci_transport_dgram_dequeue(struct kiocb *kiocb,
1725 struct vsock_sock *vsk,
1726 struct msghdr *msg, size_t len,
1727 int flags)
1728{
1729 int err;
1730 int noblock;
1731 struct vmci_datagram *dg;
1732 size_t payload_len;
1733 struct sk_buff *skb;
1734
1735 noblock = flags & MSG_DONTWAIT;
1736
1737 if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1738 return -EOPNOTSUPP;
1739
1740 /* Retrieve the head sk_buff from the socket's receive queue. */
1741 err = 0;
1742 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1743 if (err)
1744 return err;
1745
1746 if (!skb)
1747 return -EAGAIN;
1748
1749 dg = (struct vmci_datagram *)skb->data;
1750 if (!dg)
1751 /* err is 0, meaning we read zero bytes. */
1752 goto out;
1753
1754 payload_len = dg->payload_size;
1755 /* Ensure the sk_buff matches the payload size claimed in the packet. */
1756 if (payload_len != skb->len - sizeof(*dg)) {
1757 err = -EINVAL;
1758 goto out;
1759 }
1760
1761 if (payload_len > len) {
1762 payload_len = len;
1763 msg->msg_flags |= MSG_TRUNC;
1764 }
1765
1766 /* Place the datagram payload in the user's iovec. */
1767 err = skb_copy_datagram_iovec(skb, sizeof(*dg), msg->msg_iov,
1768 payload_len);
1769 if (err)
1770 goto out;
1771
1772 msg->msg_namelen = 0;
1773 if (msg->msg_name) {
1774 struct sockaddr_vm *vm_addr;
1775
1776 /* Provide the address of the sender. */
1777 vm_addr = (struct sockaddr_vm *)msg->msg_name;
1778 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1779 msg->msg_namelen = sizeof(*vm_addr);
1780 }
1781 err = payload_len;
1782
1783out:
1784 skb_free_datagram(&vsk->sk, skb);
1785 return err;
1786}
1787
1788static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1789{
1790 if (cid == VMADDR_CID_HYPERVISOR) {
1791 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1792 * state and are allowed.
1793 */
1794 return port == VMCI_UNITY_PBRPC_REGISTER;
1795 }
1796
1797 return true;
1798}
1799
1800static int vmci_transport_connect(struct vsock_sock *vsk)
1801{
1802 int err;
1803 bool old_pkt_proto = false;
1804 struct sock *sk = &vsk->sk;
1805
1806 if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1807 old_pkt_proto) {
1808 err = vmci_transport_send_conn_request(
1809 sk, vmci_trans(vsk)->queue_pair_size);
1810 if (err < 0) {
1811 sk->sk_state = SS_UNCONNECTED;
1812 return err;
1813 }
1814 } else {
1815 int supported_proto_versions =
1816 vmci_transport_new_proto_supported_versions();
1817 err = vmci_transport_send_conn_request2(
1818 sk, vmci_trans(vsk)->queue_pair_size,
1819 supported_proto_versions);
1820 if (err < 0) {
1821 sk->sk_state = SS_UNCONNECTED;
1822 return err;
1823 }
1824
1825 vsk->sent_request = true;
1826 }
1827
1828 return err;
1829}
1830
1831static ssize_t vmci_transport_stream_dequeue(
1832 struct vsock_sock *vsk,
1833 struct iovec *iov,
1834 size_t len,
1835 int flags)
1836{
1837 if (flags & MSG_PEEK)
1838 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, iov, len, 0);
1839 else
1840 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, iov, len, 0);
1841}
1842
1843static ssize_t vmci_transport_stream_enqueue(
1844 struct vsock_sock *vsk,
1845 struct iovec *iov,
1846 size_t len)
1847{
1848 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, iov, len, 0);
1849}
1850
1851static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1852{
1853 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1854}
1855
1856static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1857{
1858 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1859}
1860
1861static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1862{
1863 return vmci_trans(vsk)->consume_size;
1864}
1865
1866static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1867{
1868 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1869}
1870
1871static u64 vmci_transport_get_buffer_size(struct vsock_sock *vsk)
1872{
1873 return vmci_trans(vsk)->queue_pair_size;
1874}
1875
1876static u64 vmci_transport_get_min_buffer_size(struct vsock_sock *vsk)
1877{
1878 return vmci_trans(vsk)->queue_pair_min_size;
1879}
1880
1881static u64 vmci_transport_get_max_buffer_size(struct vsock_sock *vsk)
1882{
1883 return vmci_trans(vsk)->queue_pair_max_size;
1884}
1885
1886static void vmci_transport_set_buffer_size(struct vsock_sock *vsk, u64 val)
1887{
1888 if (val < vmci_trans(vsk)->queue_pair_min_size)
1889 vmci_trans(vsk)->queue_pair_min_size = val;
1890 if (val > vmci_trans(vsk)->queue_pair_max_size)
1891 vmci_trans(vsk)->queue_pair_max_size = val;
1892 vmci_trans(vsk)->queue_pair_size = val;
1893}
1894
1895static void vmci_transport_set_min_buffer_size(struct vsock_sock *vsk,
1896 u64 val)
1897{
1898 if (val > vmci_trans(vsk)->queue_pair_size)
1899 vmci_trans(vsk)->queue_pair_size = val;
1900 vmci_trans(vsk)->queue_pair_min_size = val;
1901}
1902
1903static void vmci_transport_set_max_buffer_size(struct vsock_sock *vsk,
1904 u64 val)
1905{
1906 if (val < vmci_trans(vsk)->queue_pair_size)
1907 vmci_trans(vsk)->queue_pair_size = val;
1908 vmci_trans(vsk)->queue_pair_max_size = val;
1909}
1910
1911static int vmci_transport_notify_poll_in(
1912 struct vsock_sock *vsk,
1913 size_t target,
1914 bool *data_ready_now)
1915{
1916 return vmci_trans(vsk)->notify_ops->poll_in(
1917 &vsk->sk, target, data_ready_now);
1918}
1919
1920static int vmci_transport_notify_poll_out(
1921 struct vsock_sock *vsk,
1922 size_t target,
1923 bool *space_available_now)
1924{
1925 return vmci_trans(vsk)->notify_ops->poll_out(
1926 &vsk->sk, target, space_available_now);
1927}
1928
1929static int vmci_transport_notify_recv_init(
1930 struct vsock_sock *vsk,
1931 size_t target,
1932 struct vsock_transport_recv_notify_data *data)
1933{
1934 return vmci_trans(vsk)->notify_ops->recv_init(
1935 &vsk->sk, target,
1936 (struct vmci_transport_recv_notify_data *)data);
1937}
1938
1939static int vmci_transport_notify_recv_pre_block(
1940 struct vsock_sock *vsk,
1941 size_t target,
1942 struct vsock_transport_recv_notify_data *data)
1943{
1944 return vmci_trans(vsk)->notify_ops->recv_pre_block(
1945 &vsk->sk, target,
1946 (struct vmci_transport_recv_notify_data *)data);
1947}
1948
1949static int vmci_transport_notify_recv_pre_dequeue(
1950 struct vsock_sock *vsk,
1951 size_t target,
1952 struct vsock_transport_recv_notify_data *data)
1953{
1954 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1955 &vsk->sk, target,
1956 (struct vmci_transport_recv_notify_data *)data);
1957}
1958
1959static int vmci_transport_notify_recv_post_dequeue(
1960 struct vsock_sock *vsk,
1961 size_t target,
1962 ssize_t copied,
1963 bool data_read,
1964 struct vsock_transport_recv_notify_data *data)
1965{
1966 return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1967 &vsk->sk, target, copied, data_read,
1968 (struct vmci_transport_recv_notify_data *)data);
1969}
1970
1971static int vmci_transport_notify_send_init(
1972 struct vsock_sock *vsk,
1973 struct vsock_transport_send_notify_data *data)
1974{
1975 return vmci_trans(vsk)->notify_ops->send_init(
1976 &vsk->sk,
1977 (struct vmci_transport_send_notify_data *)data);
1978}
1979
1980static int vmci_transport_notify_send_pre_block(
1981 struct vsock_sock *vsk,
1982 struct vsock_transport_send_notify_data *data)
1983{
1984 return vmci_trans(vsk)->notify_ops->send_pre_block(
1985 &vsk->sk,
1986 (struct vmci_transport_send_notify_data *)data);
1987}
1988
1989static int vmci_transport_notify_send_pre_enqueue(
1990 struct vsock_sock *vsk,
1991 struct vsock_transport_send_notify_data *data)
1992{
1993 return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1994 &vsk->sk,
1995 (struct vmci_transport_send_notify_data *)data);
1996}
1997
1998static int vmci_transport_notify_send_post_enqueue(
1999 struct vsock_sock *vsk,
2000 ssize_t written,
2001 struct vsock_transport_send_notify_data *data)
2002{
2003 return vmci_trans(vsk)->notify_ops->send_post_enqueue(
2004 &vsk->sk, written,
2005 (struct vmci_transport_send_notify_data *)data);
2006}
2007
2008static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
2009{
2010 if (PROTOCOL_OVERRIDE != -1) {
2011 if (PROTOCOL_OVERRIDE == 0)
2012 *old_pkt_proto = true;
2013 else
2014 *old_pkt_proto = false;
2015
2016 pr_info("Proto override in use\n");
2017 return true;
2018 }
2019
2020 return false;
2021}
2022
2023static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
2024 u16 *proto,
2025 bool old_pkt_proto)
2026{
2027 struct vsock_sock *vsk = vsock_sk(sk);
2028
2029 if (old_pkt_proto) {
2030 if (*proto != VSOCK_PROTO_INVALID) {
2031 pr_err("Can't set both an old and new protocol\n");
2032 return false;
2033 }
2034 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2035 goto exit;
2036 }
2037
2038 switch (*proto) {
2039 case VSOCK_PROTO_PKT_ON_NOTIFY:
2040 vmci_trans(vsk)->notify_ops =
2041 &vmci_transport_notify_pkt_q_state_ops;
2042 break;
2043 default:
2044 pr_err("Unknown notify protocol version\n");
2045 return false;
2046 }
2047
2048exit:
2049 vmci_trans(vsk)->notify_ops->socket_init(sk);
2050 return true;
2051}
2052
2053static u16 vmci_transport_new_proto_supported_versions(void)
2054{
2055 if (PROTOCOL_OVERRIDE != -1)
2056 return PROTOCOL_OVERRIDE;
2057
2058 return VSOCK_PROTO_ALL_SUPPORTED;
2059}
2060
2061static u32 vmci_transport_get_local_cid(void)
2062{
2063 return vmci_get_context_id();
2064}
2065
2066static struct vsock_transport vmci_transport = {
2067 .init = vmci_transport_socket_init,
2068 .destruct = vmci_transport_destruct,
2069 .release = vmci_transport_release,
2070 .connect = vmci_transport_connect,
2071 .dgram_bind = vmci_transport_dgram_bind,
2072 .dgram_dequeue = vmci_transport_dgram_dequeue,
2073 .dgram_enqueue = vmci_transport_dgram_enqueue,
2074 .dgram_allow = vmci_transport_dgram_allow,
2075 .stream_dequeue = vmci_transport_stream_dequeue,
2076 .stream_enqueue = vmci_transport_stream_enqueue,
2077 .stream_has_data = vmci_transport_stream_has_data,
2078 .stream_has_space = vmci_transport_stream_has_space,
2079 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2080 .stream_is_active = vmci_transport_stream_is_active,
2081 .stream_allow = vmci_transport_stream_allow,
2082 .notify_poll_in = vmci_transport_notify_poll_in,
2083 .notify_poll_out = vmci_transport_notify_poll_out,
2084 .notify_recv_init = vmci_transport_notify_recv_init,
2085 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2086 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2087 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2088 .notify_send_init = vmci_transport_notify_send_init,
2089 .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2090 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2091 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2092 .shutdown = vmci_transport_shutdown,
2093 .set_buffer_size = vmci_transport_set_buffer_size,
2094 .set_min_buffer_size = vmci_transport_set_min_buffer_size,
2095 .set_max_buffer_size = vmci_transport_set_max_buffer_size,
2096 .get_buffer_size = vmci_transport_get_buffer_size,
2097 .get_min_buffer_size = vmci_transport_get_min_buffer_size,
2098 .get_max_buffer_size = vmci_transport_get_max_buffer_size,
2099 .get_local_cid = vmci_transport_get_local_cid,
2100};
2101
2102static int __init vmci_transport_init(void)
2103{
2104 int err;
2105
2106 /* Create the datagram handle that we will use to send and receive all
2107 * VSocket control messages for this context.
2108 */
2109 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2110 VMCI_FLAG_ANYCID_DG_HND,
2111 vmci_transport_recv_stream_cb,
2112 NULL,
2113 &vmci_transport_stream_handle);
2114 if (err < VMCI_SUCCESS) {
2115 pr_err("Unable to create datagram handle. (%d)\n", err);
2116 return vmci_transport_error_to_vsock_error(err);
2117 }
2118
2119 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2120 vmci_transport_qp_resumed_cb,
2121 NULL, &vmci_transport_qp_resumed_sub_id);
2122 if (err < VMCI_SUCCESS) {
2123 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2124 err = vmci_transport_error_to_vsock_error(err);
2125 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2126 goto err_destroy_stream_handle;
2127 }
2128
2129 err = vsock_core_init(&vmci_transport);
2130 if (err < 0)
2131 goto err_unsubscribe;
2132
2133 return 0;
2134
2135err_unsubscribe:
2136 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2137err_destroy_stream_handle:
2138 vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2139 return err;
2140}
2141module_init(vmci_transport_init);
2142
2143static void __exit vmci_transport_exit(void)
2144{
2145 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2146 if (vmci_datagram_destroy_handle(
2147 vmci_transport_stream_handle) != VMCI_SUCCESS)
2148 pr_err("Couldn't destroy datagram handle\n");
2149 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2150 }
2151
2152 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2153 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2154 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2155 }
2156
2157 vsock_core_exit();
2158}
2159module_exit(vmci_transport_exit);
2160
2161MODULE_AUTHOR("VMware, Inc.");
2162MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2163MODULE_LICENSE("GPL v2");
2164MODULE_ALIAS("vmware_vsock");
2165MODULE_ALIAS_NETPROTO(PF_VSOCK);