blob: e45f0786f3f9ef29bb1da2f9c2b3c8d7430adc85 [file] [log] [blame]
Changbin Du1f198e22018-02-17 13:39:38 +08001========================
2ftrace - Function Tracer
3========================
4
5Copyright 2008 Red Hat Inc.
6
7:Author: Steven Rostedt <srostedt@redhat.com>
8:License: The GNU Free Documentation License, Version 1.2
9 (dual licensed under the GPL v2)
10:Original Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
11 John Kacur, and David Teigland.
12
13- Written for: 2.6.28-rc2
14- Updated for: 3.10
15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
16- Converted to rst format - Changbin Du <changbin.du@intel.com>
17
18Introduction
19------------
20
21Ftrace is an internal tracer designed to help out developers and
22designers of systems to find what is going on inside the kernel.
23It can be used for debugging or analyzing latencies and
24performance issues that take place outside of user-space.
25
26Although ftrace is typically considered the function tracer, it
27is really a frame work of several assorted tracing utilities.
28There's latency tracing to examine what occurs between interrupts
29disabled and enabled, as well as for preemption and from a time
30a task is woken to the task is actually scheduled in.
31
32One of the most common uses of ftrace is the event tracing.
33Through out the kernel is hundreds of static event points that
34can be enabled via the tracefs file system to see what is
35going on in certain parts of the kernel.
36
37See events.txt for more information.
38
39
40Implementation Details
41----------------------
42
43See :doc:`ftrace-design` for details for arch porters and such.
44
45
46The File System
47---------------
48
49Ftrace uses the tracefs file system to hold the control files as
50well as the files to display output.
51
52When tracefs is configured into the kernel (which selecting any ftrace
53option will do) the directory /sys/kernel/tracing will be created. To mount
54this directory, you can add to your /etc/fstab file::
55
56 tracefs /sys/kernel/tracing tracefs defaults 0 0
57
58Or you can mount it at run time with::
59
60 mount -t tracefs nodev /sys/kernel/tracing
61
62For quicker access to that directory you may want to make a soft link to
63it::
64
65 ln -s /sys/kernel/tracing /tracing
66
67.. attention::
68
69 Before 4.1, all ftrace tracing control files were within the debugfs
70 file system, which is typically located at /sys/kernel/debug/tracing.
71 For backward compatibility, when mounting the debugfs file system,
72 the tracefs file system will be automatically mounted at:
73
74 /sys/kernel/debug/tracing
75
76 All files located in the tracefs file system will be located in that
77 debugfs file system directory as well.
78
79.. attention::
80
81 Any selected ftrace option will also create the tracefs file system.
82 The rest of the document will assume that you are in the ftrace directory
83 (cd /sys/kernel/tracing) and will only concentrate on the files within that
84 directory and not distract from the content with the extended
85 "/sys/kernel/tracing" path name.
86
87That's it! (assuming that you have ftrace configured into your kernel)
88
89After mounting tracefs you will have access to the control and output files
90of ftrace. Here is a list of some of the key files:
91
92
93 Note: all time values are in microseconds.
94
95 current_tracer:
96
97 This is used to set or display the current tracer
98 that is configured.
99
100 available_tracers:
101
102 This holds the different types of tracers that
103 have been compiled into the kernel. The
104 tracers listed here can be configured by
105 echoing their name into current_tracer.
106
107 tracing_on:
108
109 This sets or displays whether writing to the trace
110 ring buffer is enabled. Echo 0 into this file to disable
111 the tracer or 1 to enable it. Note, this only disables
112 writing to the ring buffer, the tracing overhead may
113 still be occurring.
114
115 The kernel function tracing_off() can be used within the
116 kernel to disable writing to the ring buffer, which will
117 set this file to "0". User space can re-enable tracing by
118 echoing "1" into the file.
119
120 Note, the function and event trigger "traceoff" will also
121 set this file to zero and stop tracing. Which can also
122 be re-enabled by user space using this file.
123
124 trace:
125
126 This file holds the output of the trace in a human
127 readable format (described below). Note, tracing is temporarily
128 disabled while this file is being read (opened).
129
130 trace_pipe:
131
132 The output is the same as the "trace" file but this
133 file is meant to be streamed with live tracing.
134 Reads from this file will block until new data is
135 retrieved. Unlike the "trace" file, this file is a
136 consumer. This means reading from this file causes
137 sequential reads to display more current data. Once
138 data is read from this file, it is consumed, and
139 will not be read again with a sequential read. The
140 "trace" file is static, and if the tracer is not
141 adding more data, it will display the same
142 information every time it is read. This file will not
143 disable tracing while being read.
144
145 trace_options:
146
147 This file lets the user control the amount of data
148 that is displayed in one of the above output
149 files. Options also exist to modify how a tracer
150 or events work (stack traces, timestamps, etc).
151
152 options:
153
154 This is a directory that has a file for every available
155 trace option (also in trace_options). Options may also be set
156 or cleared by writing a "1" or "0" respectively into the
157 corresponding file with the option name.
158
159 tracing_max_latency:
160
161 Some of the tracers record the max latency.
162 For example, the maximum time that interrupts are disabled.
163 The maximum time is saved in this file. The max trace will also be
164 stored, and displayed by "trace". A new max trace will only be
165 recorded if the latency is greater than the value in this file
166 (in microseconds).
167
168 By echoing in a time into this file, no latency will be recorded
169 unless it is greater than the time in this file.
170
171 tracing_thresh:
172
173 Some latency tracers will record a trace whenever the
174 latency is greater than the number in this file.
175 Only active when the file contains a number greater than 0.
176 (in microseconds)
177
178 buffer_size_kb:
179
180 This sets or displays the number of kilobytes each CPU
181 buffer holds. By default, the trace buffers are the same size
182 for each CPU. The displayed number is the size of the
183 CPU buffer and not total size of all buffers. The
184 trace buffers are allocated in pages (blocks of memory
185 that the kernel uses for allocation, usually 4 KB in size).
186 If the last page allocated has room for more bytes
187 than requested, the rest of the page will be used,
188 making the actual allocation bigger than requested or shown.
189 ( Note, the size may not be a multiple of the page size
190 due to buffer management meta-data. )
191
192 Buffer sizes for individual CPUs may vary
193 (see "per_cpu/cpu0/buffer_size_kb" below), and if they do
194 this file will show "X".
195
196 buffer_total_size_kb:
197
198 This displays the total combined size of all the trace buffers.
199
200 free_buffer:
201
202 If a process is performing tracing, and the ring buffer should be
203 shrunk "freed" when the process is finished, even if it were to be
204 killed by a signal, this file can be used for that purpose. On close
205 of this file, the ring buffer will be resized to its minimum size.
206 Having a process that is tracing also open this file, when the process
207 exits its file descriptor for this file will be closed, and in doing so,
208 the ring buffer will be "freed".
209
210 It may also stop tracing if disable_on_free option is set.
211
212 tracing_cpumask:
213
214 This is a mask that lets the user only trace on specified CPUs.
215 The format is a hex string representing the CPUs.
216
217 set_ftrace_filter:
218
219 When dynamic ftrace is configured in (see the
220 section below "dynamic ftrace"), the code is dynamically
221 modified (code text rewrite) to disable calling of the
222 function profiler (mcount). This lets tracing be configured
223 in with practically no overhead in performance. This also
224 has a side effect of enabling or disabling specific functions
225 to be traced. Echoing names of functions into this file
226 will limit the trace to only those functions.
227
228 The functions listed in "available_filter_functions" are what
229 can be written into this file.
230
231 This interface also allows for commands to be used. See the
232 "Filter commands" section for more details.
233
234 set_ftrace_notrace:
235
236 This has an effect opposite to that of
237 set_ftrace_filter. Any function that is added here will not
238 be traced. If a function exists in both set_ftrace_filter
239 and set_ftrace_notrace, the function will _not_ be traced.
240
241 set_ftrace_pid:
242
243 Have the function tracer only trace the threads whose PID are
244 listed in this file.
245
246 If the "function-fork" option is set, then when a task whose
247 PID is listed in this file forks, the child's PID will
248 automatically be added to this file, and the child will be
249 traced by the function tracer as well. This option will also
250 cause PIDs of tasks that exit to be removed from the file.
251
252 set_event_pid:
253
254 Have the events only trace a task with a PID listed in this file.
255 Note, sched_switch and sched_wake_up will also trace events
256 listed in this file.
257
258 To have the PIDs of children of tasks with their PID in this file
259 added on fork, enable the "event-fork" option. That option will also
260 cause the PIDs of tasks to be removed from this file when the task
261 exits.
262
263 set_graph_function:
264
265 Functions listed in this file will cause the function graph
266 tracer to only trace these functions and the functions that
267 they call. (See the section "dynamic ftrace" for more details).
268
269 set_graph_notrace:
270
271 Similar to set_graph_function, but will disable function graph
272 tracing when the function is hit until it exits the function.
273 This makes it possible to ignore tracing functions that are called
274 by a specific function.
275
276 available_filter_functions:
277
278 This lists the functions that ftrace has processed and can trace.
279 These are the function names that you can pass to
280 "set_ftrace_filter" or "set_ftrace_notrace".
281 (See the section "dynamic ftrace" below for more details.)
282
283 dyn_ftrace_total_info:
284
285 This file is for debugging purposes. The number of functions that
286 have been converted to nops and are available to be traced.
287
288 enabled_functions:
289
290 This file is more for debugging ftrace, but can also be useful
291 in seeing if any function has a callback attached to it.
292 Not only does the trace infrastructure use ftrace function
293 trace utility, but other subsystems might too. This file
294 displays all functions that have a callback attached to them
295 as well as the number of callbacks that have been attached.
296 Note, a callback may also call multiple functions which will
297 not be listed in this count.
298
299 If the callback registered to be traced by a function with
300 the "save regs" attribute (thus even more overhead), a 'R'
301 will be displayed on the same line as the function that
302 is returning registers.
303
304 If the callback registered to be traced by a function with
305 the "ip modify" attribute (thus the regs->ip can be changed),
306 an 'I' will be displayed on the same line as the function that
307 can be overridden.
308
309 If the architecture supports it, it will also show what callback
310 is being directly called by the function. If the count is greater
311 than 1 it most likely will be ftrace_ops_list_func().
312
313 If the callback of the function jumps to a trampoline that is
314 specific to a the callback and not the standard trampoline,
315 its address will be printed as well as the function that the
316 trampoline calls.
317
318 function_profile_enabled:
319
320 When set it will enable all functions with either the function
321 tracer, or if configured, the function graph tracer. It will
322 keep a histogram of the number of functions that were called
323 and if the function graph tracer was configured, it will also keep
324 track of the time spent in those functions. The histogram
325 content can be displayed in the files:
326
327 trace_stats/function<cpu> ( function0, function1, etc).
328
329 trace_stats:
330
331 A directory that holds different tracing stats.
332
333 kprobe_events:
334
335 Enable dynamic trace points. See kprobetrace.txt.
336
337 kprobe_profile:
338
339 Dynamic trace points stats. See kprobetrace.txt.
340
341 max_graph_depth:
342
343 Used with the function graph tracer. This is the max depth
344 it will trace into a function. Setting this to a value of
345 one will show only the first kernel function that is called
346 from user space.
347
348 printk_formats:
349
350 This is for tools that read the raw format files. If an event in
351 the ring buffer references a string, only a pointer to the string
352 is recorded into the buffer and not the string itself. This prevents
353 tools from knowing what that string was. This file displays the string
354 and address for the string allowing tools to map the pointers to what
355 the strings were.
356
357 saved_cmdlines:
358
359 Only the pid of the task is recorded in a trace event unless
360 the event specifically saves the task comm as well. Ftrace
361 makes a cache of pid mappings to comms to try to display
362 comms for events. If a pid for a comm is not listed, then
363 "<...>" is displayed in the output.
364
365 If the option "record-cmd" is set to "0", then comms of tasks
366 will not be saved during recording. By default, it is enabled.
367
368 saved_cmdlines_size:
369
370 By default, 128 comms are saved (see "saved_cmdlines" above). To
371 increase or decrease the amount of comms that are cached, echo
372 in a the number of comms to cache, into this file.
373
374 saved_tgids:
375
376 If the option "record-tgid" is set, on each scheduling context switch
377 the Task Group ID of a task is saved in a table mapping the PID of
378 the thread to its TGID. By default, the "record-tgid" option is
379 disabled.
380
381 snapshot:
382
383 This displays the "snapshot" buffer and also lets the user
384 take a snapshot of the current running trace.
385 See the "Snapshot" section below for more details.
386
387 stack_max_size:
388
389 When the stack tracer is activated, this will display the
390 maximum stack size it has encountered.
391 See the "Stack Trace" section below.
392
393 stack_trace:
394
395 This displays the stack back trace of the largest stack
396 that was encountered when the stack tracer is activated.
397 See the "Stack Trace" section below.
398
399 stack_trace_filter:
400
401 This is similar to "set_ftrace_filter" but it limits what
402 functions the stack tracer will check.
403
404 trace_clock:
405
406 Whenever an event is recorded into the ring buffer, a
407 "timestamp" is added. This stamp comes from a specified
408 clock. By default, ftrace uses the "local" clock. This
409 clock is very fast and strictly per cpu, but on some
410 systems it may not be monotonic with respect to other
411 CPUs. In other words, the local clocks may not be in sync
412 with local clocks on other CPUs.
413
414 Usual clocks for tracing::
415
416 # cat trace_clock
417 [local] global counter x86-tsc
418
419 The clock with the square brackets around it is the one in effect.
420
421 local:
422 Default clock, but may not be in sync across CPUs
423
424 global:
425 This clock is in sync with all CPUs but may
426 be a bit slower than the local clock.
427
428 counter:
429 This is not a clock at all, but literally an atomic
430 counter. It counts up one by one, but is in sync
431 with all CPUs. This is useful when you need to
432 know exactly the order events occurred with respect to
433 each other on different CPUs.
434
435 uptime:
436 This uses the jiffies counter and the time stamp
437 is relative to the time since boot up.
438
439 perf:
440 This makes ftrace use the same clock that perf uses.
441 Eventually perf will be able to read ftrace buffers
442 and this will help out in interleaving the data.
443
444 x86-tsc:
445 Architectures may define their own clocks. For
446 example, x86 uses its own TSC cycle clock here.
447
448 ppc-tb:
449 This uses the powerpc timebase register value.
450 This is in sync across CPUs and can also be used
451 to correlate events across hypervisor/guest if
452 tb_offset is known.
453
454 mono:
455 This uses the fast monotonic clock (CLOCK_MONOTONIC)
456 which is monotonic and is subject to NTP rate adjustments.
457
458 mono_raw:
459 This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
460 which is montonic but is not subject to any rate adjustments
461 and ticks at the same rate as the hardware clocksource.
462
463 boot:
Linus Torvalds680014d2018-04-04 14:50:29 -0700464 Same as mono. Used to be a separate clock which accounted
465 for the time spent in suspend while CLOCK_MONOTONIC did
466 not.
Changbin Du1f198e22018-02-17 13:39:38 +0800467
Linus Torvalds680014d2018-04-04 14:50:29 -0700468 To set a clock, simply echo the clock name into this file::
Changbin Du1f198e22018-02-17 13:39:38 +0800469
Linus Torvalds680014d2018-04-04 14:50:29 -0700470 # echo global > trace_clock
Changbin Du1f198e22018-02-17 13:39:38 +0800471
472 trace_marker:
473
474 This is a very useful file for synchronizing user space
475 with events happening in the kernel. Writing strings into
476 this file will be written into the ftrace buffer.
477
478 It is useful in applications to open this file at the start
479 of the application and just reference the file descriptor
480 for the file::
481
482 void trace_write(const char *fmt, ...)
483 {
484 va_list ap;
485 char buf[256];
486 int n;
487
488 if (trace_fd < 0)
489 return;
490
491 va_start(ap, fmt);
492 n = vsnprintf(buf, 256, fmt, ap);
493 va_end(ap);
494
495 write(trace_fd, buf, n);
496 }
497
498 start::
499
500 trace_fd = open("trace_marker", WR_ONLY);
501
502 trace_marker_raw:
503
504 This is similar to trace_marker above, but is meant for for binary data
505 to be written to it, where a tool can be used to parse the data
506 from trace_pipe_raw.
507
508 uprobe_events:
509
510 Add dynamic tracepoints in programs.
511 See uprobetracer.txt
512
513 uprobe_profile:
514
515 Uprobe statistics. See uprobetrace.txt
516
517 instances:
518
519 This is a way to make multiple trace buffers where different
520 events can be recorded in different buffers.
521 See "Instances" section below.
522
523 events:
524
525 This is the trace event directory. It holds event tracepoints
526 (also known as static tracepoints) that have been compiled
527 into the kernel. It shows what event tracepoints exist
528 and how they are grouped by system. There are "enable"
529 files at various levels that can enable the tracepoints
530 when a "1" is written to them.
531
532 See events.txt for more information.
533
534 set_event:
535
536 By echoing in the event into this file, will enable that event.
537
538 See events.txt for more information.
539
540 available_events:
541
542 A list of events that can be enabled in tracing.
543
544 See events.txt for more information.
545
Linus Torvalds2a56bb52018-04-10 11:27:30 -0700546 timestamp_mode:
547
548 Certain tracers may change the timestamp mode used when
549 logging trace events into the event buffer. Events with
550 different modes can coexist within a buffer but the mode in
551 effect when an event is logged determines which timestamp mode
552 is used for that event. The default timestamp mode is
553 'delta'.
554
555 Usual timestamp modes for tracing:
556
557 # cat timestamp_mode
558 [delta] absolute
559
560 The timestamp mode with the square brackets around it is the
561 one in effect.
562
563 delta: Default timestamp mode - timestamp is a delta against
564 a per-buffer timestamp.
565
566 absolute: The timestamp is a full timestamp, not a delta
567 against some other value. As such it takes up more
568 space and is less efficient.
569
Changbin Du1f198e22018-02-17 13:39:38 +0800570 hwlat_detector:
571
572 Directory for the Hardware Latency Detector.
573 See "Hardware Latency Detector" section below.
574
575 per_cpu:
576
577 This is a directory that contains the trace per_cpu information.
578
579 per_cpu/cpu0/buffer_size_kb:
580
581 The ftrace buffer is defined per_cpu. That is, there's a separate
582 buffer for each CPU to allow writes to be done atomically,
583 and free from cache bouncing. These buffers may have different
584 size buffers. This file is similar to the buffer_size_kb
585 file, but it only displays or sets the buffer size for the
586 specific CPU. (here cpu0).
587
588 per_cpu/cpu0/trace:
589
590 This is similar to the "trace" file, but it will only display
591 the data specific for the CPU. If written to, it only clears
592 the specific CPU buffer.
593
594 per_cpu/cpu0/trace_pipe
595
596 This is similar to the "trace_pipe" file, and is a consuming
597 read, but it will only display (and consume) the data specific
598 for the CPU.
599
600 per_cpu/cpu0/trace_pipe_raw
601
602 For tools that can parse the ftrace ring buffer binary format,
603 the trace_pipe_raw file can be used to extract the data
604 from the ring buffer directly. With the use of the splice()
605 system call, the buffer data can be quickly transferred to
606 a file or to the network where a server is collecting the
607 data.
608
609 Like trace_pipe, this is a consuming reader, where multiple
610 reads will always produce different data.
611
612 per_cpu/cpu0/snapshot:
613
614 This is similar to the main "snapshot" file, but will only
615 snapshot the current CPU (if supported). It only displays
616 the content of the snapshot for a given CPU, and if
617 written to, only clears this CPU buffer.
618
619 per_cpu/cpu0/snapshot_raw:
620
621 Similar to the trace_pipe_raw, but will read the binary format
622 from the snapshot buffer for the given CPU.
623
624 per_cpu/cpu0/stats:
625
626 This displays certain stats about the ring buffer:
627
628 entries:
629 The number of events that are still in the buffer.
630
631 overrun:
632 The number of lost events due to overwriting when
633 the buffer was full.
634
635 commit overrun:
636 Should always be zero.
637 This gets set if so many events happened within a nested
638 event (ring buffer is re-entrant), that it fills the
639 buffer and starts dropping events.
640
641 bytes:
642 Bytes actually read (not overwritten).
643
644 oldest event ts:
645 The oldest timestamp in the buffer
646
647 now ts:
648 The current timestamp
649
650 dropped events:
651 Events lost due to overwrite option being off.
652
653 read events:
654 The number of events read.
655
656The Tracers
657-----------
658
659Here is the list of current tracers that may be configured.
660
661 "function"
662
663 Function call tracer to trace all kernel functions.
664
665 "function_graph"
666
667 Similar to the function tracer except that the
668 function tracer probes the functions on their entry
669 whereas the function graph tracer traces on both entry
670 and exit of the functions. It then provides the ability
671 to draw a graph of function calls similar to C code
672 source.
673
674 "blk"
675
676 The block tracer. The tracer used by the blktrace user
677 application.
678
679 "hwlat"
680
681 The Hardware Latency tracer is used to detect if the hardware
682 produces any latency. See "Hardware Latency Detector" section
683 below.
684
685 "irqsoff"
686
687 Traces the areas that disable interrupts and saves
688 the trace with the longest max latency.
689 See tracing_max_latency. When a new max is recorded,
690 it replaces the old trace. It is best to view this
691 trace with the latency-format option enabled, which
692 happens automatically when the tracer is selected.
693
694 "preemptoff"
695
696 Similar to irqsoff but traces and records the amount of
697 time for which preemption is disabled.
698
699 "preemptirqsoff"
700
701 Similar to irqsoff and preemptoff, but traces and
702 records the largest time for which irqs and/or preemption
703 is disabled.
704
705 "wakeup"
706
707 Traces and records the max latency that it takes for
708 the highest priority task to get scheduled after
709 it has been woken up.
710 Traces all tasks as an average developer would expect.
711
712 "wakeup_rt"
713
714 Traces and records the max latency that it takes for just
715 RT tasks (as the current "wakeup" does). This is useful
716 for those interested in wake up timings of RT tasks.
717
718 "wakeup_dl"
719
720 Traces and records the max latency that it takes for
721 a SCHED_DEADLINE task to be woken (as the "wakeup" and
722 "wakeup_rt" does).
723
724 "mmiotrace"
725
726 A special tracer that is used to trace binary module.
727 It will trace all the calls that a module makes to the
728 hardware. Everything it writes and reads from the I/O
729 as well.
730
731 "branch"
732
733 This tracer can be configured when tracing likely/unlikely
734 calls within the kernel. It will trace when a likely and
735 unlikely branch is hit and if it was correct in its prediction
736 of being correct.
737
738 "nop"
739
740 This is the "trace nothing" tracer. To remove all
741 tracers from tracing simply echo "nop" into
742 current_tracer.
743
744
745Examples of using the tracer
746----------------------------
747
748Here are typical examples of using the tracers when controlling
749them only with the tracefs interface (without using any
750user-land utilities).
751
752Output format:
753--------------
754
755Here is an example of the output format of the file "trace"::
756
757 # tracer: function
758 #
759 # entries-in-buffer/entries-written: 140080/250280 #P:4
760 #
761 # _-----=> irqs-off
762 # / _----=> need-resched
763 # | / _---=> hardirq/softirq
764 # || / _--=> preempt-depth
765 # ||| / delay
766 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
767 # | | | |||| | |
768 bash-1977 [000] .... 17284.993652: sys_close <-system_call_fastpath
769 bash-1977 [000] .... 17284.993653: __close_fd <-sys_close
770 bash-1977 [000] .... 17284.993653: _raw_spin_lock <-__close_fd
771 sshd-1974 [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
772 bash-1977 [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
773 bash-1977 [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
774 bash-1977 [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
775 bash-1977 [000] .... 17284.993657: filp_close <-__close_fd
776 bash-1977 [000] .... 17284.993657: dnotify_flush <-filp_close
777 sshd-1974 [003] .... 17284.993658: sys_select <-system_call_fastpath
778 ....
779
780A header is printed with the tracer name that is represented by
781the trace. In this case the tracer is "function". Then it shows the
782number of events in the buffer as well as the total number of entries
783that were written. The difference is the number of entries that were
784lost due to the buffer filling up (250280 - 140080 = 110200 events
785lost).
786
787The header explains the content of the events. Task name "bash", the task
788PID "1977", the CPU that it was running on "000", the latency format
789(explained below), the timestamp in <secs>.<usecs> format, the
790function name that was traced "sys_close" and the parent function that
791called this function "system_call_fastpath". The timestamp is the time
792at which the function was entered.
793
794Latency trace format
795--------------------
796
797When the latency-format option is enabled or when one of the latency
798tracers is set, the trace file gives somewhat more information to see
799why a latency happened. Here is a typical trace::
800
801 # tracer: irqsoff
802 #
803 # irqsoff latency trace v1.1.5 on 3.8.0-test+
804 # --------------------------------------------------------------------
805 # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
806 # -----------------
807 # | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
808 # -----------------
809 # => started at: __lock_task_sighand
810 # => ended at: _raw_spin_unlock_irqrestore
811 #
812 #
813 # _------=> CPU#
814 # / _-----=> irqs-off
815 # | / _----=> need-resched
816 # || / _---=> hardirq/softirq
817 # ||| / _--=> preempt-depth
818 # |||| / delay
819 # cmd pid ||||| time | caller
820 # \ / ||||| \ | /
821 ps-6143 2d... 0us!: trace_hardirqs_off <-__lock_task_sighand
822 ps-6143 2d..1 259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
823 ps-6143 2d..1 263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
824 ps-6143 2d..1 306us : <stack trace>
825 => trace_hardirqs_on_caller
826 => trace_hardirqs_on
827 => _raw_spin_unlock_irqrestore
828 => do_task_stat
829 => proc_tgid_stat
830 => proc_single_show
831 => seq_read
832 => vfs_read
833 => sys_read
834 => system_call_fastpath
835
836
837This shows that the current tracer is "irqsoff" tracing the time
838for which interrupts were disabled. It gives the trace version (which
839never changes) and the version of the kernel upon which this was executed on
840(3.8). Then it displays the max latency in microseconds (259 us). The number
841of trace entries displayed and the total number (both are four: #4/4).
842VP, KP, SP, and HP are always zero and are reserved for later use.
843#P is the number of online CPUs (#P:4).
844
845The task is the process that was running when the latency
846occurred. (ps pid: 6143).
847
848The start and stop (the functions in which the interrupts were
849disabled and enabled respectively) that caused the latencies:
850
851 - __lock_task_sighand is where the interrupts were disabled.
852 - _raw_spin_unlock_irqrestore is where they were enabled again.
853
854The next lines after the header are the trace itself. The header
855explains which is which.
856
857 cmd: The name of the process in the trace.
858
859 pid: The PID of that process.
860
861 CPU#: The CPU which the process was running on.
862
863 irqs-off: 'd' interrupts are disabled. '.' otherwise.
864 .. caution:: If the architecture does not support a way to
865 read the irq flags variable, an 'X' will always
866 be printed here.
867
868 need-resched:
869 - 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
870 - 'n' only TIF_NEED_RESCHED is set,
871 - 'p' only PREEMPT_NEED_RESCHED is set,
872 - '.' otherwise.
873
874 hardirq/softirq:
875 - 'Z' - NMI occurred inside a hardirq
876 - 'z' - NMI is running
877 - 'H' - hard irq occurred inside a softirq.
878 - 'h' - hard irq is running
879 - 's' - soft irq is running
880 - '.' - normal context.
881
882 preempt-depth: The level of preempt_disabled
883
884The above is mostly meaningful for kernel developers.
885
886 time:
887 When the latency-format option is enabled, the trace file
888 output includes a timestamp relative to the start of the
889 trace. This differs from the output when latency-format
890 is disabled, which includes an absolute timestamp.
891
892 delay:
893 This is just to help catch your eye a bit better. And
894 needs to be fixed to be only relative to the same CPU.
895 The marks are determined by the difference between this
896 current trace and the next trace.
897
898 - '$' - greater than 1 second
899 - '@' - greater than 100 milisecond
900 - '*' - greater than 10 milisecond
901 - '#' - greater than 1000 microsecond
902 - '!' - greater than 100 microsecond
903 - '+' - greater than 10 microsecond
904 - ' ' - less than or equal to 10 microsecond.
905
906 The rest is the same as the 'trace' file.
907
908 Note, the latency tracers will usually end with a back trace
909 to easily find where the latency occurred.
910
911trace_options
912-------------
913
914The trace_options file (or the options directory) is used to control
915what gets printed in the trace output, or manipulate the tracers.
916To see what is available, simply cat the file::
917
918 cat trace_options
919 print-parent
920 nosym-offset
921 nosym-addr
922 noverbose
923 noraw
924 nohex
925 nobin
926 noblock
927 trace_printk
928 annotate
929 nouserstacktrace
930 nosym-userobj
931 noprintk-msg-only
932 context-info
933 nolatency-format
934 record-cmd
935 norecord-tgid
936 overwrite
937 nodisable_on_free
938 irq-info
939 markers
940 noevent-fork
941 function-trace
942 nofunction-fork
943 nodisplay-graph
944 nostacktrace
945 nobranch
946
947To disable one of the options, echo in the option prepended with
948"no"::
949
950 echo noprint-parent > trace_options
951
952To enable an option, leave off the "no"::
953
954 echo sym-offset > trace_options
955
956Here are the available options:
957
958 print-parent
959 On function traces, display the calling (parent)
960 function as well as the function being traced.
961 ::
962
963 print-parent:
964 bash-4000 [01] 1477.606694: simple_strtoul <-kstrtoul
965
966 noprint-parent:
967 bash-4000 [01] 1477.606694: simple_strtoul
968
969
970 sym-offset
971 Display not only the function name, but also the
972 offset in the function. For example, instead of
973 seeing just "ktime_get", you will see
974 "ktime_get+0xb/0x20".
975 ::
976
977 sym-offset:
978 bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0
979
980 sym-addr
981 This will also display the function address as well
982 as the function name.
983 ::
984
985 sym-addr:
986 bash-4000 [01] 1477.606694: simple_strtoul <c0339346>
987
988 verbose
989 This deals with the trace file when the
990 latency-format option is enabled.
991 ::
992
993 bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
994 (+0.000ms): simple_strtoul (kstrtoul)
995
996 raw
997 This will display raw numbers. This option is best for
998 use with user applications that can translate the raw
999 numbers better than having it done in the kernel.
1000
1001 hex
1002 Similar to raw, but the numbers will be in a hexadecimal format.
1003
1004 bin
1005 This will print out the formats in raw binary.
1006
1007 block
1008 When set, reading trace_pipe will not block when polled.
1009
1010 trace_printk
1011 Can disable trace_printk() from writing into the buffer.
1012
1013 annotate
1014 It is sometimes confusing when the CPU buffers are full
1015 and one CPU buffer had a lot of events recently, thus
1016 a shorter time frame, were another CPU may have only had
1017 a few events, which lets it have older events. When
1018 the trace is reported, it shows the oldest events first,
1019 and it may look like only one CPU ran (the one with the
1020 oldest events). When the annotate option is set, it will
1021 display when a new CPU buffer started::
1022
1023 <idle>-0 [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
1024 <idle>-0 [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
1025 <idle>-0 [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
1026 ##### CPU 2 buffer started ####
1027 <idle>-0 [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
1028 <idle>-0 [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
1029 <idle>-0 [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
1030
1031 userstacktrace
1032 This option changes the trace. It records a
1033 stacktrace of the current user space thread after
1034 each trace event.
1035
1036 sym-userobj
1037 when user stacktrace are enabled, look up which
1038 object the address belongs to, and print a
1039 relative address. This is especially useful when
1040 ASLR is on, otherwise you don't get a chance to
1041 resolve the address to object/file/line after
1042 the app is no longer running
1043
1044 The lookup is performed when you read
1045 trace,trace_pipe. Example::
1046
1047 a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
1048 x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
1049
1050
1051 printk-msg-only
1052 When set, trace_printk()s will only show the format
1053 and not their parameters (if trace_bprintk() or
1054 trace_bputs() was used to save the trace_printk()).
1055
1056 context-info
1057 Show only the event data. Hides the comm, PID,
1058 timestamp, CPU, and other useful data.
1059
1060 latency-format
1061 This option changes the trace output. When it is enabled,
1062 the trace displays additional information about the
1063 latency, as described in "Latency trace format".
1064
1065 record-cmd
1066 When any event or tracer is enabled, a hook is enabled
1067 in the sched_switch trace point to fill comm cache
1068 with mapped pids and comms. But this may cause some
1069 overhead, and if you only care about pids, and not the
1070 name of the task, disabling this option can lower the
1071 impact of tracing. See "saved_cmdlines".
1072
1073 record-tgid
1074 When any event or tracer is enabled, a hook is enabled
1075 in the sched_switch trace point to fill the cache of
1076 mapped Thread Group IDs (TGID) mapping to pids. See
1077 "saved_tgids".
1078
1079 overwrite
1080 This controls what happens when the trace buffer is
1081 full. If "1" (default), the oldest events are
1082 discarded and overwritten. If "0", then the newest
1083 events are discarded.
1084 (see per_cpu/cpu0/stats for overrun and dropped)
1085
1086 disable_on_free
1087 When the free_buffer is closed, tracing will
1088 stop (tracing_on set to 0).
1089
1090 irq-info
1091 Shows the interrupt, preempt count, need resched data.
1092 When disabled, the trace looks like::
1093
1094 # tracer: function
1095 #
1096 # entries-in-buffer/entries-written: 144405/9452052 #P:4
1097 #
1098 # TASK-PID CPU# TIMESTAMP FUNCTION
1099 # | | | | |
1100 <idle>-0 [002] 23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
1101 <idle>-0 [002] 23636.756054: activate_task <-ttwu_do_activate.constprop.89
1102 <idle>-0 [002] 23636.756055: enqueue_task <-activate_task
1103
1104
1105 markers
1106 When set, the trace_marker is writable (only by root).
1107 When disabled, the trace_marker will error with EINVAL
1108 on write.
1109
1110 event-fork
1111 When set, tasks with PIDs listed in set_event_pid will have
1112 the PIDs of their children added to set_event_pid when those
1113 tasks fork. Also, when tasks with PIDs in set_event_pid exit,
1114 their PIDs will be removed from the file.
1115
1116 function-trace
1117 The latency tracers will enable function tracing
1118 if this option is enabled (default it is). When
1119 it is disabled, the latency tracers do not trace
1120 functions. This keeps the overhead of the tracer down
1121 when performing latency tests.
1122
1123 function-fork
1124 When set, tasks with PIDs listed in set_ftrace_pid will
1125 have the PIDs of their children added to set_ftrace_pid
1126 when those tasks fork. Also, when tasks with PIDs in
1127 set_ftrace_pid exit, their PIDs will be removed from the
1128 file.
1129
1130 display-graph
1131 When set, the latency tracers (irqsoff, wakeup, etc) will
1132 use function graph tracing instead of function tracing.
1133
1134 stacktrace
1135 When set, a stack trace is recorded after any trace event
1136 is recorded.
1137
1138 branch
1139 Enable branch tracing with the tracer. This enables branch
1140 tracer along with the currently set tracer. Enabling this
1141 with the "nop" tracer is the same as just enabling the
1142 "branch" tracer.
1143
1144.. tip:: Some tracers have their own options. They only appear in this
1145 file when the tracer is active. They always appear in the
1146 options directory.
1147
1148
1149Here are the per tracer options:
1150
1151Options for function tracer:
1152
1153 func_stack_trace
1154 When set, a stack trace is recorded after every
1155 function that is recorded. NOTE! Limit the functions
1156 that are recorded before enabling this, with
1157 "set_ftrace_filter" otherwise the system performance
1158 will be critically degraded. Remember to disable
1159 this option before clearing the function filter.
1160
1161Options for function_graph tracer:
1162
1163 Since the function_graph tracer has a slightly different output
1164 it has its own options to control what is displayed.
1165
1166 funcgraph-overrun
1167 When set, the "overrun" of the graph stack is
1168 displayed after each function traced. The
1169 overrun, is when the stack depth of the calls
1170 is greater than what is reserved for each task.
1171 Each task has a fixed array of functions to
1172 trace in the call graph. If the depth of the
1173 calls exceeds that, the function is not traced.
1174 The overrun is the number of functions missed
1175 due to exceeding this array.
1176
1177 funcgraph-cpu
1178 When set, the CPU number of the CPU where the trace
1179 occurred is displayed.
1180
1181 funcgraph-overhead
1182 When set, if the function takes longer than
1183 A certain amount, then a delay marker is
1184 displayed. See "delay" above, under the
1185 header description.
1186
1187 funcgraph-proc
1188 Unlike other tracers, the process' command line
1189 is not displayed by default, but instead only
1190 when a task is traced in and out during a context
1191 switch. Enabling this options has the command
1192 of each process displayed at every line.
1193
1194 funcgraph-duration
1195 At the end of each function (the return)
1196 the duration of the amount of time in the
1197 function is displayed in microseconds.
1198
1199 funcgraph-abstime
1200 When set, the timestamp is displayed at each line.
1201
1202 funcgraph-irqs
1203 When disabled, functions that happen inside an
1204 interrupt will not be traced.
1205
1206 funcgraph-tail
1207 When set, the return event will include the function
1208 that it represents. By default this is off, and
1209 only a closing curly bracket "}" is displayed for
1210 the return of a function.
1211
1212 sleep-time
1213 When running function graph tracer, to include
1214 the time a task schedules out in its function.
1215 When enabled, it will account time the task has been
1216 scheduled out as part of the function call.
1217
1218 graph-time
1219 When running function profiler with function graph tracer,
1220 to include the time to call nested functions. When this is
1221 not set, the time reported for the function will only
1222 include the time the function itself executed for, not the
1223 time for functions that it called.
1224
1225Options for blk tracer:
1226
1227 blk_classic
1228 Shows a more minimalistic output.
1229
1230
1231irqsoff
1232-------
1233
1234When interrupts are disabled, the CPU can not react to any other
1235external event (besides NMIs and SMIs). This prevents the timer
1236interrupt from triggering or the mouse interrupt from letting
1237the kernel know of a new mouse event. The result is a latency
1238with the reaction time.
1239
1240The irqsoff tracer tracks the time for which interrupts are
1241disabled. When a new maximum latency is hit, the tracer saves
1242the trace leading up to that latency point so that every time a
1243new maximum is reached, the old saved trace is discarded and the
1244new trace is saved.
1245
1246To reset the maximum, echo 0 into tracing_max_latency. Here is
1247an example::
1248
1249 # echo 0 > options/function-trace
1250 # echo irqsoff > current_tracer
1251 # echo 1 > tracing_on
1252 # echo 0 > tracing_max_latency
1253 # ls -ltr
1254 [...]
1255 # echo 0 > tracing_on
1256 # cat trace
1257 # tracer: irqsoff
1258 #
1259 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1260 # --------------------------------------------------------------------
1261 # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1262 # -----------------
1263 # | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
1264 # -----------------
1265 # => started at: run_timer_softirq
1266 # => ended at: run_timer_softirq
1267 #
1268 #
1269 # _------=> CPU#
1270 # / _-----=> irqs-off
1271 # | / _----=> need-resched
1272 # || / _---=> hardirq/softirq
1273 # ||| / _--=> preempt-depth
1274 # |||| / delay
1275 # cmd pid ||||| time | caller
1276 # \ / ||||| \ | /
1277 <idle>-0 0d.s2 0us+: _raw_spin_lock_irq <-run_timer_softirq
1278 <idle>-0 0dNs3 17us : _raw_spin_unlock_irq <-run_timer_softirq
1279 <idle>-0 0dNs3 17us+: trace_hardirqs_on <-run_timer_softirq
1280 <idle>-0 0dNs3 25us : <stack trace>
1281 => _raw_spin_unlock_irq
1282 => run_timer_softirq
1283 => __do_softirq
1284 => call_softirq
1285 => do_softirq
1286 => irq_exit
1287 => smp_apic_timer_interrupt
1288 => apic_timer_interrupt
1289 => rcu_idle_exit
1290 => cpu_idle
1291 => rest_init
1292 => start_kernel
1293 => x86_64_start_reservations
1294 => x86_64_start_kernel
1295
1296Here we see that that we had a latency of 16 microseconds (which is
1297very good). The _raw_spin_lock_irq in run_timer_softirq disabled
1298interrupts. The difference between the 16 and the displayed
1299timestamp 25us occurred because the clock was incremented
1300between the time of recording the max latency and the time of
1301recording the function that had that latency.
1302
1303Note the above example had function-trace not set. If we set
1304function-trace, we get a much larger output::
1305
1306 with echo 1 > options/function-trace
1307
1308 # tracer: irqsoff
1309 #
1310 # irqsoff latency trace v1.1.5 on 3.8.0-test+
1311 # --------------------------------------------------------------------
1312 # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1313 # -----------------
1314 # | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
1315 # -----------------
1316 # => started at: ata_scsi_queuecmd
1317 # => ended at: ata_scsi_queuecmd
1318 #
1319 #
1320 # _------=> CPU#
1321 # / _-----=> irqs-off
1322 # | / _----=> need-resched
1323 # || / _---=> hardirq/softirq
1324 # ||| / _--=> preempt-depth
1325 # |||| / delay
1326 # cmd pid ||||| time | caller
1327 # \ / ||||| \ | /
1328 bash-2042 3d... 0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1329 bash-2042 3d... 0us : add_preempt_count <-_raw_spin_lock_irqsave
1330 bash-2042 3d..1 1us : ata_scsi_find_dev <-ata_scsi_queuecmd
1331 bash-2042 3d..1 1us : __ata_scsi_find_dev <-ata_scsi_find_dev
1332 bash-2042 3d..1 2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
1333 bash-2042 3d..1 2us : ata_qc_new_init <-__ata_scsi_queuecmd
1334 bash-2042 3d..1 3us : ata_sg_init <-__ata_scsi_queuecmd
1335 bash-2042 3d..1 4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
1336 bash-2042 3d..1 4us : ata_build_rw_tf <-ata_scsi_rw_xlat
1337 [...]
1338 bash-2042 3d..1 67us : delay_tsc <-__delay
1339 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1340 bash-2042 3d..2 67us : sub_preempt_count <-delay_tsc
1341 bash-2042 3d..1 67us : add_preempt_count <-delay_tsc
1342 bash-2042 3d..2 68us : sub_preempt_count <-delay_tsc
1343 bash-2042 3d..1 68us+: ata_bmdma_start <-ata_bmdma_qc_issue
1344 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1345 bash-2042 3d..1 71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1346 bash-2042 3d..1 72us+: trace_hardirqs_on <-ata_scsi_queuecmd
1347 bash-2042 3d..1 120us : <stack trace>
1348 => _raw_spin_unlock_irqrestore
1349 => ata_scsi_queuecmd
1350 => scsi_dispatch_cmd
1351 => scsi_request_fn
1352 => __blk_run_queue_uncond
1353 => __blk_run_queue
1354 => blk_queue_bio
1355 => generic_make_request
1356 => submit_bio
1357 => submit_bh
1358 => __ext3_get_inode_loc
1359 => ext3_iget
1360 => ext3_lookup
1361 => lookup_real
1362 => __lookup_hash
1363 => walk_component
1364 => lookup_last
1365 => path_lookupat
1366 => filename_lookup
1367 => user_path_at_empty
1368 => user_path_at
1369 => vfs_fstatat
1370 => vfs_stat
1371 => sys_newstat
1372 => system_call_fastpath
1373
1374
1375Here we traced a 71 microsecond latency. But we also see all the
1376functions that were called during that time. Note that by
1377enabling function tracing, we incur an added overhead. This
1378overhead may extend the latency times. But nevertheless, this
1379trace has provided some very helpful debugging information.
1380
1381
1382preemptoff
1383----------
1384
1385When preemption is disabled, we may be able to receive
1386interrupts but the task cannot be preempted and a higher
1387priority task must wait for preemption to be enabled again
1388before it can preempt a lower priority task.
1389
1390The preemptoff tracer traces the places that disable preemption.
1391Like the irqsoff tracer, it records the maximum latency for
1392which preemption was disabled. The control of preemptoff tracer
1393is much like the irqsoff tracer.
1394::
1395
1396 # echo 0 > options/function-trace
1397 # echo preemptoff > current_tracer
1398 # echo 1 > tracing_on
1399 # echo 0 > tracing_max_latency
1400 # ls -ltr
1401 [...]
1402 # echo 0 > tracing_on
1403 # cat trace
1404 # tracer: preemptoff
1405 #
1406 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1407 # --------------------------------------------------------------------
1408 # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1409 # -----------------
1410 # | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
1411 # -----------------
1412 # => started at: do_IRQ
1413 # => ended at: do_IRQ
1414 #
1415 #
1416 # _------=> CPU#
1417 # / _-----=> irqs-off
1418 # | / _----=> need-resched
1419 # || / _---=> hardirq/softirq
1420 # ||| / _--=> preempt-depth
1421 # |||| / delay
1422 # cmd pid ||||| time | caller
1423 # \ / ||||| \ | /
1424 sshd-1991 1d.h. 0us+: irq_enter <-do_IRQ
1425 sshd-1991 1d..1 46us : irq_exit <-do_IRQ
1426 sshd-1991 1d..1 47us+: trace_preempt_on <-do_IRQ
1427 sshd-1991 1d..1 52us : <stack trace>
1428 => sub_preempt_count
1429 => irq_exit
1430 => do_IRQ
1431 => ret_from_intr
1432
1433
1434This has some more changes. Preemption was disabled when an
1435interrupt came in (notice the 'h'), and was enabled on exit.
1436But we also see that interrupts have been disabled when entering
1437the preempt off section and leaving it (the 'd'). We do not know if
1438interrupts were enabled in the mean time or shortly after this
1439was over.
1440::
1441
1442 # tracer: preemptoff
1443 #
1444 # preemptoff latency trace v1.1.5 on 3.8.0-test+
1445 # --------------------------------------------------------------------
1446 # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1447 # -----------------
1448 # | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
1449 # -----------------
1450 # => started at: wake_up_new_task
1451 # => ended at: task_rq_unlock
1452 #
1453 #
1454 # _------=> CPU#
1455 # / _-----=> irqs-off
1456 # | / _----=> need-resched
1457 # || / _---=> hardirq/softirq
1458 # ||| / _--=> preempt-depth
1459 # |||| / delay
1460 # cmd pid ||||| time | caller
1461 # \ / ||||| \ | /
1462 bash-1994 1d..1 0us : _raw_spin_lock_irqsave <-wake_up_new_task
1463 bash-1994 1d..1 0us : select_task_rq_fair <-select_task_rq
1464 bash-1994 1d..1 1us : __rcu_read_lock <-select_task_rq_fair
1465 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1466 bash-1994 1d..1 1us : source_load <-select_task_rq_fair
1467 [...]
1468 bash-1994 1d..1 12us : irq_enter <-smp_apic_timer_interrupt
1469 bash-1994 1d..1 12us : rcu_irq_enter <-irq_enter
1470 bash-1994 1d..1 13us : add_preempt_count <-irq_enter
1471 bash-1994 1d.h1 13us : exit_idle <-smp_apic_timer_interrupt
1472 bash-1994 1d.h1 13us : hrtimer_interrupt <-smp_apic_timer_interrupt
1473 bash-1994 1d.h1 13us : _raw_spin_lock <-hrtimer_interrupt
1474 bash-1994 1d.h1 14us : add_preempt_count <-_raw_spin_lock
1475 bash-1994 1d.h2 14us : ktime_get_update_offsets <-hrtimer_interrupt
1476 [...]
1477 bash-1994 1d.h1 35us : lapic_next_event <-clockevents_program_event
1478 bash-1994 1d.h1 35us : irq_exit <-smp_apic_timer_interrupt
1479 bash-1994 1d.h1 36us : sub_preempt_count <-irq_exit
1480 bash-1994 1d..2 36us : do_softirq <-irq_exit
1481 bash-1994 1d..2 36us : __do_softirq <-call_softirq
1482 bash-1994 1d..2 36us : __local_bh_disable <-__do_softirq
1483 bash-1994 1d.s2 37us : add_preempt_count <-_raw_spin_lock_irq
1484 bash-1994 1d.s3 38us : _raw_spin_unlock <-run_timer_softirq
1485 bash-1994 1d.s3 39us : sub_preempt_count <-_raw_spin_unlock
1486 bash-1994 1d.s2 39us : call_timer_fn <-run_timer_softirq
1487 [...]
1488 bash-1994 1dNs2 81us : cpu_needs_another_gp <-rcu_process_callbacks
1489 bash-1994 1dNs2 82us : __local_bh_enable <-__do_softirq
1490 bash-1994 1dNs2 82us : sub_preempt_count <-__local_bh_enable
1491 bash-1994 1dN.2 82us : idle_cpu <-irq_exit
1492 bash-1994 1dN.2 83us : rcu_irq_exit <-irq_exit
1493 bash-1994 1dN.2 83us : sub_preempt_count <-irq_exit
1494 bash-1994 1.N.1 84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
1495 bash-1994 1.N.1 84us+: trace_preempt_on <-task_rq_unlock
1496 bash-1994 1.N.1 104us : <stack trace>
1497 => sub_preempt_count
1498 => _raw_spin_unlock_irqrestore
1499 => task_rq_unlock
1500 => wake_up_new_task
1501 => do_fork
1502 => sys_clone
1503 => stub_clone
1504
1505
1506The above is an example of the preemptoff trace with
1507function-trace set. Here we see that interrupts were not disabled
1508the entire time. The irq_enter code lets us know that we entered
1509an interrupt 'h'. Before that, the functions being traced still
1510show that it is not in an interrupt, but we can see from the
1511functions themselves that this is not the case.
1512
1513preemptirqsoff
1514--------------
1515
1516Knowing the locations that have interrupts disabled or
1517preemption disabled for the longest times is helpful. But
1518sometimes we would like to know when either preemption and/or
1519interrupts are disabled.
1520
1521Consider the following code::
1522
1523 local_irq_disable();
1524 call_function_with_irqs_off();
1525 preempt_disable();
1526 call_function_with_irqs_and_preemption_off();
1527 local_irq_enable();
1528 call_function_with_preemption_off();
1529 preempt_enable();
1530
1531The irqsoff tracer will record the total length of
1532call_function_with_irqs_off() and
1533call_function_with_irqs_and_preemption_off().
1534
1535The preemptoff tracer will record the total length of
1536call_function_with_irqs_and_preemption_off() and
1537call_function_with_preemption_off().
1538
1539But neither will trace the time that interrupts and/or
1540preemption is disabled. This total time is the time that we can
1541not schedule. To record this time, use the preemptirqsoff
1542tracer.
1543
1544Again, using this trace is much like the irqsoff and preemptoff
1545tracers.
1546::
1547
1548 # echo 0 > options/function-trace
1549 # echo preemptirqsoff > current_tracer
1550 # echo 1 > tracing_on
1551 # echo 0 > tracing_max_latency
1552 # ls -ltr
1553 [...]
1554 # echo 0 > tracing_on
1555 # cat trace
1556 # tracer: preemptirqsoff
1557 #
1558 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1559 # --------------------------------------------------------------------
1560 # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1561 # -----------------
1562 # | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
1563 # -----------------
1564 # => started at: ata_scsi_queuecmd
1565 # => ended at: ata_scsi_queuecmd
1566 #
1567 #
1568 # _------=> CPU#
1569 # / _-----=> irqs-off
1570 # | / _----=> need-resched
1571 # || / _---=> hardirq/softirq
1572 # ||| / _--=> preempt-depth
1573 # |||| / delay
1574 # cmd pid ||||| time | caller
1575 # \ / ||||| \ | /
1576 ls-2230 3d... 0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
1577 ls-2230 3...1 100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
1578 ls-2230 3...1 101us+: trace_preempt_on <-ata_scsi_queuecmd
1579 ls-2230 3...1 111us : <stack trace>
1580 => sub_preempt_count
1581 => _raw_spin_unlock_irqrestore
1582 => ata_scsi_queuecmd
1583 => scsi_dispatch_cmd
1584 => scsi_request_fn
1585 => __blk_run_queue_uncond
1586 => __blk_run_queue
1587 => blk_queue_bio
1588 => generic_make_request
1589 => submit_bio
1590 => submit_bh
1591 => ext3_bread
1592 => ext3_dir_bread
1593 => htree_dirblock_to_tree
1594 => ext3_htree_fill_tree
1595 => ext3_readdir
1596 => vfs_readdir
1597 => sys_getdents
1598 => system_call_fastpath
1599
1600
1601The trace_hardirqs_off_thunk is called from assembly on x86 when
1602interrupts are disabled in the assembly code. Without the
1603function tracing, we do not know if interrupts were enabled
1604within the preemption points. We do see that it started with
1605preemption enabled.
1606
1607Here is a trace with function-trace set::
1608
1609 # tracer: preemptirqsoff
1610 #
1611 # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
1612 # --------------------------------------------------------------------
1613 # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1614 # -----------------
1615 # | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
1616 # -----------------
1617 # => started at: schedule
1618 # => ended at: mutex_unlock
1619 #
1620 #
1621 # _------=> CPU#
1622 # / _-----=> irqs-off
1623 # | / _----=> need-resched
1624 # || / _---=> hardirq/softirq
1625 # ||| / _--=> preempt-depth
1626 # |||| / delay
1627 # cmd pid ||||| time | caller
1628 # \ / ||||| \ | /
1629 kworker/-59 3...1 0us : __schedule <-schedule
1630 kworker/-59 3d..1 0us : rcu_preempt_qs <-rcu_note_context_switch
1631 kworker/-59 3d..1 1us : add_preempt_count <-_raw_spin_lock_irq
1632 kworker/-59 3d..2 1us : deactivate_task <-__schedule
1633 kworker/-59 3d..2 1us : dequeue_task <-deactivate_task
1634 kworker/-59 3d..2 2us : update_rq_clock <-dequeue_task
1635 kworker/-59 3d..2 2us : dequeue_task_fair <-dequeue_task
1636 kworker/-59 3d..2 2us : update_curr <-dequeue_task_fair
1637 kworker/-59 3d..2 2us : update_min_vruntime <-update_curr
1638 kworker/-59 3d..2 3us : cpuacct_charge <-update_curr
1639 kworker/-59 3d..2 3us : __rcu_read_lock <-cpuacct_charge
1640 kworker/-59 3d..2 3us : __rcu_read_unlock <-cpuacct_charge
1641 kworker/-59 3d..2 3us : update_cfs_rq_blocked_load <-dequeue_task_fair
1642 kworker/-59 3d..2 4us : clear_buddies <-dequeue_task_fair
1643 kworker/-59 3d..2 4us : account_entity_dequeue <-dequeue_task_fair
1644 kworker/-59 3d..2 4us : update_min_vruntime <-dequeue_task_fair
1645 kworker/-59 3d..2 4us : update_cfs_shares <-dequeue_task_fair
1646 kworker/-59 3d..2 5us : hrtick_update <-dequeue_task_fair
1647 kworker/-59 3d..2 5us : wq_worker_sleeping <-__schedule
1648 kworker/-59 3d..2 5us : kthread_data <-wq_worker_sleeping
1649 kworker/-59 3d..2 5us : put_prev_task_fair <-__schedule
1650 kworker/-59 3d..2 6us : pick_next_task_fair <-pick_next_task
1651 kworker/-59 3d..2 6us : clear_buddies <-pick_next_task_fair
1652 kworker/-59 3d..2 6us : set_next_entity <-pick_next_task_fair
1653 kworker/-59 3d..2 6us : update_stats_wait_end <-set_next_entity
1654 ls-2269 3d..2 7us : finish_task_switch <-__schedule
1655 ls-2269 3d..2 7us : _raw_spin_unlock_irq <-finish_task_switch
1656 ls-2269 3d..2 8us : do_IRQ <-ret_from_intr
1657 ls-2269 3d..2 8us : irq_enter <-do_IRQ
1658 ls-2269 3d..2 8us : rcu_irq_enter <-irq_enter
1659 ls-2269 3d..2 9us : add_preempt_count <-irq_enter
1660 ls-2269 3d.h2 9us : exit_idle <-do_IRQ
1661 [...]
1662 ls-2269 3d.h3 20us : sub_preempt_count <-_raw_spin_unlock
1663 ls-2269 3d.h2 20us : irq_exit <-do_IRQ
1664 ls-2269 3d.h2 21us : sub_preempt_count <-irq_exit
1665 ls-2269 3d..3 21us : do_softirq <-irq_exit
1666 ls-2269 3d..3 21us : __do_softirq <-call_softirq
1667 ls-2269 3d..3 21us+: __local_bh_disable <-__do_softirq
1668 ls-2269 3d.s4 29us : sub_preempt_count <-_local_bh_enable_ip
1669 ls-2269 3d.s5 29us : sub_preempt_count <-_local_bh_enable_ip
1670 ls-2269 3d.s5 31us : do_IRQ <-ret_from_intr
1671 ls-2269 3d.s5 31us : irq_enter <-do_IRQ
1672 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1673 [...]
1674 ls-2269 3d.s5 31us : rcu_irq_enter <-irq_enter
1675 ls-2269 3d.s5 32us : add_preempt_count <-irq_enter
1676 ls-2269 3d.H5 32us : exit_idle <-do_IRQ
1677 ls-2269 3d.H5 32us : handle_irq <-do_IRQ
1678 ls-2269 3d.H5 32us : irq_to_desc <-handle_irq
1679 ls-2269 3d.H5 33us : handle_fasteoi_irq <-handle_irq
1680 [...]
1681 ls-2269 3d.s5 158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
1682 ls-2269 3d.s3 158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
1683 ls-2269 3d.s3 159us : __local_bh_enable <-__do_softirq
1684 ls-2269 3d.s3 159us : sub_preempt_count <-__local_bh_enable
1685 ls-2269 3d..3 159us : idle_cpu <-irq_exit
1686 ls-2269 3d..3 159us : rcu_irq_exit <-irq_exit
1687 ls-2269 3d..3 160us : sub_preempt_count <-irq_exit
1688 ls-2269 3d... 161us : __mutex_unlock_slowpath <-mutex_unlock
1689 ls-2269 3d... 162us+: trace_hardirqs_on <-mutex_unlock
1690 ls-2269 3d... 186us : <stack trace>
1691 => __mutex_unlock_slowpath
1692 => mutex_unlock
1693 => process_output
1694 => n_tty_write
1695 => tty_write
1696 => vfs_write
1697 => sys_write
1698 => system_call_fastpath
1699
1700This is an interesting trace. It started with kworker running and
1701scheduling out and ls taking over. But as soon as ls released the
1702rq lock and enabled interrupts (but not preemption) an interrupt
1703triggered. When the interrupt finished, it started running softirqs.
1704But while the softirq was running, another interrupt triggered.
1705When an interrupt is running inside a softirq, the annotation is 'H'.
1706
1707
1708wakeup
1709------
1710
1711One common case that people are interested in tracing is the
1712time it takes for a task that is woken to actually wake up.
1713Now for non Real-Time tasks, this can be arbitrary. But tracing
1714it none the less can be interesting.
1715
1716Without function tracing::
1717
1718 # echo 0 > options/function-trace
1719 # echo wakeup > current_tracer
1720 # echo 1 > tracing_on
1721 # echo 0 > tracing_max_latency
1722 # chrt -f 5 sleep 1
1723 # echo 0 > tracing_on
1724 # cat trace
1725 # tracer: wakeup
1726 #
1727 # wakeup latency trace v1.1.5 on 3.8.0-test+
1728 # --------------------------------------------------------------------
1729 # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1730 # -----------------
1731 # | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
1732 # -----------------
1733 #
1734 # _------=> CPU#
1735 # / _-----=> irqs-off
1736 # | / _----=> need-resched
1737 # || / _---=> hardirq/softirq
1738 # ||| / _--=> preempt-depth
1739 # |||| / delay
1740 # cmd pid ||||| time | caller
1741 # \ / ||||| \ | /
1742 <idle>-0 3dNs7 0us : 0:120:R + [003] 312:100:R kworker/3:1H
1743 <idle>-0 3dNs7 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1744 <idle>-0 3d..3 15us : __schedule <-schedule
1745 <idle>-0 3d..3 15us : 0:120:R ==> [003] 312:100:R kworker/3:1H
1746
1747The tracer only traces the highest priority task in the system
1748to avoid tracing the normal circumstances. Here we see that
1749the kworker with a nice priority of -20 (not very nice), took
1750just 15 microseconds from the time it woke up, to the time it
1751ran.
1752
1753Non Real-Time tasks are not that interesting. A more interesting
1754trace is to concentrate only on Real-Time tasks.
1755
1756wakeup_rt
1757---------
1758
1759In a Real-Time environment it is very important to know the
1760wakeup time it takes for the highest priority task that is woken
1761up to the time that it executes. This is also known as "schedule
1762latency". I stress the point that this is about RT tasks. It is
1763also important to know the scheduling latency of non-RT tasks,
1764but the average schedule latency is better for non-RT tasks.
1765Tools like LatencyTop are more appropriate for such
1766measurements.
1767
1768Real-Time environments are interested in the worst case latency.
1769That is the longest latency it takes for something to happen,
1770and not the average. We can have a very fast scheduler that may
1771only have a large latency once in a while, but that would not
1772work well with Real-Time tasks. The wakeup_rt tracer was designed
1773to record the worst case wakeups of RT tasks. Non-RT tasks are
1774not recorded because the tracer only records one worst case and
1775tracing non-RT tasks that are unpredictable will overwrite the
1776worst case latency of RT tasks (just run the normal wakeup
1777tracer for a while to see that effect).
1778
1779Since this tracer only deals with RT tasks, we will run this
1780slightly differently than we did with the previous tracers.
1781Instead of performing an 'ls', we will run 'sleep 1' under
1782'chrt' which changes the priority of the task.
1783::
1784
1785 # echo 0 > options/function-trace
1786 # echo wakeup_rt > current_tracer
1787 # echo 1 > tracing_on
1788 # echo 0 > tracing_max_latency
1789 # chrt -f 5 sleep 1
1790 # echo 0 > tracing_on
1791 # cat trace
1792 # tracer: wakeup
1793 #
1794 # tracer: wakeup_rt
1795 #
1796 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1797 # --------------------------------------------------------------------
1798 # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1799 # -----------------
1800 # | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
1801 # -----------------
1802 #
1803 # _------=> CPU#
1804 # / _-----=> irqs-off
1805 # | / _----=> need-resched
1806 # || / _---=> hardirq/softirq
1807 # ||| / _--=> preempt-depth
1808 # |||| / delay
1809 # cmd pid ||||| time | caller
1810 # \ / ||||| \ | /
1811 <idle>-0 3d.h4 0us : 0:120:R + [003] 2389: 94:R sleep
1812 <idle>-0 3d.h4 1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
1813 <idle>-0 3d..3 5us : __schedule <-schedule
1814 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
1815
1816
1817Running this on an idle system, we see that it only took 5 microseconds
1818to perform the task switch. Note, since the trace point in the schedule
1819is before the actual "switch", we stop the tracing when the recorded task
1820is about to schedule in. This may change if we add a new marker at the
1821end of the scheduler.
1822
1823Notice that the recorded task is 'sleep' with the PID of 2389
1824and it has an rt_prio of 5. This priority is user-space priority
1825and not the internal kernel priority. The policy is 1 for
1826SCHED_FIFO and 2 for SCHED_RR.
1827
1828Note, that the trace data shows the internal priority (99 - rtprio).
1829::
1830
1831 <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep
1832
1833The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
1834and in the running state 'R'. The sleep task was scheduled in with
18352389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
1836and it too is in the running state.
1837
1838Doing the same with chrt -r 5 and function-trace set.
1839::
1840
1841 echo 1 > options/function-trace
1842
1843 # tracer: wakeup_rt
1844 #
1845 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1846 # --------------------------------------------------------------------
1847 # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1848 # -----------------
1849 # | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
1850 # -----------------
1851 #
1852 # _------=> CPU#
1853 # / _-----=> irqs-off
1854 # | / _----=> need-resched
1855 # || / _---=> hardirq/softirq
1856 # ||| / _--=> preempt-depth
1857 # |||| / delay
1858 # cmd pid ||||| time | caller
1859 # \ / ||||| \ | /
1860 <idle>-0 3d.h4 1us+: 0:120:R + [003] 2448: 94:R sleep
1861 <idle>-0 3d.h4 2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1862 <idle>-0 3d.h3 3us : check_preempt_curr <-ttwu_do_wakeup
1863 <idle>-0 3d.h3 3us : resched_curr <-check_preempt_curr
1864 <idle>-0 3dNh3 4us : task_woken_rt <-ttwu_do_wakeup
1865 <idle>-0 3dNh3 4us : _raw_spin_unlock <-try_to_wake_up
1866 <idle>-0 3dNh3 4us : sub_preempt_count <-_raw_spin_unlock
1867 <idle>-0 3dNh2 5us : ttwu_stat <-try_to_wake_up
1868 <idle>-0 3dNh2 5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
1869 <idle>-0 3dNh2 6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1870 <idle>-0 3dNh1 6us : _raw_spin_lock <-__run_hrtimer
1871 <idle>-0 3dNh1 6us : add_preempt_count <-_raw_spin_lock
1872 <idle>-0 3dNh2 7us : _raw_spin_unlock <-hrtimer_interrupt
1873 <idle>-0 3dNh2 7us : sub_preempt_count <-_raw_spin_unlock
1874 <idle>-0 3dNh1 7us : tick_program_event <-hrtimer_interrupt
1875 <idle>-0 3dNh1 7us : clockevents_program_event <-tick_program_event
1876 <idle>-0 3dNh1 8us : ktime_get <-clockevents_program_event
1877 <idle>-0 3dNh1 8us : lapic_next_event <-clockevents_program_event
1878 <idle>-0 3dNh1 8us : irq_exit <-smp_apic_timer_interrupt
1879 <idle>-0 3dNh1 9us : sub_preempt_count <-irq_exit
1880 <idle>-0 3dN.2 9us : idle_cpu <-irq_exit
1881 <idle>-0 3dN.2 9us : rcu_irq_exit <-irq_exit
1882 <idle>-0 3dN.2 10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
1883 <idle>-0 3dN.2 10us : sub_preempt_count <-irq_exit
1884 <idle>-0 3.N.1 11us : rcu_idle_exit <-cpu_idle
1885 <idle>-0 3dN.1 11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
1886 <idle>-0 3.N.1 11us : tick_nohz_idle_exit <-cpu_idle
1887 <idle>-0 3dN.1 12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
1888 <idle>-0 3dN.1 12us : ktime_get <-tick_nohz_idle_exit
1889 <idle>-0 3dN.1 12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
1890 <idle>-0 3dN.1 13us : cpu_load_update_nohz <-tick_nohz_idle_exit
1891 <idle>-0 3dN.1 13us : _raw_spin_lock <-cpu_load_update_nohz
1892 <idle>-0 3dN.1 13us : add_preempt_count <-_raw_spin_lock
1893 <idle>-0 3dN.2 13us : __cpu_load_update <-cpu_load_update_nohz
1894 <idle>-0 3dN.2 14us : sched_avg_update <-__cpu_load_update
1895 <idle>-0 3dN.2 14us : _raw_spin_unlock <-cpu_load_update_nohz
1896 <idle>-0 3dN.2 14us : sub_preempt_count <-_raw_spin_unlock
1897 <idle>-0 3dN.1 15us : calc_load_nohz_stop <-tick_nohz_idle_exit
1898 <idle>-0 3dN.1 15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
1899 <idle>-0 3dN.1 15us : hrtimer_cancel <-tick_nohz_idle_exit
1900 <idle>-0 3dN.1 15us : hrtimer_try_to_cancel <-hrtimer_cancel
1901 <idle>-0 3dN.1 16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
1902 <idle>-0 3dN.1 16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1903 <idle>-0 3dN.1 16us : add_preempt_count <-_raw_spin_lock_irqsave
1904 <idle>-0 3dN.2 17us : __remove_hrtimer <-remove_hrtimer.part.16
1905 <idle>-0 3dN.2 17us : hrtimer_force_reprogram <-__remove_hrtimer
1906 <idle>-0 3dN.2 17us : tick_program_event <-hrtimer_force_reprogram
1907 <idle>-0 3dN.2 18us : clockevents_program_event <-tick_program_event
1908 <idle>-0 3dN.2 18us : ktime_get <-clockevents_program_event
1909 <idle>-0 3dN.2 18us : lapic_next_event <-clockevents_program_event
1910 <idle>-0 3dN.2 19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
1911 <idle>-0 3dN.2 19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1912 <idle>-0 3dN.1 19us : hrtimer_forward <-tick_nohz_idle_exit
1913 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
1914 <idle>-0 3dN.1 20us : ktime_add_safe <-hrtimer_forward
1915 <idle>-0 3dN.1 20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
1916 <idle>-0 3dN.1 20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
1917 <idle>-0 3dN.1 21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
1918 <idle>-0 3dN.1 21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
1919 <idle>-0 3dN.1 21us : add_preempt_count <-_raw_spin_lock_irqsave
1920 <idle>-0 3dN.2 22us : ktime_add_safe <-__hrtimer_start_range_ns
1921 <idle>-0 3dN.2 22us : enqueue_hrtimer <-__hrtimer_start_range_ns
1922 <idle>-0 3dN.2 22us : tick_program_event <-__hrtimer_start_range_ns
1923 <idle>-0 3dN.2 23us : clockevents_program_event <-tick_program_event
1924 <idle>-0 3dN.2 23us : ktime_get <-clockevents_program_event
1925 <idle>-0 3dN.2 23us : lapic_next_event <-clockevents_program_event
1926 <idle>-0 3dN.2 24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
1927 <idle>-0 3dN.2 24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
1928 <idle>-0 3dN.1 24us : account_idle_ticks <-tick_nohz_idle_exit
1929 <idle>-0 3dN.1 24us : account_idle_time <-account_idle_ticks
1930 <idle>-0 3.N.1 25us : sub_preempt_count <-cpu_idle
1931 <idle>-0 3.N.. 25us : schedule <-cpu_idle
1932 <idle>-0 3.N.. 25us : __schedule <-preempt_schedule
1933 <idle>-0 3.N.. 26us : add_preempt_count <-__schedule
1934 <idle>-0 3.N.1 26us : rcu_note_context_switch <-__schedule
1935 <idle>-0 3.N.1 26us : rcu_sched_qs <-rcu_note_context_switch
1936 <idle>-0 3dN.1 27us : rcu_preempt_qs <-rcu_note_context_switch
1937 <idle>-0 3.N.1 27us : _raw_spin_lock_irq <-__schedule
1938 <idle>-0 3dN.1 27us : add_preempt_count <-_raw_spin_lock_irq
1939 <idle>-0 3dN.2 28us : put_prev_task_idle <-__schedule
1940 <idle>-0 3dN.2 28us : pick_next_task_stop <-pick_next_task
1941 <idle>-0 3dN.2 28us : pick_next_task_rt <-pick_next_task
1942 <idle>-0 3dN.2 29us : dequeue_pushable_task <-pick_next_task_rt
1943 <idle>-0 3d..3 29us : __schedule <-preempt_schedule
1944 <idle>-0 3d..3 30us : 0:120:R ==> [003] 2448: 94:R sleep
1945
1946This isn't that big of a trace, even with function tracing enabled,
1947so I included the entire trace.
1948
1949The interrupt went off while when the system was idle. Somewhere
1950before task_woken_rt() was called, the NEED_RESCHED flag was set,
1951this is indicated by the first occurrence of the 'N' flag.
1952
1953Latency tracing and events
1954--------------------------
1955As function tracing can induce a much larger latency, but without
1956seeing what happens within the latency it is hard to know what
1957caused it. There is a middle ground, and that is with enabling
1958events.
1959::
1960
1961 # echo 0 > options/function-trace
1962 # echo wakeup_rt > current_tracer
1963 # echo 1 > events/enable
1964 # echo 1 > tracing_on
1965 # echo 0 > tracing_max_latency
1966 # chrt -f 5 sleep 1
1967 # echo 0 > tracing_on
1968 # cat trace
1969 # tracer: wakeup_rt
1970 #
1971 # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
1972 # --------------------------------------------------------------------
1973 # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
1974 # -----------------
1975 # | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
1976 # -----------------
1977 #
1978 # _------=> CPU#
1979 # / _-----=> irqs-off
1980 # | / _----=> need-resched
1981 # || / _---=> hardirq/softirq
1982 # ||| / _--=> preempt-depth
1983 # |||| / delay
1984 # cmd pid ||||| time | caller
1985 # \ / ||||| \ | /
1986 <idle>-0 2d.h4 0us : 0:120:R + [002] 5882: 94:R sleep
1987 <idle>-0 2d.h4 0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
1988 <idle>-0 2d.h4 1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
1989 <idle>-0 2dNh2 1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
1990 <idle>-0 2.N.2 2us : power_end: cpu_id=2
1991 <idle>-0 2.N.2 3us : cpu_idle: state=4294967295 cpu_id=2
1992 <idle>-0 2dN.3 4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
1993 <idle>-0 2dN.3 4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
1994 <idle>-0 2.N.2 5us : rcu_utilization: Start context switch
1995 <idle>-0 2.N.2 5us : rcu_utilization: End context switch
1996 <idle>-0 2d..3 6us : __schedule <-schedule
1997 <idle>-0 2d..3 6us : 0:120:R ==> [002] 5882: 94:R sleep
1998
1999
2000Hardware Latency Detector
2001-------------------------
2002
2003The hardware latency detector is executed by enabling the "hwlat" tracer.
2004
2005NOTE, this tracer will affect the performance of the system as it will
2006periodically make a CPU constantly busy with interrupts disabled.
2007::
2008
2009 # echo hwlat > current_tracer
2010 # sleep 100
2011 # cat trace
2012 # tracer: hwlat
2013 #
2014 # _-----=> irqs-off
2015 # / _----=> need-resched
2016 # | / _---=> hardirq/softirq
2017 # || / _--=> preempt-depth
2018 # ||| / delay
2019 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2020 # | | | |||| | |
2021 <...>-3638 [001] d... 19452.055471: #1 inner/outer(us): 12/14 ts:1499801089.066141940
2022 <...>-3638 [003] d... 19454.071354: #2 inner/outer(us): 11/9 ts:1499801091.082164365
2023 <...>-3638 [002] dn.. 19461.126852: #3 inner/outer(us): 12/9 ts:1499801098.138150062
2024 <...>-3638 [001] d... 19488.340960: #4 inner/outer(us): 8/12 ts:1499801125.354139633
2025 <...>-3638 [003] d... 19494.388553: #5 inner/outer(us): 8/12 ts:1499801131.402150961
2026 <...>-3638 [003] d... 19501.283419: #6 inner/outer(us): 0/12 ts:1499801138.297435289 nmi-total:4 nmi-count:1
2027
2028
2029The above output is somewhat the same in the header. All events will have
2030interrupts disabled 'd'. Under the FUNCTION title there is:
2031
2032 #1
2033 This is the count of events recorded that were greater than the
2034 tracing_threshold (See below).
2035
2036 inner/outer(us): 12/14
2037
2038 This shows two numbers as "inner latency" and "outer latency". The test
2039 runs in a loop checking a timestamp twice. The latency detected within
2040 the two timestamps is the "inner latency" and the latency detected
2041 after the previous timestamp and the next timestamp in the loop is
2042 the "outer latency".
2043
2044 ts:1499801089.066141940
2045
2046 The absolute timestamp that the event happened.
2047
2048 nmi-total:4 nmi-count:1
2049
2050 On architectures that support it, if an NMI comes in during the
2051 test, the time spent in NMI is reported in "nmi-total" (in
2052 microseconds).
2053
2054 All architectures that have NMIs will show the "nmi-count" if an
2055 NMI comes in during the test.
2056
2057hwlat files:
2058
2059 tracing_threshold
2060 This gets automatically set to "10" to represent 10
2061 microseconds. This is the threshold of latency that
2062 needs to be detected before the trace will be recorded.
2063
2064 Note, when hwlat tracer is finished (another tracer is
2065 written into "current_tracer"), the original value for
2066 tracing_threshold is placed back into this file.
2067
2068 hwlat_detector/width
2069 The length of time the test runs with interrupts disabled.
2070
2071 hwlat_detector/window
2072 The length of time of the window which the test
2073 runs. That is, the test will run for "width"
2074 microseconds per "window" microseconds
2075
2076 tracing_cpumask
2077 When the test is started. A kernel thread is created that
2078 runs the test. This thread will alternate between CPUs
2079 listed in the tracing_cpumask between each period
2080 (one "window"). To limit the test to specific CPUs
2081 set the mask in this file to only the CPUs that the test
2082 should run on.
2083
2084function
2085--------
2086
2087This tracer is the function tracer. Enabling the function tracer
2088can be done from the debug file system. Make sure the
2089ftrace_enabled is set; otherwise this tracer is a nop.
2090See the "ftrace_enabled" section below.
2091::
2092
2093 # sysctl kernel.ftrace_enabled=1
2094 # echo function > current_tracer
2095 # echo 1 > tracing_on
2096 # usleep 1
2097 # echo 0 > tracing_on
2098 # cat trace
2099 # tracer: function
2100 #
2101 # entries-in-buffer/entries-written: 24799/24799 #P:4
2102 #
2103 # _-----=> irqs-off
2104 # / _----=> need-resched
2105 # | / _---=> hardirq/softirq
2106 # || / _--=> preempt-depth
2107 # ||| / delay
2108 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2109 # | | | |||| | |
2110 bash-1994 [002] .... 3082.063030: mutex_unlock <-rb_simple_write
2111 bash-1994 [002] .... 3082.063031: __mutex_unlock_slowpath <-mutex_unlock
2112 bash-1994 [002] .... 3082.063031: __fsnotify_parent <-fsnotify_modify
2113 bash-1994 [002] .... 3082.063032: fsnotify <-fsnotify_modify
2114 bash-1994 [002] .... 3082.063032: __srcu_read_lock <-fsnotify
2115 bash-1994 [002] .... 3082.063032: add_preempt_count <-__srcu_read_lock
2116 bash-1994 [002] ...1 3082.063032: sub_preempt_count <-__srcu_read_lock
2117 bash-1994 [002] .... 3082.063033: __srcu_read_unlock <-fsnotify
2118 [...]
2119
2120
2121Note: function tracer uses ring buffers to store the above
2122entries. The newest data may overwrite the oldest data.
2123Sometimes using echo to stop the trace is not sufficient because
2124the tracing could have overwritten the data that you wanted to
2125record. For this reason, it is sometimes better to disable
2126tracing directly from a program. This allows you to stop the
2127tracing at the point that you hit the part that you are
2128interested in. To disable the tracing directly from a C program,
2129something like following code snippet can be used::
2130
2131 int trace_fd;
2132 [...]
2133 int main(int argc, char *argv[]) {
2134 [...]
2135 trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
2136 [...]
2137 if (condition_hit()) {
2138 write(trace_fd, "0", 1);
2139 }
2140 [...]
2141 }
2142
2143
2144Single thread tracing
2145---------------------
2146
2147By writing into set_ftrace_pid you can trace a
2148single thread. For example::
2149
2150 # cat set_ftrace_pid
2151 no pid
2152 # echo 3111 > set_ftrace_pid
2153 # cat set_ftrace_pid
2154 3111
2155 # echo function > current_tracer
2156 # cat trace | head
2157 # tracer: function
2158 #
2159 # TASK-PID CPU# TIMESTAMP FUNCTION
2160 # | | | | |
2161 yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_return
2162 yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
2163 yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
2164 yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
2165 yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll
2166 yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll
2167 # echo > set_ftrace_pid
2168 # cat trace |head
2169 # tracer: function
2170 #
2171 # TASK-PID CPU# TIMESTAMP FUNCTION
2172 # | | | | |
2173 ##### CPU 3 buffer started ####
2174 yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait
2175 yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_entry
2176 yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry
2177 yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_audit
2178 yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit
2179
2180If you want to trace a function when executing, you could use
2181something like this simple program.
2182::
2183
2184 #include <stdio.h>
2185 #include <stdlib.h>
2186 #include <sys/types.h>
2187 #include <sys/stat.h>
2188 #include <fcntl.h>
2189 #include <unistd.h>
2190 #include <string.h>
2191
2192 #define _STR(x) #x
2193 #define STR(x) _STR(x)
2194 #define MAX_PATH 256
2195
2196 const char *find_tracefs(void)
2197 {
2198 static char tracefs[MAX_PATH+1];
2199 static int tracefs_found;
2200 char type[100];
2201 FILE *fp;
2202
2203 if (tracefs_found)
2204 return tracefs;
2205
2206 if ((fp = fopen("/proc/mounts","r")) == NULL) {
2207 perror("/proc/mounts");
2208 return NULL;
2209 }
2210
2211 while (fscanf(fp, "%*s %"
2212 STR(MAX_PATH)
2213 "s %99s %*s %*d %*d\n",
2214 tracefs, type) == 2) {
2215 if (strcmp(type, "tracefs") == 0)
2216 break;
2217 }
2218 fclose(fp);
2219
2220 if (strcmp(type, "tracefs") != 0) {
2221 fprintf(stderr, "tracefs not mounted");
2222 return NULL;
2223 }
2224
2225 strcat(tracefs, "/tracing/");
2226 tracefs_found = 1;
2227
2228 return tracefs;
2229 }
2230
2231 const char *tracing_file(const char *file_name)
2232 {
2233 static char trace_file[MAX_PATH+1];
2234 snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
2235 return trace_file;
2236 }
2237
2238 int main (int argc, char **argv)
2239 {
2240 if (argc < 1)
2241 exit(-1);
2242
2243 if (fork() > 0) {
2244 int fd, ffd;
2245 char line[64];
2246 int s;
2247
2248 ffd = open(tracing_file("current_tracer"), O_WRONLY);
2249 if (ffd < 0)
2250 exit(-1);
2251 write(ffd, "nop", 3);
2252
2253 fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
2254 s = sprintf(line, "%d\n", getpid());
2255 write(fd, line, s);
2256
2257 write(ffd, "function", 8);
2258
2259 close(fd);
2260 close(ffd);
2261
2262 execvp(argv[1], argv+1);
2263 }
2264
2265 return 0;
2266 }
2267
2268Or this simple script!
2269::
2270
2271 #!/bin/bash
2272
2273 tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
2274 echo nop > $tracefs/tracing/current_tracer
2275 echo 0 > $tracefs/tracing/tracing_on
2276 echo $$ > $tracefs/tracing/set_ftrace_pid
2277 echo function > $tracefs/tracing/current_tracer
2278 echo 1 > $tracefs/tracing/tracing_on
2279 exec "$@"
2280
2281
2282function graph tracer
2283---------------------------
2284
2285This tracer is similar to the function tracer except that it
2286probes a function on its entry and its exit. This is done by
2287using a dynamically allocated stack of return addresses in each
2288task_struct. On function entry the tracer overwrites the return
2289address of each function traced to set a custom probe. Thus the
2290original return address is stored on the stack of return address
2291in the task_struct.
2292
2293Probing on both ends of a function leads to special features
2294such as:
2295
2296- measure of a function's time execution
2297- having a reliable call stack to draw function calls graph
2298
2299This tracer is useful in several situations:
2300
2301- you want to find the reason of a strange kernel behavior and
2302 need to see what happens in detail on any areas (or specific
2303 ones).
2304
2305- you are experiencing weird latencies but it's difficult to
2306 find its origin.
2307
2308- you want to find quickly which path is taken by a specific
2309 function
2310
2311- you just want to peek inside a working kernel and want to see
2312 what happens there.
2313
2314::
2315
2316 # tracer: function_graph
2317 #
2318 # CPU DURATION FUNCTION CALLS
2319 # | | | | | | |
2320
2321 0) | sys_open() {
2322 0) | do_sys_open() {
2323 0) | getname() {
2324 0) | kmem_cache_alloc() {
2325 0) 1.382 us | __might_sleep();
2326 0) 2.478 us | }
2327 0) | strncpy_from_user() {
2328 0) | might_fault() {
2329 0) 1.389 us | __might_sleep();
2330 0) 2.553 us | }
2331 0) 3.807 us | }
2332 0) 7.876 us | }
2333 0) | alloc_fd() {
2334 0) 0.668 us | _spin_lock();
2335 0) 0.570 us | expand_files();
2336 0) 0.586 us | _spin_unlock();
2337
2338
2339There are several columns that can be dynamically
2340enabled/disabled. You can use every combination of options you
2341want, depending on your needs.
2342
2343- The cpu number on which the function executed is default
2344 enabled. It is sometimes better to only trace one cpu (see
2345 tracing_cpu_mask file) or you might sometimes see unordered
2346 function calls while cpu tracing switch.
2347
2348 - hide: echo nofuncgraph-cpu > trace_options
2349 - show: echo funcgraph-cpu > trace_options
2350
2351- The duration (function's time of execution) is displayed on
2352 the closing bracket line of a function or on the same line
2353 than the current function in case of a leaf one. It is default
2354 enabled.
2355
2356 - hide: echo nofuncgraph-duration > trace_options
2357 - show: echo funcgraph-duration > trace_options
2358
2359- The overhead field precedes the duration field in case of
2360 reached duration thresholds.
2361
2362 - hide: echo nofuncgraph-overhead > trace_options
2363 - show: echo funcgraph-overhead > trace_options
2364 - depends on: funcgraph-duration
2365
2366 ie::
2367
2368 3) # 1837.709 us | } /* __switch_to */
2369 3) | finish_task_switch() {
2370 3) 0.313 us | _raw_spin_unlock_irq();
2371 3) 3.177 us | }
2372 3) # 1889.063 us | } /* __schedule */
2373 3) ! 140.417 us | } /* __schedule */
2374 3) # 2034.948 us | } /* schedule */
2375 3) * 33998.59 us | } /* schedule_preempt_disabled */
2376
2377 [...]
2378
2379 1) 0.260 us | msecs_to_jiffies();
2380 1) 0.313 us | __rcu_read_unlock();
2381 1) + 61.770 us | }
2382 1) + 64.479 us | }
2383 1) 0.313 us | rcu_bh_qs();
2384 1) 0.313 us | __local_bh_enable();
2385 1) ! 217.240 us | }
2386 1) 0.365 us | idle_cpu();
2387 1) | rcu_irq_exit() {
2388 1) 0.417 us | rcu_eqs_enter_common.isra.47();
2389 1) 3.125 us | }
2390 1) ! 227.812 us | }
2391 1) ! 457.395 us | }
2392 1) @ 119760.2 us | }
2393
2394 [...]
2395
2396 2) | handle_IPI() {
2397 1) 6.979 us | }
2398 2) 0.417 us | scheduler_ipi();
2399 1) 9.791 us | }
2400 1) + 12.917 us | }
2401 2) 3.490 us | }
2402 1) + 15.729 us | }
2403 1) + 18.542 us | }
2404 2) $ 3594274 us | }
2405
2406Flags::
2407
2408 + means that the function exceeded 10 usecs.
2409 ! means that the function exceeded 100 usecs.
2410 # means that the function exceeded 1000 usecs.
2411 * means that the function exceeded 10 msecs.
2412 @ means that the function exceeded 100 msecs.
2413 $ means that the function exceeded 1 sec.
2414
2415
2416- The task/pid field displays the thread cmdline and pid which
2417 executed the function. It is default disabled.
2418
2419 - hide: echo nofuncgraph-proc > trace_options
2420 - show: echo funcgraph-proc > trace_options
2421
2422 ie::
2423
2424 # tracer: function_graph
2425 #
2426 # CPU TASK/PID DURATION FUNCTION CALLS
2427 # | | | | | | | | |
2428 0) sh-4802 | | d_free() {
2429 0) sh-4802 | | call_rcu() {
2430 0) sh-4802 | | __call_rcu() {
2431 0) sh-4802 | 0.616 us | rcu_process_gp_end();
2432 0) sh-4802 | 0.586 us | check_for_new_grace_period();
2433 0) sh-4802 | 2.899 us | }
2434 0) sh-4802 | 4.040 us | }
2435 0) sh-4802 | 5.151 us | }
2436 0) sh-4802 | + 49.370 us | }
2437
2438
2439- The absolute time field is an absolute timestamp given by the
2440 system clock since it started. A snapshot of this time is
2441 given on each entry/exit of functions
2442
2443 - hide: echo nofuncgraph-abstime > trace_options
2444 - show: echo funcgraph-abstime > trace_options
2445
2446 ie::
2447
2448 #
2449 # TIME CPU DURATION FUNCTION CALLS
2450 # | | | | | | | |
2451 360.774522 | 1) 0.541 us | }
2452 360.774522 | 1) 4.663 us | }
2453 360.774523 | 1) 0.541 us | __wake_up_bit();
2454 360.774524 | 1) 6.796 us | }
2455 360.774524 | 1) 7.952 us | }
2456 360.774525 | 1) 9.063 us | }
2457 360.774525 | 1) 0.615 us | journal_mark_dirty();
2458 360.774527 | 1) 0.578 us | __brelse();
2459 360.774528 | 1) | reiserfs_prepare_for_journal() {
2460 360.774528 | 1) | unlock_buffer() {
2461 360.774529 | 1) | wake_up_bit() {
2462 360.774529 | 1) | bit_waitqueue() {
2463 360.774530 | 1) 0.594 us | __phys_addr();
2464
2465
2466The function name is always displayed after the closing bracket
2467for a function if the start of that function is not in the
2468trace buffer.
2469
2470Display of the function name after the closing bracket may be
2471enabled for functions whose start is in the trace buffer,
2472allowing easier searching with grep for function durations.
2473It is default disabled.
2474
2475 - hide: echo nofuncgraph-tail > trace_options
2476 - show: echo funcgraph-tail > trace_options
2477
2478 Example with nofuncgraph-tail (default)::
2479
2480 0) | putname() {
2481 0) | kmem_cache_free() {
2482 0) 0.518 us | __phys_addr();
2483 0) 1.757 us | }
2484 0) 2.861 us | }
2485
2486 Example with funcgraph-tail::
2487
2488 0) | putname() {
2489 0) | kmem_cache_free() {
2490 0) 0.518 us | __phys_addr();
2491 0) 1.757 us | } /* kmem_cache_free() */
2492 0) 2.861 us | } /* putname() */
2493
2494You can put some comments on specific functions by using
2495trace_printk() For example, if you want to put a comment inside
2496the __might_sleep() function, you just have to include
2497<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
2498
2499 trace_printk("I'm a comment!\n")
2500
2501will produce::
2502
2503 1) | __might_sleep() {
2504 1) | /* I'm a comment! */
2505 1) 1.449 us | }
2506
2507
2508You might find other useful features for this tracer in the
2509following "dynamic ftrace" section such as tracing only specific
2510functions or tasks.
2511
2512dynamic ftrace
2513--------------
2514
2515If CONFIG_DYNAMIC_FTRACE is set, the system will run with
2516virtually no overhead when function tracing is disabled. The way
2517this works is the mcount function call (placed at the start of
2518every kernel function, produced by the -pg switch in gcc),
2519starts of pointing to a simple return. (Enabling FTRACE will
2520include the -pg switch in the compiling of the kernel.)
2521
2522At compile time every C file object is run through the
2523recordmcount program (located in the scripts directory). This
2524program will parse the ELF headers in the C object to find all
2525the locations in the .text section that call mcount. Starting
2526with gcc verson 4.6, the -mfentry has been added for x86, which
2527calls "__fentry__" instead of "mcount". Which is called before
2528the creation of the stack frame.
2529
2530Note, not all sections are traced. They may be prevented by either
2531a notrace, or blocked another way and all inline functions are not
2532traced. Check the "available_filter_functions" file to see what functions
2533can be traced.
2534
2535A section called "__mcount_loc" is created that holds
2536references to all the mcount/fentry call sites in the .text section.
2537The recordmcount program re-links this section back into the
2538original object. The final linking stage of the kernel will add all these
2539references into a single table.
2540
2541On boot up, before SMP is initialized, the dynamic ftrace code
2542scans this table and updates all the locations into nops. It
2543also records the locations, which are added to the
2544available_filter_functions list. Modules are processed as they
2545are loaded and before they are executed. When a module is
2546unloaded, it also removes its functions from the ftrace function
2547list. This is automatic in the module unload code, and the
2548module author does not need to worry about it.
2549
2550When tracing is enabled, the process of modifying the function
2551tracepoints is dependent on architecture. The old method is to use
2552kstop_machine to prevent races with the CPUs executing code being
2553modified (which can cause the CPU to do undesirable things, especially
2554if the modified code crosses cache (or page) boundaries), and the nops are
2555patched back to calls. But this time, they do not call mcount
2556(which is just a function stub). They now call into the ftrace
2557infrastructure.
2558
2559The new method of modifying the function tracepoints is to place
2560a breakpoint at the location to be modified, sync all CPUs, modify
2561the rest of the instruction not covered by the breakpoint. Sync
2562all CPUs again, and then remove the breakpoint with the finished
2563version to the ftrace call site.
2564
2565Some archs do not even need to monkey around with the synchronization,
2566and can just slap the new code on top of the old without any
2567problems with other CPUs executing it at the same time.
2568
2569One special side-effect to the recording of the functions being
2570traced is that we can now selectively choose which functions we
2571wish to trace and which ones we want the mcount calls to remain
2572as nops.
2573
2574Two files are used, one for enabling and one for disabling the
2575tracing of specified functions. They are:
2576
2577 set_ftrace_filter
2578
2579and
2580
2581 set_ftrace_notrace
2582
2583A list of available functions that you can add to these files is
2584listed in:
2585
2586 available_filter_functions
2587
2588::
2589
2590 # cat available_filter_functions
2591 put_prev_task_idle
2592 kmem_cache_create
2593 pick_next_task_rt
2594 get_online_cpus
2595 pick_next_task_fair
2596 mutex_lock
2597 [...]
2598
2599If I am only interested in sys_nanosleep and hrtimer_interrupt::
2600
2601 # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
2602 # echo function > current_tracer
2603 # echo 1 > tracing_on
2604 # usleep 1
2605 # echo 0 > tracing_on
2606 # cat trace
2607 # tracer: function
2608 #
2609 # entries-in-buffer/entries-written: 5/5 #P:4
2610 #
2611 # _-----=> irqs-off
2612 # / _----=> need-resched
2613 # | / _---=> hardirq/softirq
2614 # || / _--=> preempt-depth
2615 # ||| / delay
2616 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2617 # | | | |||| | |
2618 usleep-2665 [001] .... 4186.475355: sys_nanosleep <-system_call_fastpath
2619 <idle>-0 [001] d.h1 4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
2620 usleep-2665 [001] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2621 <idle>-0 [003] d.h1 4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
2622 <idle>-0 [002] d.h1 4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
2623
2624To see which functions are being traced, you can cat the file:
2625::
2626
2627 # cat set_ftrace_filter
2628 hrtimer_interrupt
2629 sys_nanosleep
2630
2631
2632Perhaps this is not enough. The filters also allow glob(7) matching.
2633
Jonathan Corbet6234c7b2018-03-07 10:44:08 -07002634 ``<match>*``
Changbin Du1f198e22018-02-17 13:39:38 +08002635 will match functions that begin with <match>
Jonathan Corbet6234c7b2018-03-07 10:44:08 -07002636 ``*<match>``
Changbin Du1f198e22018-02-17 13:39:38 +08002637 will match functions that end with <match>
Jonathan Corbet6234c7b2018-03-07 10:44:08 -07002638 ``*<match>*``
Changbin Du1f198e22018-02-17 13:39:38 +08002639 will match functions that have <match> in it
Jonathan Corbet6234c7b2018-03-07 10:44:08 -07002640 ``<match1>*<match2>``
Changbin Du1f198e22018-02-17 13:39:38 +08002641 will match functions that begin with <match1> and end with <match2>
2642
2643.. note::
2644 It is better to use quotes to enclose the wild cards,
2645 otherwise the shell may expand the parameters into names
2646 of files in the local directory.
2647
2648::
2649
2650 # echo 'hrtimer_*' > set_ftrace_filter
2651
2652Produces::
2653
2654 # tracer: function
2655 #
2656 # entries-in-buffer/entries-written: 897/897 #P:4
2657 #
2658 # _-----=> irqs-off
2659 # / _----=> need-resched
2660 # | / _---=> hardirq/softirq
2661 # || / _--=> preempt-depth
2662 # ||| / delay
2663 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2664 # | | | |||| | |
2665 <idle>-0 [003] dN.1 4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
2666 <idle>-0 [003] dN.1 4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
2667 <idle>-0 [003] dN.2 4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
2668 <idle>-0 [003] dN.1 4228.547805: hrtimer_forward <-tick_nohz_idle_exit
2669 <idle>-0 [003] dN.1 4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
2670 <idle>-0 [003] d..1 4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
2671 <idle>-0 [003] d..1 4228.547859: hrtimer_start <-__tick_nohz_idle_enter
2672 <idle>-0 [003] d..2 4228.547860: hrtimer_force_reprogram <-__rem
2673
2674Notice that we lost the sys_nanosleep.
2675::
2676
2677 # cat set_ftrace_filter
2678 hrtimer_run_queues
2679 hrtimer_run_pending
2680 hrtimer_init
2681 hrtimer_cancel
2682 hrtimer_try_to_cancel
2683 hrtimer_forward
2684 hrtimer_start
2685 hrtimer_reprogram
2686 hrtimer_force_reprogram
2687 hrtimer_get_next_event
2688 hrtimer_interrupt
2689 hrtimer_nanosleep
2690 hrtimer_wakeup
2691 hrtimer_get_remaining
2692 hrtimer_get_res
2693 hrtimer_init_sleeper
2694
2695
2696This is because the '>' and '>>' act just like they do in bash.
2697To rewrite the filters, use '>'
2698To append to the filters, use '>>'
2699
2700To clear out a filter so that all functions will be recorded
2701again::
2702
2703 # echo > set_ftrace_filter
2704 # cat set_ftrace_filter
2705 #
2706
2707Again, now we want to append.
2708
2709::
2710
2711 # echo sys_nanosleep > set_ftrace_filter
2712 # cat set_ftrace_filter
2713 sys_nanosleep
2714 # echo 'hrtimer_*' >> set_ftrace_filter
2715 # cat set_ftrace_filter
2716 hrtimer_run_queues
2717 hrtimer_run_pending
2718 hrtimer_init
2719 hrtimer_cancel
2720 hrtimer_try_to_cancel
2721 hrtimer_forward
2722 hrtimer_start
2723 hrtimer_reprogram
2724 hrtimer_force_reprogram
2725 hrtimer_get_next_event
2726 hrtimer_interrupt
2727 sys_nanosleep
2728 hrtimer_nanosleep
2729 hrtimer_wakeup
2730 hrtimer_get_remaining
2731 hrtimer_get_res
2732 hrtimer_init_sleeper
2733
2734
2735The set_ftrace_notrace prevents those functions from being
2736traced.
2737::
2738
2739 # echo '*preempt*' '*lock*' > set_ftrace_notrace
2740
2741Produces::
2742
2743 # tracer: function
2744 #
2745 # entries-in-buffer/entries-written: 39608/39608 #P:4
2746 #
2747 # _-----=> irqs-off
2748 # / _----=> need-resched
2749 # | / _---=> hardirq/softirq
2750 # || / _--=> preempt-depth
2751 # ||| / delay
2752 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2753 # | | | |||| | |
2754 bash-1994 [000] .... 4342.324896: file_ra_state_init <-do_dentry_open
2755 bash-1994 [000] .... 4342.324897: open_check_o_direct <-do_last
2756 bash-1994 [000] .... 4342.324897: ima_file_check <-do_last
2757 bash-1994 [000] .... 4342.324898: process_measurement <-ima_file_check
2758 bash-1994 [000] .... 4342.324898: ima_get_action <-process_measurement
2759 bash-1994 [000] .... 4342.324898: ima_match_policy <-ima_get_action
2760 bash-1994 [000] .... 4342.324899: do_truncate <-do_last
2761 bash-1994 [000] .... 4342.324899: should_remove_suid <-do_truncate
2762 bash-1994 [000] .... 4342.324899: notify_change <-do_truncate
2763 bash-1994 [000] .... 4342.324900: current_fs_time <-notify_change
2764 bash-1994 [000] .... 4342.324900: current_kernel_time <-current_fs_time
2765 bash-1994 [000] .... 4342.324900: timespec_trunc <-current_fs_time
2766
2767We can see that there's no more lock or preempt tracing.
2768
2769
2770Dynamic ftrace with the function graph tracer
2771---------------------------------------------
2772
2773Although what has been explained above concerns both the
2774function tracer and the function-graph-tracer, there are some
2775special features only available in the function-graph tracer.
2776
2777If you want to trace only one function and all of its children,
2778you just have to echo its name into set_graph_function::
2779
2780 echo __do_fault > set_graph_function
2781
2782will produce the following "expanded" trace of the __do_fault()
2783function::
2784
2785 0) | __do_fault() {
2786 0) | filemap_fault() {
2787 0) | find_lock_page() {
2788 0) 0.804 us | find_get_page();
2789 0) | __might_sleep() {
2790 0) 1.329 us | }
2791 0) 3.904 us | }
2792 0) 4.979 us | }
2793 0) 0.653 us | _spin_lock();
2794 0) 0.578 us | page_add_file_rmap();
2795 0) 0.525 us | native_set_pte_at();
2796 0) 0.585 us | _spin_unlock();
2797 0) | unlock_page() {
2798 0) 0.541 us | page_waitqueue();
2799 0) 0.639 us | __wake_up_bit();
2800 0) 2.786 us | }
2801 0) + 14.237 us | }
2802 0) | __do_fault() {
2803 0) | filemap_fault() {
2804 0) | find_lock_page() {
2805 0) 0.698 us | find_get_page();
2806 0) | __might_sleep() {
2807 0) 1.412 us | }
2808 0) 3.950 us | }
2809 0) 5.098 us | }
2810 0) 0.631 us | _spin_lock();
2811 0) 0.571 us | page_add_file_rmap();
2812 0) 0.526 us | native_set_pte_at();
2813 0) 0.586 us | _spin_unlock();
2814 0) | unlock_page() {
2815 0) 0.533 us | page_waitqueue();
2816 0) 0.638 us | __wake_up_bit();
2817 0) 2.793 us | }
2818 0) + 14.012 us | }
2819
2820You can also expand several functions at once::
2821
2822 echo sys_open > set_graph_function
2823 echo sys_close >> set_graph_function
2824
2825Now if you want to go back to trace all functions you can clear
2826this special filter via::
2827
2828 echo > set_graph_function
2829
2830
2831ftrace_enabled
2832--------------
2833
2834Note, the proc sysctl ftrace_enable is a big on/off switch for the
2835function tracer. By default it is enabled (when function tracing is
2836enabled in the kernel). If it is disabled, all function tracing is
2837disabled. This includes not only the function tracers for ftrace, but
2838also for any other uses (perf, kprobes, stack tracing, profiling, etc).
2839
2840Please disable this with care.
2841
2842This can be disable (and enabled) with::
2843
2844 sysctl kernel.ftrace_enabled=0
2845 sysctl kernel.ftrace_enabled=1
2846
2847 or
2848
2849 echo 0 > /proc/sys/kernel/ftrace_enabled
2850 echo 1 > /proc/sys/kernel/ftrace_enabled
2851
2852
2853Filter commands
2854---------------
2855
2856A few commands are supported by the set_ftrace_filter interface.
2857Trace commands have the following format::
2858
2859 <function>:<command>:<parameter>
2860
2861The following commands are supported:
2862
2863- mod:
2864 This command enables function filtering per module. The
2865 parameter defines the module. For example, if only the write*
2866 functions in the ext3 module are desired, run:
2867
2868 echo 'write*:mod:ext3' > set_ftrace_filter
2869
2870 This command interacts with the filter in the same way as
2871 filtering based on function names. Thus, adding more functions
2872 in a different module is accomplished by appending (>>) to the
2873 filter file. Remove specific module functions by prepending
2874 '!'::
2875
2876 echo '!writeback*:mod:ext3' >> set_ftrace_filter
2877
2878 Mod command supports module globbing. Disable tracing for all
2879 functions except a specific module::
2880
2881 echo '!*:mod:!ext3' >> set_ftrace_filter
2882
2883 Disable tracing for all modules, but still trace kernel::
2884
2885 echo '!*:mod:*' >> set_ftrace_filter
2886
2887 Enable filter only for kernel::
2888
2889 echo '*write*:mod:!*' >> set_ftrace_filter
2890
2891 Enable filter for module globbing::
2892
2893 echo '*write*:mod:*snd*' >> set_ftrace_filter
2894
2895- traceon/traceoff:
2896 These commands turn tracing on and off when the specified
2897 functions are hit. The parameter determines how many times the
2898 tracing system is turned on and off. If unspecified, there is
2899 no limit. For example, to disable tracing when a schedule bug
2900 is hit the first 5 times, run::
2901
2902 echo '__schedule_bug:traceoff:5' > set_ftrace_filter
2903
2904 To always disable tracing when __schedule_bug is hit::
2905
2906 echo '__schedule_bug:traceoff' > set_ftrace_filter
2907
2908 These commands are cumulative whether or not they are appended
2909 to set_ftrace_filter. To remove a command, prepend it by '!'
2910 and drop the parameter::
2911
2912 echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
2913
2914 The above removes the traceoff command for __schedule_bug
2915 that have a counter. To remove commands without counters::
2916
2917 echo '!__schedule_bug:traceoff' > set_ftrace_filter
2918
2919- snapshot:
2920 Will cause a snapshot to be triggered when the function is hit.
2921 ::
2922
2923 echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
2924
2925 To only snapshot once:
2926 ::
2927
2928 echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
2929
2930 To remove the above commands::
2931
2932 echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
2933 echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
2934
2935- enable_event/disable_event:
2936 These commands can enable or disable a trace event. Note, because
2937 function tracing callbacks are very sensitive, when these commands
2938 are registered, the trace point is activated, but disabled in
2939 a "soft" mode. That is, the tracepoint will be called, but
2940 just will not be traced. The event tracepoint stays in this mode
2941 as long as there's a command that triggers it.
2942 ::
2943
2944 echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
2945 set_ftrace_filter
2946
2947 The format is::
2948
2949 <function>:enable_event:<system>:<event>[:count]
2950 <function>:disable_event:<system>:<event>[:count]
2951
2952 To remove the events commands::
2953
2954 echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
2955 set_ftrace_filter
2956 echo '!schedule:disable_event:sched:sched_switch' > \
2957 set_ftrace_filter
2958
2959- dump:
2960 When the function is hit, it will dump the contents of the ftrace
2961 ring buffer to the console. This is useful if you need to debug
2962 something, and want to dump the trace when a certain function
2963 is hit. Perhaps its a function that is called before a tripple
2964 fault happens and does not allow you to get a regular dump.
2965
2966- cpudump:
2967 When the function is hit, it will dump the contents of the ftrace
2968 ring buffer for the current CPU to the console. Unlike the "dump"
2969 command, it only prints out the contents of the ring buffer for the
2970 CPU that executed the function that triggered the dump.
2971
2972trace_pipe
2973----------
2974
2975The trace_pipe outputs the same content as the trace file, but
2976the effect on the tracing is different. Every read from
2977trace_pipe is consumed. This means that subsequent reads will be
2978different. The trace is live.
2979::
2980
2981 # echo function > current_tracer
2982 # cat trace_pipe > /tmp/trace.out &
2983 [1] 4153
2984 # echo 1 > tracing_on
2985 # usleep 1
2986 # echo 0 > tracing_on
2987 # cat trace
2988 # tracer: function
2989 #
2990 # entries-in-buffer/entries-written: 0/0 #P:4
2991 #
2992 # _-----=> irqs-off
2993 # / _----=> need-resched
2994 # | / _---=> hardirq/softirq
2995 # || / _--=> preempt-depth
2996 # ||| / delay
2997 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
2998 # | | | |||| | |
2999
3000 #
3001 # cat /tmp/trace.out
3002 bash-1994 [000] .... 5281.568961: mutex_unlock <-rb_simple_write
3003 bash-1994 [000] .... 5281.568963: __mutex_unlock_slowpath <-mutex_unlock
3004 bash-1994 [000] .... 5281.568963: __fsnotify_parent <-fsnotify_modify
3005 bash-1994 [000] .... 5281.568964: fsnotify <-fsnotify_modify
3006 bash-1994 [000] .... 5281.568964: __srcu_read_lock <-fsnotify
3007 bash-1994 [000] .... 5281.568964: add_preempt_count <-__srcu_read_lock
3008 bash-1994 [000] ...1 5281.568965: sub_preempt_count <-__srcu_read_lock
3009 bash-1994 [000] .... 5281.568965: __srcu_read_unlock <-fsnotify
3010 bash-1994 [000] .... 5281.568967: sys_dup2 <-system_call_fastpath
3011
3012
3013Note, reading the trace_pipe file will block until more input is
3014added.
3015
3016trace entries
3017-------------
3018
3019Having too much or not enough data can be troublesome in
3020diagnosing an issue in the kernel. The file buffer_size_kb is
3021used to modify the size of the internal trace buffers. The
3022number listed is the number of entries that can be recorded per
3023CPU. To know the full size, multiply the number of possible CPUs
3024with the number of entries.
3025::
3026
3027 # cat buffer_size_kb
3028 1408 (units kilobytes)
3029
3030Or simply read buffer_total_size_kb
3031::
3032
3033 # cat buffer_total_size_kb
3034 5632
3035
3036To modify the buffer, simple echo in a number (in 1024 byte segments).
3037::
3038
3039 # echo 10000 > buffer_size_kb
3040 # cat buffer_size_kb
3041 10000 (units kilobytes)
3042
3043It will try to allocate as much as possible. If you allocate too
3044much, it can cause Out-Of-Memory to trigger.
3045::
3046
3047 # echo 1000000000000 > buffer_size_kb
3048 -bash: echo: write error: Cannot allocate memory
3049 # cat buffer_size_kb
3050 85
3051
3052The per_cpu buffers can be changed individually as well:
3053::
3054
3055 # echo 10000 > per_cpu/cpu0/buffer_size_kb
3056 # echo 100 > per_cpu/cpu1/buffer_size_kb
3057
3058When the per_cpu buffers are not the same, the buffer_size_kb
3059at the top level will just show an X
3060::
3061
3062 # cat buffer_size_kb
3063 X
3064
3065This is where the buffer_total_size_kb is useful:
3066::
3067
3068 # cat buffer_total_size_kb
3069 12916
3070
3071Writing to the top level buffer_size_kb will reset all the buffers
3072to be the same again.
3073
3074Snapshot
3075--------
3076CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
3077available to all non latency tracers. (Latency tracers which
3078record max latency, such as "irqsoff" or "wakeup", can't use
3079this feature, since those are already using the snapshot
3080mechanism internally.)
3081
3082Snapshot preserves a current trace buffer at a particular point
3083in time without stopping tracing. Ftrace swaps the current
3084buffer with a spare buffer, and tracing continues in the new
3085current (=previous spare) buffer.
3086
3087The following tracefs files in "tracing" are related to this
3088feature:
3089
3090 snapshot:
3091
3092 This is used to take a snapshot and to read the output
3093 of the snapshot. Echo 1 into this file to allocate a
3094 spare buffer and to take a snapshot (swap), then read
3095 the snapshot from this file in the same format as
3096 "trace" (described above in the section "The File
3097 System"). Both reads snapshot and tracing are executable
3098 in parallel. When the spare buffer is allocated, echoing
3099 0 frees it, and echoing else (positive) values clear the
3100 snapshot contents.
3101 More details are shown in the table below.
3102
3103 +--------------+------------+------------+------------+
3104 |status\\input | 0 | 1 | else |
3105 +==============+============+============+============+
3106 |not allocated |(do nothing)| alloc+swap |(do nothing)|
3107 +--------------+------------+------------+------------+
3108 |allocated | free | swap | clear |
3109 +--------------+------------+------------+------------+
3110
3111Here is an example of using the snapshot feature.
3112::
3113
3114 # echo 1 > events/sched/enable
3115 # echo 1 > snapshot
3116 # cat snapshot
3117 # tracer: nop
3118 #
3119 # entries-in-buffer/entries-written: 71/71 #P:8
3120 #
3121 # _-----=> irqs-off
3122 # / _----=> need-resched
3123 # | / _---=> hardirq/softirq
3124 # || / _--=> preempt-depth
3125 # ||| / delay
3126 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3127 # | | | |||| | |
3128 <idle>-0 [005] d... 2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
3129 sleep-2242 [005] d... 2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120 prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
3130 [...]
3131 <idle>-0 [002] d... 2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120
3132
3133 # cat trace
3134 # tracer: nop
3135 #
3136 # entries-in-buffer/entries-written: 77/77 #P:8
3137 #
3138 # _-----=> irqs-off
3139 # / _----=> need-resched
3140 # | / _---=> hardirq/softirq
3141 # || / _--=> preempt-depth
3142 # ||| / delay
3143 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3144 # | | | |||| | |
3145 <idle>-0 [007] d... 2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
3146 snapshot-test-2-2229 [002] d... 2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
3147 [...]
3148
3149
3150If you try to use this snapshot feature when current tracer is
3151one of the latency tracers, you will get the following results.
3152::
3153
3154 # echo wakeup > current_tracer
3155 # echo 1 > snapshot
3156 bash: echo: write error: Device or resource busy
3157 # cat snapshot
3158 cat: snapshot: Device or resource busy
3159
3160
3161Instances
3162---------
3163In the tracefs tracing directory is a directory called "instances".
3164This directory can have new directories created inside of it using
3165mkdir, and removing directories with rmdir. The directory created
3166with mkdir in this directory will already contain files and other
3167directories after it is created.
3168::
3169
3170 # mkdir instances/foo
3171 # ls instances/foo
3172 buffer_size_kb buffer_total_size_kb events free_buffer per_cpu
3173 set_event snapshot trace trace_clock trace_marker trace_options
3174 trace_pipe tracing_on
3175
3176As you can see, the new directory looks similar to the tracing directory
3177itself. In fact, it is very similar, except that the buffer and
3178events are agnostic from the main director, or from any other
3179instances that are created.
3180
3181The files in the new directory work just like the files with the
3182same name in the tracing directory except the buffer that is used
3183is a separate and new buffer. The files affect that buffer but do not
3184affect the main buffer with the exception of trace_options. Currently,
3185the trace_options affect all instances and the top level buffer
3186the same, but this may change in future releases. That is, options
3187may become specific to the instance they reside in.
3188
3189Notice that none of the function tracer files are there, nor is
3190current_tracer and available_tracers. This is because the buffers
3191can currently only have events enabled for them.
3192::
3193
3194 # mkdir instances/foo
3195 # mkdir instances/bar
3196 # mkdir instances/zoot
3197 # echo 100000 > buffer_size_kb
3198 # echo 1000 > instances/foo/buffer_size_kb
3199 # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
3200 # echo function > current_trace
3201 # echo 1 > instances/foo/events/sched/sched_wakeup/enable
3202 # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
3203 # echo 1 > instances/foo/events/sched/sched_switch/enable
3204 # echo 1 > instances/bar/events/irq/enable
3205 # echo 1 > instances/zoot/events/syscalls/enable
3206 # cat trace_pipe
3207 CPU:2 [LOST 11745 EVENTS]
3208 bash-2044 [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
3209 bash-2044 [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
3210 bash-2044 [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
3211 bash-2044 [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
3212 bash-2044 [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
3213 bash-2044 [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
3214 bash-2044 [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
3215 bash-2044 [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
3216 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3217 bash-2044 [002] d... 10594.481034: __inc_zone_state <-zone_statistics
3218 bash-2044 [002] .... 10594.481035: arch_dup_task_struct <-copy_process
3219 [...]
3220
3221 # cat instances/foo/trace_pipe
3222 bash-1998 [000] d..4 136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3223 bash-1998 [000] dN.4 136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3224 <idle>-0 [003] d.h3 136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
3225 <idle>-0 [003] d..3 136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
3226 rcu_preempt-9 [003] d..3 136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
3227 bash-1998 [000] d..4 136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
3228 bash-1998 [000] dN.4 136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
3229 bash-1998 [000] d..3 136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
3230 kworker/0:1-59 [000] d..4 136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
3231 kworker/0:1-59 [000] d..3 136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
3232 [...]
3233
3234 # cat instances/bar/trace_pipe
3235 migration/1-14 [001] d.h3 138.732674: softirq_raise: vec=3 [action=NET_RX]
3236 <idle>-0 [001] dNh3 138.732725: softirq_raise: vec=3 [action=NET_RX]
3237 bash-1998 [000] d.h1 138.733101: softirq_raise: vec=1 [action=TIMER]
3238 bash-1998 [000] d.h1 138.733102: softirq_raise: vec=9 [action=RCU]
3239 bash-1998 [000] ..s2 138.733105: softirq_entry: vec=1 [action=TIMER]
3240 bash-1998 [000] ..s2 138.733106: softirq_exit: vec=1 [action=TIMER]
3241 bash-1998 [000] ..s2 138.733106: softirq_entry: vec=9 [action=RCU]
3242 bash-1998 [000] ..s2 138.733109: softirq_exit: vec=9 [action=RCU]
3243 sshd-1995 [001] d.h1 138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
3244 sshd-1995 [001] d.h1 138.733280: irq_handler_exit: irq=21 ret=unhandled
3245 sshd-1995 [001] d.h1 138.733281: irq_handler_entry: irq=21 name=eth0
3246 sshd-1995 [001] d.h1 138.733283: irq_handler_exit: irq=21 ret=handled
3247 [...]
3248
3249 # cat instances/zoot/trace
3250 # tracer: nop
3251 #
3252 # entries-in-buffer/entries-written: 18996/18996 #P:4
3253 #
3254 # _-----=> irqs-off
3255 # / _----=> need-resched
3256 # | / _---=> hardirq/softirq
3257 # || / _--=> preempt-depth
3258 # ||| / delay
3259 # TASK-PID CPU# |||| TIMESTAMP FUNCTION
3260 # | | | |||| | |
3261 bash-1998 [000] d... 140.733501: sys_write -> 0x2
3262 bash-1998 [000] d... 140.733504: sys_dup2(oldfd: a, newfd: 1)
3263 bash-1998 [000] d... 140.733506: sys_dup2 -> 0x1
3264 bash-1998 [000] d... 140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
3265 bash-1998 [000] d... 140.733509: sys_fcntl -> 0x1
3266 bash-1998 [000] d... 140.733510: sys_close(fd: a)
3267 bash-1998 [000] d... 140.733510: sys_close -> 0x0
3268 bash-1998 [000] d... 140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
3269 bash-1998 [000] d... 140.733515: sys_rt_sigprocmask -> 0x0
3270 bash-1998 [000] d... 140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
3271 bash-1998 [000] d... 140.733516: sys_rt_sigaction -> 0x0
3272
3273You can see that the trace of the top most trace buffer shows only
3274the function tracing. The foo instance displays wakeups and task
3275switches.
3276
3277To remove the instances, simply delete their directories:
3278::
3279
3280 # rmdir instances/foo
3281 # rmdir instances/bar
3282 # rmdir instances/zoot
3283
3284Note, if a process has a trace file open in one of the instance
3285directories, the rmdir will fail with EBUSY.
3286
3287
3288Stack trace
3289-----------
3290Since the kernel has a fixed sized stack, it is important not to
3291waste it in functions. A kernel developer must be conscience of
3292what they allocate on the stack. If they add too much, the system
3293can be in danger of a stack overflow, and corruption will occur,
3294usually leading to a system panic.
3295
3296There are some tools that check this, usually with interrupts
3297periodically checking usage. But if you can perform a check
3298at every function call that will become very useful. As ftrace provides
3299a function tracer, it makes it convenient to check the stack size
3300at every function call. This is enabled via the stack tracer.
3301
3302CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
3303To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
3304::
3305
3306 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
3307
3308You can also enable it from the kernel command line to trace
3309the stack size of the kernel during boot up, by adding "stacktrace"
3310to the kernel command line parameter.
3311
3312After running it for a few minutes, the output looks like:
3313::
3314
3315 # cat stack_max_size
3316 2928
3317
3318 # cat stack_trace
3319 Depth Size Location (18 entries)
3320 ----- ---- --------
3321 0) 2928 224 update_sd_lb_stats+0xbc/0x4ac
3322 1) 2704 160 find_busiest_group+0x31/0x1f1
3323 2) 2544 256 load_balance+0xd9/0x662
3324 3) 2288 80 idle_balance+0xbb/0x130
3325 4) 2208 128 __schedule+0x26e/0x5b9
3326 5) 2080 16 schedule+0x64/0x66
3327 6) 2064 128 schedule_timeout+0x34/0xe0
3328 7) 1936 112 wait_for_common+0x97/0xf1
3329 8) 1824 16 wait_for_completion+0x1d/0x1f
3330 9) 1808 128 flush_work+0xfe/0x119
3331 10) 1680 16 tty_flush_to_ldisc+0x1e/0x20
3332 11) 1664 48 input_available_p+0x1d/0x5c
3333 12) 1616 48 n_tty_poll+0x6d/0x134
3334 13) 1568 64 tty_poll+0x64/0x7f
3335 14) 1504 880 do_select+0x31e/0x511
3336 15) 624 400 core_sys_select+0x177/0x216
3337 16) 224 96 sys_select+0x91/0xb9
3338 17) 128 128 system_call_fastpath+0x16/0x1b
3339
3340Note, if -mfentry is being used by gcc, functions get traced before
3341they set up the stack frame. This means that leaf level functions
3342are not tested by the stack tracer when -mfentry is used.
3343
3344Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
3345
3346More
3347----
3348More details can be found in the source code, in the `kernel/trace/*.c` files.