blob: a09ded765f6c50f6c0d9ba46c30644b539d1472a [file] [log] [blame]
Greg Kroah-Hartmanb2441312017-11-01 15:07:57 +01001// SPDX-License-Identifier: GPL-2.0
john stultz4c7ee8d2006-09-30 23:28:22 -07002/*
john stultz4c7ee8d2006-09-30 23:28:22 -07003 * NTP state machine interfaces and logic.
4 *
5 * This code was mainly moved from kernel/timer.c and kernel/time.c
6 * Please see those files for relevant copyright info and historical
7 * changelogs.
8 */
Alexey Dobriyanaa0ac362007-07-15 23:40:39 -07009#include <linux/capability.h>
Roman Zippel7dffa3c2008-05-01 04:34:41 -070010#include <linux/clocksource.h>
Maciej W. Rozyckieb3f9382008-09-22 14:42:40 -070011#include <linux/workqueue.h>
Ingo Molnar53bbfa92008-02-20 07:58:42 +010012#include <linux/hrtimer.h>
13#include <linux/jiffies.h>
14#include <linux/math64.h>
15#include <linux/timex.h>
16#include <linux/time.h>
17#include <linux/mm.h>
Alexander Gordeev025b40a2011-01-12 17:00:56 -080018#include <linux/module.h>
Jason Gunthorpe023f3332012-12-17 14:30:53 -070019#include <linux/rtc.h>
DengChaoc7963482015-12-13 12:26:42 +080020#include <linux/math64.h>
john stultz4c7ee8d2006-09-30 23:28:22 -070021
John Stultzaa6f9c592013-03-22 11:31:29 -070022#include "ntp_internal.h"
DengChao0af86462015-12-13 12:24:19 +080023#include "timekeeping_internal.h"
24
Torben Hohne2830b52011-01-27 16:00:32 +010025
Roman Zippelb0ee7552006-09-30 23:28:22 -070026/*
Ingo Molnar53bbfa92008-02-20 07:58:42 +010027 * NTP timekeeping variables:
John Stultza076b212013-03-22 11:52:03 -070028 *
29 * Note: All of the NTP state is protected by the timekeeping locks.
Roman Zippelb0ee7552006-09-30 23:28:22 -070030 */
Roman Zippelb0ee7552006-09-30 23:28:22 -070031
John Stultzbd331262011-11-14 13:48:36 -080032
Ingo Molnar53bbfa92008-02-20 07:58:42 +010033/* USER_HZ period (usecs): */
Rafael J. Wysockiefefc972018-03-20 10:11:28 +010034unsigned long tick_usec = USER_TICK_USEC;
Roman Zippel7dffa3c2008-05-01 04:34:41 -070035
John Stultz02ab20a2012-07-27 14:48:10 -040036/* SHIFTED_HZ period (nsecs): */
Ingo Molnar53bbfa92008-02-20 07:58:42 +010037unsigned long tick_nsec;
38
John Stultzea7cf492011-11-14 13:18:07 -080039static u64 tick_length;
Ingo Molnar53bbfa92008-02-20 07:58:42 +010040static u64 tick_length_base;
41
John Stultz90bf3612015-06-11 15:54:54 -070042#define SECS_PER_DAY 86400
Ingo Molnarbbd12672009-02-22 12:11:11 +010043#define MAX_TICKADJ 500LL /* usecs */
Ingo Molnar53bbfa92008-02-20 07:58:42 +010044#define MAX_TICKADJ_SCALED \
Ingo Molnarbbd12672009-02-22 12:11:11 +010045 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
john stultz4c7ee8d2006-09-30 23:28:22 -070046
47/*
48 * phase-lock loop variables
49 */
Ingo Molnar53bbfa92008-02-20 07:58:42 +010050
51/*
52 * clock synchronization status
53 *
54 * (TIME_ERROR prevents overwriting the CMOS clock)
55 */
56static int time_state = TIME_OK;
57
58/* clock status bits: */
John Stultz83579292011-11-14 13:06:21 -080059static int time_status = STA_UNSYNC;
Ingo Molnar53bbfa92008-02-20 07:58:42 +010060
Ingo Molnar53bbfa92008-02-20 07:58:42 +010061/* time adjustment (nsecs): */
62static s64 time_offset;
63
64/* pll time constant: */
65static long time_constant = 2;
66
67/* maximum error (usecs): */
john stultz1f5b8f82010-01-28 15:02:41 -080068static long time_maxerror = NTP_PHASE_LIMIT;
Ingo Molnar53bbfa92008-02-20 07:58:42 +010069
70/* estimated error (usecs): */
john stultz1f5b8f82010-01-28 15:02:41 -080071static long time_esterror = NTP_PHASE_LIMIT;
Ingo Molnar53bbfa92008-02-20 07:58:42 +010072
73/* frequency offset (scaled nsecs/secs): */
74static s64 time_freq;
75
76/* time at last adjustment (secs): */
DengChao0af86462015-12-13 12:24:19 +080077static time64_t time_reftime;
Ingo Molnar53bbfa92008-02-20 07:58:42 +010078
John Stultze1292ba2010-03-18 20:19:27 -070079static long time_adjust;
Ingo Molnar53bbfa92008-02-20 07:58:42 +010080
Ingo Molnar069569e2009-02-22 16:03:37 +010081/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
82static s64 ntp_tick_adj;
Ingo Molnar53bbfa92008-02-20 07:58:42 +010083
John Stultz833f32d2015-06-11 15:54:55 -070084/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
85static time64_t ntp_next_leap_sec = TIME64_MAX;
86
Alexander Gordeev025b40a2011-01-12 17:00:56 -080087#ifdef CONFIG_NTP_PPS
88
89/*
90 * The following variables are used when a pulse-per-second (PPS) signal
91 * is available. They establish the engineering parameters of the clock
92 * discipline loop when controlled by the PPS signal.
93 */
94#define PPS_VALID 10 /* PPS signal watchdog max (s) */
95#define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
96#define PPS_INTMIN 2 /* min freq interval (s) (shift) */
97#define PPS_INTMAX 8 /* max freq interval (s) (shift) */
98#define PPS_INTCOUNT 4 /* number of consecutive good intervals to
99 increase pps_shift or consecutive bad
100 intervals to decrease it */
101#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
102
103static int pps_valid; /* signal watchdog counter */
104static long pps_tf[3]; /* phase median filter */
105static long pps_jitter; /* current jitter (ns) */
Arnd Bergmann7ec88e42015-09-28 22:21:28 +0200106static struct timespec64 pps_fbase; /* beginning of the last freq interval */
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800107static int pps_shift; /* current interval duration (s) (shift) */
108static int pps_intcnt; /* interval counter */
109static s64 pps_freq; /* frequency offset (scaled ns/s) */
110static long pps_stabil; /* current stability (scaled ns/s) */
111
112/*
113 * PPS signal quality monitors
114 */
115static long pps_calcnt; /* calibration intervals */
116static long pps_jitcnt; /* jitter limit exceeded */
117static long pps_stbcnt; /* stability limit exceeded */
118static long pps_errcnt; /* calibration errors */
119
120
121/* PPS kernel consumer compensates the whole phase error immediately.
122 * Otherwise, reduce the offset by a fixed factor times the time constant.
123 */
124static inline s64 ntp_offset_chunk(s64 offset)
125{
126 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
127 return offset;
128 else
129 return shift_right(offset, SHIFT_PLL + time_constant);
130}
131
132static inline void pps_reset_freq_interval(void)
133{
134 /* the PPS calibration interval may end
135 surprisingly early */
136 pps_shift = PPS_INTMIN;
137 pps_intcnt = 0;
138}
139
140/**
141 * pps_clear - Clears the PPS state variables
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800142 */
143static inline void pps_clear(void)
144{
145 pps_reset_freq_interval();
146 pps_tf[0] = 0;
147 pps_tf[1] = 0;
148 pps_tf[2] = 0;
149 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
150 pps_freq = 0;
151}
152
153/* Decrease pps_valid to indicate that another second has passed since
154 * the last PPS signal. When it reaches 0, indicate that PPS signal is
155 * missing.
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800156 */
157static inline void pps_dec_valid(void)
158{
159 if (pps_valid > 0)
160 pps_valid--;
161 else {
162 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
163 STA_PPSWANDER | STA_PPSERROR);
164 pps_clear();
165 }
166}
167
168static inline void pps_set_freq(s64 freq)
169{
170 pps_freq = freq;
171}
172
173static inline int is_error_status(int status)
174{
George Spelvinea54bca32014-05-12 09:35:48 -0400175 return (status & (STA_UNSYNC|STA_CLOCKERR))
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800176 /* PPS signal lost when either PPS time or
177 * PPS frequency synchronization requested
178 */
George Spelvinea54bca32014-05-12 09:35:48 -0400179 || ((status & (STA_PPSFREQ|STA_PPSTIME))
180 && !(status & STA_PPSSIGNAL))
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800181 /* PPS jitter exceeded when
182 * PPS time synchronization requested */
George Spelvinea54bca32014-05-12 09:35:48 -0400183 || ((status & (STA_PPSTIME|STA_PPSJITTER))
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800184 == (STA_PPSTIME|STA_PPSJITTER))
185 /* PPS wander exceeded or calibration error when
186 * PPS frequency synchronization requested
187 */
George Spelvinea54bca32014-05-12 09:35:48 -0400188 || ((status & STA_PPSFREQ)
189 && (status & (STA_PPSWANDER|STA_PPSERROR)));
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800190}
191
192static inline void pps_fill_timex(struct timex *txc)
193{
194 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
195 PPM_SCALE_INV, NTP_SCALE_SHIFT);
196 txc->jitter = pps_jitter;
197 if (!(time_status & STA_NANO))
198 txc->jitter /= NSEC_PER_USEC;
199 txc->shift = pps_shift;
200 txc->stabil = pps_stabil;
201 txc->jitcnt = pps_jitcnt;
202 txc->calcnt = pps_calcnt;
203 txc->errcnt = pps_errcnt;
204 txc->stbcnt = pps_stbcnt;
205}
206
207#else /* !CONFIG_NTP_PPS */
208
209static inline s64 ntp_offset_chunk(s64 offset)
210{
211 return shift_right(offset, SHIFT_PLL + time_constant);
212}
213
214static inline void pps_reset_freq_interval(void) {}
215static inline void pps_clear(void) {}
216static inline void pps_dec_valid(void) {}
217static inline void pps_set_freq(s64 freq) {}
218
219static inline int is_error_status(int status)
220{
221 return status & (STA_UNSYNC|STA_CLOCKERR);
222}
223
224static inline void pps_fill_timex(struct timex *txc)
225{
226 /* PPS is not implemented, so these are zero */
227 txc->ppsfreq = 0;
228 txc->jitter = 0;
229 txc->shift = 0;
230 txc->stabil = 0;
231 txc->jitcnt = 0;
232 txc->calcnt = 0;
233 txc->errcnt = 0;
234 txc->stbcnt = 0;
235}
236
237#endif /* CONFIG_NTP_PPS */
238
John Stultz83579292011-11-14 13:06:21 -0800239
240/**
241 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
242 *
243 */
244static inline int ntp_synced(void)
245{
246 return !(time_status & STA_UNSYNC);
247}
248
249
Ingo Molnar53bbfa92008-02-20 07:58:42 +0100250/*
251 * NTP methods:
252 */
john stultz4c7ee8d2006-09-30 23:28:22 -0700253
Ingo Molnar9ce616a2009-02-22 12:42:59 +0100254/*
255 * Update (tick_length, tick_length_base, tick_nsec), based
256 * on (tick_usec, ntp_tick_adj, time_freq):
257 */
Adrian Bunk70bc42f2006-09-30 23:28:29 -0700258static void ntp_update_frequency(void)
259{
Ingo Molnar9ce616a2009-02-22 12:42:59 +0100260 u64 second_length;
Ingo Molnarbc26c312009-02-22 12:17:36 +0100261 u64 new_base;
Adrian Bunk70bc42f2006-09-30 23:28:29 -0700262
Ingo Molnar9ce616a2009-02-22 12:42:59 +0100263 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
264 << NTP_SCALE_SHIFT;
265
Ingo Molnar069569e2009-02-22 16:03:37 +0100266 second_length += ntp_tick_adj;
Ingo Molnar9ce616a2009-02-22 12:42:59 +0100267 second_length += time_freq;
268
Ingo Molnar9ce616a2009-02-22 12:42:59 +0100269 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
Ingo Molnarbc26c312009-02-22 12:17:36 +0100270 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
john stultzfdcedf72009-02-18 16:02:22 -0800271
272 /*
273 * Don't wait for the next second_overflow, apply
Ingo Molnarbc26c312009-02-22 12:17:36 +0100274 * the change to the tick length immediately:
john stultzfdcedf72009-02-18 16:02:22 -0800275 */
Ingo Molnarbc26c312009-02-22 12:17:36 +0100276 tick_length += new_base - tick_length_base;
277 tick_length_base = new_base;
Adrian Bunk70bc42f2006-09-30 23:28:29 -0700278}
279
Ingo Molnar478b7aa2009-02-22 13:22:23 +0100280static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
Ingo Molnarf9398902009-02-22 12:57:49 +0100281{
282 time_status &= ~STA_MODE;
283
284 if (secs < MINSEC)
Ingo Molnar478b7aa2009-02-22 13:22:23 +0100285 return 0;
Ingo Molnarf9398902009-02-22 12:57:49 +0100286
287 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
Ingo Molnar478b7aa2009-02-22 13:22:23 +0100288 return 0;
Ingo Molnarf9398902009-02-22 12:57:49 +0100289
Ingo Molnarf9398902009-02-22 12:57:49 +0100290 time_status |= STA_MODE;
291
Sasha Levina078c6d2012-03-15 12:36:14 -0400292 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
Ingo Molnarf9398902009-02-22 12:57:49 +0100293}
294
Roman Zippelee9851b2008-05-01 04:34:32 -0700295static void ntp_update_offset(long offset)
296{
Roman Zippelee9851b2008-05-01 04:34:32 -0700297 s64 freq_adj;
Ingo Molnarf9398902009-02-22 12:57:49 +0100298 s64 offset64;
299 long secs;
Roman Zippelee9851b2008-05-01 04:34:32 -0700300
301 if (!(time_status & STA_PLL))
302 return;
303
Sasha Levin52d189f2015-12-03 15:46:48 -0500304 if (!(time_status & STA_NANO)) {
305 /* Make sure the multiplication below won't overflow */
306 offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
Roman Zippel9f14f662008-05-01 04:34:36 -0700307 offset *= NSEC_PER_USEC;
Sasha Levin52d189f2015-12-03 15:46:48 -0500308 }
Roman Zippelee9851b2008-05-01 04:34:32 -0700309
310 /*
311 * Scale the phase adjustment and
312 * clamp to the operating range.
313 */
Sasha Levin52d189f2015-12-03 15:46:48 -0500314 offset = clamp(offset, -MAXPHASE, MAXPHASE);
Roman Zippelee9851b2008-05-01 04:34:32 -0700315
316 /*
317 * Select how the frequency is to be controlled
318 * and in which mode (PLL or FLL).
319 */
DengChao0af86462015-12-13 12:24:19 +0800320 secs = (long)(__ktime_get_real_seconds() - time_reftime);
Ingo Molnar10dd31a2009-02-22 13:38:40 +0100321 if (unlikely(time_status & STA_FREQHOLD))
Ingo Molnarc7986ac2009-02-22 13:29:09 +0100322 secs = 0;
323
DengChao0af86462015-12-13 12:24:19 +0800324 time_reftime = __ktime_get_real_seconds();
Roman Zippelee9851b2008-05-01 04:34:32 -0700325
Ingo Molnarf9398902009-02-22 12:57:49 +0100326 offset64 = offset;
Miroslav Lichvar8af3c152010-09-07 16:43:46 +0200327 freq_adj = ntp_update_offset_fll(offset64, secs);
Roman Zippel9f14f662008-05-01 04:34:36 -0700328
Miroslav Lichvar8af3c152010-09-07 16:43:46 +0200329 /*
330 * Clamp update interval to reduce PLL gain with low
331 * sampling rate (e.g. intermittent network connection)
332 * to avoid instability.
333 */
334 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
335 secs = 1 << (SHIFT_PLL + 1 + time_constant);
336
337 freq_adj += (offset64 * secs) <<
338 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
Ingo Molnarf9398902009-02-22 12:57:49 +0100339
340 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
341
342 time_freq = max(freq_adj, -MAXFREQ_SCALED);
343
344 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
Roman Zippelee9851b2008-05-01 04:34:32 -0700345}
346
Roman Zippelb0ee7552006-09-30 23:28:22 -0700347/**
348 * ntp_clear - Clears the NTP state variables
Roman Zippelb0ee7552006-09-30 23:28:22 -0700349 */
350void ntp_clear(void)
351{
Ingo Molnar53bbfa92008-02-20 07:58:42 +0100352 time_adjust = 0; /* stop active adjtime() */
353 time_status |= STA_UNSYNC;
354 time_maxerror = NTP_PHASE_LIMIT;
355 time_esterror = NTP_PHASE_LIMIT;
Roman Zippelb0ee7552006-09-30 23:28:22 -0700356
357 ntp_update_frequency();
358
Ingo Molnar53bbfa92008-02-20 07:58:42 +0100359 tick_length = tick_length_base;
360 time_offset = 0;
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800361
John Stultz833f32d2015-06-11 15:54:55 -0700362 ntp_next_leap_sec = TIME64_MAX;
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800363 /* Clear PPS state variables */
364 pps_clear();
Roman Zippelb0ee7552006-09-30 23:28:22 -0700365}
366
John Stultzea7cf492011-11-14 13:18:07 -0800367
368u64 ntp_tick_length(void)
369{
John Stultza076b212013-03-22 11:52:03 -0700370 return tick_length;
John Stultzea7cf492011-11-14 13:18:07 -0800371}
372
John Stultz833f32d2015-06-11 15:54:55 -0700373/**
374 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
375 *
376 * Provides the time of the next leapsecond against CLOCK_REALTIME in
377 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
378 */
379ktime_t ntp_get_next_leap(void)
380{
381 ktime_t ret;
382
383 if ((time_state == TIME_INS) && (time_status & STA_INS))
384 return ktime_set(ntp_next_leap_sec, 0);
Thomas Gleixner2456e852016-12-25 11:38:40 +0100385 ret = KTIME_MAX;
John Stultz833f32d2015-06-11 15:54:55 -0700386 return ret;
387}
John Stultzea7cf492011-11-14 13:18:07 -0800388
john stultz4c7ee8d2006-09-30 23:28:22 -0700389/*
390 * this routine handles the overflow of the microsecond field
391 *
392 * The tricky bits of code to handle the accurate clock support
393 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
394 * They were originally developed for SUN and DEC kernels.
395 * All the kudos should go to Dave for this stuff.
John Stultz6b43ae82012-03-15 13:04:03 -0700396 *
397 * Also handles leap second processing, and returns leap offset
john stultz4c7ee8d2006-09-30 23:28:22 -0700398 */
DengChaoc7963482015-12-13 12:26:42 +0800399int second_overflow(time64_t secs)
john stultz4c7ee8d2006-09-30 23:28:22 -0700400{
Ingo Molnar39854fe2009-02-22 16:06:58 +0100401 s64 delta;
John Stultz6b43ae82012-03-15 13:04:03 -0700402 int leap = 0;
DengChaoc7963482015-12-13 12:26:42 +0800403 s32 rem;
john stultz4c7ee8d2006-09-30 23:28:22 -0700404
John Stultz6b43ae82012-03-15 13:04:03 -0700405 /*
406 * Leap second processing. If in leap-insert state at the end of the
407 * day, the system clock is set back one second; if in leap-delete
408 * state, the system clock is set ahead one second.
409 */
410 switch (time_state) {
411 case TIME_OK:
John Stultz833f32d2015-06-11 15:54:55 -0700412 if (time_status & STA_INS) {
John Stultz6b43ae82012-03-15 13:04:03 -0700413 time_state = TIME_INS;
DengChaoc7963482015-12-13 12:26:42 +0800414 div_s64_rem(secs, SECS_PER_DAY, &rem);
415 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
John Stultz833f32d2015-06-11 15:54:55 -0700416 } else if (time_status & STA_DEL) {
John Stultz6b43ae82012-03-15 13:04:03 -0700417 time_state = TIME_DEL;
DengChaoc7963482015-12-13 12:26:42 +0800418 div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
419 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
John Stultz833f32d2015-06-11 15:54:55 -0700420 }
John Stultz6b43ae82012-03-15 13:04:03 -0700421 break;
422 case TIME_INS:
John Stultz833f32d2015-06-11 15:54:55 -0700423 if (!(time_status & STA_INS)) {
424 ntp_next_leap_sec = TIME64_MAX;
John Stultz6b1859d2012-07-13 01:21:50 -0400425 time_state = TIME_OK;
DengChaoc7963482015-12-13 12:26:42 +0800426 } else if (secs == ntp_next_leap_sec) {
John Stultz6b43ae82012-03-15 13:04:03 -0700427 leap = -1;
428 time_state = TIME_OOP;
429 printk(KERN_NOTICE
430 "Clock: inserting leap second 23:59:60 UTC\n");
431 }
432 break;
433 case TIME_DEL:
John Stultz833f32d2015-06-11 15:54:55 -0700434 if (!(time_status & STA_DEL)) {
435 ntp_next_leap_sec = TIME64_MAX;
John Stultz6b1859d2012-07-13 01:21:50 -0400436 time_state = TIME_OK;
DengChaoc7963482015-12-13 12:26:42 +0800437 } else if (secs == ntp_next_leap_sec) {
John Stultz6b43ae82012-03-15 13:04:03 -0700438 leap = 1;
John Stultz833f32d2015-06-11 15:54:55 -0700439 ntp_next_leap_sec = TIME64_MAX;
John Stultz6b43ae82012-03-15 13:04:03 -0700440 time_state = TIME_WAIT;
441 printk(KERN_NOTICE
442 "Clock: deleting leap second 23:59:59 UTC\n");
443 }
444 break;
445 case TIME_OOP:
John Stultz833f32d2015-06-11 15:54:55 -0700446 ntp_next_leap_sec = TIME64_MAX;
John Stultz6b43ae82012-03-15 13:04:03 -0700447 time_state = TIME_WAIT;
448 break;
John Stultz6b43ae82012-03-15 13:04:03 -0700449 case TIME_WAIT:
450 if (!(time_status & (STA_INS | STA_DEL)))
451 time_state = TIME_OK;
452 break;
453 }
454
455
john stultz4c7ee8d2006-09-30 23:28:22 -0700456 /* Bump the maxerror field */
Roman Zippel074b3b82008-05-01 04:34:34 -0700457 time_maxerror += MAXFREQ / NSEC_PER_USEC;
john stultz4c7ee8d2006-09-30 23:28:22 -0700458 if (time_maxerror > NTP_PHASE_LIMIT) {
459 time_maxerror = NTP_PHASE_LIMIT;
460 time_status |= STA_UNSYNC;
461 }
462
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800463 /* Compute the phase adjustment for the next second */
Ingo Molnar39854fe2009-02-22 16:06:58 +0100464 tick_length = tick_length_base;
465
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800466 delta = ntp_offset_chunk(time_offset);
Ingo Molnar39854fe2009-02-22 16:06:58 +0100467 time_offset -= delta;
468 tick_length += delta;
john stultz4c7ee8d2006-09-30 23:28:22 -0700469
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800470 /* Check PPS signal */
471 pps_dec_valid();
472
Ingo Molnar3c972c22009-02-22 12:06:57 +0100473 if (!time_adjust)
John Stultzbd331262011-11-14 13:48:36 -0800474 goto out;
Ingo Molnar3c972c22009-02-22 12:06:57 +0100475
476 if (time_adjust > MAX_TICKADJ) {
477 time_adjust -= MAX_TICKADJ;
478 tick_length += MAX_TICKADJ_SCALED;
John Stultzbd331262011-11-14 13:48:36 -0800479 goto out;
john stultz4c7ee8d2006-09-30 23:28:22 -0700480 }
Ingo Molnar3c972c22009-02-22 12:06:57 +0100481
482 if (time_adjust < -MAX_TICKADJ) {
483 time_adjust += MAX_TICKADJ;
484 tick_length -= MAX_TICKADJ_SCALED;
John Stultzbd331262011-11-14 13:48:36 -0800485 goto out;
Ingo Molnar3c972c22009-02-22 12:06:57 +0100486 }
487
488 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
489 << NTP_SCALE_SHIFT;
490 time_adjust = 0;
John Stultz6b43ae82012-03-15 13:04:03 -0700491
John Stultzbd331262011-11-14 13:48:36 -0800492out:
John Stultz6b43ae82012-03-15 13:04:03 -0700493 return leap;
john stultz4c7ee8d2006-09-30 23:28:22 -0700494}
495
Jason Gunthorpe0f295b02017-10-13 11:54:33 -0600496static void sync_hw_clock(struct work_struct *work);
497static DECLARE_DELAYED_WORK(sync_work, sync_hw_clock);
498
499static void sched_sync_hw_clock(struct timespec64 now,
500 unsigned long target_nsec, bool fail)
501
502{
503 struct timespec64 next;
504
505 getnstimeofday64(&next);
506 if (!fail)
507 next.tv_sec = 659;
508 else {
509 /*
510 * Try again as soon as possible. Delaying long periods
511 * decreases the accuracy of the work queue timer. Due to this
512 * the algorithm is very likely to require a short-sleep retry
513 * after the above long sleep to synchronize ts_nsec.
514 */
515 next.tv_sec = 0;
516 }
517
518 /* Compute the needed delay that will get to tv_nsec == target_nsec */
519 next.tv_nsec = target_nsec - next.tv_nsec;
520 if (next.tv_nsec <= 0)
521 next.tv_nsec += NSEC_PER_SEC;
522 if (next.tv_nsec >= NSEC_PER_SEC) {
523 next.tv_sec++;
524 next.tv_nsec -= NSEC_PER_SEC;
525 }
526
527 queue_delayed_work(system_power_efficient_wq, &sync_work,
528 timespec64_to_jiffies(&next));
529}
530
531static void sync_rtc_clock(void)
532{
533 unsigned long target_nsec;
534 struct timespec64 adjust, now;
535 int rc;
536
537 if (!IS_ENABLED(CONFIG_RTC_SYSTOHC))
538 return;
539
540 getnstimeofday64(&now);
541
542 adjust = now;
543 if (persistent_clock_is_local)
544 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
545
546 /*
547 * The current RTC in use will provide the target_nsec it wants to be
548 * called at, and does rtc_tv_nsec_ok internally.
549 */
550 rc = rtc_set_ntp_time(adjust, &target_nsec);
551 if (rc == -ENODEV)
552 return;
553
554 sched_sync_hw_clock(now, target_nsec, rc);
555}
556
Xunlei Pang3c00a1f2015-04-01 20:34:23 -0700557#ifdef CONFIG_GENERIC_CMOS_UPDATE
Xunlei Pang7494e9e2015-07-26 18:45:39 +0800558int __weak update_persistent_clock(struct timespec now)
559{
560 return -ENODEV;
561}
562
Xunlei Pang3c00a1f2015-04-01 20:34:23 -0700563int __weak update_persistent_clock64(struct timespec64 now64)
564{
565 struct timespec now;
566
567 now = timespec64_to_timespec(now64);
568 return update_persistent_clock(now);
569}
570#endif
571
Jason Gunthorpe0f295b02017-10-13 11:54:33 -0600572static bool sync_cmos_clock(void)
john stultz4c7ee8d2006-09-30 23:28:22 -0700573{
Jason Gunthorpe0f295b02017-10-13 11:54:33 -0600574 static bool no_cmos;
Thomas Gleixnerd6d29892014-07-16 21:04:04 +0000575 struct timespec64 now;
Jason Gunthorpe0f295b02017-10-13 11:54:33 -0600576 struct timespec64 adjust;
577 int rc = -EPROTO;
578 long target_nsec = NSEC_PER_SEC / 2;
579
580 if (!IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE))
581 return false;
582
583 if (no_cmos)
584 return false;
Thomas Gleixner82644452007-07-21 04:37:37 -0700585
586 /*
Jason Gunthorpe0f295b02017-10-13 11:54:33 -0600587 * Historically update_persistent_clock64() has followed x86
588 * semantics, which match the MC146818A/etc RTC. This RTC will store
589 * 'adjust' and then in .5s it will advance once second.
590 *
591 * Architectures are strongly encouraged to use rtclib and not
592 * implement this legacy API.
Thomas Gleixner82644452007-07-21 04:37:37 -0700593 */
Thomas Gleixnerd6d29892014-07-16 21:04:04 +0000594 getnstimeofday64(&now);
Jason Gunthorpe0f295b02017-10-13 11:54:33 -0600595 if (rtc_tv_nsec_ok(-1 * target_nsec, &adjust, &now)) {
Prarit Bhargava84e345e42013-02-08 17:59:53 -0500596 if (persistent_clock_is_local)
597 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
Jason Gunthorpe0f295b02017-10-13 11:54:33 -0600598 rc = update_persistent_clock64(adjust);
599 /*
600 * The machine does not support update_persistent_clock64 even
601 * though it defines CONFIG_GENERIC_CMOS_UPDATE.
602 */
603 if (rc == -ENODEV) {
604 no_cmos = true;
605 return false;
606 }
Jason Gunthorpe023f3332012-12-17 14:30:53 -0700607 }
Thomas Gleixner82644452007-07-21 04:37:37 -0700608
Jason Gunthorpe0f295b02017-10-13 11:54:33 -0600609 sched_sync_hw_clock(now, target_nsec, rc);
610 return true;
611}
Thomas Gleixner82644452007-07-21 04:37:37 -0700612
Jason Gunthorpe0f295b02017-10-13 11:54:33 -0600613/*
614 * If we have an externally synchronized Linux clock, then update RTC clock
615 * accordingly every ~11 minutes. Generally RTCs can only store second
616 * precision, but many RTCs will adjust the phase of their second tick to
617 * match the moment of update. This infrastructure arranges to call to the RTC
618 * set at the correct moment to phase synchronize the RTC second tick over
619 * with the kernel clock.
620 */
621static void sync_hw_clock(struct work_struct *work)
622{
623 if (!ntp_synced())
624 return;
Thomas Gleixner82644452007-07-21 04:37:37 -0700625
Jason Gunthorpe0f295b02017-10-13 11:54:33 -0600626 if (sync_cmos_clock())
627 return;
628
629 sync_rtc_clock();
john stultz4c7ee8d2006-09-30 23:28:22 -0700630}
631
John Stultz7bd36012013-09-11 16:50:56 -0700632void ntp_notify_cmos_timer(void)
Thomas Gleixner82644452007-07-21 04:37:37 -0700633{
Jason Gunthorpe0f295b02017-10-13 11:54:33 -0600634 if (!ntp_synced())
635 return;
636
637 if (IS_ENABLED(CONFIG_GENERIC_CMOS_UPDATE) ||
638 IS_ENABLED(CONFIG_RTC_SYSTOHC))
639 queue_delayed_work(system_power_efficient_wq, &sync_work, 0);
Thomas Gleixner82644452007-07-21 04:37:37 -0700640}
641
Ingo Molnar80f22572009-02-22 15:15:32 +0100642/*
643 * Propagate a new txc->status value into the NTP state:
644 */
John Stultz7d489d12014-07-16 21:04:01 +0000645static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
Ingo Molnar80f22572009-02-22 15:15:32 +0100646{
Ingo Molnar80f22572009-02-22 15:15:32 +0100647 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
648 time_state = TIME_OK;
649 time_status = STA_UNSYNC;
John Stultz833f32d2015-06-11 15:54:55 -0700650 ntp_next_leap_sec = TIME64_MAX;
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800651 /* restart PPS frequency calibration */
652 pps_reset_freq_interval();
Ingo Molnar80f22572009-02-22 15:15:32 +0100653 }
Ingo Molnar80f22572009-02-22 15:15:32 +0100654
655 /*
656 * If we turn on PLL adjustments then reset the
657 * reference time to current time.
658 */
659 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
DengChao0af86462015-12-13 12:24:19 +0800660 time_reftime = __ktime_get_real_seconds();
Ingo Molnar80f22572009-02-22 15:15:32 +0100661
John Stultza2a5ac82009-02-26 09:46:14 -0800662 /* only set allowed bits */
663 time_status &= STA_RONLY;
Ingo Molnar80f22572009-02-22 15:15:32 +0100664 time_status |= txc->status & ~STA_RONLY;
Ingo Molnar80f22572009-02-22 15:15:32 +0100665}
Richard Cochrancd5398b2012-04-27 10:12:41 +0200666
John Stultza076b212013-03-22 11:52:03 -0700667
John Stultzcc244dd2012-05-03 12:30:07 -0700668static inline void process_adjtimex_modes(struct timex *txc,
John Stultz7d489d12014-07-16 21:04:01 +0000669 struct timespec64 *ts,
John Stultzcc244dd2012-05-03 12:30:07 -0700670 s32 *time_tai)
Ingo Molnar80f22572009-02-22 15:15:32 +0100671{
672 if (txc->modes & ADJ_STATUS)
673 process_adj_status(txc, ts);
674
675 if (txc->modes & ADJ_NANO)
676 time_status |= STA_NANO;
Ingo Molnare9629162009-02-22 15:35:18 +0100677
Ingo Molnar80f22572009-02-22 15:15:32 +0100678 if (txc->modes & ADJ_MICRO)
679 time_status &= ~STA_NANO;
680
681 if (txc->modes & ADJ_FREQUENCY) {
Ingo Molnar2b9d1492009-02-22 15:48:43 +0100682 time_freq = txc->freq * PPM_SCALE;
Ingo Molnar80f22572009-02-22 15:15:32 +0100683 time_freq = min(time_freq, MAXFREQ_SCALED);
684 time_freq = max(time_freq, -MAXFREQ_SCALED);
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800685 /* update pps_freq */
686 pps_set_freq(time_freq);
Ingo Molnar80f22572009-02-22 15:15:32 +0100687 }
688
689 if (txc->modes & ADJ_MAXERROR)
690 time_maxerror = txc->maxerror;
Ingo Molnare9629162009-02-22 15:35:18 +0100691
Ingo Molnar80f22572009-02-22 15:15:32 +0100692 if (txc->modes & ADJ_ESTERROR)
693 time_esterror = txc->esterror;
694
695 if (txc->modes & ADJ_TIMECONST) {
696 time_constant = txc->constant;
697 if (!(time_status & STA_NANO))
698 time_constant += 4;
699 time_constant = min(time_constant, (long)MAXTC);
700 time_constant = max(time_constant, 0l);
701 }
702
703 if (txc->modes & ADJ_TAI && txc->constant > 0)
John Stultzcc244dd2012-05-03 12:30:07 -0700704 *time_tai = txc->constant;
Ingo Molnar80f22572009-02-22 15:15:32 +0100705
706 if (txc->modes & ADJ_OFFSET)
707 ntp_update_offset(txc->offset);
Ingo Molnare9629162009-02-22 15:35:18 +0100708
Ingo Molnar80f22572009-02-22 15:15:32 +0100709 if (txc->modes & ADJ_TICK)
710 tick_usec = txc->tick;
711
712 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
713 ntp_update_frequency();
714}
715
john stultz4c7ee8d2006-09-30 23:28:22 -0700716
John Stultzad460962013-03-22 11:59:04 -0700717/*
718 * adjtimex mainly allows reading (and writing, if superuser) of
719 * kernel time-keeping variables. used by xntpd.
720 */
John Stultz7d489d12014-07-16 21:04:01 +0000721int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
John Stultzad460962013-03-22 11:59:04 -0700722{
John Stultzad460962013-03-22 11:59:04 -0700723 int result;
724
Roman Zippel916c7a82008-08-20 16:46:08 -0700725 if (txc->modes & ADJ_ADJTIME) {
726 long save_adjust = time_adjust;
727
728 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
729 /* adjtime() is independent from ntp_adjtime() */
730 time_adjust = txc->offset;
731 ntp_update_frequency();
732 }
733 txc->offset = save_adjust;
Ingo Molnare9629162009-02-22 15:35:18 +0100734 } else {
735
736 /* If there are input parameters, then process them: */
737 if (txc->modes)
John Stultz87ace392013-03-22 12:28:15 -0700738 process_adjtimex_modes(txc, ts, time_tai);
Ingo Molnare9629162009-02-22 15:35:18 +0100739
740 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
741 NTP_SCALE_SHIFT);
742 if (!(time_status & STA_NANO))
743 txc->offset /= NSEC_PER_USEC;
Roman Zippel916c7a82008-08-20 16:46:08 -0700744 }
Roman Zippel916c7a82008-08-20 16:46:08 -0700745
Roman Zippeleea83d82008-05-01 04:34:33 -0700746 result = time_state; /* mostly `TIME_OK' */
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800747 /* check for errors */
748 if (is_error_status(time_status))
john stultz4c7ee8d2006-09-30 23:28:22 -0700749 result = TIME_ERROR;
750
Roman Zippeld40e9442008-09-22 14:42:44 -0700751 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
Ingo Molnar2b9d1492009-02-22 15:48:43 +0100752 PPM_SCALE_INV, NTP_SCALE_SHIFT);
john stultz4c7ee8d2006-09-30 23:28:22 -0700753 txc->maxerror = time_maxerror;
754 txc->esterror = time_esterror;
755 txc->status = time_status;
756 txc->constant = time_constant;
Adrian Bunk70bc42f2006-09-30 23:28:29 -0700757 txc->precision = 1;
Roman Zippel074b3b82008-05-01 04:34:34 -0700758 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
john stultz4c7ee8d2006-09-30 23:28:22 -0700759 txc->tick = tick_usec;
John Stultz87ace392013-03-22 12:28:15 -0700760 txc->tai = *time_tai;
john stultz4c7ee8d2006-09-30 23:28:22 -0700761
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800762 /* fill PPS status fields */
763 pps_fill_timex(txc);
Ingo Molnare9629162009-02-22 15:35:18 +0100764
John Stultz7d489d12014-07-16 21:04:01 +0000765 txc->time.tv_sec = (time_t)ts->tv_sec;
John Stultz87ace392013-03-22 12:28:15 -0700766 txc->time.tv_usec = ts->tv_nsec;
Roman Zippeleea83d82008-05-01 04:34:33 -0700767 if (!(time_status & STA_NANO))
768 txc->time.tv_usec /= NSEC_PER_USEC;
Roman Zippelee9851b2008-05-01 04:34:32 -0700769
John Stultz96efdcf2015-06-11 15:54:56 -0700770 /* Handle leapsec adjustments */
771 if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
772 if ((time_state == TIME_INS) && (time_status & STA_INS)) {
773 result = TIME_OOP;
774 txc->tai++;
775 txc->time.tv_sec--;
776 }
777 if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
778 result = TIME_WAIT;
779 txc->tai--;
780 txc->time.tv_sec++;
781 }
782 if ((time_state == TIME_OOP) &&
783 (ts->tv_sec == ntp_next_leap_sec)) {
784 result = TIME_WAIT;
785 }
786 }
787
Roman Zippelee9851b2008-05-01 04:34:32 -0700788 return result;
john stultz4c7ee8d2006-09-30 23:28:22 -0700789}
Roman Zippel10a398d2008-03-04 15:14:26 -0800790
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800791#ifdef CONFIG_NTP_PPS
792
793/* actually struct pps_normtime is good old struct timespec, but it is
794 * semantically different (and it is the reason why it was invented):
795 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
796 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
797struct pps_normtime {
Arnd Bergmann7ec88e42015-09-28 22:21:28 +0200798 s64 sec; /* seconds */
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800799 long nsec; /* nanoseconds */
800};
801
802/* normalize the timestamp so that nsec is in the
803 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
Arnd Bergmann7ec88e42015-09-28 22:21:28 +0200804static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800805{
806 struct pps_normtime norm = {
807 .sec = ts.tv_sec,
808 .nsec = ts.tv_nsec
809 };
810
811 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
812 norm.nsec -= NSEC_PER_SEC;
813 norm.sec++;
814 }
815
816 return norm;
817}
818
819/* get current phase correction and jitter */
820static inline long pps_phase_filter_get(long *jitter)
821{
822 *jitter = pps_tf[0] - pps_tf[1];
823 if (*jitter < 0)
824 *jitter = -*jitter;
825
826 /* TODO: test various filters */
827 return pps_tf[0];
828}
829
830/* add the sample to the phase filter */
831static inline void pps_phase_filter_add(long err)
832{
833 pps_tf[2] = pps_tf[1];
834 pps_tf[1] = pps_tf[0];
835 pps_tf[0] = err;
836}
837
838/* decrease frequency calibration interval length.
839 * It is halved after four consecutive unstable intervals.
840 */
841static inline void pps_dec_freq_interval(void)
842{
843 if (--pps_intcnt <= -PPS_INTCOUNT) {
844 pps_intcnt = -PPS_INTCOUNT;
845 if (pps_shift > PPS_INTMIN) {
846 pps_shift--;
847 pps_intcnt = 0;
848 }
849 }
850}
851
852/* increase frequency calibration interval length.
853 * It is doubled after four consecutive stable intervals.
854 */
855static inline void pps_inc_freq_interval(void)
856{
857 if (++pps_intcnt >= PPS_INTCOUNT) {
858 pps_intcnt = PPS_INTCOUNT;
859 if (pps_shift < PPS_INTMAX) {
860 pps_shift++;
861 pps_intcnt = 0;
862 }
863 }
864}
865
866/* update clock frequency based on MONOTONIC_RAW clock PPS signal
867 * timestamps
868 *
869 * At the end of the calibration interval the difference between the
870 * first and last MONOTONIC_RAW clock timestamps divided by the length
871 * of the interval becomes the frequency update. If the interval was
872 * too long, the data are discarded.
873 * Returns the difference between old and new frequency values.
874 */
875static long hardpps_update_freq(struct pps_normtime freq_norm)
876{
877 long delta, delta_mod;
878 s64 ftemp;
879
880 /* check if the frequency interval was too long */
881 if (freq_norm.sec > (2 << pps_shift)) {
882 time_status |= STA_PPSERROR;
883 pps_errcnt++;
884 pps_dec_freq_interval();
John Stultz6d9bcb62014-06-04 16:11:43 -0700885 printk_deferred(KERN_ERR
Arnd Bergmann7ec88e42015-09-28 22:21:28 +0200886 "hardpps: PPSERROR: interval too long - %lld s\n",
John Stultz6d9bcb62014-06-04 16:11:43 -0700887 freq_norm.sec);
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800888 return 0;
889 }
890
891 /* here the raw frequency offset and wander (stability) is
892 * calculated. If the wander is less than the wander threshold
893 * the interval is increased; otherwise it is decreased.
894 */
895 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
896 freq_norm.sec);
897 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
898 pps_freq = ftemp;
899 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
John Stultz6d9bcb62014-06-04 16:11:43 -0700900 printk_deferred(KERN_WARNING
901 "hardpps: PPSWANDER: change=%ld\n", delta);
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800902 time_status |= STA_PPSWANDER;
903 pps_stbcnt++;
904 pps_dec_freq_interval();
905 } else { /* good sample */
906 pps_inc_freq_interval();
907 }
908
909 /* the stability metric is calculated as the average of recent
910 * frequency changes, but is used only for performance
911 * monitoring
912 */
913 delta_mod = delta;
914 if (delta_mod < 0)
915 delta_mod = -delta_mod;
916 pps_stabil += (div_s64(((s64)delta_mod) <<
917 (NTP_SCALE_SHIFT - SHIFT_USEC),
918 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
919
920 /* if enabled, the system clock frequency is updated */
921 if ((time_status & STA_PPSFREQ) != 0 &&
922 (time_status & STA_FREQHOLD) == 0) {
923 time_freq = pps_freq;
924 ntp_update_frequency();
925 }
926
927 return delta;
928}
929
930/* correct REALTIME clock phase error against PPS signal */
931static void hardpps_update_phase(long error)
932{
933 long correction = -error;
934 long jitter;
935
936 /* add the sample to the median filter */
937 pps_phase_filter_add(correction);
938 correction = pps_phase_filter_get(&jitter);
939
940 /* Nominal jitter is due to PPS signal noise. If it exceeds the
941 * threshold, the sample is discarded; otherwise, if so enabled,
942 * the time offset is updated.
943 */
944 if (jitter > (pps_jitter << PPS_POPCORN)) {
John Stultz6d9bcb62014-06-04 16:11:43 -0700945 printk_deferred(KERN_WARNING
946 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
947 jitter, (pps_jitter << PPS_POPCORN));
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800948 time_status |= STA_PPSJITTER;
949 pps_jitcnt++;
950 } else if (time_status & STA_PPSTIME) {
951 /* correct the time using the phase offset */
952 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
953 NTP_INTERVAL_FREQ);
954 /* cancel running adjtime() */
955 time_adjust = 0;
956 }
957 /* update jitter */
958 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
959}
960
961/*
John Stultzaa6f9c592013-03-22 11:31:29 -0700962 * __hardpps() - discipline CPU clock oscillator to external PPS signal
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800963 *
964 * This routine is called at each PPS signal arrival in order to
965 * discipline the CPU clock oscillator to the PPS signal. It takes two
966 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
967 * is used to correct clock phase error and the latter is used to
968 * correct the frequency.
969 *
970 * This code is based on David Mills's reference nanokernel
971 * implementation. It was mostly rewritten but keeps the same idea.
972 */
Arnd Bergmann7ec88e42015-09-28 22:21:28 +0200973void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800974{
975 struct pps_normtime pts_norm, freq_norm;
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800976
977 pts_norm = pps_normalize_ts(*phase_ts);
978
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800979 /* clear the error bits, they will be set again if needed */
980 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
981
982 /* indicate signal presence */
983 time_status |= STA_PPSSIGNAL;
984 pps_valid = PPS_VALID;
985
986 /* when called for the first time,
987 * just start the frequency interval */
988 if (unlikely(pps_fbase.tv_sec == 0)) {
989 pps_fbase = *raw_ts;
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800990 return;
991 }
992
993 /* ok, now we have a base for frequency calculation */
Arnd Bergmann7ec88e42015-09-28 22:21:28 +0200994 freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
Alexander Gordeev025b40a2011-01-12 17:00:56 -0800995
996 /* check that the signal is in the range
997 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
998 if ((freq_norm.sec == 0) ||
999 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1000 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1001 time_status |= STA_PPSJITTER;
1002 /* restart the frequency calibration interval */
1003 pps_fbase = *raw_ts;
John Stultz6d9bcb62014-06-04 16:11:43 -07001004 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
Alexander Gordeev025b40a2011-01-12 17:00:56 -08001005 return;
1006 }
1007
1008 /* signal is ok */
1009
1010 /* check if the current frequency interval is finished */
1011 if (freq_norm.sec >= (1 << pps_shift)) {
1012 pps_calcnt++;
1013 /* restart the frequency calibration interval */
1014 pps_fbase = *raw_ts;
1015 hardpps_update_freq(freq_norm);
1016 }
1017
1018 hardpps_update_phase(pts_norm.nsec);
1019
Alexander Gordeev025b40a2011-01-12 17:00:56 -08001020}
Alexander Gordeev025b40a2011-01-12 17:00:56 -08001021#endif /* CONFIG_NTP_PPS */
1022
Roman Zippel10a398d2008-03-04 15:14:26 -08001023static int __init ntp_tick_adj_setup(char *str)
1024{
Fabian Frederickcdafb932014-05-09 20:32:25 +02001025 int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1026
1027 if (rc)
1028 return rc;
Ingo Molnar069569e2009-02-22 16:03:37 +01001029 ntp_tick_adj <<= NTP_SCALE_SHIFT;
1030
Roman Zippel10a398d2008-03-04 15:14:26 -08001031 return 1;
1032}
1033
1034__setup("ntp_tick_adj=", ntp_tick_adj_setup);
Roman Zippel7dffa3c2008-05-01 04:34:41 -07001035
1036void __init ntp_init(void)
1037{
1038 ntp_clear();
Roman Zippel7dffa3c2008-05-01 04:34:41 -07001039}