blob: b4a9b0d5928dfb33c0c6dd5ef507305f35214fe7 [file] [log] [blame]
Greg Ungerer171d8092011-05-17 16:45:00 +10001#ifndef _M68K_BITOPS_H
2#define _M68K_BITOPS_H
3/*
4 * Copyright 1992, Linus Torvalds.
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file COPYING in the main directory of this archive
8 * for more details.
9 */
10
11#ifndef _LINUX_BITOPS_H
12#error only <linux/bitops.h> can be included directly
Sam Ravnborg49148022009-01-16 21:58:10 +100013#endif
Greg Ungerer171d8092011-05-17 16:45:00 +100014
15#include <linux/compiler.h>
Peter Zijlstra2db56e82014-03-13 19:00:36 +010016#include <asm/barrier.h>
Greg Ungerer171d8092011-05-17 16:45:00 +100017
18/*
19 * Bit access functions vary across the ColdFire and 68k families.
20 * So we will break them out here, and then macro in the ones we want.
21 *
22 * ColdFire - supports standard bset/bclr/bchg with register operand only
23 * 68000 - supports standard bset/bclr/bchg with memory operand
24 * >= 68020 - also supports the bfset/bfclr/bfchg instructions
25 *
26 * Although it is possible to use only the bset/bclr/bchg with register
27 * operands on all platforms you end up with larger generated code.
28 * So we use the best form possible on a given platform.
29 */
30
31static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr)
32{
33 char *p = (char *)vaddr + (nr ^ 31) / 8;
34
35 __asm__ __volatile__ ("bset %1,(%0)"
36 :
37 : "a" (p), "di" (nr & 7)
38 : "memory");
39}
40
41static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr)
42{
43 char *p = (char *)vaddr + (nr ^ 31) / 8;
44
45 __asm__ __volatile__ ("bset %1,%0"
46 : "+m" (*p)
47 : "di" (nr & 7));
48}
49
50static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr)
51{
52 __asm__ __volatile__ ("bfset %1{%0:#1}"
53 :
54 : "d" (nr ^ 31), "o" (*vaddr)
55 : "memory");
56}
57
58#if defined(CONFIG_COLDFIRE)
59#define set_bit(nr, vaddr) bset_reg_set_bit(nr, vaddr)
60#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
61#define set_bit(nr, vaddr) bset_mem_set_bit(nr, vaddr)
62#else
63#define set_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
64 bset_mem_set_bit(nr, vaddr) : \
65 bfset_mem_set_bit(nr, vaddr))
66#endif
67
68#define __set_bit(nr, vaddr) set_bit(nr, vaddr)
69
70
Greg Ungerer171d8092011-05-17 16:45:00 +100071static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr)
72{
73 char *p = (char *)vaddr + (nr ^ 31) / 8;
74
75 __asm__ __volatile__ ("bclr %1,(%0)"
76 :
77 : "a" (p), "di" (nr & 7)
78 : "memory");
79}
80
81static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
82{
83 char *p = (char *)vaddr + (nr ^ 31) / 8;
84
85 __asm__ __volatile__ ("bclr %1,%0"
86 : "+m" (*p)
87 : "di" (nr & 7));
88}
89
90static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
91{
92 __asm__ __volatile__ ("bfclr %1{%0:#1}"
93 :
94 : "d" (nr ^ 31), "o" (*vaddr)
95 : "memory");
96}
97
98#if defined(CONFIG_COLDFIRE)
99#define clear_bit(nr, vaddr) bclr_reg_clear_bit(nr, vaddr)
100#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
101#define clear_bit(nr, vaddr) bclr_mem_clear_bit(nr, vaddr)
102#else
103#define clear_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
104 bclr_mem_clear_bit(nr, vaddr) : \
105 bfclr_mem_clear_bit(nr, vaddr))
106#endif
107
108#define __clear_bit(nr, vaddr) clear_bit(nr, vaddr)
109
110
111static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr)
112{
113 char *p = (char *)vaddr + (nr ^ 31) / 8;
114
115 __asm__ __volatile__ ("bchg %1,(%0)"
116 :
117 : "a" (p), "di" (nr & 7)
118 : "memory");
119}
120
121static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
122{
123 char *p = (char *)vaddr + (nr ^ 31) / 8;
124
125 __asm__ __volatile__ ("bchg %1,%0"
126 : "+m" (*p)
127 : "di" (nr & 7));
128}
129
130static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
131{
132 __asm__ __volatile__ ("bfchg %1{%0:#1}"
133 :
134 : "d" (nr ^ 31), "o" (*vaddr)
135 : "memory");
136}
137
138#if defined(CONFIG_COLDFIRE)
139#define change_bit(nr, vaddr) bchg_reg_change_bit(nr, vaddr)
140#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
141#define change_bit(nr, vaddr) bchg_mem_change_bit(nr, vaddr)
142#else
143#define change_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
144 bchg_mem_change_bit(nr, vaddr) : \
145 bfchg_mem_change_bit(nr, vaddr))
146#endif
147
148#define __change_bit(nr, vaddr) change_bit(nr, vaddr)
149
150
151static inline int test_bit(int nr, const unsigned long *vaddr)
152{
153 return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0;
154}
155
156
157static inline int bset_reg_test_and_set_bit(int nr,
158 volatile unsigned long *vaddr)
159{
160 char *p = (char *)vaddr + (nr ^ 31) / 8;
161 char retval;
162
163 __asm__ __volatile__ ("bset %2,(%1); sne %0"
164 : "=d" (retval)
165 : "a" (p), "di" (nr & 7)
166 : "memory");
167 return retval;
168}
169
170static inline int bset_mem_test_and_set_bit(int nr,
171 volatile unsigned long *vaddr)
172{
173 char *p = (char *)vaddr + (nr ^ 31) / 8;
174 char retval;
175
176 __asm__ __volatile__ ("bset %2,%1; sne %0"
177 : "=d" (retval), "+m" (*p)
178 : "di" (nr & 7));
179 return retval;
180}
181
182static inline int bfset_mem_test_and_set_bit(int nr,
183 volatile unsigned long *vaddr)
184{
185 char retval;
186
187 __asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"
188 : "=d" (retval)
189 : "d" (nr ^ 31), "o" (*vaddr)
190 : "memory");
191 return retval;
192}
193
194#if defined(CONFIG_COLDFIRE)
195#define test_and_set_bit(nr, vaddr) bset_reg_test_and_set_bit(nr, vaddr)
196#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
197#define test_and_set_bit(nr, vaddr) bset_mem_test_and_set_bit(nr, vaddr)
198#else
199#define test_and_set_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
200 bset_mem_test_and_set_bit(nr, vaddr) : \
201 bfset_mem_test_and_set_bit(nr, vaddr))
202#endif
203
204#define __test_and_set_bit(nr, vaddr) test_and_set_bit(nr, vaddr)
205
206
207static inline int bclr_reg_test_and_clear_bit(int nr,
208 volatile unsigned long *vaddr)
209{
210 char *p = (char *)vaddr + (nr ^ 31) / 8;
211 char retval;
212
213 __asm__ __volatile__ ("bclr %2,(%1); sne %0"
214 : "=d" (retval)
215 : "a" (p), "di" (nr & 7)
216 : "memory");
217 return retval;
218}
219
220static inline int bclr_mem_test_and_clear_bit(int nr,
221 volatile unsigned long *vaddr)
222{
223 char *p = (char *)vaddr + (nr ^ 31) / 8;
224 char retval;
225
226 __asm__ __volatile__ ("bclr %2,%1; sne %0"
227 : "=d" (retval), "+m" (*p)
228 : "di" (nr & 7));
229 return retval;
230}
231
232static inline int bfclr_mem_test_and_clear_bit(int nr,
233 volatile unsigned long *vaddr)
234{
235 char retval;
236
237 __asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"
238 : "=d" (retval)
239 : "d" (nr ^ 31), "o" (*vaddr)
240 : "memory");
241 return retval;
242}
243
244#if defined(CONFIG_COLDFIRE)
245#define test_and_clear_bit(nr, vaddr) bclr_reg_test_and_clear_bit(nr, vaddr)
246#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
247#define test_and_clear_bit(nr, vaddr) bclr_mem_test_and_clear_bit(nr, vaddr)
248#else
249#define test_and_clear_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
250 bclr_mem_test_and_clear_bit(nr, vaddr) : \
251 bfclr_mem_test_and_clear_bit(nr, vaddr))
252#endif
253
254#define __test_and_clear_bit(nr, vaddr) test_and_clear_bit(nr, vaddr)
255
256
257static inline int bchg_reg_test_and_change_bit(int nr,
258 volatile unsigned long *vaddr)
259{
260 char *p = (char *)vaddr + (nr ^ 31) / 8;
261 char retval;
262
263 __asm__ __volatile__ ("bchg %2,(%1); sne %0"
264 : "=d" (retval)
265 : "a" (p), "di" (nr & 7)
266 : "memory");
267 return retval;
268}
269
270static inline int bchg_mem_test_and_change_bit(int nr,
271 volatile unsigned long *vaddr)
272{
273 char *p = (char *)vaddr + (nr ^ 31) / 8;
274 char retval;
275
276 __asm__ __volatile__ ("bchg %2,%1; sne %0"
277 : "=d" (retval), "+m" (*p)
278 : "di" (nr & 7));
279 return retval;
280}
281
282static inline int bfchg_mem_test_and_change_bit(int nr,
283 volatile unsigned long *vaddr)
284{
285 char retval;
286
287 __asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"
288 : "=d" (retval)
289 : "d" (nr ^ 31), "o" (*vaddr)
290 : "memory");
291 return retval;
292}
293
294#if defined(CONFIG_COLDFIRE)
295#define test_and_change_bit(nr, vaddr) bchg_reg_test_and_change_bit(nr, vaddr)
296#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
297#define test_and_change_bit(nr, vaddr) bchg_mem_test_and_change_bit(nr, vaddr)
298#else
299#define test_and_change_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
300 bchg_mem_test_and_change_bit(nr, vaddr) : \
301 bfchg_mem_test_and_change_bit(nr, vaddr))
302#endif
303
304#define __test_and_change_bit(nr, vaddr) test_and_change_bit(nr, vaddr)
305
306
307/*
308 * The true 68020 and more advanced processors support the "bfffo"
309 * instruction for finding bits. ColdFire and simple 68000 parts
310 * (including CPU32) do not support this. They simply use the generic
311 * functions.
312 */
313#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
314#include <asm-generic/bitops/find.h>
315#include <asm-generic/bitops/ffz.h>
316#else
317
318static inline int find_first_zero_bit(const unsigned long *vaddr,
319 unsigned size)
320{
321 const unsigned long *p = vaddr;
322 int res = 32;
323 unsigned int words;
324 unsigned long num;
325
326 if (!size)
327 return 0;
328
329 words = (size + 31) >> 5;
330 while (!(num = ~*p++)) {
331 if (!--words)
332 goto out;
333 }
334
335 __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
336 : "=d" (res) : "d" (num & -num));
337 res ^= 31;
338out:
339 res += ((long)p - (long)vaddr - 4) * 8;
340 return res < size ? res : size;
341}
342#define find_first_zero_bit find_first_zero_bit
343
344static inline int find_next_zero_bit(const unsigned long *vaddr, int size,
345 int offset)
346{
347 const unsigned long *p = vaddr + (offset >> 5);
348 int bit = offset & 31UL, res;
349
350 if (offset >= size)
351 return size;
352
353 if (bit) {
354 unsigned long num = ~*p++ & (~0UL << bit);
355 offset -= bit;
356
357 /* Look for zero in first longword */
358 __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
359 : "=d" (res) : "d" (num & -num));
360 if (res < 32) {
361 offset += res ^ 31;
362 return offset < size ? offset : size;
363 }
364 offset += 32;
365
366 if (offset >= size)
367 return size;
368 }
369 /* No zero yet, search remaining full bytes for a zero */
370 return offset + find_first_zero_bit(p, size - offset);
371}
372#define find_next_zero_bit find_next_zero_bit
373
374static inline int find_first_bit(const unsigned long *vaddr, unsigned size)
375{
376 const unsigned long *p = vaddr;
377 int res = 32;
378 unsigned int words;
379 unsigned long num;
380
381 if (!size)
382 return 0;
383
384 words = (size + 31) >> 5;
385 while (!(num = *p++)) {
386 if (!--words)
387 goto out;
388 }
389
390 __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
391 : "=d" (res) : "d" (num & -num));
392 res ^= 31;
393out:
394 res += ((long)p - (long)vaddr - 4) * 8;
395 return res < size ? res : size;
396}
397#define find_first_bit find_first_bit
398
399static inline int find_next_bit(const unsigned long *vaddr, int size,
400 int offset)
401{
402 const unsigned long *p = vaddr + (offset >> 5);
403 int bit = offset & 31UL, res;
404
405 if (offset >= size)
406 return size;
407
408 if (bit) {
409 unsigned long num = *p++ & (~0UL << bit);
410 offset -= bit;
411
412 /* Look for one in first longword */
413 __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
414 : "=d" (res) : "d" (num & -num));
415 if (res < 32) {
416 offset += res ^ 31;
417 return offset < size ? offset : size;
418 }
419 offset += 32;
420
421 if (offset >= size)
422 return size;
423 }
424 /* No one yet, search remaining full bytes for a one */
425 return offset + find_first_bit(p, size - offset);
426}
427#define find_next_bit find_next_bit
428
429/*
430 * ffz = Find First Zero in word. Undefined if no zero exists,
431 * so code should check against ~0UL first..
432 */
433static inline unsigned long ffz(unsigned long word)
434{
435 int res;
436
437 __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
438 : "=d" (res) : "d" (~word & -~word));
439 return res ^ 31;
440}
441
442#endif
443
444#ifdef __KERNEL__
445
446#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
447
448/*
449 * The newer ColdFire family members support a "bitrev" instruction
450 * and we can use that to implement a fast ffs. Older Coldfire parts,
451 * and normal 68000 parts don't have anything special, so we use the
452 * generic functions for those.
453 */
454#if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \
455 !defined(CONFIG_M68000) && !defined(CONFIG_MCPU32)
456static inline int __ffs(int x)
457{
458 __asm__ __volatile__ ("bitrev %0; ff1 %0"
459 : "=d" (x)
460 : "0" (x));
461 return x;
462}
463
464static inline int ffs(int x)
465{
466 if (!x)
467 return 0;
468 return __ffs(x) + 1;
469}
470
471#else
472#include <asm-generic/bitops/ffs.h>
473#include <asm-generic/bitops/__ffs.h>
474#endif
475
476#include <asm-generic/bitops/fls.h>
477#include <asm-generic/bitops/__fls.h>
478
479#else
480
481/*
482 * ffs: find first bit set. This is defined the same way as
483 * the libc and compiler builtin ffs routines, therefore
484 * differs in spirit from the above ffz (man ffs).
485 */
486static inline int ffs(int x)
487{
488 int cnt;
489
490 __asm__ ("bfffo %1{#0:#0},%0"
491 : "=d" (cnt)
492 : "dm" (x & -x));
493 return 32 - cnt;
494}
495#define __ffs(x) (ffs(x) - 1)
496
497/*
498 * fls: find last bit set.
499 */
500static inline int fls(int x)
501{
502 int cnt;
503
504 __asm__ ("bfffo %1{#0,#0},%0"
505 : "=d" (cnt)
506 : "dm" (x));
507 return 32 - cnt;
508}
509
510static inline int __fls(int x)
511{
512 return fls(x) - 1;
513}
514
515#endif
516
517#include <asm-generic/bitops/ext2-atomic.h>
518#include <asm-generic/bitops/le.h>
519#include <asm-generic/bitops/fls64.h>
520#include <asm-generic/bitops/sched.h>
521#include <asm-generic/bitops/hweight.h>
522#include <asm-generic/bitops/lock.h>
523#endif /* __KERNEL__ */
524
525#endif /* _M68K_BITOPS_H */