blob: 03100b8a45d98cb4ed560f1916ed09fdc04948cc [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10#include <linux/config.h>
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/sched.h>
14#include <linux/mm.h>
15#include <linux/bitops.h>
16
17#include <asm/bcache.h>
18#include <asm/bootinfo.h>
19#include <asm/cacheops.h>
20#include <asm/cpu.h>
21#include <asm/cpu-features.h>
22#include <asm/io.h>
23#include <asm/page.h>
24#include <asm/pgtable.h>
25#include <asm/r4kcache.h>
26#include <asm/system.h>
27#include <asm/mmu_context.h>
28#include <asm/war.h>
29
30static unsigned long icache_size, dcache_size, scache_size;
31
32/*
33 * Dummy cache handling routines for machines without boardcaches
34 */
35static void no_sc_noop(void) {}
36
37static struct bcache_ops no_sc_ops = {
38 .bc_enable = (void *)no_sc_noop,
39 .bc_disable = (void *)no_sc_noop,
40 .bc_wback_inv = (void *)no_sc_noop,
41 .bc_inv = (void *)no_sc_noop
42};
43
44struct bcache_ops *bcops = &no_sc_ops;
45
46#define cpu_is_r4600_v1_x() ((read_c0_prid() & 0xfffffff0) == 0x2010)
47#define cpu_is_r4600_v2_x() ((read_c0_prid() & 0xfffffff0) == 0x2020)
48
49#define R4600_HIT_CACHEOP_WAR_IMPL \
50do { \
51 if (R4600_V2_HIT_CACHEOP_WAR && cpu_is_r4600_v2_x()) \
52 *(volatile unsigned long *)CKSEG1; \
53 if (R4600_V1_HIT_CACHEOP_WAR) \
54 __asm__ __volatile__("nop;nop;nop;nop"); \
55} while (0)
56
57static void (*r4k_blast_dcache_page)(unsigned long addr);
58
59static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
60{
61 R4600_HIT_CACHEOP_WAR_IMPL;
62 blast_dcache32_page(addr);
63}
64
65static inline void r4k_blast_dcache_page_setup(void)
66{
67 unsigned long dc_lsize = cpu_dcache_line_size();
68
69 if (dc_lsize == 16)
70 r4k_blast_dcache_page = blast_dcache16_page;
71 else if (dc_lsize == 32)
72 r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
73}
74
75static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
76
77static inline void r4k_blast_dcache_page_indexed_setup(void)
78{
79 unsigned long dc_lsize = cpu_dcache_line_size();
80
81 if (dc_lsize == 16)
82 r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
83 else if (dc_lsize == 32)
84 r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
85}
86
87static void (* r4k_blast_dcache)(void);
88
89static inline void r4k_blast_dcache_setup(void)
90{
91 unsigned long dc_lsize = cpu_dcache_line_size();
92
93 if (dc_lsize == 16)
94 r4k_blast_dcache = blast_dcache16;
95 else if (dc_lsize == 32)
96 r4k_blast_dcache = blast_dcache32;
97}
98
99/* force code alignment (used for TX49XX_ICACHE_INDEX_INV_WAR) */
100#define JUMP_TO_ALIGN(order) \
101 __asm__ __volatile__( \
102 "b\t1f\n\t" \
103 ".align\t" #order "\n\t" \
104 "1:\n\t" \
105 )
106#define CACHE32_UNROLL32_ALIGN JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
107#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
108
109static inline void blast_r4600_v1_icache32(void)
110{
111 unsigned long flags;
112
113 local_irq_save(flags);
114 blast_icache32();
115 local_irq_restore(flags);
116}
117
118static inline void tx49_blast_icache32(void)
119{
120 unsigned long start = INDEX_BASE;
121 unsigned long end = start + current_cpu_data.icache.waysize;
122 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
123 unsigned long ws_end = current_cpu_data.icache.ways <<
124 current_cpu_data.icache.waybit;
125 unsigned long ws, addr;
126
127 CACHE32_UNROLL32_ALIGN2;
128 /* I'm in even chunk. blast odd chunks */
Ralf Baechle42a3b4f2005-09-03 15:56:17 -0700129 for (ws = 0; ws < ws_end; ws += ws_inc)
130 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700131 cache32_unroll32(addr|ws,Index_Invalidate_I);
132 CACHE32_UNROLL32_ALIGN;
133 /* I'm in odd chunk. blast even chunks */
Ralf Baechle42a3b4f2005-09-03 15:56:17 -0700134 for (ws = 0; ws < ws_end; ws += ws_inc)
135 for (addr = start; addr < end; addr += 0x400 * 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700136 cache32_unroll32(addr|ws,Index_Invalidate_I);
137}
138
139static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
140{
141 unsigned long flags;
142
143 local_irq_save(flags);
144 blast_icache32_page_indexed(page);
145 local_irq_restore(flags);
146}
147
148static inline void tx49_blast_icache32_page_indexed(unsigned long page)
149{
150 unsigned long start = page;
151 unsigned long end = start + PAGE_SIZE;
152 unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
153 unsigned long ws_end = current_cpu_data.icache.ways <<
154 current_cpu_data.icache.waybit;
155 unsigned long ws, addr;
156
157 CACHE32_UNROLL32_ALIGN2;
158 /* I'm in even chunk. blast odd chunks */
Ralf Baechle42a3b4f2005-09-03 15:56:17 -0700159 for (ws = 0; ws < ws_end; ws += ws_inc)
160 for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700161 cache32_unroll32(addr|ws,Index_Invalidate_I);
162 CACHE32_UNROLL32_ALIGN;
163 /* I'm in odd chunk. blast even chunks */
Ralf Baechle42a3b4f2005-09-03 15:56:17 -0700164 for (ws = 0; ws < ws_end; ws += ws_inc)
165 for (addr = start; addr < end; addr += 0x400 * 2)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700166 cache32_unroll32(addr|ws,Index_Invalidate_I);
167}
168
169static void (* r4k_blast_icache_page)(unsigned long addr);
170
171static inline void r4k_blast_icache_page_setup(void)
172{
173 unsigned long ic_lsize = cpu_icache_line_size();
174
175 if (ic_lsize == 16)
176 r4k_blast_icache_page = blast_icache16_page;
177 else if (ic_lsize == 32)
178 r4k_blast_icache_page = blast_icache32_page;
179 else if (ic_lsize == 64)
180 r4k_blast_icache_page = blast_icache64_page;
181}
182
183
184static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
185
186static inline void r4k_blast_icache_page_indexed_setup(void)
187{
188 unsigned long ic_lsize = cpu_icache_line_size();
189
190 if (ic_lsize == 16)
191 r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
192 else if (ic_lsize == 32) {
193 if (TX49XX_ICACHE_INDEX_INV_WAR)
194 r4k_blast_icache_page_indexed =
195 tx49_blast_icache32_page_indexed;
196 else if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
197 r4k_blast_icache_page_indexed =
198 blast_icache32_r4600_v1_page_indexed;
199 else
200 r4k_blast_icache_page_indexed =
201 blast_icache32_page_indexed;
202 } else if (ic_lsize == 64)
203 r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
204}
205
206static void (* r4k_blast_icache)(void);
207
208static inline void r4k_blast_icache_setup(void)
209{
210 unsigned long ic_lsize = cpu_icache_line_size();
211
212 if (ic_lsize == 16)
213 r4k_blast_icache = blast_icache16;
214 else if (ic_lsize == 32) {
215 if (R4600_V1_INDEX_ICACHEOP_WAR && cpu_is_r4600_v1_x())
216 r4k_blast_icache = blast_r4600_v1_icache32;
217 else if (TX49XX_ICACHE_INDEX_INV_WAR)
218 r4k_blast_icache = tx49_blast_icache32;
219 else
220 r4k_blast_icache = blast_icache32;
221 } else if (ic_lsize == 64)
222 r4k_blast_icache = blast_icache64;
223}
224
225static void (* r4k_blast_scache_page)(unsigned long addr);
226
227static inline void r4k_blast_scache_page_setup(void)
228{
229 unsigned long sc_lsize = cpu_scache_line_size();
230
231 if (sc_lsize == 16)
232 r4k_blast_scache_page = blast_scache16_page;
233 else if (sc_lsize == 32)
234 r4k_blast_scache_page = blast_scache32_page;
235 else if (sc_lsize == 64)
236 r4k_blast_scache_page = blast_scache64_page;
237 else if (sc_lsize == 128)
238 r4k_blast_scache_page = blast_scache128_page;
239}
240
241static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
242
243static inline void r4k_blast_scache_page_indexed_setup(void)
244{
245 unsigned long sc_lsize = cpu_scache_line_size();
246
247 if (sc_lsize == 16)
248 r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
249 else if (sc_lsize == 32)
250 r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
251 else if (sc_lsize == 64)
252 r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
253 else if (sc_lsize == 128)
254 r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
255}
256
257static void (* r4k_blast_scache)(void);
258
259static inline void r4k_blast_scache_setup(void)
260{
261 unsigned long sc_lsize = cpu_scache_line_size();
262
263 if (sc_lsize == 16)
264 r4k_blast_scache = blast_scache16;
265 else if (sc_lsize == 32)
266 r4k_blast_scache = blast_scache32;
267 else if (sc_lsize == 64)
268 r4k_blast_scache = blast_scache64;
269 else if (sc_lsize == 128)
270 r4k_blast_scache = blast_scache128;
271}
272
273/*
274 * This is former mm's flush_cache_all() which really should be
275 * flush_cache_vunmap these days ...
276 */
277static inline void local_r4k_flush_cache_all(void * args)
278{
279 r4k_blast_dcache();
280 r4k_blast_icache();
281}
282
283static void r4k_flush_cache_all(void)
284{
285 if (!cpu_has_dc_aliases)
286 return;
287
288 on_each_cpu(local_r4k_flush_cache_all, NULL, 1, 1);
289}
290
291static inline void local_r4k___flush_cache_all(void * args)
292{
293 r4k_blast_dcache();
294 r4k_blast_icache();
295
296 switch (current_cpu_data.cputype) {
297 case CPU_R4000SC:
298 case CPU_R4000MC:
299 case CPU_R4400SC:
300 case CPU_R4400MC:
301 case CPU_R10000:
302 case CPU_R12000:
303 r4k_blast_scache();
304 }
305}
306
307static void r4k___flush_cache_all(void)
308{
309 on_each_cpu(local_r4k___flush_cache_all, NULL, 1, 1);
310}
311
312static inline void local_r4k_flush_cache_range(void * args)
313{
314 struct vm_area_struct *vma = args;
315 int exec;
316
317 if (!(cpu_context(smp_processor_id(), vma->vm_mm)))
318 return;
319
320 exec = vma->vm_flags & VM_EXEC;
321 if (cpu_has_dc_aliases || exec)
322 r4k_blast_dcache();
323 if (exec)
324 r4k_blast_icache();
325}
326
327static void r4k_flush_cache_range(struct vm_area_struct *vma,
328 unsigned long start, unsigned long end)
329{
330 on_each_cpu(local_r4k_flush_cache_range, vma, 1, 1);
331}
332
333static inline void local_r4k_flush_cache_mm(void * args)
334{
335 struct mm_struct *mm = args;
336
337 if (!cpu_context(smp_processor_id(), mm))
338 return;
339
340 r4k_blast_dcache();
341 r4k_blast_icache();
342
343 /*
344 * Kludge alert. For obscure reasons R4000SC and R4400SC go nuts if we
345 * only flush the primary caches but R10000 and R12000 behave sane ...
346 */
347 if (current_cpu_data.cputype == CPU_R4000SC ||
348 current_cpu_data.cputype == CPU_R4000MC ||
349 current_cpu_data.cputype == CPU_R4400SC ||
350 current_cpu_data.cputype == CPU_R4400MC)
351 r4k_blast_scache();
352}
353
354static void r4k_flush_cache_mm(struct mm_struct *mm)
355{
356 if (!cpu_has_dc_aliases)
357 return;
358
359 on_each_cpu(local_r4k_flush_cache_mm, mm, 1, 1);
360}
361
362struct flush_cache_page_args {
363 struct vm_area_struct *vma;
364 unsigned long page;
365};
366
367static inline void local_r4k_flush_cache_page(void *args)
368{
369 struct flush_cache_page_args *fcp_args = args;
370 struct vm_area_struct *vma = fcp_args->vma;
371 unsigned long page = fcp_args->page;
372 int exec = vma->vm_flags & VM_EXEC;
373 struct mm_struct *mm = vma->vm_mm;
374 pgd_t *pgdp;
Ralf Baechlec6e8b582005-02-10 12:19:59 +0000375 pud_t *pudp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700376 pmd_t *pmdp;
377 pte_t *ptep;
378
Ralf Baechle79acf832005-02-10 13:54:37 +0000379 /*
380 * If ownes no valid ASID yet, cannot possibly have gotten
381 * this page into the cache.
382 */
Thiemo Seufer26a51b22005-02-19 13:32:02 +0000383 if (cpu_context(smp_processor_id(), mm) == 0)
Ralf Baechle79acf832005-02-10 13:54:37 +0000384 return;
385
Linus Torvalds1da177e2005-04-16 15:20:36 -0700386 page &= PAGE_MASK;
387 pgdp = pgd_offset(mm, page);
Ralf Baechlec6e8b582005-02-10 12:19:59 +0000388 pudp = pud_offset(pgdp, page);
389 pmdp = pmd_offset(pudp, page);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390 ptep = pte_offset(pmdp, page);
391
392 /*
393 * If the page isn't marked valid, the page cannot possibly be
394 * in the cache.
395 */
396 if (!(pte_val(*ptep) & _PAGE_PRESENT))
397 return;
398
399 /*
400 * Doing flushes for another ASID than the current one is
401 * too difficult since stupid R4k caches do a TLB translation
402 * for every cache flush operation. So we do indexed flushes
403 * in that case, which doesn't overly flush the cache too much.
404 */
405 if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID)) {
406 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
407 r4k_blast_dcache_page(page);
408 if (exec && !cpu_icache_snoops_remote_store)
409 r4k_blast_scache_page(page);
410 }
411 if (exec)
412 r4k_blast_icache_page(page);
413
414 return;
415 }
416
417 /*
418 * Do indexed flush, too much work to get the (possible) TLB refills
419 * to work correctly.
420 */
421 page = INDEX_BASE + (page & (dcache_size - 1));
422 if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
423 r4k_blast_dcache_page_indexed(page);
424 if (exec && !cpu_icache_snoops_remote_store)
425 r4k_blast_scache_page_indexed(page);
426 }
427 if (exec) {
428 if (cpu_has_vtag_icache) {
429 int cpu = smp_processor_id();
430
Thiemo Seufer26a51b22005-02-19 13:32:02 +0000431 if (cpu_context(cpu, mm) != 0)
432 drop_mmu_context(mm, cpu);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700433 } else
434 r4k_blast_icache_page_indexed(page);
435 }
436}
437
438static void r4k_flush_cache_page(struct vm_area_struct *vma, unsigned long page, unsigned long pfn)
439{
440 struct flush_cache_page_args args;
441
Linus Torvalds1da177e2005-04-16 15:20:36 -0700442 args.vma = vma;
443 args.page = page;
444
445 on_each_cpu(local_r4k_flush_cache_page, &args, 1, 1);
446}
447
448static inline void local_r4k_flush_data_cache_page(void * addr)
449{
450 r4k_blast_dcache_page((unsigned long) addr);
451}
452
453static void r4k_flush_data_cache_page(unsigned long addr)
454{
455 on_each_cpu(local_r4k_flush_data_cache_page, (void *) addr, 1, 1);
456}
457
458struct flush_icache_range_args {
459 unsigned long start;
460 unsigned long end;
461};
462
463static inline void local_r4k_flush_icache_range(void *args)
464{
465 struct flush_icache_range_args *fir_args = args;
466 unsigned long dc_lsize = current_cpu_data.dcache.linesz;
467 unsigned long ic_lsize = current_cpu_data.icache.linesz;
468 unsigned long sc_lsize = current_cpu_data.scache.linesz;
469 unsigned long start = fir_args->start;
470 unsigned long end = fir_args->end;
471 unsigned long addr, aend;
472
473 if (!cpu_has_ic_fills_f_dc) {
474 if (end - start > dcache_size) {
475 r4k_blast_dcache();
476 } else {
477 addr = start & ~(dc_lsize - 1);
478 aend = (end - 1) & ~(dc_lsize - 1);
479
480 while (1) {
481 /* Hit_Writeback_Inv_D */
482 protected_writeback_dcache_line(addr);
483 if (addr == aend)
484 break;
485 addr += dc_lsize;
486 }
487 }
488
489 if (!cpu_icache_snoops_remote_store) {
490 if (end - start > scache_size) {
491 r4k_blast_scache();
492 } else {
493 addr = start & ~(sc_lsize - 1);
494 aend = (end - 1) & ~(sc_lsize - 1);
495
496 while (1) {
497 /* Hit_Writeback_Inv_D */
498 protected_writeback_scache_line(addr);
499 if (addr == aend)
500 break;
501 addr += sc_lsize;
502 }
503 }
504 }
505 }
506
507 if (end - start > icache_size)
508 r4k_blast_icache();
509 else {
510 addr = start & ~(ic_lsize - 1);
511 aend = (end - 1) & ~(ic_lsize - 1);
512 while (1) {
513 /* Hit_Invalidate_I */
514 protected_flush_icache_line(addr);
515 if (addr == aend)
516 break;
517 addr += ic_lsize;
518 }
519 }
520}
521
522static void r4k_flush_icache_range(unsigned long start, unsigned long end)
523{
524 struct flush_icache_range_args args;
525
526 args.start = start;
527 args.end = end;
528
529 on_each_cpu(local_r4k_flush_icache_range, &args, 1, 1);
530}
531
532/*
533 * Ok, this seriously sucks. We use them to flush a user page but don't
534 * know the virtual address, so we have to blast away the whole icache
535 * which is significantly more expensive than the real thing. Otoh we at
536 * least know the kernel address of the page so we can flush it
537 * selectivly.
538 */
539
540struct flush_icache_page_args {
541 struct vm_area_struct *vma;
542 struct page *page;
543};
544
545static inline void local_r4k_flush_icache_page(void *args)
546{
547 struct flush_icache_page_args *fip_args = args;
548 struct vm_area_struct *vma = fip_args->vma;
549 struct page *page = fip_args->page;
550
551 /*
552 * Tricky ... Because we don't know the virtual address we've got the
553 * choice of either invalidating the entire primary and secondary
554 * caches or invalidating the secondary caches also. With the subset
555 * enforcment on R4000SC, R4400SC, R10000 and R12000 invalidating the
556 * secondary cache will result in any entries in the primary caches
557 * also getting invalidated which hopefully is a bit more economical.
558 */
559 if (cpu_has_subset_pcaches) {
560 unsigned long addr = (unsigned long) page_address(page);
561
562 r4k_blast_scache_page(addr);
563 ClearPageDcacheDirty(page);
564
565 return;
566 }
567
568 if (!cpu_has_ic_fills_f_dc) {
569 unsigned long addr = (unsigned long) page_address(page);
570 r4k_blast_dcache_page(addr);
571 if (!cpu_icache_snoops_remote_store)
572 r4k_blast_scache_page(addr);
573 ClearPageDcacheDirty(page);
574 }
575
576 /*
577 * We're not sure of the virtual address(es) involved here, so
578 * we have to flush the entire I-cache.
579 */
580 if (cpu_has_vtag_icache) {
581 int cpu = smp_processor_id();
582
583 if (cpu_context(cpu, vma->vm_mm) != 0)
584 drop_mmu_context(vma->vm_mm, cpu);
585 } else
586 r4k_blast_icache();
587}
588
589static void r4k_flush_icache_page(struct vm_area_struct *vma,
590 struct page *page)
591{
592 struct flush_icache_page_args args;
593
594 /*
595 * If there's no context yet, or the page isn't executable, no I-cache
596 * flush is needed.
597 */
598 if (!(vma->vm_flags & VM_EXEC))
599 return;
600
601 args.vma = vma;
602 args.page = page;
603
604 on_each_cpu(local_r4k_flush_icache_page, &args, 1, 1);
605}
606
607
608#ifdef CONFIG_DMA_NONCOHERENT
609
610static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
611{
612 unsigned long end, a;
613
614 /* Catch bad driver code */
615 BUG_ON(size == 0);
616
617 if (cpu_has_subset_pcaches) {
618 unsigned long sc_lsize = current_cpu_data.scache.linesz;
619
620 if (size >= scache_size) {
621 r4k_blast_scache();
622 return;
623 }
624
625 a = addr & ~(sc_lsize - 1);
626 end = (addr + size - 1) & ~(sc_lsize - 1);
627 while (1) {
628 flush_scache_line(a); /* Hit_Writeback_Inv_SD */
629 if (a == end)
630 break;
631 a += sc_lsize;
632 }
633 return;
634 }
635
636 /*
637 * Either no secondary cache or the available caches don't have the
638 * subset property so we have to flush the primary caches
639 * explicitly
640 */
641 if (size >= dcache_size) {
642 r4k_blast_dcache();
643 } else {
644 unsigned long dc_lsize = current_cpu_data.dcache.linesz;
645
646 R4600_HIT_CACHEOP_WAR_IMPL;
647 a = addr & ~(dc_lsize - 1);
648 end = (addr + size - 1) & ~(dc_lsize - 1);
649 while (1) {
650 flush_dcache_line(a); /* Hit_Writeback_Inv_D */
651 if (a == end)
652 break;
653 a += dc_lsize;
654 }
655 }
656
657 bc_wback_inv(addr, size);
658}
659
660static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
661{
662 unsigned long end, a;
663
664 /* Catch bad driver code */
665 BUG_ON(size == 0);
666
667 if (cpu_has_subset_pcaches) {
668 unsigned long sc_lsize = current_cpu_data.scache.linesz;
669
670 if (size >= scache_size) {
671 r4k_blast_scache();
672 return;
673 }
674
675 a = addr & ~(sc_lsize - 1);
676 end = (addr + size - 1) & ~(sc_lsize - 1);
677 while (1) {
678 flush_scache_line(a); /* Hit_Writeback_Inv_SD */
679 if (a == end)
680 break;
681 a += sc_lsize;
682 }
683 return;
684 }
685
686 if (size >= dcache_size) {
687 r4k_blast_dcache();
688 } else {
689 unsigned long dc_lsize = current_cpu_data.dcache.linesz;
690
691 R4600_HIT_CACHEOP_WAR_IMPL;
692 a = addr & ~(dc_lsize - 1);
693 end = (addr + size - 1) & ~(dc_lsize - 1);
694 while (1) {
695 flush_dcache_line(a); /* Hit_Writeback_Inv_D */
696 if (a == end)
697 break;
698 a += dc_lsize;
699 }
700 }
701
702 bc_inv(addr, size);
703}
704#endif /* CONFIG_DMA_NONCOHERENT */
705
706/*
707 * While we're protected against bad userland addresses we don't care
708 * very much about what happens in that case. Usually a segmentation
709 * fault will dump the process later on anyway ...
710 */
711static void local_r4k_flush_cache_sigtramp(void * arg)
712{
713 unsigned long ic_lsize = current_cpu_data.icache.linesz;
714 unsigned long dc_lsize = current_cpu_data.dcache.linesz;
715 unsigned long sc_lsize = current_cpu_data.scache.linesz;
716 unsigned long addr = (unsigned long) arg;
717
718 R4600_HIT_CACHEOP_WAR_IMPL;
719 protected_writeback_dcache_line(addr & ~(dc_lsize - 1));
720 if (!cpu_icache_snoops_remote_store)
721 protected_writeback_scache_line(addr & ~(sc_lsize - 1));
722 protected_flush_icache_line(addr & ~(ic_lsize - 1));
723 if (MIPS4K_ICACHE_REFILL_WAR) {
724 __asm__ __volatile__ (
725 ".set push\n\t"
726 ".set noat\n\t"
727 ".set mips3\n\t"
Ralf Baechle875d43e2005-09-03 15:56:16 -0700728#ifdef CONFIG_32BIT
Linus Torvalds1da177e2005-04-16 15:20:36 -0700729 "la $at,1f\n\t"
730#endif
Ralf Baechle875d43e2005-09-03 15:56:16 -0700731#ifdef CONFIG_64BIT
Linus Torvalds1da177e2005-04-16 15:20:36 -0700732 "dla $at,1f\n\t"
733#endif
734 "cache %0,($at)\n\t"
735 "nop; nop; nop\n"
736 "1:\n\t"
737 ".set pop"
738 :
739 : "i" (Hit_Invalidate_I));
740 }
741 if (MIPS_CACHE_SYNC_WAR)
742 __asm__ __volatile__ ("sync");
743}
744
745static void r4k_flush_cache_sigtramp(unsigned long addr)
746{
747 on_each_cpu(local_r4k_flush_cache_sigtramp, (void *) addr, 1, 1);
748}
749
750static void r4k_flush_icache_all(void)
751{
752 if (cpu_has_vtag_icache)
753 r4k_blast_icache();
754}
755
756static inline void rm7k_erratum31(void)
757{
758 const unsigned long ic_lsize = 32;
759 unsigned long addr;
760
761 /* RM7000 erratum #31. The icache is screwed at startup. */
762 write_c0_taglo(0);
763 write_c0_taghi(0);
764
765 for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
766 __asm__ __volatile__ (
767 ".set noreorder\n\t"
768 ".set mips3\n\t"
769 "cache\t%1, 0(%0)\n\t"
770 "cache\t%1, 0x1000(%0)\n\t"
771 "cache\t%1, 0x2000(%0)\n\t"
772 "cache\t%1, 0x3000(%0)\n\t"
773 "cache\t%2, 0(%0)\n\t"
774 "cache\t%2, 0x1000(%0)\n\t"
775 "cache\t%2, 0x2000(%0)\n\t"
776 "cache\t%2, 0x3000(%0)\n\t"
777 "cache\t%1, 0(%0)\n\t"
778 "cache\t%1, 0x1000(%0)\n\t"
779 "cache\t%1, 0x2000(%0)\n\t"
780 "cache\t%1, 0x3000(%0)\n\t"
781 ".set\tmips0\n\t"
782 ".set\treorder\n\t"
783 :
784 : "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill));
785 }
786}
787
788static char *way_string[] __initdata = { NULL, "direct mapped", "2-way",
789 "3-way", "4-way", "5-way", "6-way", "7-way", "8-way"
790};
791
792static void __init probe_pcache(void)
793{
794 struct cpuinfo_mips *c = &current_cpu_data;
795 unsigned int config = read_c0_config();
796 unsigned int prid = read_c0_prid();
797 unsigned long config1;
798 unsigned int lsize;
799
800 switch (c->cputype) {
801 case CPU_R4600: /* QED style two way caches? */
802 case CPU_R4700:
803 case CPU_R5000:
804 case CPU_NEVADA:
805 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
806 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
807 c->icache.ways = 2;
808 c->icache.waybit = ffs(icache_size/2) - 1;
809
810 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
811 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
812 c->dcache.ways = 2;
813 c->dcache.waybit= ffs(dcache_size/2) - 1;
814
815 c->options |= MIPS_CPU_CACHE_CDEX_P;
816 break;
817
818 case CPU_R5432:
819 case CPU_R5500:
820 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
821 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
822 c->icache.ways = 2;
823 c->icache.waybit= 0;
824
825 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
826 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
827 c->dcache.ways = 2;
828 c->dcache.waybit = 0;
829
830 c->options |= MIPS_CPU_CACHE_CDEX_P;
831 break;
832
833 case CPU_TX49XX:
834 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
835 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
836 c->icache.ways = 4;
837 c->icache.waybit= 0;
838
839 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
840 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
841 c->dcache.ways = 4;
842 c->dcache.waybit = 0;
843
844 c->options |= MIPS_CPU_CACHE_CDEX_P;
845 break;
846
847 case CPU_R4000PC:
848 case CPU_R4000SC:
849 case CPU_R4000MC:
850 case CPU_R4400PC:
851 case CPU_R4400SC:
852 case CPU_R4400MC:
853 case CPU_R4300:
854 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
855 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
856 c->icache.ways = 1;
857 c->icache.waybit = 0; /* doesn't matter */
858
859 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
860 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
861 c->dcache.ways = 1;
862 c->dcache.waybit = 0; /* does not matter */
863
864 c->options |= MIPS_CPU_CACHE_CDEX_P;
865 break;
866
867 case CPU_R10000:
868 case CPU_R12000:
869 icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
870 c->icache.linesz = 64;
871 c->icache.ways = 2;
872 c->icache.waybit = 0;
873
874 dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
875 c->dcache.linesz = 32;
876 c->dcache.ways = 2;
877 c->dcache.waybit = 0;
878
879 c->options |= MIPS_CPU_PREFETCH;
880 break;
881
882 case CPU_VR4133:
883 write_c0_config(config & ~CONF_EB);
884 case CPU_VR4131:
885 /* Workaround for cache instruction bug of VR4131 */
886 if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
887 c->processor_id == 0x0c82U) {
888 config &= ~0x00000030U;
889 config |= 0x00410000U;
890 write_c0_config(config);
891 }
892 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
893 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
894 c->icache.ways = 2;
895 c->icache.waybit = ffs(icache_size/2) - 1;
896
897 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
898 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
899 c->dcache.ways = 2;
900 c->dcache.waybit = ffs(dcache_size/2) - 1;
901
902 c->options |= MIPS_CPU_CACHE_CDEX_P;
903 break;
904
905 case CPU_VR41XX:
906 case CPU_VR4111:
907 case CPU_VR4121:
908 case CPU_VR4122:
909 case CPU_VR4181:
910 case CPU_VR4181A:
911 icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
912 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
913 c->icache.ways = 1;
914 c->icache.waybit = 0; /* doesn't matter */
915
916 dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
917 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
918 c->dcache.ways = 1;
919 c->dcache.waybit = 0; /* does not matter */
920
921 c->options |= MIPS_CPU_CACHE_CDEX_P;
922 break;
923
924 case CPU_RM7000:
925 rm7k_erratum31();
926
927 case CPU_RM9000:
928 icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
929 c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
930 c->icache.ways = 4;
931 c->icache.waybit = ffs(icache_size / c->icache.ways) - 1;
932
933 dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
934 c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
935 c->dcache.ways = 4;
936 c->dcache.waybit = ffs(dcache_size / c->dcache.ways) - 1;
937
938#if !defined(CONFIG_SMP) || !defined(RM9000_CDEX_SMP_WAR)
939 c->options |= MIPS_CPU_CACHE_CDEX_P;
940#endif
941 c->options |= MIPS_CPU_PREFETCH;
942 break;
943
944 default:
945 if (!(config & MIPS_CONF_M))
946 panic("Don't know how to probe P-caches on this cpu.");
947
948 /*
949 * So we seem to be a MIPS32 or MIPS64 CPU
950 * So let's probe the I-cache ...
951 */
952 config1 = read_c0_config1();
953
954 if ((lsize = ((config1 >> 19) & 7)))
955 c->icache.linesz = 2 << lsize;
956 else
957 c->icache.linesz = lsize;
958 c->icache.sets = 64 << ((config1 >> 22) & 7);
959 c->icache.ways = 1 + ((config1 >> 16) & 7);
960
961 icache_size = c->icache.sets *
962 c->icache.ways *
963 c->icache.linesz;
964 c->icache.waybit = ffs(icache_size/c->icache.ways) - 1;
965
966 if (config & 0x8) /* VI bit */
967 c->icache.flags |= MIPS_CACHE_VTAG;
968
969 /*
970 * Now probe the MIPS32 / MIPS64 data cache.
971 */
972 c->dcache.flags = 0;
973
974 if ((lsize = ((config1 >> 10) & 7)))
975 c->dcache.linesz = 2 << lsize;
976 else
977 c->dcache.linesz= lsize;
978 c->dcache.sets = 64 << ((config1 >> 13) & 7);
979 c->dcache.ways = 1 + ((config1 >> 7) & 7);
980
981 dcache_size = c->dcache.sets *
982 c->dcache.ways *
983 c->dcache.linesz;
984 c->dcache.waybit = ffs(dcache_size/c->dcache.ways) - 1;
985
986 c->options |= MIPS_CPU_PREFETCH;
987 break;
988 }
989
990 /*
991 * Processor configuration sanity check for the R4000SC erratum
992 * #5. With page sizes larger than 32kB there is no possibility
993 * to get a VCE exception anymore so we don't care about this
994 * misconfiguration. The case is rather theoretical anyway;
995 * presumably no vendor is shipping his hardware in the "bad"
996 * configuration.
997 */
998 if ((prid & 0xff00) == PRID_IMP_R4000 && (prid & 0xff) < 0x40 &&
999 !(config & CONF_SC) && c->icache.linesz != 16 &&
1000 PAGE_SIZE <= 0x8000)
1001 panic("Improper R4000SC processor configuration detected");
1002
1003 /* compute a couple of other cache variables */
1004 c->icache.waysize = icache_size / c->icache.ways;
1005 c->dcache.waysize = dcache_size / c->dcache.ways;
1006
1007 c->icache.sets = icache_size / (c->icache.linesz * c->icache.ways);
1008 c->dcache.sets = dcache_size / (c->dcache.linesz * c->dcache.ways);
1009
1010 /*
1011 * R10000 and R12000 P-caches are odd in a positive way. They're 32kB
1012 * 2-way virtually indexed so normally would suffer from aliases. So
1013 * normally they'd suffer from aliases but magic in the hardware deals
1014 * with that for us so we don't need to take care ourselves.
1015 */
Ralf Baechled1e344e2005-02-04 15:51:26 +00001016 switch (c->cputype) {
Ralf Baechlea95970f2005-02-07 21:41:32 +00001017 case CPU_20KC:
Ralf Baechle505403b2005-02-07 21:53:39 +00001018 case CPU_25KF:
Ralf Baechled1e344e2005-02-04 15:51:26 +00001019 case CPU_R10000:
1020 case CPU_R12000:
Ralf Baechlea95970f2005-02-07 21:41:32 +00001021 case CPU_SB1:
Ralf Baechled1e344e2005-02-04 15:51:26 +00001022 break;
1023 case CPU_24K:
1024 if (!(read_c0_config7() & (1 << 16)))
1025 default:
Ralf Baechleae6aafe2005-02-06 21:55:49 +00001026 if (c->dcache.waysize > PAGE_SIZE)
1027 c->dcache.flags |= MIPS_CACHE_ALIASES;
Ralf Baechled1e344e2005-02-04 15:51:26 +00001028 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001029
1030 switch (c->cputype) {
1031 case CPU_20KC:
1032 /*
1033 * Some older 20Kc chips doesn't have the 'VI' bit in
1034 * the config register.
1035 */
1036 c->icache.flags |= MIPS_CACHE_VTAG;
1037 break;
1038
1039 case CPU_AU1500:
1040 c->icache.flags |= MIPS_CACHE_IC_F_DC;
1041 break;
1042 }
1043
1044 printk("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1045 icache_size >> 10,
1046 cpu_has_vtag_icache ? "virtually tagged" : "physically tagged",
1047 way_string[c->icache.ways], c->icache.linesz);
1048
1049 printk("Primary data cache %ldkB, %s, linesize %d bytes.\n",
1050 dcache_size >> 10, way_string[c->dcache.ways], c->dcache.linesz);
1051}
1052
1053/*
1054 * If you even _breathe_ on this function, look at the gcc output and make sure
1055 * it does not pop things on and off the stack for the cache sizing loop that
1056 * executes in KSEG1 space or else you will crash and burn badly. You have
1057 * been warned.
1058 */
1059static int __init probe_scache(void)
1060{
1061 extern unsigned long stext;
1062 unsigned long flags, addr, begin, end, pow2;
1063 unsigned int config = read_c0_config();
1064 struct cpuinfo_mips *c = &current_cpu_data;
1065 int tmp;
1066
1067 if (config & CONF_SC)
1068 return 0;
1069
1070 begin = (unsigned long) &stext;
1071 begin &= ~((4 * 1024 * 1024) - 1);
1072 end = begin + (4 * 1024 * 1024);
1073
1074 /*
1075 * This is such a bitch, you'd think they would make it easy to do
1076 * this. Away you daemons of stupidity!
1077 */
1078 local_irq_save(flags);
1079
1080 /* Fill each size-multiple cache line with a valid tag. */
1081 pow2 = (64 * 1024);
1082 for (addr = begin; addr < end; addr = (begin + pow2)) {
1083 unsigned long *p = (unsigned long *) addr;
1084 __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1085 pow2 <<= 1;
1086 }
1087
1088 /* Load first line with zero (therefore invalid) tag. */
1089 write_c0_taglo(0);
1090 write_c0_taghi(0);
1091 __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1092 cache_op(Index_Store_Tag_I, begin);
1093 cache_op(Index_Store_Tag_D, begin);
1094 cache_op(Index_Store_Tag_SD, begin);
1095
1096 /* Now search for the wrap around point. */
1097 pow2 = (128 * 1024);
1098 tmp = 0;
1099 for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1100 cache_op(Index_Load_Tag_SD, addr);
1101 __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1102 if (!read_c0_taglo())
1103 break;
1104 pow2 <<= 1;
1105 }
1106 local_irq_restore(flags);
1107 addr -= begin;
1108
1109 scache_size = addr;
1110 c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1111 c->scache.ways = 1;
1112 c->dcache.waybit = 0; /* does not matter */
1113
1114 return 1;
1115}
1116
1117typedef int (*probe_func_t)(unsigned long);
1118extern int r5k_sc_init(void);
1119extern int rm7k_sc_init(void);
1120
1121static void __init setup_scache(void)
1122{
1123 struct cpuinfo_mips *c = &current_cpu_data;
1124 unsigned int config = read_c0_config();
1125 probe_func_t probe_scache_kseg1;
1126 int sc_present = 0;
1127
1128 /*
1129 * Do the probing thing on R4000SC and R4400SC processors. Other
1130 * processors don't have a S-cache that would be relevant to the
1131 * Linux memory managment.
1132 */
1133 switch (c->cputype) {
1134 case CPU_R4000SC:
1135 case CPU_R4000MC:
1136 case CPU_R4400SC:
1137 case CPU_R4400MC:
1138 probe_scache_kseg1 = (probe_func_t) (CKSEG1ADDR(&probe_scache));
1139 sc_present = probe_scache_kseg1(config);
1140 if (sc_present)
1141 c->options |= MIPS_CPU_CACHE_CDEX_S;
1142 break;
1143
1144 case CPU_R10000:
1145 case CPU_R12000:
1146 scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1147 c->scache.linesz = 64 << ((config >> 13) & 1);
1148 c->scache.ways = 2;
1149 c->scache.waybit= 0;
1150 sc_present = 1;
1151 break;
1152
1153 case CPU_R5000:
1154 case CPU_NEVADA:
1155#ifdef CONFIG_R5000_CPU_SCACHE
1156 r5k_sc_init();
1157#endif
1158 return;
1159
1160 case CPU_RM7000:
1161 case CPU_RM9000:
1162#ifdef CONFIG_RM7000_CPU_SCACHE
1163 rm7k_sc_init();
1164#endif
1165 return;
1166
1167 default:
1168 sc_present = 0;
1169 }
1170
1171 if (!sc_present)
1172 return;
1173
1174 if ((c->isa_level == MIPS_CPU_ISA_M32 ||
1175 c->isa_level == MIPS_CPU_ISA_M64) &&
1176 !(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1177 panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1178
1179 /* compute a couple of other cache variables */
1180 c->scache.waysize = scache_size / c->scache.ways;
1181
1182 c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1183
1184 printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1185 scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1186
1187 c->options |= MIPS_CPU_SUBSET_CACHES;
1188}
1189
1190static inline void coherency_setup(void)
1191{
1192 change_c0_config(CONF_CM_CMASK, CONF_CM_DEFAULT);
1193
1194 /*
1195 * c0_status.cu=0 specifies that updates by the sc instruction use
1196 * the coherency mode specified by the TLB; 1 means cachable
1197 * coherent update on write will be used. Not all processors have
1198 * this bit and; some wire it to zero, others like Toshiba had the
1199 * silly idea of putting something else there ...
1200 */
1201 switch (current_cpu_data.cputype) {
1202 case CPU_R4000PC:
1203 case CPU_R4000SC:
1204 case CPU_R4000MC:
1205 case CPU_R4400PC:
1206 case CPU_R4400SC:
1207 case CPU_R4400MC:
1208 clear_c0_config(CONF_CU);
1209 break;
1210 }
1211}
1212
1213void __init ld_mmu_r4xx0(void)
1214{
1215 extern void build_clear_page(void);
1216 extern void build_copy_page(void);
1217 extern char except_vec2_generic;
1218 struct cpuinfo_mips *c = &current_cpu_data;
1219
1220 /* Default cache error handler for R4000 and R5000 family */
1221 memcpy((void *)(CAC_BASE + 0x100), &except_vec2_generic, 0x80);
1222 memcpy((void *)(UNCAC_BASE + 0x100), &except_vec2_generic, 0x80);
1223
1224 probe_pcache();
1225 setup_scache();
1226
Linus Torvalds1da177e2005-04-16 15:20:36 -07001227 r4k_blast_dcache_page_setup();
1228 r4k_blast_dcache_page_indexed_setup();
1229 r4k_blast_dcache_setup();
1230 r4k_blast_icache_page_setup();
1231 r4k_blast_icache_page_indexed_setup();
1232 r4k_blast_icache_setup();
1233 r4k_blast_scache_page_setup();
1234 r4k_blast_scache_page_indexed_setup();
1235 r4k_blast_scache_setup();
1236
1237 /*
1238 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1239 * This code supports virtually indexed processors and will be
1240 * unnecessarily inefficient on physically indexed processors.
1241 */
1242 shm_align_mask = max_t( unsigned long,
1243 c->dcache.sets * c->dcache.linesz - 1,
1244 PAGE_SIZE - 1);
1245
1246 flush_cache_all = r4k_flush_cache_all;
1247 __flush_cache_all = r4k___flush_cache_all;
1248 flush_cache_mm = r4k_flush_cache_mm;
1249 flush_cache_page = r4k_flush_cache_page;
1250 flush_icache_page = r4k_flush_icache_page;
1251 flush_cache_range = r4k_flush_cache_range;
1252
1253 flush_cache_sigtramp = r4k_flush_cache_sigtramp;
1254 flush_icache_all = r4k_flush_icache_all;
1255 flush_data_cache_page = r4k_flush_data_cache_page;
1256 flush_icache_range = r4k_flush_icache_range;
1257
1258#ifdef CONFIG_DMA_NONCOHERENT
1259 _dma_cache_wback_inv = r4k_dma_cache_wback_inv;
1260 _dma_cache_wback = r4k_dma_cache_wback_inv;
1261 _dma_cache_inv = r4k_dma_cache_inv;
1262#endif
1263
1264 __flush_cache_all();
1265 coherency_setup();
1266
1267 build_clear_page();
1268 build_copy_page();
1269}