Thomas Gleixner | 1a59d1b8 | 2019-05-27 08:55:05 +0200 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 2 | /* |
| 3 | Red Black Trees |
| 4 | (C) 1999 Andrea Arcangeli <andrea@suse.de> |
| 5 | (C) 2002 David Woodhouse <dwmw2@infradead.org> |
| 6 | (C) 2012 Michel Lespinasse <walken@google.com> |
| 7 | |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 8 | |
| 9 | linux/lib/rbtree.c |
| 10 | */ |
| 11 | |
| 12 | #include <linux/rbtree_augmented.h> |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 13 | #include <linux/export.h> |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 14 | |
| 15 | /* |
Alexander A. Klimov | 79e3ea5 | 2020-08-06 23:17:22 -0700 | [diff] [blame] | 16 | * red-black trees properties: https://en.wikipedia.org/wiki/Rbtree |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 17 | * |
| 18 | * 1) A node is either red or black |
| 19 | * 2) The root is black |
| 20 | * 3) All leaves (NULL) are black |
| 21 | * 4) Both children of every red node are black |
| 22 | * 5) Every simple path from root to leaves contains the same number |
| 23 | * of black nodes. |
| 24 | * |
| 25 | * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two |
| 26 | * consecutive red nodes in a path and every red node is therefore followed by |
| 27 | * a black. So if B is the number of black nodes on every simple path (as per |
| 28 | * 5), then the longest possible path due to 4 is 2B. |
| 29 | * |
| 30 | * We shall indicate color with case, where black nodes are uppercase and red |
| 31 | * nodes will be lowercase. Unknown color nodes shall be drawn as red within |
| 32 | * parentheses and have some accompanying text comment. |
| 33 | */ |
| 34 | |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 35 | /* |
| 36 | * Notes on lockless lookups: |
| 37 | * |
| 38 | * All stores to the tree structure (rb_left and rb_right) must be done using |
| 39 | * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the |
| 40 | * tree structure as seen in program order. |
| 41 | * |
| 42 | * These two requirements will allow lockless iteration of the tree -- not |
| 43 | * correct iteration mind you, tree rotations are not atomic so a lookup might |
| 44 | * miss entire subtrees. |
| 45 | * |
| 46 | * But they do guarantee that any such traversal will only see valid elements |
| 47 | * and that it will indeed complete -- does not get stuck in a loop. |
| 48 | * |
| 49 | * It also guarantees that if the lookup returns an element it is the 'correct' |
| 50 | * one. But not returning an element does _NOT_ mean it's not present. |
| 51 | * |
| 52 | * NOTE: |
| 53 | * |
| 54 | * Stores to __rb_parent_color are not important for simple lookups so those |
| 55 | * are left undone as of now. Nor did I check for loops involving parent |
| 56 | * pointers. |
| 57 | */ |
| 58 | |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 59 | static inline void rb_set_black(struct rb_node *rb) |
| 60 | { |
| 61 | rb->__rb_parent_color |= RB_BLACK; |
| 62 | } |
| 63 | |
| 64 | static inline struct rb_node *rb_red_parent(struct rb_node *red) |
| 65 | { |
| 66 | return (struct rb_node *)red->__rb_parent_color; |
| 67 | } |
| 68 | |
| 69 | /* |
| 70 | * Helper function for rotations: |
| 71 | * - old's parent and color get assigned to new |
| 72 | * - old gets assigned new as a parent and 'color' as a color. |
| 73 | */ |
| 74 | static inline void |
| 75 | __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new, |
| 76 | struct rb_root *root, int color) |
| 77 | { |
| 78 | struct rb_node *parent = rb_parent(old); |
| 79 | new->__rb_parent_color = old->__rb_parent_color; |
| 80 | rb_set_parent_color(old, new, color); |
| 81 | __rb_change_child(old, new, parent, root); |
| 82 | } |
| 83 | |
| 84 | static __always_inline void |
| 85 | __rb_insert(struct rb_node *node, struct rb_root *root, |
| 86 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) |
| 87 | { |
| 88 | struct rb_node *parent = rb_red_parent(node), *gparent, *tmp; |
| 89 | |
| 90 | while (true) { |
| 91 | /* |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 92 | * Loop invariant: node is red. |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 93 | */ |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 94 | if (unlikely(!parent)) { |
| 95 | /* |
| 96 | * The inserted node is root. Either this is the |
| 97 | * first node, or we recursed at Case 1 below and |
| 98 | * are no longer violating 4). |
| 99 | */ |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 100 | rb_set_parent_color(node, NULL, RB_BLACK); |
| 101 | break; |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 102 | } |
| 103 | |
| 104 | /* |
| 105 | * If there is a black parent, we are done. |
| 106 | * Otherwise, take some corrective action as, |
| 107 | * per 4), we don't want a red root or two |
| 108 | * consecutive red nodes. |
| 109 | */ |
| 110 | if(rb_is_black(parent)) |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 111 | break; |
| 112 | |
| 113 | gparent = rb_red_parent(parent); |
| 114 | |
| 115 | tmp = gparent->rb_right; |
| 116 | if (parent != tmp) { /* parent == gparent->rb_left */ |
| 117 | if (tmp && rb_is_red(tmp)) { |
| 118 | /* |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 119 | * Case 1 - node's uncle is red (color flips). |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 120 | * |
| 121 | * G g |
| 122 | * / \ / \ |
| 123 | * p u --> P U |
| 124 | * / / |
| 125 | * n n |
| 126 | * |
| 127 | * However, since g's parent might be red, and |
| 128 | * 4) does not allow this, we need to recurse |
| 129 | * at g. |
| 130 | */ |
| 131 | rb_set_parent_color(tmp, gparent, RB_BLACK); |
| 132 | rb_set_parent_color(parent, gparent, RB_BLACK); |
| 133 | node = gparent; |
| 134 | parent = rb_parent(node); |
| 135 | rb_set_parent_color(node, parent, RB_RED); |
| 136 | continue; |
| 137 | } |
| 138 | |
| 139 | tmp = parent->rb_right; |
| 140 | if (node == tmp) { |
| 141 | /* |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 142 | * Case 2 - node's uncle is black and node is |
| 143 | * the parent's right child (left rotate at parent). |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 144 | * |
| 145 | * G G |
| 146 | * / \ / \ |
| 147 | * p U --> n U |
| 148 | * \ / |
| 149 | * n p |
| 150 | * |
| 151 | * This still leaves us in violation of 4), the |
| 152 | * continuation into Case 3 will fix that. |
| 153 | */ |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 154 | tmp = node->rb_left; |
| 155 | WRITE_ONCE(parent->rb_right, tmp); |
| 156 | WRITE_ONCE(node->rb_left, parent); |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 157 | if (tmp) |
| 158 | rb_set_parent_color(tmp, parent, |
| 159 | RB_BLACK); |
| 160 | rb_set_parent_color(parent, node, RB_RED); |
| 161 | augment_rotate(parent, node); |
| 162 | parent = node; |
| 163 | tmp = node->rb_right; |
| 164 | } |
| 165 | |
| 166 | /* |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 167 | * Case 3 - node's uncle is black and node is |
| 168 | * the parent's left child (right rotate at gparent). |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 169 | * |
| 170 | * G P |
| 171 | * / \ / \ |
| 172 | * p U --> n g |
| 173 | * / \ |
| 174 | * n U |
| 175 | */ |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 176 | WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */ |
| 177 | WRITE_ONCE(parent->rb_right, gparent); |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 178 | if (tmp) |
| 179 | rb_set_parent_color(tmp, gparent, RB_BLACK); |
| 180 | __rb_rotate_set_parents(gparent, parent, root, RB_RED); |
| 181 | augment_rotate(gparent, parent); |
| 182 | break; |
| 183 | } else { |
| 184 | tmp = gparent->rb_left; |
| 185 | if (tmp && rb_is_red(tmp)) { |
| 186 | /* Case 1 - color flips */ |
| 187 | rb_set_parent_color(tmp, gparent, RB_BLACK); |
| 188 | rb_set_parent_color(parent, gparent, RB_BLACK); |
| 189 | node = gparent; |
| 190 | parent = rb_parent(node); |
| 191 | rb_set_parent_color(node, parent, RB_RED); |
| 192 | continue; |
| 193 | } |
| 194 | |
| 195 | tmp = parent->rb_left; |
| 196 | if (node == tmp) { |
| 197 | /* Case 2 - right rotate at parent */ |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 198 | tmp = node->rb_right; |
| 199 | WRITE_ONCE(parent->rb_left, tmp); |
| 200 | WRITE_ONCE(node->rb_right, parent); |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 201 | if (tmp) |
| 202 | rb_set_parent_color(tmp, parent, |
| 203 | RB_BLACK); |
| 204 | rb_set_parent_color(parent, node, RB_RED); |
| 205 | augment_rotate(parent, node); |
| 206 | parent = node; |
| 207 | tmp = node->rb_left; |
| 208 | } |
| 209 | |
| 210 | /* Case 3 - left rotate at gparent */ |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 211 | WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */ |
| 212 | WRITE_ONCE(parent->rb_left, gparent); |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 213 | if (tmp) |
| 214 | rb_set_parent_color(tmp, gparent, RB_BLACK); |
| 215 | __rb_rotate_set_parents(gparent, parent, root, RB_RED); |
| 216 | augment_rotate(gparent, parent); |
| 217 | break; |
| 218 | } |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | /* |
| 223 | * Inline version for rb_erase() use - we want to be able to inline |
| 224 | * and eliminate the dummy_rotate callback there |
| 225 | */ |
| 226 | static __always_inline void |
| 227 | ____rb_erase_color(struct rb_node *parent, struct rb_root *root, |
| 228 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) |
| 229 | { |
| 230 | struct rb_node *node = NULL, *sibling, *tmp1, *tmp2; |
| 231 | |
| 232 | while (true) { |
| 233 | /* |
| 234 | * Loop invariants: |
| 235 | * - node is black (or NULL on first iteration) |
| 236 | * - node is not the root (parent is not NULL) |
| 237 | * - All leaf paths going through parent and node have a |
| 238 | * black node count that is 1 lower than other leaf paths. |
| 239 | */ |
| 240 | sibling = parent->rb_right; |
| 241 | if (node != sibling) { /* node == parent->rb_left */ |
| 242 | if (rb_is_red(sibling)) { |
| 243 | /* |
| 244 | * Case 1 - left rotate at parent |
| 245 | * |
| 246 | * P S |
| 247 | * / \ / \ |
| 248 | * N s --> p Sr |
| 249 | * / \ / \ |
| 250 | * Sl Sr N Sl |
| 251 | */ |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 252 | tmp1 = sibling->rb_left; |
| 253 | WRITE_ONCE(parent->rb_right, tmp1); |
| 254 | WRITE_ONCE(sibling->rb_left, parent); |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 255 | rb_set_parent_color(tmp1, parent, RB_BLACK); |
| 256 | __rb_rotate_set_parents(parent, sibling, root, |
| 257 | RB_RED); |
| 258 | augment_rotate(parent, sibling); |
| 259 | sibling = tmp1; |
| 260 | } |
| 261 | tmp1 = sibling->rb_right; |
| 262 | if (!tmp1 || rb_is_black(tmp1)) { |
| 263 | tmp2 = sibling->rb_left; |
| 264 | if (!tmp2 || rb_is_black(tmp2)) { |
| 265 | /* |
| 266 | * Case 2 - sibling color flip |
| 267 | * (p could be either color here) |
| 268 | * |
| 269 | * (p) (p) |
| 270 | * / \ / \ |
| 271 | * N S --> N s |
| 272 | * / \ / \ |
| 273 | * Sl Sr Sl Sr |
| 274 | * |
| 275 | * This leaves us violating 5) which |
| 276 | * can be fixed by flipping p to black |
| 277 | * if it was red, or by recursing at p. |
| 278 | * p is red when coming from Case 1. |
| 279 | */ |
| 280 | rb_set_parent_color(sibling, parent, |
| 281 | RB_RED); |
| 282 | if (rb_is_red(parent)) |
| 283 | rb_set_black(parent); |
| 284 | else { |
| 285 | node = parent; |
| 286 | parent = rb_parent(node); |
| 287 | if (parent) |
| 288 | continue; |
| 289 | } |
| 290 | break; |
| 291 | } |
| 292 | /* |
| 293 | * Case 3 - right rotate at sibling |
| 294 | * (p could be either color here) |
| 295 | * |
| 296 | * (p) (p) |
| 297 | * / \ / \ |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 298 | * N S --> N sl |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 299 | * / \ \ |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 300 | * sl Sr S |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 301 | * \ |
| 302 | * Sr |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 303 | * |
| 304 | * Note: p might be red, and then both |
| 305 | * p and sl are red after rotation(which |
| 306 | * breaks property 4). This is fixed in |
| 307 | * Case 4 (in __rb_rotate_set_parents() |
| 308 | * which set sl the color of p |
| 309 | * and set p RB_BLACK) |
| 310 | * |
| 311 | * (p) (sl) |
| 312 | * / \ / \ |
| 313 | * N sl --> P S |
| 314 | * \ / \ |
| 315 | * S N Sr |
| 316 | * \ |
| 317 | * Sr |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 318 | */ |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 319 | tmp1 = tmp2->rb_right; |
| 320 | WRITE_ONCE(sibling->rb_left, tmp1); |
| 321 | WRITE_ONCE(tmp2->rb_right, sibling); |
| 322 | WRITE_ONCE(parent->rb_right, tmp2); |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 323 | if (tmp1) |
| 324 | rb_set_parent_color(tmp1, sibling, |
| 325 | RB_BLACK); |
| 326 | augment_rotate(sibling, tmp2); |
| 327 | tmp1 = sibling; |
| 328 | sibling = tmp2; |
| 329 | } |
| 330 | /* |
| 331 | * Case 4 - left rotate at parent + color flips |
| 332 | * (p and sl could be either color here. |
| 333 | * After rotation, p becomes black, s acquires |
| 334 | * p's color, and sl keeps its color) |
| 335 | * |
| 336 | * (p) (s) |
| 337 | * / \ / \ |
| 338 | * N S --> P Sr |
| 339 | * / \ / \ |
| 340 | * (sl) sr N (sl) |
| 341 | */ |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 342 | tmp2 = sibling->rb_left; |
| 343 | WRITE_ONCE(parent->rb_right, tmp2); |
| 344 | WRITE_ONCE(sibling->rb_left, parent); |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 345 | rb_set_parent_color(tmp1, sibling, RB_BLACK); |
| 346 | if (tmp2) |
| 347 | rb_set_parent(tmp2, parent); |
| 348 | __rb_rotate_set_parents(parent, sibling, root, |
| 349 | RB_BLACK); |
| 350 | augment_rotate(parent, sibling); |
| 351 | break; |
| 352 | } else { |
| 353 | sibling = parent->rb_left; |
| 354 | if (rb_is_red(sibling)) { |
| 355 | /* Case 1 - right rotate at parent */ |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 356 | tmp1 = sibling->rb_right; |
| 357 | WRITE_ONCE(parent->rb_left, tmp1); |
| 358 | WRITE_ONCE(sibling->rb_right, parent); |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 359 | rb_set_parent_color(tmp1, parent, RB_BLACK); |
| 360 | __rb_rotate_set_parents(parent, sibling, root, |
| 361 | RB_RED); |
| 362 | augment_rotate(parent, sibling); |
| 363 | sibling = tmp1; |
| 364 | } |
| 365 | tmp1 = sibling->rb_left; |
| 366 | if (!tmp1 || rb_is_black(tmp1)) { |
| 367 | tmp2 = sibling->rb_right; |
| 368 | if (!tmp2 || rb_is_black(tmp2)) { |
| 369 | /* Case 2 - sibling color flip */ |
| 370 | rb_set_parent_color(sibling, parent, |
| 371 | RB_RED); |
| 372 | if (rb_is_red(parent)) |
| 373 | rb_set_black(parent); |
| 374 | else { |
| 375 | node = parent; |
| 376 | parent = rb_parent(node); |
| 377 | if (parent) |
| 378 | continue; |
| 379 | } |
| 380 | break; |
| 381 | } |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 382 | /* Case 3 - left rotate at sibling */ |
| 383 | tmp1 = tmp2->rb_left; |
| 384 | WRITE_ONCE(sibling->rb_right, tmp1); |
| 385 | WRITE_ONCE(tmp2->rb_left, sibling); |
| 386 | WRITE_ONCE(parent->rb_left, tmp2); |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 387 | if (tmp1) |
| 388 | rb_set_parent_color(tmp1, sibling, |
| 389 | RB_BLACK); |
| 390 | augment_rotate(sibling, tmp2); |
| 391 | tmp1 = sibling; |
| 392 | sibling = tmp2; |
| 393 | } |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 394 | /* Case 4 - right rotate at parent + color flips */ |
| 395 | tmp2 = sibling->rb_right; |
| 396 | WRITE_ONCE(parent->rb_left, tmp2); |
| 397 | WRITE_ONCE(sibling->rb_right, parent); |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 398 | rb_set_parent_color(tmp1, sibling, RB_BLACK); |
| 399 | if (tmp2) |
| 400 | rb_set_parent(tmp2, parent); |
| 401 | __rb_rotate_set_parents(parent, sibling, root, |
| 402 | RB_BLACK); |
| 403 | augment_rotate(parent, sibling); |
| 404 | break; |
| 405 | } |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | /* Non-inline version for rb_erase_augmented() use */ |
| 410 | void __rb_erase_color(struct rb_node *parent, struct rb_root *root, |
| 411 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) |
| 412 | { |
| 413 | ____rb_erase_color(parent, root, augment_rotate); |
| 414 | } |
| 415 | |
| 416 | /* |
| 417 | * Non-augmented rbtree manipulation functions. |
| 418 | * |
| 419 | * We use dummy augmented callbacks here, and have the compiler optimize them |
| 420 | * out of the rb_insert_color() and rb_erase() function definitions. |
| 421 | */ |
| 422 | |
| 423 | static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {} |
| 424 | static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {} |
| 425 | static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {} |
| 426 | |
| 427 | static const struct rb_augment_callbacks dummy_callbacks = { |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 428 | .propagate = dummy_propagate, |
| 429 | .copy = dummy_copy, |
| 430 | .rotate = dummy_rotate |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 431 | }; |
| 432 | |
| 433 | void rb_insert_color(struct rb_node *node, struct rb_root *root) |
| 434 | { |
Michel Lespinasse | c7d4f7e | 2019-09-25 16:46:02 -0700 | [diff] [blame] | 435 | __rb_insert(node, root, dummy_rotate); |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 436 | } |
| 437 | |
| 438 | void rb_erase(struct rb_node *node, struct rb_root *root) |
| 439 | { |
| 440 | struct rb_node *rebalance; |
Michel Lespinasse | c7d4f7e | 2019-09-25 16:46:02 -0700 | [diff] [blame] | 441 | rebalance = __rb_erase_augmented(node, root, &dummy_callbacks); |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 442 | if (rebalance) |
| 443 | ____rb_erase_color(rebalance, root, dummy_rotate); |
| 444 | } |
| 445 | |
| 446 | /* |
| 447 | * Augmented rbtree manipulation functions. |
| 448 | * |
| 449 | * This instantiates the same __always_inline functions as in the non-augmented |
| 450 | * case, but this time with user-defined callbacks. |
| 451 | */ |
| 452 | |
| 453 | void __rb_insert_augmented(struct rb_node *node, struct rb_root *root, |
| 454 | void (*augment_rotate)(struct rb_node *old, struct rb_node *new)) |
| 455 | { |
Michel Lespinasse | c7d4f7e | 2019-09-25 16:46:02 -0700 | [diff] [blame] | 456 | __rb_insert(node, root, augment_rotate); |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 457 | } |
| 458 | |
| 459 | /* |
| 460 | * This function returns the first node (in sort order) of the tree. |
| 461 | */ |
| 462 | struct rb_node *rb_first(const struct rb_root *root) |
| 463 | { |
| 464 | struct rb_node *n; |
| 465 | |
| 466 | n = root->rb_node; |
| 467 | if (!n) |
| 468 | return NULL; |
| 469 | while (n->rb_left) |
| 470 | n = n->rb_left; |
| 471 | return n; |
| 472 | } |
| 473 | |
| 474 | struct rb_node *rb_last(const struct rb_root *root) |
| 475 | { |
| 476 | struct rb_node *n; |
| 477 | |
| 478 | n = root->rb_node; |
| 479 | if (!n) |
| 480 | return NULL; |
| 481 | while (n->rb_right) |
| 482 | n = n->rb_right; |
| 483 | return n; |
| 484 | } |
| 485 | |
| 486 | struct rb_node *rb_next(const struct rb_node *node) |
| 487 | { |
| 488 | struct rb_node *parent; |
| 489 | |
| 490 | if (RB_EMPTY_NODE(node)) |
| 491 | return NULL; |
| 492 | |
| 493 | /* |
| 494 | * If we have a right-hand child, go down and then left as far |
| 495 | * as we can. |
| 496 | */ |
| 497 | if (node->rb_right) { |
| 498 | node = node->rb_right; |
| 499 | while (node->rb_left) |
chenqiwu | 8d994ca | 2020-04-06 20:10:31 -0700 | [diff] [blame] | 500 | node = node->rb_left; |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 501 | return (struct rb_node *)node; |
| 502 | } |
| 503 | |
| 504 | /* |
| 505 | * No right-hand children. Everything down and left is smaller than us, |
| 506 | * so any 'next' node must be in the general direction of our parent. |
| 507 | * Go up the tree; any time the ancestor is a right-hand child of its |
| 508 | * parent, keep going up. First time it's a left-hand child of its |
| 509 | * parent, said parent is our 'next' node. |
| 510 | */ |
| 511 | while ((parent = rb_parent(node)) && node == parent->rb_right) |
| 512 | node = parent; |
| 513 | |
| 514 | return parent; |
| 515 | } |
| 516 | |
| 517 | struct rb_node *rb_prev(const struct rb_node *node) |
| 518 | { |
| 519 | struct rb_node *parent; |
| 520 | |
| 521 | if (RB_EMPTY_NODE(node)) |
| 522 | return NULL; |
| 523 | |
| 524 | /* |
| 525 | * If we have a left-hand child, go down and then right as far |
| 526 | * as we can. |
| 527 | */ |
| 528 | if (node->rb_left) { |
| 529 | node = node->rb_left; |
| 530 | while (node->rb_right) |
chenqiwu | 8d994ca | 2020-04-06 20:10:31 -0700 | [diff] [blame] | 531 | node = node->rb_right; |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 532 | return (struct rb_node *)node; |
| 533 | } |
| 534 | |
| 535 | /* |
| 536 | * No left-hand children. Go up till we find an ancestor which |
| 537 | * is a right-hand child of its parent. |
| 538 | */ |
| 539 | while ((parent = rb_parent(node)) && node == parent->rb_left) |
| 540 | node = parent; |
| 541 | |
| 542 | return parent; |
| 543 | } |
| 544 | |
| 545 | void rb_replace_node(struct rb_node *victim, struct rb_node *new, |
| 546 | struct rb_root *root) |
| 547 | { |
| 548 | struct rb_node *parent = rb_parent(victim); |
| 549 | |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 550 | /* Copy the pointers/colour from the victim to the replacement */ |
| 551 | *new = *victim; |
| 552 | |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 553 | /* Set the surrounding nodes to point to the replacement */ |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 554 | if (victim->rb_left) |
| 555 | rb_set_parent(victim->rb_left, new); |
| 556 | if (victim->rb_right) |
| 557 | rb_set_parent(victim->rb_right, new); |
Davidlohr Bueso | 3aef2ca | 2018-12-06 11:18:13 -0800 | [diff] [blame] | 558 | __rb_change_child(victim, new, parent, root); |
| 559 | } |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 560 | |
Arnaldo Carvalho de Melo | 3f73537 | 2015-07-05 22:48:21 -0300 | [diff] [blame] | 561 | static struct rb_node *rb_left_deepest_node(const struct rb_node *node) |
| 562 | { |
| 563 | for (;;) { |
| 564 | if (node->rb_left) |
| 565 | node = node->rb_left; |
| 566 | else if (node->rb_right) |
| 567 | node = node->rb_right; |
| 568 | else |
| 569 | return (struct rb_node *)node; |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | struct rb_node *rb_next_postorder(const struct rb_node *node) |
| 574 | { |
| 575 | const struct rb_node *parent; |
| 576 | if (!node) |
| 577 | return NULL; |
| 578 | parent = rb_parent(node); |
| 579 | |
| 580 | /* If we're sitting on node, we've already seen our children */ |
| 581 | if (parent && node == parent->rb_left && parent->rb_right) { |
| 582 | /* If we are the parent's left node, go to the parent's right |
| 583 | * node then all the way down to the left */ |
| 584 | return rb_left_deepest_node(parent->rb_right); |
| 585 | } else |
| 586 | /* Otherwise we are the parent's right node, and the parent |
| 587 | * should be next */ |
| 588 | return (struct rb_node *)parent; |
| 589 | } |
| 590 | |
| 591 | struct rb_node *rb_first_postorder(const struct rb_root *root) |
| 592 | { |
| 593 | if (!root->rb_node) |
| 594 | return NULL; |
| 595 | |
| 596 | return rb_left_deepest_node(root->rb_node); |
| 597 | } |