blob: 0f0a7f306b0d13c54d758c6b7a41d5d37ae3827f [file] [log] [blame]
Rafael J. Wysocki25761b62005-10-30 14:59:56 -08001/*
2 * linux/kernel/power/swsusp.c
3 *
4 * This file is to realize architecture-independent
5 * machine suspend feature using pretty near only high-level routines
6 *
7 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
8 *
9 * This file is released under the GPLv2, and is based on swsusp.c.
10 *
11 */
12
13
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
17#include <linux/smp_lock.h>
18#include <linux/file.h>
19#include <linux/utsname.h>
20#include <linux/version.h>
21#include <linux/delay.h>
22#include <linux/reboot.h>
23#include <linux/bitops.h>
24#include <linux/vt_kern.h>
25#include <linux/kbd_kern.h>
26#include <linux/keyboard.h>
27#include <linux/spinlock.h>
28#include <linux/genhd.h>
29#include <linux/kernel.h>
30#include <linux/major.h>
31#include <linux/swap.h>
32#include <linux/pm.h>
33#include <linux/device.h>
34#include <linux/buffer_head.h>
35#include <linux/swapops.h>
36#include <linux/bootmem.h>
37#include <linux/syscalls.h>
38#include <linux/console.h>
39#include <linux/highmem.h>
40#include <linux/bio.h>
41#include <linux/mount.h>
42
43#include <asm/uaccess.h>
44#include <asm/mmu_context.h>
45#include <asm/pgtable.h>
46#include <asm/tlbflush.h>
47#include <asm/io.h>
48
49#include <linux/random.h>
50#include <linux/crypto.h>
51#include <asm/scatterlist.h>
52
53#include "power.h"
54
55
56
57
58#ifdef CONFIG_HIGHMEM
59struct highmem_page {
60 char *data;
61 struct page *page;
62 struct highmem_page *next;
63};
64
65static struct highmem_page *highmem_copy;
66
67static int save_highmem_zone(struct zone *zone)
68{
69 unsigned long zone_pfn;
70 mark_free_pages(zone);
71 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
72 struct page *page;
73 struct highmem_page *save;
74 void *kaddr;
75 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
76
77 if (!(pfn%1000))
78 printk(".");
79 if (!pfn_valid(pfn))
80 continue;
81 page = pfn_to_page(pfn);
82 /*
83 * This condition results from rvmalloc() sans vmalloc_32()
84 * and architectural memory reservations. This should be
85 * corrected eventually when the cases giving rise to this
86 * are better understood.
87 */
88 if (PageReserved(page)) {
89 printk("highmem reserved page?!\n");
90 continue;
91 }
92 BUG_ON(PageNosave(page));
93 if (PageNosaveFree(page))
94 continue;
95 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
96 if (!save)
97 return -ENOMEM;
98 save->next = highmem_copy;
99 save->page = page;
100 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
101 if (!save->data) {
102 kfree(save);
103 return -ENOMEM;
104 }
105 kaddr = kmap_atomic(page, KM_USER0);
106 memcpy(save->data, kaddr, PAGE_SIZE);
107 kunmap_atomic(kaddr, KM_USER0);
108 highmem_copy = save;
109 }
110 return 0;
111}
112#endif /* CONFIG_HIGHMEM */
113
114
115static int save_highmem(void)
116{
117#ifdef CONFIG_HIGHMEM
118 struct zone *zone;
119 int res = 0;
120
121 pr_debug("swsusp: Saving Highmem\n");
122 for_each_zone (zone) {
123 if (is_highmem(zone))
124 res = save_highmem_zone(zone);
125 if (res)
126 return res;
127 }
128#endif
129 return 0;
130}
131
132int restore_highmem(void)
133{
134#ifdef CONFIG_HIGHMEM
135 printk("swsusp: Restoring Highmem\n");
136 while (highmem_copy) {
137 struct highmem_page *save = highmem_copy;
138 void *kaddr;
139 highmem_copy = save->next;
140
141 kaddr = kmap_atomic(save->page, KM_USER0);
142 memcpy(kaddr, save->data, PAGE_SIZE);
143 kunmap_atomic(kaddr, KM_USER0);
144 free_page((long) save->data);
145 kfree(save);
146 }
147#endif
148 return 0;
149}
150
151
152static int pfn_is_nosave(unsigned long pfn)
153{
154 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
155 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
156 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
157}
158
159/**
160 * saveable - Determine whether a page should be cloned or not.
161 * @pfn: The page
162 *
163 * We save a page if it's Reserved, and not in the range of pages
164 * statically defined as 'unsaveable', or if it isn't reserved, and
165 * isn't part of a free chunk of pages.
166 */
167
168static int saveable(struct zone * zone, unsigned long * zone_pfn)
169{
170 unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
171 struct page * page;
172
173 if (!pfn_valid(pfn))
174 return 0;
175
176 page = pfn_to_page(pfn);
177 BUG_ON(PageReserved(page) && PageNosave(page));
178 if (PageNosave(page))
179 return 0;
180 if (PageReserved(page) && pfn_is_nosave(pfn)) {
181 pr_debug("[nosave pfn 0x%lx]", pfn);
182 return 0;
183 }
184 if (PageNosaveFree(page))
185 return 0;
186
187 return 1;
188}
189
190static void count_data_pages(void)
191{
192 struct zone *zone;
193 unsigned long zone_pfn;
194
195 nr_copy_pages = 0;
196
197 for_each_zone (zone) {
198 if (is_highmem(zone))
199 continue;
200 mark_free_pages(zone);
201 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
202 nr_copy_pages += saveable(zone, &zone_pfn);
203 }
204}
205
206static void copy_data_pages(void)
207{
208 struct zone *zone;
209 unsigned long zone_pfn;
210 struct pbe *pbe = pagedir_nosave, *p;
211
212 pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
213 for_each_zone (zone) {
214 if (is_highmem(zone))
215 continue;
216 mark_free_pages(zone);
217 /* This is necessary for swsusp_free() */
218 for_each_pb_page (p, pagedir_nosave)
219 SetPageNosaveFree(virt_to_page(p));
220 for_each_pbe(p, pagedir_nosave)
221 SetPageNosaveFree(virt_to_page(p->address));
222 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
223 if (saveable(zone, &zone_pfn)) {
224 struct page * page;
225 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
226 BUG_ON(!pbe);
227 pbe->orig_address = (unsigned long)page_address(page);
228 /* copy_page is not usable for copying task structs. */
229 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
230 pbe = pbe->next;
231 }
232 }
233 }
234 BUG_ON(pbe);
235}
236
237
238/**
239 * free_pagedir - free pages allocated with alloc_pagedir()
240 */
241
242void free_pagedir(struct pbe *pblist)
243{
244 struct pbe *pbe;
245
246 while (pblist) {
247 pbe = (pblist + PB_PAGE_SKIP)->next;
248 ClearPageNosave(virt_to_page(pblist));
249 ClearPageNosaveFree(virt_to_page(pblist));
250 free_page((unsigned long)pblist);
251 pblist = pbe;
252 }
253}
254
255/**
256 * fill_pb_page - Create a list of PBEs on a given memory page
257 */
258
259static inline void fill_pb_page(struct pbe *pbpage)
260{
261 struct pbe *p;
262
263 p = pbpage;
264 pbpage += PB_PAGE_SKIP;
265 do
266 p->next = p + 1;
267 while (++p < pbpage);
268}
269
270/**
271 * create_pbe_list - Create a list of PBEs on top of a given chain
272 * of memory pages allocated with alloc_pagedir()
273 */
274
275void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
276{
277 struct pbe *pbpage, *p;
278 unsigned num = PBES_PER_PAGE;
279
280 for_each_pb_page (pbpage, pblist) {
281 if (num >= nr_pages)
282 break;
283
284 fill_pb_page(pbpage);
285 num += PBES_PER_PAGE;
286 }
287 if (pbpage) {
288 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
289 p->next = p + 1;
290 p->next = NULL;
291 }
292 pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
293}
294
295static void *alloc_image_page(void)
296{
297 void *res = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
298 if (res) {
299 SetPageNosave(virt_to_page(res));
300 SetPageNosaveFree(virt_to_page(res));
301 }
302 return res;
303}
304
305/**
306 * alloc_pagedir - Allocate the page directory.
307 *
308 * First, determine exactly how many pages we need and
309 * allocate them.
310 *
311 * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
312 * struct pbe elements (pbes) and the last element in the page points
313 * to the next page.
314 *
315 * On each page we set up a list of struct_pbe elements.
316 */
317
318struct pbe * alloc_pagedir(unsigned nr_pages)
319{
320 unsigned num;
321 struct pbe *pblist, *pbe;
322
323 if (!nr_pages)
324 return NULL;
325
326 pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
327 pblist = (struct pbe *)alloc_image_page();
328 /* FIXME: rewrite this ugly loop */
329 for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
330 pbe = pbe->next, num += PBES_PER_PAGE) {
331 pbe += PB_PAGE_SKIP;
332 pbe->next = (struct pbe *)alloc_image_page();
333 }
334 if (!pbe) { /* get_zeroed_page() failed */
335 free_pagedir(pblist);
336 pblist = NULL;
337 }
338 return pblist;
339}
340
341/**
342 * Free pages we allocated for suspend. Suspend pages are alocated
343 * before atomic copy, so we need to free them after resume.
344 */
345
346void swsusp_free(void)
347{
348 struct zone *zone;
349 unsigned long zone_pfn;
350
351 for_each_zone(zone) {
352 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
353 if (pfn_valid(zone_pfn + zone->zone_start_pfn)) {
354 struct page * page;
355 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
356 if (PageNosave(page) && PageNosaveFree(page)) {
357 ClearPageNosave(page);
358 ClearPageNosaveFree(page);
359 free_page((long) page_address(page));
360 }
361 }
362 }
363}
364
365
366/**
367 * enough_free_mem - Make sure we enough free memory to snapshot.
368 *
369 * Returns TRUE or FALSE after checking the number of available
370 * free pages.
371 */
372
373static int enough_free_mem(void)
374{
375 pr_debug("swsusp: available memory: %u pages\n", nr_free_pages());
376 return nr_free_pages() > (nr_copy_pages + PAGES_FOR_IO +
377 nr_copy_pages/PBES_PER_PAGE + !!(nr_copy_pages%PBES_PER_PAGE));
378}
379
380
381static int swsusp_alloc(void)
382{
383 struct pbe * p;
384
385 pagedir_nosave = NULL;
386
387 if (MAX_PBES < nr_copy_pages / PBES_PER_PAGE +
388 !!(nr_copy_pages % PBES_PER_PAGE))
389 return -ENOSPC;
390
391 if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
392 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
393 return -ENOMEM;
394 }
395 create_pbe_list(pagedir_save, nr_copy_pages);
396 pagedir_nosave = pagedir_save;
397
398 for_each_pbe (p, pagedir_save) {
399 p->address = (unsigned long)alloc_image_page();
400 if (!p->address) {
401 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
402 swsusp_free();
403 return -ENOMEM;
404 }
405 }
406
407 return 0;
408}
409
410static int suspend_prepare_image(void)
411{
412 int error;
413
414 pr_debug("swsusp: critical section: \n");
415 if (save_highmem()) {
416 printk(KERN_CRIT "swsusp: Not enough free pages for highmem\n");
417 restore_highmem();
418 return -ENOMEM;
419 }
420
421 drain_local_pages();
422 count_data_pages();
423 printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
424
425 pr_debug("swsusp: pages needed: %u + %lu + %u, free: %u\n",
426 nr_copy_pages,
427 nr_copy_pages/PBES_PER_PAGE + !!(nr_copy_pages%PBES_PER_PAGE),
428 PAGES_FOR_IO, nr_free_pages());
429
430 if (!enough_free_mem()) {
431 printk(KERN_ERR "swsusp: Not enough free memory\n");
432 return -ENOMEM;
433 }
434
435 if (!enough_swap()) {
436 printk(KERN_ERR "swsusp: Not enough free swap\n");
437 return -ENOSPC;
438 }
439
440 error = swsusp_alloc();
441 if (error)
442 return error;
443
444 /* During allocating of suspend pagedir, new cold pages may appear.
445 * Kill them.
446 */
447 drain_local_pages();
448 copy_data_pages();
449
450 /*
451 * End of critical section. From now on, we can write to memory,
452 * but we should not touch disk. This specially means we must _not_
453 * touch swap space! Except we must write out our image of course.
454 */
455
456 printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
457 return 0;
458}
459
460
461asmlinkage int swsusp_save(void)
462{
463 return suspend_prepare_image();
464}