Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved |
| 4 | */ |
| 5 | |
| 6 | #include <linux/cpu.h> |
| 7 | #include <linux/cpufreq.h> |
| 8 | #include <linux/delay.h> |
| 9 | #include <linux/dma-mapping.h> |
| 10 | #include <linux/module.h> |
| 11 | #include <linux/of.h> |
| 12 | #include <linux/of_platform.h> |
| 13 | #include <linux/platform_device.h> |
| 14 | #include <linux/slab.h> |
| 15 | |
| 16 | #include <asm/smp_plat.h> |
| 17 | |
| 18 | #include <soc/tegra/bpmp.h> |
| 19 | #include <soc/tegra/bpmp-abi.h> |
| 20 | |
| 21 | #define KHZ 1000 |
| 22 | #define REF_CLK_MHZ 408 /* 408 MHz */ |
| 23 | #define US_DELAY 500 |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 24 | #define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ) |
| 25 | #define MAX_CNT ~0U |
| 26 | |
| 27 | /* cpufreq transisition latency */ |
| 28 | #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */ |
| 29 | |
| 30 | enum cluster { |
| 31 | CLUSTER0, |
| 32 | CLUSTER1, |
| 33 | CLUSTER2, |
| 34 | CLUSTER3, |
| 35 | MAX_CLUSTERS, |
| 36 | }; |
| 37 | |
| 38 | struct tegra194_cpufreq_data { |
| 39 | void __iomem *regs; |
| 40 | size_t num_clusters; |
| 41 | struct cpufreq_frequency_table **tables; |
| 42 | }; |
| 43 | |
| 44 | struct tegra_cpu_ctr { |
| 45 | u32 cpu; |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 46 | u32 coreclk_cnt, last_coreclk_cnt; |
| 47 | u32 refclk_cnt, last_refclk_cnt; |
| 48 | }; |
| 49 | |
| 50 | struct read_counters_work { |
| 51 | struct work_struct work; |
| 52 | struct tegra_cpu_ctr c; |
| 53 | }; |
| 54 | |
| 55 | static struct workqueue_struct *read_counters_wq; |
| 56 | |
Sumit Gupta | 93d0c1a | 2020-08-12 01:13:17 +0530 | [diff] [blame] | 57 | static void get_cpu_cluster(void *cluster) |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 58 | { |
Sumit Gupta | 93d0c1a | 2020-08-12 01:13:17 +0530 | [diff] [blame] | 59 | u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; |
| 60 | |
| 61 | *((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1); |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 62 | } |
| 63 | |
| 64 | /* |
| 65 | * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1. |
| 66 | * The register provides frequency feedback information to |
| 67 | * determine the average actual frequency a core has run at over |
| 68 | * a period of time. |
| 69 | * [31:0] PLLP counter: Counts at fixed frequency (408 MHz) |
| 70 | * [63:32] Core clock counter: counts on every core clock cycle |
| 71 | * where the core is architecturally clocking |
| 72 | */ |
| 73 | static u64 read_freq_feedback(void) |
| 74 | { |
| 75 | u64 val = 0; |
| 76 | |
| 77 | asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : ); |
| 78 | |
| 79 | return val; |
| 80 | } |
| 81 | |
| 82 | static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response |
| 83 | *nltbl, u16 ndiv) |
| 84 | { |
| 85 | return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv); |
| 86 | } |
| 87 | |
| 88 | static void tegra_read_counters(struct work_struct *work) |
| 89 | { |
| 90 | struct read_counters_work *read_counters_work; |
| 91 | struct tegra_cpu_ctr *c; |
| 92 | u64 val; |
| 93 | |
| 94 | /* |
| 95 | * ref_clk_counter(32 bit counter) runs on constant clk, |
| 96 | * pll_p(408MHz). |
| 97 | * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter |
| 98 | * = 10526880 usec = 10.527 sec to overflow |
| 99 | * |
| 100 | * Like wise core_clk_counter(32 bit counter) runs on core clock. |
| 101 | * It's synchronized to crab_clk (cpu_crab_clk) which runs at |
| 102 | * freq of cluster. Assuming max cluster clock ~2000MHz, |
| 103 | * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter |
| 104 | * = ~2.147 sec to overflow |
| 105 | */ |
| 106 | read_counters_work = container_of(work, struct read_counters_work, |
| 107 | work); |
| 108 | c = &read_counters_work->c; |
| 109 | |
| 110 | val = read_freq_feedback(); |
| 111 | c->last_refclk_cnt = lower_32_bits(val); |
| 112 | c->last_coreclk_cnt = upper_32_bits(val); |
Jon Hunter | 9354951 | 2020-12-02 09:14:18 +0000 | [diff] [blame] | 113 | udelay(US_DELAY); |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 114 | val = read_freq_feedback(); |
| 115 | c->refclk_cnt = lower_32_bits(val); |
| 116 | c->coreclk_cnt = upper_32_bits(val); |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * Return instantaneous cpu speed |
| 121 | * Instantaneous freq is calculated as - |
| 122 | * -Takes sample on every query of getting the freq. |
| 123 | * - Read core and ref clock counters; |
| 124 | * - Delay for X us |
| 125 | * - Read above cycle counters again |
| 126 | * - Calculates freq by subtracting current and previous counters |
| 127 | * divided by the delay time or eqv. of ref_clk_counter in delta time |
| 128 | * - Return Kcycles/second, freq in KHz |
| 129 | * |
| 130 | * delta time period = x sec |
| 131 | * = delta ref_clk_counter / (408 * 10^6) sec |
| 132 | * freq in Hz = cycles/sec |
| 133 | * = (delta cycles / x sec |
| 134 | * = (delta cycles * 408 * 10^6) / delta ref_clk_counter |
| 135 | * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter |
| 136 | * |
| 137 | * @cpu - logical cpu whose freq to be updated |
| 138 | * Returns freq in KHz on success, 0 if cpu is offline |
| 139 | */ |
Jon Hunter | f45f89a | 2020-12-02 09:14:19 +0000 | [diff] [blame] | 140 | static unsigned int tegra194_calculate_speed(u32 cpu) |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 141 | { |
| 142 | struct read_counters_work read_counters_work; |
| 143 | struct tegra_cpu_ctr c; |
| 144 | u32 delta_refcnt; |
| 145 | u32 delta_ccnt; |
| 146 | u32 rate_mhz; |
| 147 | |
| 148 | /* |
| 149 | * udelay() is required to reconstruct cpu frequency over an |
| 150 | * observation window. Using workqueue to call udelay() with |
| 151 | * interrupts enabled. |
| 152 | */ |
| 153 | read_counters_work.c.cpu = cpu; |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 154 | INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters); |
| 155 | queue_work_on(cpu, read_counters_wq, &read_counters_work.work); |
| 156 | flush_work(&read_counters_work.work); |
| 157 | c = read_counters_work.c; |
| 158 | |
| 159 | if (c.coreclk_cnt < c.last_coreclk_cnt) |
| 160 | delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt); |
| 161 | else |
| 162 | delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt; |
| 163 | if (!delta_ccnt) |
| 164 | return 0; |
| 165 | |
| 166 | /* ref clock is 32 bits */ |
| 167 | if (c.refclk_cnt < c.last_refclk_cnt) |
| 168 | delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt); |
| 169 | else |
| 170 | delta_refcnt = c.refclk_cnt - c.last_refclk_cnt; |
| 171 | if (!delta_refcnt) { |
| 172 | pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu); |
| 173 | return 0; |
| 174 | } |
| 175 | rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt; |
| 176 | |
| 177 | return (rate_mhz * KHZ); /* in KHz */ |
| 178 | } |
| 179 | |
Sumit Gupta | 68b9cd72 | 2020-10-14 15:06:11 +0530 | [diff] [blame] | 180 | static void get_cpu_ndiv(void *ndiv) |
| 181 | { |
| 182 | u64 ndiv_val; |
| 183 | |
| 184 | asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : ); |
| 185 | |
| 186 | *(u64 *)ndiv = ndiv_val; |
| 187 | } |
| 188 | |
| 189 | static void set_cpu_ndiv(void *data) |
| 190 | { |
| 191 | struct cpufreq_frequency_table *tbl = data; |
| 192 | u64 ndiv_val = (u64)tbl->driver_data; |
| 193 | |
| 194 | asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val)); |
| 195 | } |
| 196 | |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 197 | static unsigned int tegra194_get_speed(u32 cpu) |
| 198 | { |
Sumit Gupta | 68b9cd72 | 2020-10-14 15:06:11 +0530 | [diff] [blame] | 199 | struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); |
| 200 | struct cpufreq_frequency_table *pos; |
| 201 | unsigned int rate; |
| 202 | u64 ndiv; |
| 203 | int ret; |
| 204 | u32 cl; |
| 205 | |
| 206 | smp_call_function_single(cpu, get_cpu_cluster, &cl, true); |
| 207 | |
| 208 | /* reconstruct actual cpu freq using counters */ |
Jon Hunter | f45f89a | 2020-12-02 09:14:19 +0000 | [diff] [blame] | 209 | rate = tegra194_calculate_speed(cpu); |
Sumit Gupta | 68b9cd72 | 2020-10-14 15:06:11 +0530 | [diff] [blame] | 210 | |
| 211 | /* get last written ndiv value */ |
| 212 | ret = smp_call_function_single(cpu, get_cpu_ndiv, &ndiv, true); |
| 213 | if (WARN_ON_ONCE(ret)) |
| 214 | return rate; |
| 215 | |
| 216 | /* |
| 217 | * If the reconstructed frequency has acceptable delta from |
| 218 | * the last written value, then return freq corresponding |
| 219 | * to the last written ndiv value from freq_table. This is |
| 220 | * done to return consistent value. |
| 221 | */ |
| 222 | cpufreq_for_each_valid_entry(pos, data->tables[cl]) { |
| 223 | if (pos->driver_data != ndiv) |
| 224 | continue; |
| 225 | |
| 226 | if (abs(pos->frequency - rate) > 115200) { |
| 227 | pr_warn("cpufreq: cpu%d,cur:%u,set:%u,set ndiv:%llu\n", |
| 228 | cpu, rate, pos->frequency, ndiv); |
| 229 | } else { |
| 230 | rate = pos->frequency; |
| 231 | } |
| 232 | break; |
| 233 | } |
| 234 | return rate; |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 235 | } |
| 236 | |
| 237 | static int tegra194_cpufreq_init(struct cpufreq_policy *policy) |
| 238 | { |
| 239 | struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 240 | u32 cpu; |
Sumit Gupta | 93d0c1a | 2020-08-12 01:13:17 +0530 | [diff] [blame] | 241 | u32 cl; |
| 242 | |
| 243 | smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true); |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 244 | |
Mikko Perttunen | c2ace21 | 2021-09-15 11:55:16 +0300 | [diff] [blame] | 245 | if (cl >= data->num_clusters || !data->tables[cl]) |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 246 | return -EINVAL; |
| 247 | |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 248 | /* set same policy for all cpus in a cluster */ |
| 249 | for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++) |
| 250 | cpumask_set_cpu(cpu, policy->cpus); |
| 251 | |
| 252 | policy->freq_table = data->tables[cl]; |
| 253 | policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY; |
| 254 | |
| 255 | return 0; |
| 256 | } |
| 257 | |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 258 | static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy, |
| 259 | unsigned int index) |
| 260 | { |
| 261 | struct cpufreq_frequency_table *tbl = policy->freq_table + index; |
| 262 | |
| 263 | /* |
| 264 | * Each core writes frequency in per core register. Then both cores |
| 265 | * in a cluster run at same frequency which is the maximum frequency |
| 266 | * request out of the values requested by both cores in that cluster. |
| 267 | */ |
| 268 | on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true); |
| 269 | |
| 270 | return 0; |
| 271 | } |
| 272 | |
| 273 | static struct cpufreq_driver tegra194_cpufreq_driver = { |
| 274 | .name = "tegra194", |
Viresh Kumar | 5ae4a4b | 2021-02-02 10:25:11 +0530 | [diff] [blame] | 275 | .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK, |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 276 | .verify = cpufreq_generic_frequency_table_verify, |
| 277 | .target_index = tegra194_cpufreq_set_target, |
| 278 | .get = tegra194_get_speed, |
| 279 | .init = tegra194_cpufreq_init, |
| 280 | .attr = cpufreq_generic_attr, |
| 281 | }; |
| 282 | |
| 283 | static void tegra194_cpufreq_free_resources(void) |
| 284 | { |
| 285 | destroy_workqueue(read_counters_wq); |
| 286 | } |
| 287 | |
| 288 | static struct cpufreq_frequency_table * |
| 289 | init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp, |
| 290 | unsigned int cluster_id) |
| 291 | { |
| 292 | struct cpufreq_frequency_table *freq_table; |
| 293 | struct mrq_cpu_ndiv_limits_response resp; |
| 294 | unsigned int num_freqs, ndiv, delta_ndiv; |
| 295 | struct mrq_cpu_ndiv_limits_request req; |
| 296 | struct tegra_bpmp_message msg; |
| 297 | u16 freq_table_step_size; |
| 298 | int err, index; |
| 299 | |
| 300 | memset(&req, 0, sizeof(req)); |
| 301 | req.cluster_id = cluster_id; |
| 302 | |
| 303 | memset(&msg, 0, sizeof(msg)); |
| 304 | msg.mrq = MRQ_CPU_NDIV_LIMITS; |
| 305 | msg.tx.data = &req; |
| 306 | msg.tx.size = sizeof(req); |
| 307 | msg.rx.data = &resp; |
| 308 | msg.rx.size = sizeof(resp); |
| 309 | |
| 310 | err = tegra_bpmp_transfer(bpmp, &msg); |
| 311 | if (err) |
| 312 | return ERR_PTR(err); |
Mikko Perttunen | c2ace21 | 2021-09-15 11:55:16 +0300 | [diff] [blame] | 313 | if (msg.rx.ret == -BPMP_EINVAL) { |
| 314 | /* Cluster not available */ |
| 315 | return NULL; |
| 316 | } |
| 317 | if (msg.rx.ret) |
| 318 | return ERR_PTR(-EINVAL); |
Sumit Gupta | df320f8 | 2020-07-16 14:00:01 +0530 | [diff] [blame] | 319 | |
| 320 | /* |
| 321 | * Make sure frequency table step is a multiple of mdiv to match |
| 322 | * vhint table granularity. |
| 323 | */ |
| 324 | freq_table_step_size = resp.mdiv * |
| 325 | DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz); |
| 326 | |
| 327 | dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n", |
| 328 | cluster_id, freq_table_step_size); |
| 329 | |
| 330 | delta_ndiv = resp.ndiv_max - resp.ndiv_min; |
| 331 | |
| 332 | if (unlikely(delta_ndiv == 0)) { |
| 333 | num_freqs = 1; |
| 334 | } else { |
| 335 | /* We store both ndiv_min and ndiv_max hence the +1 */ |
| 336 | num_freqs = delta_ndiv / freq_table_step_size + 1; |
| 337 | } |
| 338 | |
| 339 | num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0; |
| 340 | |
| 341 | freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1, |
| 342 | sizeof(*freq_table), GFP_KERNEL); |
| 343 | if (!freq_table) |
| 344 | return ERR_PTR(-ENOMEM); |
| 345 | |
| 346 | for (index = 0, ndiv = resp.ndiv_min; |
| 347 | ndiv < resp.ndiv_max; |
| 348 | index++, ndiv += freq_table_step_size) { |
| 349 | freq_table[index].driver_data = ndiv; |
| 350 | freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv); |
| 351 | } |
| 352 | |
| 353 | freq_table[index].driver_data = resp.ndiv_max; |
| 354 | freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max); |
| 355 | freq_table[index].frequency = CPUFREQ_TABLE_END; |
| 356 | |
| 357 | return freq_table; |
| 358 | } |
| 359 | |
| 360 | static int tegra194_cpufreq_probe(struct platform_device *pdev) |
| 361 | { |
| 362 | struct tegra194_cpufreq_data *data; |
| 363 | struct tegra_bpmp *bpmp; |
| 364 | int err, i; |
| 365 | |
| 366 | data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); |
| 367 | if (!data) |
| 368 | return -ENOMEM; |
| 369 | |
| 370 | data->num_clusters = MAX_CLUSTERS; |
| 371 | data->tables = devm_kcalloc(&pdev->dev, data->num_clusters, |
| 372 | sizeof(*data->tables), GFP_KERNEL); |
| 373 | if (!data->tables) |
| 374 | return -ENOMEM; |
| 375 | |
| 376 | platform_set_drvdata(pdev, data); |
| 377 | |
| 378 | bpmp = tegra_bpmp_get(&pdev->dev); |
| 379 | if (IS_ERR(bpmp)) |
| 380 | return PTR_ERR(bpmp); |
| 381 | |
| 382 | read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1); |
| 383 | if (!read_counters_wq) { |
| 384 | dev_err(&pdev->dev, "fail to create_workqueue\n"); |
| 385 | err = -EINVAL; |
| 386 | goto put_bpmp; |
| 387 | } |
| 388 | |
| 389 | for (i = 0; i < data->num_clusters; i++) { |
| 390 | data->tables[i] = init_freq_table(pdev, bpmp, i); |
| 391 | if (IS_ERR(data->tables[i])) { |
| 392 | err = PTR_ERR(data->tables[i]); |
| 393 | goto err_free_res; |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | tegra194_cpufreq_driver.driver_data = data; |
| 398 | |
| 399 | err = cpufreq_register_driver(&tegra194_cpufreq_driver); |
| 400 | if (!err) |
| 401 | goto put_bpmp; |
| 402 | |
| 403 | err_free_res: |
| 404 | tegra194_cpufreq_free_resources(); |
| 405 | put_bpmp: |
| 406 | tegra_bpmp_put(bpmp); |
| 407 | return err; |
| 408 | } |
| 409 | |
| 410 | static int tegra194_cpufreq_remove(struct platform_device *pdev) |
| 411 | { |
| 412 | cpufreq_unregister_driver(&tegra194_cpufreq_driver); |
| 413 | tegra194_cpufreq_free_resources(); |
| 414 | |
| 415 | return 0; |
| 416 | } |
| 417 | |
| 418 | static const struct of_device_id tegra194_cpufreq_of_match[] = { |
| 419 | { .compatible = "nvidia,tegra194-ccplex", }, |
| 420 | { /* sentinel */ } |
| 421 | }; |
| 422 | MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match); |
| 423 | |
| 424 | static struct platform_driver tegra194_ccplex_driver = { |
| 425 | .driver = { |
| 426 | .name = "tegra194-cpufreq", |
| 427 | .of_match_table = tegra194_cpufreq_of_match, |
| 428 | }, |
| 429 | .probe = tegra194_cpufreq_probe, |
| 430 | .remove = tegra194_cpufreq_remove, |
| 431 | }; |
| 432 | module_platform_driver(tegra194_ccplex_driver); |
| 433 | |
| 434 | MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); |
| 435 | MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>"); |
| 436 | MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver"); |
| 437 | MODULE_LICENSE("GPL v2"); |