blob: 271b8e735e8fa1ea21f64a0751d5ab94e147c398 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
franse6cf5df2008-08-15 23:14:31 +02002 * This file contains an ECC algorithm that detects and corrects 1 bit
3 * errors in a 256 byte block of data.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
5 * drivers/mtd/nand/nand_ecc.c
6 *
David Woodhouseccbcd6c2008-08-16 11:01:31 +01007 * Copyright © 2008 Koninklijke Philips Electronics NV.
8 * Author: Frans Meulenbroeks
Linus Torvalds1da177e2005-04-16 15:20:36 -07009 *
franse6cf5df2008-08-15 23:14:31 +020010 * Completely replaces the previous ECC implementation which was written by:
11 * Steven J. Hill (sjhill@realitydiluted.com)
12 * Thomas Gleixner (tglx@linutronix.de)
13 *
14 * Information on how this algorithm works and how it was developed
David Woodhouseccbcd6c2008-08-16 11:01:31 +010015 * can be found in Documentation/mtd/nand_ecc.txt
Thomas Gleixner819d6a32006-05-23 11:32:45 +020016 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 * This file is free software; you can redistribute it and/or modify it
18 * under the terms of the GNU General Public License as published by the
19 * Free Software Foundation; either version 2 or (at your option) any
20 * later version.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +000021 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070022 * This file is distributed in the hope that it will be useful, but WITHOUT
23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 * for more details.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +000026 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070027 * You should have received a copy of the GNU General Public License along
28 * with this file; if not, write to the Free Software Foundation, Inc.,
29 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
Thomas Gleixner61b03bd2005-11-07 11:15:49 +000030 *
Linus Torvalds1da177e2005-04-16 15:20:36 -070031 */
32
franse6cf5df2008-08-15 23:14:31 +020033/*
34 * The STANDALONE macro is useful when running the code outside the kernel
35 * e.g. when running the code in a testbed or a benchmark program.
36 * When STANDALONE is used, the module related macros are commented out
37 * as well as the linux include files.
David Woodhouseccbcd6c2008-08-16 11:01:31 +010038 * Instead a private definition of mtd_info is given to satisfy the compiler
franse6cf5df2008-08-15 23:14:31 +020039 * (the code does not use mtd_info, so the code does not care)
40 */
41#ifndef STANDALONE
Linus Torvalds1da177e2005-04-16 15:20:36 -070042#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/module.h>
Singh, Vimald68156c2008-08-23 18:18:34 +020045#include <linux/mtd/mtd.h>
46#include <linux/mtd/nand.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include <linux/mtd/nand_ecc.h>
frans1077be52008-08-20 21:11:50 +020048#include <asm/byteorder.h>
franse6cf5df2008-08-15 23:14:31 +020049#else
David Woodhouseccbcd6c2008-08-16 11:01:31 +010050#include <stdint.h>
51struct mtd_info;
franse6cf5df2008-08-15 23:14:31 +020052#define EXPORT_SYMBOL(x) /* x */
53
54#define MODULE_LICENSE(x) /* x */
55#define MODULE_AUTHOR(x) /* x */
56#define MODULE_DESCRIPTION(x) /* x */
frans1077be52008-08-20 21:11:50 +020057
58#define printk printf
59#define KERN_ERR ""
franse6cf5df2008-08-15 23:14:31 +020060#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070061
62/*
franse6cf5df2008-08-15 23:14:31 +020063 * invparity is a 256 byte table that contains the odd parity
64 * for each byte. So if the number of bits in a byte is even,
65 * the array element is 1, and when the number of bits is odd
66 * the array eleemnt is 0.
Linus Torvalds1da177e2005-04-16 15:20:36 -070067 */
franse6cf5df2008-08-15 23:14:31 +020068static const char invparity[256] = {
69 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
70 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
71 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
72 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
73 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
74 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
75 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
76 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
77 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
78 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
79 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
80 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
81 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
82 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
83 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
84 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
85};
86
87/*
88 * bitsperbyte contains the number of bits per byte
89 * this is only used for testing and repairing parity
90 * (a precalculated value slightly improves performance)
91 */
92static const char bitsperbyte[256] = {
93 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
94 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
95 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
96 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
97 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
98 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
99 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
100 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
101 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
102 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
103 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
104 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
105 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
106 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
107 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
108 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
109};
110
111/*
112 * addressbits is a lookup table to filter out the bits from the xor-ed
113 * ecc data that identify the faulty location.
114 * this is only used for repairing parity
115 * see the comments in nand_correct_data for more details
116 */
117static const char addressbits[256] = {
118 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
119 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
120 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
121 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
122 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
123 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
124 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
125 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
126 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
127 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
128 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
129 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
130 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
131 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
132 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
133 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
134 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
135 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
136 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
137 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
138 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
139 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
140 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
141 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
142 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
143 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
144 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
145 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
146 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
147 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
148 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
149 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
Linus Torvalds1da177e2005-04-16 15:20:36 -0700150};
151
Linus Torvalds1da177e2005-04-16 15:20:36 -0700152/**
Akinobu Mita1c63aca2009-10-22 16:53:32 +0900153 * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
Singh, Vimald68156c2008-08-23 18:18:34 +0200154 * block
Alexey Korolev17c1d2be2008-08-20 22:32:08 +0100155 * @buf: input buffer with raw data
Akinobu Mita1c63aca2009-10-22 16:53:32 +0900156 * @eccsize: data bytes per ecc step (256 or 512)
Alexey Korolev17c1d2be2008-08-20 22:32:08 +0100157 * @code: output buffer with ECC
Linus Torvalds1da177e2005-04-16 15:20:36 -0700158 */
Akinobu Mita1c63aca2009-10-22 16:53:32 +0900159void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize,
franse6cf5df2008-08-15 23:14:31 +0200160 unsigned char *code)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700161{
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200162 int i;
franse6cf5df2008-08-15 23:14:31 +0200163 const uint32_t *bp = (uint32_t *)buf;
Singh, Vimald68156c2008-08-23 18:18:34 +0200164 /* 256 or 512 bytes/ecc */
Akinobu Mita1c63aca2009-10-22 16:53:32 +0900165 const uint32_t eccsize_mult = eccsize >> 8;
franse6cf5df2008-08-15 23:14:31 +0200166 uint32_t cur; /* current value in buffer */
Singh, Vimald68156c2008-08-23 18:18:34 +0200167 /* rp0..rp15..rp17 are the various accumulated parities (per byte) */
franse6cf5df2008-08-15 23:14:31 +0200168 uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
Singh, Vimald68156c2008-08-23 18:18:34 +0200169 uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;
170 uint32_t uninitialized_var(rp17); /* to make compiler happy */
franse6cf5df2008-08-15 23:14:31 +0200171 uint32_t par; /* the cumulative parity for all data */
172 uint32_t tmppar; /* the cumulative parity for this iteration;
Singh, Vimald68156c2008-08-23 18:18:34 +0200173 for rp12, rp14 and rp16 at the end of the
174 loop */
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000175
franse6cf5df2008-08-15 23:14:31 +0200176 par = 0;
177 rp4 = 0;
178 rp6 = 0;
179 rp8 = 0;
180 rp10 = 0;
181 rp12 = 0;
182 rp14 = 0;
Singh, Vimald68156c2008-08-23 18:18:34 +0200183 rp16 = 0;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000184
franse6cf5df2008-08-15 23:14:31 +0200185 /*
186 * The loop is unrolled a number of times;
187 * This avoids if statements to decide on which rp value to update
188 * Also we process the data by longwords.
189 * Note: passing unaligned data might give a performance penalty.
190 * It is assumed that the buffers are aligned.
191 * tmppar is the cumulative sum of this iteration.
Singh, Vimald68156c2008-08-23 18:18:34 +0200192 * needed for calculating rp12, rp14, rp16 and par
franse6cf5df2008-08-15 23:14:31 +0200193 * also used as a performance improvement for rp6, rp8 and rp10
194 */
Singh, Vimald68156c2008-08-23 18:18:34 +0200195 for (i = 0; i < eccsize_mult << 2; i++) {
franse6cf5df2008-08-15 23:14:31 +0200196 cur = *bp++;
197 tmppar = cur;
198 rp4 ^= cur;
199 cur = *bp++;
200 tmppar ^= cur;
201 rp6 ^= tmppar;
202 cur = *bp++;
203 tmppar ^= cur;
204 rp4 ^= cur;
205 cur = *bp++;
206 tmppar ^= cur;
207 rp8 ^= tmppar;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000208
franse6cf5df2008-08-15 23:14:31 +0200209 cur = *bp++;
210 tmppar ^= cur;
211 rp4 ^= cur;
212 rp6 ^= cur;
213 cur = *bp++;
214 tmppar ^= cur;
215 rp6 ^= cur;
216 cur = *bp++;
217 tmppar ^= cur;
218 rp4 ^= cur;
219 cur = *bp++;
220 tmppar ^= cur;
221 rp10 ^= tmppar;
222
223 cur = *bp++;
224 tmppar ^= cur;
225 rp4 ^= cur;
226 rp6 ^= cur;
227 rp8 ^= cur;
228 cur = *bp++;
229 tmppar ^= cur;
230 rp6 ^= cur;
231 rp8 ^= cur;
232 cur = *bp++;
233 tmppar ^= cur;
234 rp4 ^= cur;
235 rp8 ^= cur;
236 cur = *bp++;
237 tmppar ^= cur;
238 rp8 ^= cur;
239
240 cur = *bp++;
241 tmppar ^= cur;
242 rp4 ^= cur;
243 rp6 ^= cur;
244 cur = *bp++;
245 tmppar ^= cur;
246 rp6 ^= cur;
247 cur = *bp++;
248 tmppar ^= cur;
249 rp4 ^= cur;
250 cur = *bp++;
251 tmppar ^= cur;
252
253 par ^= tmppar;
254 if ((i & 0x1) == 0)
255 rp12 ^= tmppar;
256 if ((i & 0x2) == 0)
257 rp14 ^= tmppar;
Singh, Vimald68156c2008-08-23 18:18:34 +0200258 if (eccsize_mult == 2 && (i & 0x4) == 0)
259 rp16 ^= tmppar;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700260 }
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000261
franse6cf5df2008-08-15 23:14:31 +0200262 /*
263 * handle the fact that we use longword operations
Singh, Vimald68156c2008-08-23 18:18:34 +0200264 * we'll bring rp4..rp14..rp16 back to single byte entities by
265 * shifting and xoring first fold the upper and lower 16 bits,
franse6cf5df2008-08-15 23:14:31 +0200266 * then the upper and lower 8 bits.
267 */
268 rp4 ^= (rp4 >> 16);
269 rp4 ^= (rp4 >> 8);
270 rp4 &= 0xff;
271 rp6 ^= (rp6 >> 16);
272 rp6 ^= (rp6 >> 8);
273 rp6 &= 0xff;
274 rp8 ^= (rp8 >> 16);
275 rp8 ^= (rp8 >> 8);
276 rp8 &= 0xff;
277 rp10 ^= (rp10 >> 16);
278 rp10 ^= (rp10 >> 8);
279 rp10 &= 0xff;
280 rp12 ^= (rp12 >> 16);
281 rp12 ^= (rp12 >> 8);
282 rp12 &= 0xff;
283 rp14 ^= (rp14 >> 16);
284 rp14 ^= (rp14 >> 8);
285 rp14 &= 0xff;
Singh, Vimald68156c2008-08-23 18:18:34 +0200286 if (eccsize_mult == 2) {
287 rp16 ^= (rp16 >> 16);
288 rp16 ^= (rp16 >> 8);
289 rp16 &= 0xff;
290 }
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200291
franse6cf5df2008-08-15 23:14:31 +0200292 /*
293 * we also need to calculate the row parity for rp0..rp3
294 * This is present in par, because par is now
frans1077be52008-08-20 21:11:50 +0200295 * rp3 rp3 rp2 rp2 in little endian and
296 * rp2 rp2 rp3 rp3 in big endian
franse6cf5df2008-08-15 23:14:31 +0200297 * as well as
frans1077be52008-08-20 21:11:50 +0200298 * rp1 rp0 rp1 rp0 in little endian and
299 * rp0 rp1 rp0 rp1 in big endian
franse6cf5df2008-08-15 23:14:31 +0200300 * First calculate rp2 and rp3
franse6cf5df2008-08-15 23:14:31 +0200301 */
frans1077be52008-08-20 21:11:50 +0200302#ifdef __BIG_ENDIAN
303 rp2 = (par >> 16);
304 rp2 ^= (rp2 >> 8);
305 rp2 &= 0xff;
306 rp3 = par & 0xffff;
307 rp3 ^= (rp3 >> 8);
308 rp3 &= 0xff;
309#else
franse6cf5df2008-08-15 23:14:31 +0200310 rp3 = (par >> 16);
311 rp3 ^= (rp3 >> 8);
312 rp3 &= 0xff;
313 rp2 = par & 0xffff;
314 rp2 ^= (rp2 >> 8);
315 rp2 &= 0xff;
frans1077be52008-08-20 21:11:50 +0200316#endif
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000317
franse6cf5df2008-08-15 23:14:31 +0200318 /* reduce par to 16 bits then calculate rp1 and rp0 */
319 par ^= (par >> 16);
frans1077be52008-08-20 21:11:50 +0200320#ifdef __BIG_ENDIAN
321 rp0 = (par >> 8) & 0xff;
322 rp1 = (par & 0xff);
323#else
franse6cf5df2008-08-15 23:14:31 +0200324 rp1 = (par >> 8) & 0xff;
325 rp0 = (par & 0xff);
frans1077be52008-08-20 21:11:50 +0200326#endif
franse6cf5df2008-08-15 23:14:31 +0200327
328 /* finally reduce par to 8 bits */
329 par ^= (par >> 8);
330 par &= 0xff;
331
332 /*
Singh, Vimald68156c2008-08-23 18:18:34 +0200333 * and calculate rp5..rp15..rp17
franse6cf5df2008-08-15 23:14:31 +0200334 * note that par = rp4 ^ rp5 and due to the commutative property
335 * of the ^ operator we can say:
336 * rp5 = (par ^ rp4);
337 * The & 0xff seems superfluous, but benchmarking learned that
338 * leaving it out gives slightly worse results. No idea why, probably
339 * it has to do with the way the pipeline in pentium is organized.
340 */
341 rp5 = (par ^ rp4) & 0xff;
342 rp7 = (par ^ rp6) & 0xff;
343 rp9 = (par ^ rp8) & 0xff;
344 rp11 = (par ^ rp10) & 0xff;
345 rp13 = (par ^ rp12) & 0xff;
346 rp15 = (par ^ rp14) & 0xff;
Singh, Vimald68156c2008-08-23 18:18:34 +0200347 if (eccsize_mult == 2)
348 rp17 = (par ^ rp16) & 0xff;
franse6cf5df2008-08-15 23:14:31 +0200349
350 /*
351 * Finally calculate the ecc bits.
352 * Again here it might seem that there are performance optimisations
353 * possible, but benchmarks showed that on the system this is developed
354 * the code below is the fastest
355 */
Timo Lindhorstfc029192006-11-27 13:35:49 +0100356#ifdef CONFIG_MTD_NAND_ECC_SMC
franse6cf5df2008-08-15 23:14:31 +0200357 code[0] =
358 (invparity[rp7] << 7) |
359 (invparity[rp6] << 6) |
360 (invparity[rp5] << 5) |
361 (invparity[rp4] << 4) |
362 (invparity[rp3] << 3) |
363 (invparity[rp2] << 2) |
364 (invparity[rp1] << 1) |
365 (invparity[rp0]);
366 code[1] =
367 (invparity[rp15] << 7) |
368 (invparity[rp14] << 6) |
369 (invparity[rp13] << 5) |
370 (invparity[rp12] << 4) |
371 (invparity[rp11] << 3) |
372 (invparity[rp10] << 2) |
373 (invparity[rp9] << 1) |
374 (invparity[rp8]);
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200375#else
franse6cf5df2008-08-15 23:14:31 +0200376 code[1] =
377 (invparity[rp7] << 7) |
378 (invparity[rp6] << 6) |
379 (invparity[rp5] << 5) |
380 (invparity[rp4] << 4) |
381 (invparity[rp3] << 3) |
382 (invparity[rp2] << 2) |
383 (invparity[rp1] << 1) |
384 (invparity[rp0]);
385 code[0] =
386 (invparity[rp15] << 7) |
387 (invparity[rp14] << 6) |
388 (invparity[rp13] << 5) |
389 (invparity[rp12] << 4) |
390 (invparity[rp11] << 3) |
391 (invparity[rp10] << 2) |
392 (invparity[rp9] << 1) |
393 (invparity[rp8]);
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200394#endif
Singh, Vimald68156c2008-08-23 18:18:34 +0200395 if (eccsize_mult == 1)
396 code[2] =
397 (invparity[par & 0xf0] << 7) |
398 (invparity[par & 0x0f] << 6) |
399 (invparity[par & 0xcc] << 5) |
400 (invparity[par & 0x33] << 4) |
401 (invparity[par & 0xaa] << 3) |
402 (invparity[par & 0x55] << 2) |
403 3;
404 else
405 code[2] =
406 (invparity[par & 0xf0] << 7) |
407 (invparity[par & 0x0f] << 6) |
408 (invparity[par & 0xcc] << 5) |
409 (invparity[par & 0x33] << 4) |
410 (invparity[par & 0xaa] << 3) |
411 (invparity[par & 0x55] << 2) |
412 (invparity[rp17] << 1) |
413 (invparity[rp16] << 0);
Akinobu Mita1c63aca2009-10-22 16:53:32 +0900414}
415EXPORT_SYMBOL(__nand_calculate_ecc);
416
417/**
418 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
419 * block
420 * @mtd: MTD block structure
421 * @buf: input buffer with raw data
422 * @code: output buffer with ECC
423 */
424int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
425 unsigned char *code)
426{
427 __nand_calculate_ecc(buf,
428 ((struct nand_chip *)mtd->priv)->ecc.size, code);
429
Linus Torvalds1da177e2005-04-16 15:20:36 -0700430 return 0;
431}
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200432EXPORT_SYMBOL(nand_calculate_ecc);
433
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434/**
Atsushi Nemotobe2f0922009-09-05 01:20:43 +0900435 * __nand_correct_data - [NAND Interface] Detect and correct bit error(s)
Alexey Korolev17c1d2be2008-08-20 22:32:08 +0100436 * @buf: raw data read from the chip
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437 * @read_ecc: ECC from the chip
438 * @calc_ecc: the ECC calculated from raw data
Atsushi Nemotobe2f0922009-09-05 01:20:43 +0900439 * @eccsize: data bytes per ecc step (256 or 512)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700440 *
Atsushi Nemotobe2f0922009-09-05 01:20:43 +0900441 * Detect and correct a 1 bit error for eccsize byte block
Linus Torvalds1da177e2005-04-16 15:20:36 -0700442 */
Atsushi Nemotobe2f0922009-09-05 01:20:43 +0900443int __nand_correct_data(unsigned char *buf,
444 unsigned char *read_ecc, unsigned char *calc_ecc,
445 unsigned int eccsize)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700446{
Vimal Singh260dc002009-02-23 13:46:08 +0530447 unsigned char b0, b1, b2, bit_addr;
448 unsigned int byte_addr;
Singh, Vimald68156c2008-08-23 18:18:34 +0200449 /* 256 or 512 bytes/ecc */
Atsushi Nemotobe2f0922009-09-05 01:20:43 +0900450 const uint32_t eccsize_mult = eccsize >> 8;
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000451
franse6cf5df2008-08-15 23:14:31 +0200452 /*
453 * b0 to b2 indicate which bit is faulty (if any)
454 * we might need the xor result more than once,
455 * so keep them in a local var
456 */
Timo Lindhorstfc029192006-11-27 13:35:49 +0100457#ifdef CONFIG_MTD_NAND_ECC_SMC
franse6cf5df2008-08-15 23:14:31 +0200458 b0 = read_ecc[0] ^ calc_ecc[0];
459 b1 = read_ecc[1] ^ calc_ecc[1];
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200460#else
franse6cf5df2008-08-15 23:14:31 +0200461 b0 = read_ecc[1] ^ calc_ecc[1];
462 b1 = read_ecc[0] ^ calc_ecc[0];
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200463#endif
franse6cf5df2008-08-15 23:14:31 +0200464 b2 = read_ecc[2] ^ calc_ecc[2];
Thomas Gleixner61b03bd2005-11-07 11:15:49 +0000465
franse6cf5df2008-08-15 23:14:31 +0200466 /* check if there are any bitfaults */
Thomas Gleixner819d6a32006-05-23 11:32:45 +0200467
franse6cf5df2008-08-15 23:14:31 +0200468 /* repeated if statements are slightly more efficient than switch ... */
469 /* ordered in order of likelihood */
frans1077be52008-08-20 21:11:50 +0200470
471 if ((b0 | b1 | b2) == 0)
David Woodhouseccbcd6c2008-08-16 11:01:31 +0100472 return 0; /* no error */
frans1077be52008-08-20 21:11:50 +0200473
474 if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
475 (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
Singh, Vimald68156c2008-08-23 18:18:34 +0200476 ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
477 (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
478 /* single bit error */
franse6cf5df2008-08-15 23:14:31 +0200479 /*
Singh, Vimald68156c2008-08-23 18:18:34 +0200480 * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
481 * byte, cp 5/3/1 indicate the faulty bit.
franse6cf5df2008-08-15 23:14:31 +0200482 * A lookup table (called addressbits) is used to filter
483 * the bits from the byte they are in.
484 * A marginal optimisation is possible by having three
485 * different lookup tables.
486 * One as we have now (for b0), one for b2
487 * (that would avoid the >> 1), and one for b1 (with all values
488 * << 4). However it was felt that introducing two more tables
489 * hardly justify the gain.
490 *
491 * The b2 shift is there to get rid of the lowest two bits.
492 * We could also do addressbits[b2] >> 1 but for the
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200493 * performance it does not make any difference
franse6cf5df2008-08-15 23:14:31 +0200494 */
Singh, Vimald68156c2008-08-23 18:18:34 +0200495 if (eccsize_mult == 1)
496 byte_addr = (addressbits[b1] << 4) + addressbits[b0];
497 else
498 byte_addr = (addressbits[b2 & 0x3] << 8) +
499 (addressbits[b1] << 4) + addressbits[b0];
franse6cf5df2008-08-15 23:14:31 +0200500 bit_addr = addressbits[b2 >> 2];
501 /* flip the bit */
502 buf[byte_addr] ^= (1 << bit_addr);
David Woodhouseccbcd6c2008-08-16 11:01:31 +0100503 return 1;
frans1077be52008-08-20 21:11:50 +0200504
Linus Torvalds1da177e2005-04-16 15:20:36 -0700505 }
frans1077be52008-08-20 21:11:50 +0200506 /* count nr of bits; use table lookup, faster than calculating it */
507 if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
David Woodhouseccbcd6c2008-08-16 11:01:31 +0100508 return 1; /* error in ecc data; no action needed */
frans1077be52008-08-20 21:11:50 +0200509
510 printk(KERN_ERR "uncorrectable error : ");
franse6cf5df2008-08-15 23:14:31 +0200511 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700512}
Atsushi Nemotobe2f0922009-09-05 01:20:43 +0900513EXPORT_SYMBOL(__nand_correct_data);
514
515/**
516 * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
517 * @mtd: MTD block structure
518 * @buf: raw data read from the chip
519 * @read_ecc: ECC from the chip
520 * @calc_ecc: the ECC calculated from raw data
521 *
522 * Detect and correct a 1 bit error for 256/512 byte block
523 */
524int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
525 unsigned char *read_ecc, unsigned char *calc_ecc)
526{
527 return __nand_correct_data(buf, read_ecc, calc_ecc,
528 ((struct nand_chip *)mtd->priv)->ecc.size);
529}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700530EXPORT_SYMBOL(nand_correct_data);
531
532MODULE_LICENSE("GPL");
franse6cf5df2008-08-15 23:14:31 +0200533MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700534MODULE_DESCRIPTION("Generic NAND ECC support");