Kent Yoder | ae0222b | 2012-05-14 10:59:38 +0000 | [diff] [blame] | 1 | /** |
| 2 | * Routines supporting the Power 7+ Nest Accelerators driver |
| 3 | * |
| 4 | * Copyright (C) 2011-2012 International Business Machines Inc. |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License as published by |
| 8 | * the Free Software Foundation; version 2 only. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 18 | * |
| 19 | * Author: Kent Yoder <yoder1@us.ibm.com> |
| 20 | */ |
| 21 | |
| 22 | #include <crypto/internal/hash.h> |
| 23 | #include <crypto/hash.h> |
| 24 | #include <crypto/aes.h> |
| 25 | #include <crypto/sha.h> |
| 26 | #include <crypto/algapi.h> |
| 27 | #include <crypto/scatterwalk.h> |
| 28 | #include <linux/module.h> |
| 29 | #include <linux/moduleparam.h> |
| 30 | #include <linux/types.h> |
| 31 | #include <linux/mm.h> |
| 32 | #include <linux/crypto.h> |
| 33 | #include <linux/scatterlist.h> |
| 34 | #include <linux/device.h> |
| 35 | #include <linux/of.h> |
Kent Yoder | ae0222b | 2012-05-14 10:59:38 +0000 | [diff] [blame] | 36 | #include <asm/hvcall.h> |
| 37 | #include <asm/vio.h> |
| 38 | |
| 39 | #include "nx_csbcpb.h" |
| 40 | #include "nx.h" |
| 41 | |
| 42 | |
| 43 | /** |
| 44 | * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure |
| 45 | * |
| 46 | * @nx_ctx: the crypto context handle |
| 47 | * @op: PFO operation struct to pass in |
| 48 | * @may_sleep: flag indicating the request can sleep |
| 49 | * |
| 50 | * Make the hcall, retrying while the hardware is busy. If we cannot yield |
| 51 | * the thread, limit the number of retries to 10 here. |
| 52 | */ |
| 53 | int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx, |
| 54 | struct vio_pfo_op *op, |
| 55 | u32 may_sleep) |
| 56 | { |
| 57 | int rc, retries = 10; |
| 58 | struct vio_dev *viodev = nx_driver.viodev; |
| 59 | |
| 60 | atomic_inc(&(nx_ctx->stats->sync_ops)); |
| 61 | |
| 62 | do { |
| 63 | rc = vio_h_cop_sync(viodev, op); |
| 64 | } while ((rc == -EBUSY && !may_sleep && retries--) || |
| 65 | (rc == -EBUSY && may_sleep && cond_resched())); |
| 66 | |
| 67 | if (rc) { |
| 68 | dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d " |
| 69 | "hcall rc: %ld\n", rc, op->hcall_err); |
| 70 | atomic_inc(&(nx_ctx->stats->errors)); |
| 71 | atomic_set(&(nx_ctx->stats->last_error), op->hcall_err); |
| 72 | atomic_set(&(nx_ctx->stats->last_error_pid), current->pid); |
| 73 | } |
| 74 | |
| 75 | return rc; |
| 76 | } |
| 77 | |
| 78 | /** |
| 79 | * nx_build_sg_list - build an NX scatter list describing a single buffer |
| 80 | * |
| 81 | * @sg_head: pointer to the first scatter list element to build |
| 82 | * @start_addr: pointer to the linear buffer |
| 83 | * @len: length of the data at @start_addr |
| 84 | * @sgmax: the largest number of scatter list elements we're allowed to create |
| 85 | * |
| 86 | * This function will start writing nx_sg elements at @sg_head and keep |
| 87 | * writing them until all of the data from @start_addr is described or |
| 88 | * until sgmax elements have been written. Scatter list elements will be |
| 89 | * created such that none of the elements describes a buffer that crosses a 4K |
| 90 | * boundary. |
| 91 | */ |
| 92 | struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head, |
| 93 | u8 *start_addr, |
| 94 | unsigned int len, |
| 95 | u32 sgmax) |
| 96 | { |
| 97 | unsigned int sg_len = 0; |
| 98 | struct nx_sg *sg; |
| 99 | u64 sg_addr = (u64)start_addr; |
| 100 | u64 end_addr; |
| 101 | |
| 102 | /* determine the start and end for this address range - slightly |
| 103 | * different if this is in VMALLOC_REGION */ |
| 104 | if (is_vmalloc_addr(start_addr)) |
Michael Ellerman | 7187daf | 2012-07-25 21:19:48 +0000 | [diff] [blame] | 105 | sg_addr = page_to_phys(vmalloc_to_page(start_addr)) |
Kent Yoder | ae0222b | 2012-05-14 10:59:38 +0000 | [diff] [blame] | 106 | + offset_in_page(sg_addr); |
| 107 | else |
Michael Ellerman | 7187daf | 2012-07-25 21:19:48 +0000 | [diff] [blame] | 108 | sg_addr = __pa(sg_addr); |
Kent Yoder | ae0222b | 2012-05-14 10:59:38 +0000 | [diff] [blame] | 109 | |
| 110 | end_addr = sg_addr + len; |
| 111 | |
| 112 | /* each iteration will write one struct nx_sg element and add the |
| 113 | * length of data described by that element to sg_len. Once @len bytes |
| 114 | * have been described (or @sgmax elements have been written), the |
| 115 | * loop ends. min_t is used to ensure @end_addr falls on the same page |
| 116 | * as sg_addr, if not, we need to create another nx_sg element for the |
| 117 | * data on the next page */ |
| 118 | for (sg = sg_head; sg_len < len; sg++) { |
| 119 | sg->addr = sg_addr; |
| 120 | sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE), end_addr); |
| 121 | sg->len = sg_addr - sg->addr; |
| 122 | sg_len += sg->len; |
| 123 | |
| 124 | if ((sg - sg_head) == sgmax) { |
| 125 | pr_err("nx: scatter/gather list overflow, pid: %d\n", |
| 126 | current->pid); |
| 127 | return NULL; |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | /* return the moved sg_head pointer */ |
| 132 | return sg; |
| 133 | } |
| 134 | |
| 135 | /** |
| 136 | * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist |
| 137 | * |
| 138 | * @nx_dst: pointer to the first nx_sg element to write |
| 139 | * @sglen: max number of nx_sg entries we're allowed to write |
| 140 | * @sg_src: pointer to the source linux scatterlist to walk |
| 141 | * @start: number of bytes to fast-forward past at the beginning of @sg_src |
| 142 | * @src_len: number of bytes to walk in @sg_src |
| 143 | */ |
| 144 | struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst, |
| 145 | unsigned int sglen, |
| 146 | struct scatterlist *sg_src, |
| 147 | unsigned int start, |
| 148 | unsigned int src_len) |
| 149 | { |
| 150 | struct scatter_walk walk; |
| 151 | struct nx_sg *nx_sg = nx_dst; |
| 152 | unsigned int n, offset = 0, len = src_len; |
| 153 | char *dst; |
| 154 | |
| 155 | /* we need to fast forward through @start bytes first */ |
| 156 | for (;;) { |
| 157 | scatterwalk_start(&walk, sg_src); |
| 158 | |
| 159 | if (start < offset + sg_src->length) |
| 160 | break; |
| 161 | |
| 162 | offset += sg_src->length; |
| 163 | sg_src = scatterwalk_sg_next(sg_src); |
| 164 | } |
| 165 | |
| 166 | /* start - offset is the number of bytes to advance in the scatterlist |
| 167 | * element we're currently looking at */ |
| 168 | scatterwalk_advance(&walk, start - offset); |
| 169 | |
| 170 | while (len && nx_sg) { |
| 171 | n = scatterwalk_clamp(&walk, len); |
| 172 | if (!n) { |
| 173 | scatterwalk_start(&walk, sg_next(walk.sg)); |
| 174 | n = scatterwalk_clamp(&walk, len); |
| 175 | } |
| 176 | dst = scatterwalk_map(&walk); |
| 177 | |
| 178 | nx_sg = nx_build_sg_list(nx_sg, dst, n, sglen); |
| 179 | len -= n; |
| 180 | |
| 181 | scatterwalk_unmap(dst); |
| 182 | scatterwalk_advance(&walk, n); |
| 183 | scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len); |
| 184 | } |
| 185 | |
| 186 | /* return the moved destination pointer */ |
| 187 | return nx_sg; |
| 188 | } |
| 189 | |
| 190 | /** |
| 191 | * nx_build_sg_lists - walk the input scatterlists and build arrays of NX |
| 192 | * scatterlists based on them. |
| 193 | * |
| 194 | * @nx_ctx: NX crypto context for the lists we're building |
| 195 | * @desc: the block cipher descriptor for the operation |
| 196 | * @dst: destination scatterlist |
| 197 | * @src: source scatterlist |
| 198 | * @nbytes: length of data described in the scatterlists |
| 199 | * @iv: destination for the iv data, if the algorithm requires it |
| 200 | * |
| 201 | * This is common code shared by all the AES algorithms. It uses the block |
| 202 | * cipher walk routines to traverse input and output scatterlists, building |
| 203 | * corresponding NX scatterlists |
| 204 | */ |
| 205 | int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx, |
| 206 | struct blkcipher_desc *desc, |
| 207 | struct scatterlist *dst, |
| 208 | struct scatterlist *src, |
| 209 | unsigned int nbytes, |
| 210 | u8 *iv) |
| 211 | { |
| 212 | struct nx_sg *nx_insg = nx_ctx->in_sg; |
| 213 | struct nx_sg *nx_outsg = nx_ctx->out_sg; |
| 214 | struct blkcipher_walk walk; |
| 215 | int rc; |
| 216 | |
| 217 | blkcipher_walk_init(&walk, dst, src, nbytes); |
| 218 | rc = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE); |
| 219 | if (rc) |
| 220 | goto out; |
| 221 | |
| 222 | if (iv) |
| 223 | memcpy(iv, walk.iv, AES_BLOCK_SIZE); |
| 224 | |
| 225 | while (walk.nbytes) { |
| 226 | nx_insg = nx_build_sg_list(nx_insg, walk.src.virt.addr, |
| 227 | walk.nbytes, nx_ctx->ap->sglen); |
| 228 | nx_outsg = nx_build_sg_list(nx_outsg, walk.dst.virt.addr, |
| 229 | walk.nbytes, nx_ctx->ap->sglen); |
| 230 | |
| 231 | rc = blkcipher_walk_done(desc, &walk, 0); |
| 232 | if (rc) |
| 233 | break; |
| 234 | } |
| 235 | |
| 236 | if (walk.nbytes) { |
| 237 | nx_insg = nx_build_sg_list(nx_insg, walk.src.virt.addr, |
| 238 | walk.nbytes, nx_ctx->ap->sglen); |
| 239 | nx_outsg = nx_build_sg_list(nx_outsg, walk.dst.virt.addr, |
| 240 | walk.nbytes, nx_ctx->ap->sglen); |
| 241 | |
| 242 | rc = 0; |
| 243 | } |
| 244 | |
| 245 | /* these lengths should be negative, which will indicate to phyp that |
| 246 | * the input and output parameters are scatterlists, not linear |
| 247 | * buffers */ |
| 248 | nx_ctx->op.inlen = (nx_ctx->in_sg - nx_insg) * sizeof(struct nx_sg); |
| 249 | nx_ctx->op.outlen = (nx_ctx->out_sg - nx_outsg) * sizeof(struct nx_sg); |
| 250 | out: |
| 251 | return rc; |
| 252 | } |
| 253 | |
| 254 | /** |
| 255 | * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct |
| 256 | * |
| 257 | * @nx_ctx: the nx context to initialize |
| 258 | * @function: the function code for the op |
| 259 | */ |
| 260 | void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function) |
| 261 | { |
| 262 | memset(nx_ctx->kmem, 0, nx_ctx->kmem_len); |
| 263 | nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT; |
| 264 | |
| 265 | nx_ctx->op.flags = function; |
Michael Ellerman | 7187daf | 2012-07-25 21:19:48 +0000 | [diff] [blame] | 266 | nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb); |
| 267 | nx_ctx->op.in = __pa(nx_ctx->in_sg); |
| 268 | nx_ctx->op.out = __pa(nx_ctx->out_sg); |
Kent Yoder | ae0222b | 2012-05-14 10:59:38 +0000 | [diff] [blame] | 269 | |
| 270 | if (nx_ctx->csbcpb_aead) { |
| 271 | nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT; |
| 272 | |
| 273 | nx_ctx->op_aead.flags = function; |
Michael Ellerman | 7187daf | 2012-07-25 21:19:48 +0000 | [diff] [blame] | 274 | nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead); |
| 275 | nx_ctx->op_aead.in = __pa(nx_ctx->in_sg); |
| 276 | nx_ctx->op_aead.out = __pa(nx_ctx->out_sg); |
Kent Yoder | ae0222b | 2012-05-14 10:59:38 +0000 | [diff] [blame] | 277 | } |
| 278 | } |
| 279 | |
| 280 | static void nx_of_update_status(struct device *dev, |
| 281 | struct property *p, |
| 282 | struct nx_of *props) |
| 283 | { |
| 284 | if (!strncmp(p->value, "okay", p->length)) { |
| 285 | props->status = NX_WAITING; |
| 286 | props->flags |= NX_OF_FLAG_STATUS_SET; |
| 287 | } else { |
| 288 | dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__, |
| 289 | (char *)p->value); |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | static void nx_of_update_sglen(struct device *dev, |
| 294 | struct property *p, |
| 295 | struct nx_of *props) |
| 296 | { |
| 297 | if (p->length != sizeof(props->max_sg_len)) { |
| 298 | dev_err(dev, "%s: unexpected format for " |
| 299 | "ibm,max-sg-len property\n", __func__); |
| 300 | dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes " |
| 301 | "long, expected %zd bytes\n", __func__, |
| 302 | p->length, sizeof(props->max_sg_len)); |
| 303 | return; |
| 304 | } |
| 305 | |
| 306 | props->max_sg_len = *(u32 *)p->value; |
| 307 | props->flags |= NX_OF_FLAG_MAXSGLEN_SET; |
| 308 | } |
| 309 | |
| 310 | static void nx_of_update_msc(struct device *dev, |
| 311 | struct property *p, |
| 312 | struct nx_of *props) |
| 313 | { |
| 314 | struct msc_triplet *trip; |
| 315 | struct max_sync_cop *msc; |
| 316 | unsigned int bytes_so_far, i, lenp; |
| 317 | |
| 318 | msc = (struct max_sync_cop *)p->value; |
| 319 | lenp = p->length; |
| 320 | |
| 321 | /* You can't tell if the data read in for this property is sane by its |
| 322 | * size alone. This is because there are sizes embedded in the data |
| 323 | * structure. The best we can do is check lengths as we parse and bail |
| 324 | * as soon as a length error is detected. */ |
| 325 | bytes_so_far = 0; |
| 326 | |
| 327 | while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) { |
| 328 | bytes_so_far += sizeof(struct max_sync_cop); |
| 329 | |
| 330 | trip = msc->trip; |
| 331 | |
| 332 | for (i = 0; |
| 333 | ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) && |
| 334 | i < msc->triplets; |
| 335 | i++) { |
| 336 | if (msc->fc > NX_MAX_FC || msc->mode > NX_MAX_MODE) { |
| 337 | dev_err(dev, "unknown function code/mode " |
| 338 | "combo: %d/%d (ignored)\n", msc->fc, |
| 339 | msc->mode); |
| 340 | goto next_loop; |
| 341 | } |
| 342 | |
| 343 | switch (trip->keybitlen) { |
| 344 | case 128: |
| 345 | case 160: |
| 346 | props->ap[msc->fc][msc->mode][0].databytelen = |
| 347 | trip->databytelen; |
| 348 | props->ap[msc->fc][msc->mode][0].sglen = |
| 349 | trip->sglen; |
| 350 | break; |
| 351 | case 192: |
| 352 | props->ap[msc->fc][msc->mode][1].databytelen = |
| 353 | trip->databytelen; |
| 354 | props->ap[msc->fc][msc->mode][1].sglen = |
| 355 | trip->sglen; |
| 356 | break; |
| 357 | case 256: |
| 358 | if (msc->fc == NX_FC_AES) { |
| 359 | props->ap[msc->fc][msc->mode][2]. |
| 360 | databytelen = trip->databytelen; |
| 361 | props->ap[msc->fc][msc->mode][2].sglen = |
| 362 | trip->sglen; |
| 363 | } else if (msc->fc == NX_FC_AES_HMAC || |
| 364 | msc->fc == NX_FC_SHA) { |
| 365 | props->ap[msc->fc][msc->mode][1]. |
| 366 | databytelen = trip->databytelen; |
| 367 | props->ap[msc->fc][msc->mode][1].sglen = |
| 368 | trip->sglen; |
| 369 | } else { |
| 370 | dev_warn(dev, "unknown function " |
| 371 | "code/key bit len combo" |
| 372 | ": (%u/256)\n", msc->fc); |
| 373 | } |
| 374 | break; |
| 375 | case 512: |
| 376 | props->ap[msc->fc][msc->mode][2].databytelen = |
| 377 | trip->databytelen; |
| 378 | props->ap[msc->fc][msc->mode][2].sglen = |
| 379 | trip->sglen; |
| 380 | break; |
| 381 | default: |
| 382 | dev_warn(dev, "unknown function code/key bit " |
| 383 | "len combo: (%u/%u)\n", msc->fc, |
| 384 | trip->keybitlen); |
| 385 | break; |
| 386 | } |
| 387 | next_loop: |
| 388 | bytes_so_far += sizeof(struct msc_triplet); |
| 389 | trip++; |
| 390 | } |
| 391 | |
| 392 | msc = (struct max_sync_cop *)trip; |
| 393 | } |
| 394 | |
| 395 | props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET; |
| 396 | } |
| 397 | |
| 398 | /** |
| 399 | * nx_of_init - read openFirmware values from the device tree |
| 400 | * |
| 401 | * @dev: device handle |
| 402 | * @props: pointer to struct to hold the properties values |
| 403 | * |
| 404 | * Called once at driver probe time, this function will read out the |
| 405 | * openFirmware properties we use at runtime. If all the OF properties are |
| 406 | * acceptable, when we exit this function props->flags will indicate that |
| 407 | * we're ready to register our crypto algorithms. |
| 408 | */ |
| 409 | static void nx_of_init(struct device *dev, struct nx_of *props) |
| 410 | { |
| 411 | struct device_node *base_node = dev->of_node; |
| 412 | struct property *p; |
| 413 | |
| 414 | p = of_find_property(base_node, "status", NULL); |
| 415 | if (!p) |
| 416 | dev_info(dev, "%s: property 'status' not found\n", __func__); |
| 417 | else |
| 418 | nx_of_update_status(dev, p, props); |
| 419 | |
| 420 | p = of_find_property(base_node, "ibm,max-sg-len", NULL); |
| 421 | if (!p) |
| 422 | dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n", |
| 423 | __func__); |
| 424 | else |
| 425 | nx_of_update_sglen(dev, p, props); |
| 426 | |
| 427 | p = of_find_property(base_node, "ibm,max-sync-cop", NULL); |
| 428 | if (!p) |
| 429 | dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n", |
| 430 | __func__); |
| 431 | else |
| 432 | nx_of_update_msc(dev, p, props); |
| 433 | } |
| 434 | |
| 435 | /** |
| 436 | * nx_register_algs - register algorithms with the crypto API |
| 437 | * |
| 438 | * Called from nx_probe() |
| 439 | * |
| 440 | * If all OF properties are in an acceptable state, the driver flags will |
| 441 | * indicate that we're ready and we'll create our debugfs files and register |
| 442 | * out crypto algorithms. |
| 443 | */ |
| 444 | static int nx_register_algs(void) |
| 445 | { |
| 446 | int rc = -1; |
| 447 | |
| 448 | if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY) |
| 449 | goto out; |
| 450 | |
| 451 | memset(&nx_driver.stats, 0, sizeof(struct nx_stats)); |
| 452 | |
| 453 | rc = NX_DEBUGFS_INIT(&nx_driver); |
| 454 | if (rc) |
| 455 | goto out; |
| 456 | |
| 457 | rc = crypto_register_alg(&nx_ecb_aes_alg); |
| 458 | if (rc) |
| 459 | goto out; |
| 460 | |
| 461 | rc = crypto_register_alg(&nx_cbc_aes_alg); |
| 462 | if (rc) |
| 463 | goto out_unreg_ecb; |
| 464 | |
| 465 | rc = crypto_register_alg(&nx_ctr_aes_alg); |
| 466 | if (rc) |
| 467 | goto out_unreg_cbc; |
| 468 | |
| 469 | rc = crypto_register_alg(&nx_ctr3686_aes_alg); |
| 470 | if (rc) |
| 471 | goto out_unreg_ctr; |
| 472 | |
| 473 | rc = crypto_register_alg(&nx_gcm_aes_alg); |
| 474 | if (rc) |
| 475 | goto out_unreg_ctr3686; |
| 476 | |
| 477 | rc = crypto_register_alg(&nx_gcm4106_aes_alg); |
| 478 | if (rc) |
| 479 | goto out_unreg_gcm; |
| 480 | |
| 481 | rc = crypto_register_alg(&nx_ccm_aes_alg); |
| 482 | if (rc) |
| 483 | goto out_unreg_gcm4106; |
| 484 | |
| 485 | rc = crypto_register_alg(&nx_ccm4309_aes_alg); |
| 486 | if (rc) |
| 487 | goto out_unreg_ccm; |
| 488 | |
| 489 | rc = crypto_register_shash(&nx_shash_sha256_alg); |
| 490 | if (rc) |
| 491 | goto out_unreg_ccm4309; |
| 492 | |
| 493 | rc = crypto_register_shash(&nx_shash_sha512_alg); |
| 494 | if (rc) |
| 495 | goto out_unreg_s256; |
| 496 | |
| 497 | rc = crypto_register_shash(&nx_shash_aes_xcbc_alg); |
| 498 | if (rc) |
| 499 | goto out_unreg_s512; |
| 500 | |
| 501 | nx_driver.of.status = NX_OKAY; |
| 502 | |
| 503 | goto out; |
| 504 | |
| 505 | out_unreg_s512: |
| 506 | crypto_unregister_shash(&nx_shash_sha512_alg); |
| 507 | out_unreg_s256: |
| 508 | crypto_unregister_shash(&nx_shash_sha256_alg); |
| 509 | out_unreg_ccm4309: |
| 510 | crypto_unregister_alg(&nx_ccm4309_aes_alg); |
| 511 | out_unreg_ccm: |
| 512 | crypto_unregister_alg(&nx_ccm_aes_alg); |
| 513 | out_unreg_gcm4106: |
| 514 | crypto_unregister_alg(&nx_gcm4106_aes_alg); |
| 515 | out_unreg_gcm: |
| 516 | crypto_unregister_alg(&nx_gcm_aes_alg); |
| 517 | out_unreg_ctr3686: |
| 518 | crypto_unregister_alg(&nx_ctr3686_aes_alg); |
| 519 | out_unreg_ctr: |
| 520 | crypto_unregister_alg(&nx_ctr_aes_alg); |
| 521 | out_unreg_cbc: |
| 522 | crypto_unregister_alg(&nx_cbc_aes_alg); |
| 523 | out_unreg_ecb: |
| 524 | crypto_unregister_alg(&nx_ecb_aes_alg); |
| 525 | out: |
| 526 | return rc; |
| 527 | } |
| 528 | |
| 529 | /** |
| 530 | * nx_crypto_ctx_init - create and initialize a crypto api context |
| 531 | * |
| 532 | * @nx_ctx: the crypto api context |
| 533 | * @fc: function code for the context |
| 534 | * @mode: the function code specific mode for this context |
| 535 | */ |
| 536 | static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode) |
| 537 | { |
| 538 | if (nx_driver.of.status != NX_OKAY) { |
| 539 | pr_err("Attempt to initialize NX crypto context while device " |
| 540 | "is not available!\n"); |
| 541 | return -ENODEV; |
| 542 | } |
| 543 | |
| 544 | /* we need an extra page for csbcpb_aead for these modes */ |
| 545 | if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) |
| 546 | nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) + |
| 547 | sizeof(struct nx_csbcpb); |
| 548 | else |
| 549 | nx_ctx->kmem_len = (3 * NX_PAGE_SIZE) + |
| 550 | sizeof(struct nx_csbcpb); |
| 551 | |
| 552 | nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL); |
| 553 | if (!nx_ctx->kmem) |
| 554 | return -ENOMEM; |
| 555 | |
| 556 | /* the csbcpb and scatterlists must be 4K aligned pages */ |
| 557 | nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem, |
| 558 | (u64)NX_PAGE_SIZE)); |
| 559 | nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE); |
| 560 | nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE); |
| 561 | |
| 562 | if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM) |
| 563 | nx_ctx->csbcpb_aead = |
| 564 | (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg + |
| 565 | NX_PAGE_SIZE); |
| 566 | |
| 567 | /* give each context a pointer to global stats and their OF |
| 568 | * properties */ |
| 569 | nx_ctx->stats = &nx_driver.stats; |
| 570 | memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode], |
| 571 | sizeof(struct alg_props) * 3); |
| 572 | |
| 573 | return 0; |
| 574 | } |
| 575 | |
| 576 | /* entry points from the crypto tfm initializers */ |
| 577 | int nx_crypto_ctx_aes_ccm_init(struct crypto_tfm *tfm) |
| 578 | { |
| 579 | return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, |
| 580 | NX_MODE_AES_CCM); |
| 581 | } |
| 582 | |
| 583 | int nx_crypto_ctx_aes_gcm_init(struct crypto_tfm *tfm) |
| 584 | { |
| 585 | return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, |
| 586 | NX_MODE_AES_GCM); |
| 587 | } |
| 588 | |
| 589 | int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm) |
| 590 | { |
| 591 | return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, |
| 592 | NX_MODE_AES_CTR); |
| 593 | } |
| 594 | |
| 595 | int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm) |
| 596 | { |
| 597 | return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, |
| 598 | NX_MODE_AES_CBC); |
| 599 | } |
| 600 | |
| 601 | int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm) |
| 602 | { |
| 603 | return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, |
| 604 | NX_MODE_AES_ECB); |
| 605 | } |
| 606 | |
| 607 | int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm) |
| 608 | { |
| 609 | return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA); |
| 610 | } |
| 611 | |
| 612 | int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm) |
| 613 | { |
| 614 | return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES, |
| 615 | NX_MODE_AES_XCBC_MAC); |
| 616 | } |
| 617 | |
| 618 | /** |
| 619 | * nx_crypto_ctx_exit - destroy a crypto api context |
| 620 | * |
| 621 | * @tfm: the crypto transform pointer for the context |
| 622 | * |
| 623 | * As crypto API contexts are destroyed, this exit hook is called to free the |
| 624 | * memory associated with it. |
| 625 | */ |
| 626 | void nx_crypto_ctx_exit(struct crypto_tfm *tfm) |
| 627 | { |
| 628 | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm); |
| 629 | |
| 630 | kzfree(nx_ctx->kmem); |
| 631 | nx_ctx->csbcpb = NULL; |
| 632 | nx_ctx->csbcpb_aead = NULL; |
| 633 | nx_ctx->in_sg = NULL; |
| 634 | nx_ctx->out_sg = NULL; |
| 635 | } |
| 636 | |
| 637 | static int __devinit nx_probe(struct vio_dev *viodev, |
| 638 | const struct vio_device_id *id) |
| 639 | { |
| 640 | dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n", |
| 641 | viodev->name, viodev->resource_id); |
| 642 | |
| 643 | if (nx_driver.viodev) { |
| 644 | dev_err(&viodev->dev, "%s: Attempt to register more than one " |
| 645 | "instance of the hardware\n", __func__); |
| 646 | return -EINVAL; |
| 647 | } |
| 648 | |
| 649 | nx_driver.viodev = viodev; |
| 650 | |
| 651 | nx_of_init(&viodev->dev, &nx_driver.of); |
| 652 | |
| 653 | return nx_register_algs(); |
| 654 | } |
| 655 | |
| 656 | static int __devexit nx_remove(struct vio_dev *viodev) |
| 657 | { |
| 658 | dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n", |
| 659 | viodev->unit_address); |
| 660 | |
| 661 | if (nx_driver.of.status == NX_OKAY) { |
| 662 | NX_DEBUGFS_FINI(&nx_driver); |
| 663 | |
| 664 | crypto_unregister_alg(&nx_ccm_aes_alg); |
| 665 | crypto_unregister_alg(&nx_ccm4309_aes_alg); |
| 666 | crypto_unregister_alg(&nx_gcm_aes_alg); |
| 667 | crypto_unregister_alg(&nx_gcm4106_aes_alg); |
| 668 | crypto_unregister_alg(&nx_ctr_aes_alg); |
| 669 | crypto_unregister_alg(&nx_ctr3686_aes_alg); |
| 670 | crypto_unregister_alg(&nx_cbc_aes_alg); |
| 671 | crypto_unregister_alg(&nx_ecb_aes_alg); |
| 672 | crypto_unregister_shash(&nx_shash_sha256_alg); |
| 673 | crypto_unregister_shash(&nx_shash_sha512_alg); |
| 674 | crypto_unregister_shash(&nx_shash_aes_xcbc_alg); |
| 675 | } |
| 676 | |
| 677 | return 0; |
| 678 | } |
| 679 | |
| 680 | |
| 681 | /* module wide initialization/cleanup */ |
| 682 | static int __init nx_init(void) |
| 683 | { |
| 684 | return vio_register_driver(&nx_driver.viodriver); |
| 685 | } |
| 686 | |
| 687 | static void __exit nx_fini(void) |
| 688 | { |
| 689 | vio_unregister_driver(&nx_driver.viodriver); |
| 690 | } |
| 691 | |
| 692 | static struct vio_device_id nx_crypto_driver_ids[] __devinitdata = { |
| 693 | { "ibm,sym-encryption-v1", "ibm,sym-encryption" }, |
| 694 | { "", "" } |
| 695 | }; |
| 696 | MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids); |
| 697 | |
| 698 | /* driver state structure */ |
| 699 | struct nx_crypto_driver nx_driver = { |
| 700 | .viodriver = { |
| 701 | .id_table = nx_crypto_driver_ids, |
| 702 | .probe = nx_probe, |
| 703 | .remove = nx_remove, |
| 704 | .name = NX_NAME, |
| 705 | }, |
| 706 | }; |
| 707 | |
| 708 | module_init(nx_init); |
| 709 | module_exit(nx_fini); |
| 710 | |
| 711 | MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>"); |
| 712 | MODULE_DESCRIPTION(NX_STRING); |
| 713 | MODULE_LICENSE("GPL"); |
| 714 | MODULE_VERSION(NX_VERSION); |