Artem Bityutskiy | 1e51764 | 2008-07-14 19:08:37 +0300 | [diff] [blame^] | 1 | /* |
| 2 | * This file is part of UBIFS. |
| 3 | * |
| 4 | * Copyright (C) 2006-2008 Nokia Corporation |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published by |
| 8 | * the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, but WITHOUT |
| 11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 13 | * more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License along with |
| 16 | * this program; if not, write to the Free Software Foundation, Inc., 51 |
| 17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| 18 | * |
| 19 | * Authors: Adrian Hunter |
| 20 | * Artem Bityutskiy (Битюцкий Артём) |
| 21 | */ |
| 22 | |
| 23 | /* |
| 24 | * This file implements functions needed to recover from unclean un-mounts. |
| 25 | * When UBIFS is mounted, it checks a flag on the master node to determine if |
| 26 | * an un-mount was completed sucessfully. If not, the process of mounting |
| 27 | * incorparates additional checking and fixing of on-flash data structures. |
| 28 | * UBIFS always cleans away all remnants of an unclean un-mount, so that |
| 29 | * errors do not accumulate. However UBIFS defers recovery if it is mounted |
| 30 | * read-only, and the flash is not modified in that case. |
| 31 | */ |
| 32 | |
| 33 | #include <linux/crc32.h> |
| 34 | #include "ubifs.h" |
| 35 | |
| 36 | /** |
| 37 | * is_empty - determine whether a buffer is empty (contains all 0xff). |
| 38 | * @buf: buffer to clean |
| 39 | * @len: length of buffer |
| 40 | * |
| 41 | * This function returns %1 if the buffer is empty (contains all 0xff) otherwise |
| 42 | * %0 is returned. |
| 43 | */ |
| 44 | static int is_empty(void *buf, int len) |
| 45 | { |
| 46 | uint8_t *p = buf; |
| 47 | int i; |
| 48 | |
| 49 | for (i = 0; i < len; i++) |
| 50 | if (*p++ != 0xff) |
| 51 | return 0; |
| 52 | return 1; |
| 53 | } |
| 54 | |
| 55 | /** |
| 56 | * get_master_node - get the last valid master node allowing for corruption. |
| 57 | * @c: UBIFS file-system description object |
| 58 | * @lnum: LEB number |
| 59 | * @pbuf: buffer containing the LEB read, is returned here |
| 60 | * @mst: master node, if found, is returned here |
| 61 | * @cor: corruption, if found, is returned here |
| 62 | * |
| 63 | * This function allocates a buffer, reads the LEB into it, and finds and |
| 64 | * returns the last valid master node allowing for one area of corruption. |
| 65 | * The corrupt area, if there is one, must be consistent with the assumption |
| 66 | * that it is the result of an unclean unmount while the master node was being |
| 67 | * written. Under those circumstances, it is valid to use the previously written |
| 68 | * master node. |
| 69 | * |
| 70 | * This function returns %0 on success and a negative error code on failure. |
| 71 | */ |
| 72 | static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, |
| 73 | struct ubifs_mst_node **mst, void **cor) |
| 74 | { |
| 75 | const int sz = c->mst_node_alsz; |
| 76 | int err, offs, len; |
| 77 | void *sbuf, *buf; |
| 78 | |
| 79 | sbuf = vmalloc(c->leb_size); |
| 80 | if (!sbuf) |
| 81 | return -ENOMEM; |
| 82 | |
| 83 | err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size); |
| 84 | if (err && err != -EBADMSG) |
| 85 | goto out_free; |
| 86 | |
| 87 | /* Find the first position that is definitely not a node */ |
| 88 | offs = 0; |
| 89 | buf = sbuf; |
| 90 | len = c->leb_size; |
| 91 | while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { |
| 92 | struct ubifs_ch *ch = buf; |
| 93 | |
| 94 | if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) |
| 95 | break; |
| 96 | offs += sz; |
| 97 | buf += sz; |
| 98 | len -= sz; |
| 99 | } |
| 100 | /* See if there was a valid master node before that */ |
| 101 | if (offs) { |
| 102 | int ret; |
| 103 | |
| 104 | offs -= sz; |
| 105 | buf -= sz; |
| 106 | len += sz; |
| 107 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); |
| 108 | if (ret != SCANNED_A_NODE && offs) { |
| 109 | /* Could have been corruption so check one place back */ |
| 110 | offs -= sz; |
| 111 | buf -= sz; |
| 112 | len += sz; |
| 113 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); |
| 114 | if (ret != SCANNED_A_NODE) |
| 115 | /* |
| 116 | * We accept only one area of corruption because |
| 117 | * we are assuming that it was caused while |
| 118 | * trying to write a master node. |
| 119 | */ |
| 120 | goto out_err; |
| 121 | } |
| 122 | if (ret == SCANNED_A_NODE) { |
| 123 | struct ubifs_ch *ch = buf; |
| 124 | |
| 125 | if (ch->node_type != UBIFS_MST_NODE) |
| 126 | goto out_err; |
| 127 | dbg_rcvry("found a master node at %d:%d", lnum, offs); |
| 128 | *mst = buf; |
| 129 | offs += sz; |
| 130 | buf += sz; |
| 131 | len -= sz; |
| 132 | } |
| 133 | } |
| 134 | /* Check for corruption */ |
| 135 | if (offs < c->leb_size) { |
| 136 | if (!is_empty(buf, min_t(int, len, sz))) { |
| 137 | *cor = buf; |
| 138 | dbg_rcvry("found corruption at %d:%d", lnum, offs); |
| 139 | } |
| 140 | offs += sz; |
| 141 | buf += sz; |
| 142 | len -= sz; |
| 143 | } |
| 144 | /* Check remaining empty space */ |
| 145 | if (offs < c->leb_size) |
| 146 | if (!is_empty(buf, len)) |
| 147 | goto out_err; |
| 148 | *pbuf = sbuf; |
| 149 | return 0; |
| 150 | |
| 151 | out_err: |
| 152 | err = -EINVAL; |
| 153 | out_free: |
| 154 | vfree(sbuf); |
| 155 | *mst = NULL; |
| 156 | *cor = NULL; |
| 157 | return err; |
| 158 | } |
| 159 | |
| 160 | /** |
| 161 | * write_rcvrd_mst_node - write recovered master node. |
| 162 | * @c: UBIFS file-system description object |
| 163 | * @mst: master node |
| 164 | * |
| 165 | * This function returns %0 on success and a negative error code on failure. |
| 166 | */ |
| 167 | static int write_rcvrd_mst_node(struct ubifs_info *c, |
| 168 | struct ubifs_mst_node *mst) |
| 169 | { |
| 170 | int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; |
| 171 | uint32_t save_flags; |
| 172 | |
| 173 | dbg_rcvry("recovery"); |
| 174 | |
| 175 | save_flags = mst->flags; |
| 176 | mst->flags = cpu_to_le32(le32_to_cpu(mst->flags) | UBIFS_MST_RCVRY); |
| 177 | |
| 178 | ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); |
| 179 | err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM); |
| 180 | if (err) |
| 181 | goto out; |
| 182 | err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM); |
| 183 | if (err) |
| 184 | goto out; |
| 185 | out: |
| 186 | mst->flags = save_flags; |
| 187 | return err; |
| 188 | } |
| 189 | |
| 190 | /** |
| 191 | * ubifs_recover_master_node - recover the master node. |
| 192 | * @c: UBIFS file-system description object |
| 193 | * |
| 194 | * This function recovers the master node from corruption that may occur due to |
| 195 | * an unclean unmount. |
| 196 | * |
| 197 | * This function returns %0 on success and a negative error code on failure. |
| 198 | */ |
| 199 | int ubifs_recover_master_node(struct ubifs_info *c) |
| 200 | { |
| 201 | void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; |
| 202 | struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; |
| 203 | const int sz = c->mst_node_alsz; |
| 204 | int err, offs1, offs2; |
| 205 | |
| 206 | dbg_rcvry("recovery"); |
| 207 | |
| 208 | err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); |
| 209 | if (err) |
| 210 | goto out_free; |
| 211 | |
| 212 | err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); |
| 213 | if (err) |
| 214 | goto out_free; |
| 215 | |
| 216 | if (mst1) { |
| 217 | offs1 = (void *)mst1 - buf1; |
| 218 | if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && |
| 219 | (offs1 == 0 && !cor1)) { |
| 220 | /* |
| 221 | * mst1 was written by recovery at offset 0 with no |
| 222 | * corruption. |
| 223 | */ |
| 224 | dbg_rcvry("recovery recovery"); |
| 225 | mst = mst1; |
| 226 | } else if (mst2) { |
| 227 | offs2 = (void *)mst2 - buf2; |
| 228 | if (offs1 == offs2) { |
| 229 | /* Same offset, so must be the same */ |
| 230 | if (memcmp((void *)mst1 + UBIFS_CH_SZ, |
| 231 | (void *)mst2 + UBIFS_CH_SZ, |
| 232 | UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) |
| 233 | goto out_err; |
| 234 | mst = mst1; |
| 235 | } else if (offs2 + sz == offs1) { |
| 236 | /* 1st LEB was written, 2nd was not */ |
| 237 | if (cor1) |
| 238 | goto out_err; |
| 239 | mst = mst1; |
| 240 | } else if (offs1 == 0 && offs2 + sz >= c->leb_size) { |
| 241 | /* 1st LEB was unmapped and written, 2nd not */ |
| 242 | if (cor1) |
| 243 | goto out_err; |
| 244 | mst = mst1; |
| 245 | } else |
| 246 | goto out_err; |
| 247 | } else { |
| 248 | /* |
| 249 | * 2nd LEB was unmapped and about to be written, so |
| 250 | * there must be only one master node in the first LEB |
| 251 | * and no corruption. |
| 252 | */ |
| 253 | if (offs1 != 0 || cor1) |
| 254 | goto out_err; |
| 255 | mst = mst1; |
| 256 | } |
| 257 | } else { |
| 258 | if (!mst2) |
| 259 | goto out_err; |
| 260 | /* |
| 261 | * 1st LEB was unmapped and about to be written, so there must |
| 262 | * be no room left in 2nd LEB. |
| 263 | */ |
| 264 | offs2 = (void *)mst2 - buf2; |
| 265 | if (offs2 + sz + sz <= c->leb_size) |
| 266 | goto out_err; |
| 267 | mst = mst2; |
| 268 | } |
| 269 | |
| 270 | dbg_rcvry("recovered master node from LEB %d", |
| 271 | (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); |
| 272 | |
| 273 | memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); |
| 274 | |
| 275 | if ((c->vfs_sb->s_flags & MS_RDONLY)) { |
| 276 | /* Read-only mode. Keep a copy for switching to rw mode */ |
| 277 | c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); |
| 278 | if (!c->rcvrd_mst_node) { |
| 279 | err = -ENOMEM; |
| 280 | goto out_free; |
| 281 | } |
| 282 | memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); |
| 283 | } else { |
| 284 | /* Write the recovered master node */ |
| 285 | c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; |
| 286 | err = write_rcvrd_mst_node(c, c->mst_node); |
| 287 | if (err) |
| 288 | goto out_free; |
| 289 | } |
| 290 | |
| 291 | vfree(buf2); |
| 292 | vfree(buf1); |
| 293 | |
| 294 | return 0; |
| 295 | |
| 296 | out_err: |
| 297 | err = -EINVAL; |
| 298 | out_free: |
| 299 | ubifs_err("failed to recover master node"); |
| 300 | if (mst1) { |
| 301 | dbg_err("dumping first master node"); |
| 302 | dbg_dump_node(c, mst1); |
| 303 | } |
| 304 | if (mst2) { |
| 305 | dbg_err("dumping second master node"); |
| 306 | dbg_dump_node(c, mst2); |
| 307 | } |
| 308 | vfree(buf2); |
| 309 | vfree(buf1); |
| 310 | return err; |
| 311 | } |
| 312 | |
| 313 | /** |
| 314 | * ubifs_write_rcvrd_mst_node - write the recovered master node. |
| 315 | * @c: UBIFS file-system description object |
| 316 | * |
| 317 | * This function writes the master node that was recovered during mounting in |
| 318 | * read-only mode and must now be written because we are remounting rw. |
| 319 | * |
| 320 | * This function returns %0 on success and a negative error code on failure. |
| 321 | */ |
| 322 | int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) |
| 323 | { |
| 324 | int err; |
| 325 | |
| 326 | if (!c->rcvrd_mst_node) |
| 327 | return 0; |
| 328 | c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); |
| 329 | c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); |
| 330 | err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); |
| 331 | if (err) |
| 332 | return err; |
| 333 | kfree(c->rcvrd_mst_node); |
| 334 | c->rcvrd_mst_node = NULL; |
| 335 | return 0; |
| 336 | } |
| 337 | |
| 338 | /** |
| 339 | * is_last_write - determine if an offset was in the last write to a LEB. |
| 340 | * @c: UBIFS file-system description object |
| 341 | * @buf: buffer to check |
| 342 | * @offs: offset to check |
| 343 | * |
| 344 | * This function returns %1 if @offs was in the last write to the LEB whose data |
| 345 | * is in @buf, otherwise %0 is returned. The determination is made by checking |
| 346 | * for subsequent empty space starting from the next min_io_size boundary (or a |
| 347 | * bit less than the common header size if min_io_size is one). |
| 348 | */ |
| 349 | static int is_last_write(const struct ubifs_info *c, void *buf, int offs) |
| 350 | { |
| 351 | int empty_offs; |
| 352 | int check_len; |
| 353 | uint8_t *p; |
| 354 | |
| 355 | if (c->min_io_size == 1) { |
| 356 | check_len = c->leb_size - offs; |
| 357 | p = buf + check_len; |
| 358 | for (; check_len > 0; check_len--) |
| 359 | if (*--p != 0xff) |
| 360 | break; |
| 361 | /* |
| 362 | * 'check_len' is the size of the corruption which cannot be |
| 363 | * more than the size of 1 node if it was caused by an unclean |
| 364 | * unmount. |
| 365 | */ |
| 366 | if (check_len > UBIFS_MAX_NODE_SZ) |
| 367 | return 0; |
| 368 | return 1; |
| 369 | } |
| 370 | |
| 371 | /* |
| 372 | * Round up to the next c->min_io_size boundary i.e. 'offs' is in the |
| 373 | * last wbuf written. After that should be empty space. |
| 374 | */ |
| 375 | empty_offs = ALIGN(offs + 1, c->min_io_size); |
| 376 | check_len = c->leb_size - empty_offs; |
| 377 | p = buf + empty_offs - offs; |
| 378 | |
| 379 | for (; check_len > 0; check_len--) |
| 380 | if (*p++ != 0xff) |
| 381 | return 0; |
| 382 | return 1; |
| 383 | } |
| 384 | |
| 385 | /** |
| 386 | * clean_buf - clean the data from an LEB sitting in a buffer. |
| 387 | * @c: UBIFS file-system description object |
| 388 | * @buf: buffer to clean |
| 389 | * @lnum: LEB number to clean |
| 390 | * @offs: offset from which to clean |
| 391 | * @len: length of buffer |
| 392 | * |
| 393 | * This function pads up to the next min_io_size boundary (if there is one) and |
| 394 | * sets empty space to all 0xff. @buf, @offs and @len are updated to the next |
| 395 | * min_io_size boundary (if there is one). |
| 396 | */ |
| 397 | static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, |
| 398 | int *offs, int *len) |
| 399 | { |
| 400 | int empty_offs, pad_len; |
| 401 | |
| 402 | lnum = lnum; |
| 403 | dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); |
| 404 | |
| 405 | if (c->min_io_size == 1) { |
| 406 | memset(*buf, 0xff, c->leb_size - *offs); |
| 407 | return; |
| 408 | } |
| 409 | |
| 410 | ubifs_assert(!(*offs & 7)); |
| 411 | empty_offs = ALIGN(*offs, c->min_io_size); |
| 412 | pad_len = empty_offs - *offs; |
| 413 | ubifs_pad(c, *buf, pad_len); |
| 414 | *offs += pad_len; |
| 415 | *buf += pad_len; |
| 416 | *len -= pad_len; |
| 417 | memset(*buf, 0xff, c->leb_size - empty_offs); |
| 418 | } |
| 419 | |
| 420 | /** |
| 421 | * no_more_nodes - determine if there are no more nodes in a buffer. |
| 422 | * @c: UBIFS file-system description object |
| 423 | * @buf: buffer to check |
| 424 | * @len: length of buffer |
| 425 | * @lnum: LEB number of the LEB from which @buf was read |
| 426 | * @offs: offset from which @buf was read |
| 427 | * |
| 428 | * This function scans @buf for more nodes and returns %0 is a node is found and |
| 429 | * %1 if no more nodes are found. |
| 430 | */ |
| 431 | static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, |
| 432 | int lnum, int offs) |
| 433 | { |
| 434 | int skip, next_offs = 0; |
| 435 | |
| 436 | if (len > UBIFS_DATA_NODE_SZ) { |
| 437 | struct ubifs_ch *ch = buf; |
| 438 | int dlen = le32_to_cpu(ch->len); |
| 439 | |
| 440 | if (ch->node_type == UBIFS_DATA_NODE && dlen >= UBIFS_CH_SZ && |
| 441 | dlen <= UBIFS_MAX_DATA_NODE_SZ) |
| 442 | /* The corrupt node looks like a data node */ |
| 443 | next_offs = ALIGN(offs + dlen, 8); |
| 444 | } |
| 445 | |
| 446 | if (c->min_io_size == 1) |
| 447 | skip = 8; |
| 448 | else |
| 449 | skip = ALIGN(offs + 1, c->min_io_size) - offs; |
| 450 | |
| 451 | offs += skip; |
| 452 | buf += skip; |
| 453 | len -= skip; |
| 454 | while (len > 8) { |
| 455 | struct ubifs_ch *ch = buf; |
| 456 | uint32_t magic = le32_to_cpu(ch->magic); |
| 457 | int ret; |
| 458 | |
| 459 | if (magic == UBIFS_NODE_MAGIC) { |
| 460 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); |
| 461 | if (ret == SCANNED_A_NODE || ret > 0) { |
| 462 | /* |
| 463 | * There is a small chance this is just data in |
| 464 | * a data node, so check that possibility. e.g. |
| 465 | * this is part of a file that itself contains |
| 466 | * a UBIFS image. |
| 467 | */ |
| 468 | if (next_offs && offs + le32_to_cpu(ch->len) <= |
| 469 | next_offs) |
| 470 | continue; |
| 471 | dbg_rcvry("unexpected node at %d:%d", lnum, |
| 472 | offs); |
| 473 | return 0; |
| 474 | } |
| 475 | } |
| 476 | offs += 8; |
| 477 | buf += 8; |
| 478 | len -= 8; |
| 479 | } |
| 480 | return 1; |
| 481 | } |
| 482 | |
| 483 | /** |
| 484 | * fix_unclean_leb - fix an unclean LEB. |
| 485 | * @c: UBIFS file-system description object |
| 486 | * @sleb: scanned LEB information |
| 487 | * @start: offset where scan started |
| 488 | */ |
| 489 | static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, |
| 490 | int start) |
| 491 | { |
| 492 | int lnum = sleb->lnum, endpt = start; |
| 493 | |
| 494 | /* Get the end offset of the last node we are keeping */ |
| 495 | if (!list_empty(&sleb->nodes)) { |
| 496 | struct ubifs_scan_node *snod; |
| 497 | |
| 498 | snod = list_entry(sleb->nodes.prev, |
| 499 | struct ubifs_scan_node, list); |
| 500 | endpt = snod->offs + snod->len; |
| 501 | } |
| 502 | |
| 503 | if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) { |
| 504 | /* Add to recovery list */ |
| 505 | struct ubifs_unclean_leb *ucleb; |
| 506 | |
| 507 | dbg_rcvry("need to fix LEB %d start %d endpt %d", |
| 508 | lnum, start, sleb->endpt); |
| 509 | ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); |
| 510 | if (!ucleb) |
| 511 | return -ENOMEM; |
| 512 | ucleb->lnum = lnum; |
| 513 | ucleb->endpt = endpt; |
| 514 | list_add_tail(&ucleb->list, &c->unclean_leb_list); |
| 515 | } else { |
| 516 | /* Write the fixed LEB back to flash */ |
| 517 | int err; |
| 518 | |
| 519 | dbg_rcvry("fixing LEB %d start %d endpt %d", |
| 520 | lnum, start, sleb->endpt); |
| 521 | if (endpt == 0) { |
| 522 | err = ubifs_leb_unmap(c, lnum); |
| 523 | if (err) |
| 524 | return err; |
| 525 | } else { |
| 526 | int len = ALIGN(endpt, c->min_io_size); |
| 527 | |
| 528 | if (start) { |
| 529 | err = ubi_read(c->ubi, lnum, sleb->buf, 0, |
| 530 | start); |
| 531 | if (err) |
| 532 | return err; |
| 533 | } |
| 534 | /* Pad to min_io_size */ |
| 535 | if (len > endpt) { |
| 536 | int pad_len = len - ALIGN(endpt, 8); |
| 537 | |
| 538 | if (pad_len > 0) { |
| 539 | void *buf = sleb->buf + len - pad_len; |
| 540 | |
| 541 | ubifs_pad(c, buf, pad_len); |
| 542 | } |
| 543 | } |
| 544 | err = ubi_leb_change(c->ubi, lnum, sleb->buf, len, |
| 545 | UBI_UNKNOWN); |
| 546 | if (err) |
| 547 | return err; |
| 548 | } |
| 549 | } |
| 550 | return 0; |
| 551 | } |
| 552 | |
| 553 | /** |
| 554 | * drop_incomplete_group - drop nodes from an incomplete group. |
| 555 | * @sleb: scanned LEB information |
| 556 | * @offs: offset of dropped nodes is returned here |
| 557 | * |
| 558 | * This function returns %1 if nodes are dropped and %0 otherwise. |
| 559 | */ |
| 560 | static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) |
| 561 | { |
| 562 | int dropped = 0; |
| 563 | |
| 564 | while (!list_empty(&sleb->nodes)) { |
| 565 | struct ubifs_scan_node *snod; |
| 566 | struct ubifs_ch *ch; |
| 567 | |
| 568 | snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, |
| 569 | list); |
| 570 | ch = snod->node; |
| 571 | if (ch->group_type != UBIFS_IN_NODE_GROUP) |
| 572 | return dropped; |
| 573 | dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs); |
| 574 | *offs = snod->offs; |
| 575 | list_del(&snod->list); |
| 576 | kfree(snod); |
| 577 | sleb->nodes_cnt -= 1; |
| 578 | dropped = 1; |
| 579 | } |
| 580 | return dropped; |
| 581 | } |
| 582 | |
| 583 | /** |
| 584 | * ubifs_recover_leb - scan and recover a LEB. |
| 585 | * @c: UBIFS file-system description object |
| 586 | * @lnum: LEB number |
| 587 | * @offs: offset |
| 588 | * @sbuf: LEB-sized buffer to use |
| 589 | * @grouped: nodes may be grouped for recovery |
| 590 | * |
| 591 | * This function does a scan of a LEB, but caters for errors that might have |
| 592 | * been caused by the unclean unmount from which we are attempting to recover. |
| 593 | * |
| 594 | * This function returns %0 on success and a negative error code on failure. |
| 595 | */ |
| 596 | struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, |
| 597 | int offs, void *sbuf, int grouped) |
| 598 | { |
| 599 | int err, len = c->leb_size - offs, need_clean = 0, quiet = 1; |
| 600 | int empty_chkd = 0, start = offs; |
| 601 | struct ubifs_scan_leb *sleb; |
| 602 | void *buf = sbuf + offs; |
| 603 | |
| 604 | dbg_rcvry("%d:%d", lnum, offs); |
| 605 | |
| 606 | sleb = ubifs_start_scan(c, lnum, offs, sbuf); |
| 607 | if (IS_ERR(sleb)) |
| 608 | return sleb; |
| 609 | |
| 610 | if (sleb->ecc) |
| 611 | need_clean = 1; |
| 612 | |
| 613 | while (len >= 8) { |
| 614 | int ret; |
| 615 | |
| 616 | dbg_scan("look at LEB %d:%d (%d bytes left)", |
| 617 | lnum, offs, len); |
| 618 | |
| 619 | cond_resched(); |
| 620 | |
| 621 | /* |
| 622 | * Scan quietly until there is an error from which we cannot |
| 623 | * recover |
| 624 | */ |
| 625 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); |
| 626 | |
| 627 | if (ret == SCANNED_A_NODE) { |
| 628 | /* A valid node, and not a padding node */ |
| 629 | struct ubifs_ch *ch = buf; |
| 630 | int node_len; |
| 631 | |
| 632 | err = ubifs_add_snod(c, sleb, buf, offs); |
| 633 | if (err) |
| 634 | goto error; |
| 635 | node_len = ALIGN(le32_to_cpu(ch->len), 8); |
| 636 | offs += node_len; |
| 637 | buf += node_len; |
| 638 | len -= node_len; |
| 639 | continue; |
| 640 | } |
| 641 | |
| 642 | if (ret > 0) { |
| 643 | /* Padding bytes or a valid padding node */ |
| 644 | offs += ret; |
| 645 | buf += ret; |
| 646 | len -= ret; |
| 647 | continue; |
| 648 | } |
| 649 | |
| 650 | if (ret == SCANNED_EMPTY_SPACE) { |
| 651 | if (!is_empty(buf, len)) { |
| 652 | if (!is_last_write(c, buf, offs)) |
| 653 | break; |
| 654 | clean_buf(c, &buf, lnum, &offs, &len); |
| 655 | need_clean = 1; |
| 656 | } |
| 657 | empty_chkd = 1; |
| 658 | break; |
| 659 | } |
| 660 | |
| 661 | if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) |
| 662 | if (is_last_write(c, buf, offs)) { |
| 663 | clean_buf(c, &buf, lnum, &offs, &len); |
| 664 | need_clean = 1; |
| 665 | empty_chkd = 1; |
| 666 | break; |
| 667 | } |
| 668 | |
| 669 | if (ret == SCANNED_A_CORRUPT_NODE) |
| 670 | if (no_more_nodes(c, buf, len, lnum, offs)) { |
| 671 | clean_buf(c, &buf, lnum, &offs, &len); |
| 672 | need_clean = 1; |
| 673 | empty_chkd = 1; |
| 674 | break; |
| 675 | } |
| 676 | |
| 677 | if (quiet) { |
| 678 | /* Redo the last scan but noisily */ |
| 679 | quiet = 0; |
| 680 | continue; |
| 681 | } |
| 682 | |
| 683 | switch (ret) { |
| 684 | case SCANNED_GARBAGE: |
| 685 | dbg_err("garbage"); |
| 686 | goto corrupted; |
| 687 | case SCANNED_A_CORRUPT_NODE: |
| 688 | case SCANNED_A_BAD_PAD_NODE: |
| 689 | dbg_err("bad node"); |
| 690 | goto corrupted; |
| 691 | default: |
| 692 | dbg_err("unknown"); |
| 693 | goto corrupted; |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | if (!empty_chkd && !is_empty(buf, len)) { |
| 698 | if (is_last_write(c, buf, offs)) { |
| 699 | clean_buf(c, &buf, lnum, &offs, &len); |
| 700 | need_clean = 1; |
| 701 | } else { |
| 702 | ubifs_err("corrupt empty space at LEB %d:%d", |
| 703 | lnum, offs); |
| 704 | goto corrupted; |
| 705 | } |
| 706 | } |
| 707 | |
| 708 | /* Drop nodes from incomplete group */ |
| 709 | if (grouped && drop_incomplete_group(sleb, &offs)) { |
| 710 | buf = sbuf + offs; |
| 711 | len = c->leb_size - offs; |
| 712 | clean_buf(c, &buf, lnum, &offs, &len); |
| 713 | need_clean = 1; |
| 714 | } |
| 715 | |
| 716 | if (offs % c->min_io_size) { |
| 717 | clean_buf(c, &buf, lnum, &offs, &len); |
| 718 | need_clean = 1; |
| 719 | } |
| 720 | |
| 721 | ubifs_end_scan(c, sleb, lnum, offs); |
| 722 | |
| 723 | if (need_clean) { |
| 724 | err = fix_unclean_leb(c, sleb, start); |
| 725 | if (err) |
| 726 | goto error; |
| 727 | } |
| 728 | |
| 729 | return sleb; |
| 730 | |
| 731 | corrupted: |
| 732 | ubifs_scanned_corruption(c, lnum, offs, buf); |
| 733 | err = -EUCLEAN; |
| 734 | error: |
| 735 | ubifs_err("LEB %d scanning failed", lnum); |
| 736 | ubifs_scan_destroy(sleb); |
| 737 | return ERR_PTR(err); |
| 738 | } |
| 739 | |
| 740 | /** |
| 741 | * get_cs_sqnum - get commit start sequence number. |
| 742 | * @c: UBIFS file-system description object |
| 743 | * @lnum: LEB number of commit start node |
| 744 | * @offs: offset of commit start node |
| 745 | * @cs_sqnum: commit start sequence number is returned here |
| 746 | * |
| 747 | * This function returns %0 on success and a negative error code on failure. |
| 748 | */ |
| 749 | static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, |
| 750 | unsigned long long *cs_sqnum) |
| 751 | { |
| 752 | struct ubifs_cs_node *cs_node = NULL; |
| 753 | int err, ret; |
| 754 | |
| 755 | dbg_rcvry("at %d:%d", lnum, offs); |
| 756 | cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); |
| 757 | if (!cs_node) |
| 758 | return -ENOMEM; |
| 759 | if (c->leb_size - offs < UBIFS_CS_NODE_SZ) |
| 760 | goto out_err; |
| 761 | err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ); |
| 762 | if (err && err != -EBADMSG) |
| 763 | goto out_free; |
| 764 | ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); |
| 765 | if (ret != SCANNED_A_NODE) { |
| 766 | dbg_err("Not a valid node"); |
| 767 | goto out_err; |
| 768 | } |
| 769 | if (cs_node->ch.node_type != UBIFS_CS_NODE) { |
| 770 | dbg_err("Node a CS node, type is %d", cs_node->ch.node_type); |
| 771 | goto out_err; |
| 772 | } |
| 773 | if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { |
| 774 | dbg_err("CS node cmt_no %llu != current cmt_no %llu", |
| 775 | (unsigned long long)le64_to_cpu(cs_node->cmt_no), |
| 776 | c->cmt_no); |
| 777 | goto out_err; |
| 778 | } |
| 779 | *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); |
| 780 | dbg_rcvry("commit start sqnum %llu", *cs_sqnum); |
| 781 | kfree(cs_node); |
| 782 | return 0; |
| 783 | |
| 784 | out_err: |
| 785 | err = -EINVAL; |
| 786 | out_free: |
| 787 | ubifs_err("failed to get CS sqnum"); |
| 788 | kfree(cs_node); |
| 789 | return err; |
| 790 | } |
| 791 | |
| 792 | /** |
| 793 | * ubifs_recover_log_leb - scan and recover a log LEB. |
| 794 | * @c: UBIFS file-system description object |
| 795 | * @lnum: LEB number |
| 796 | * @offs: offset |
| 797 | * @sbuf: LEB-sized buffer to use |
| 798 | * |
| 799 | * This function does a scan of a LEB, but caters for errors that might have |
| 800 | * been caused by the unclean unmount from which we are attempting to recover. |
| 801 | * |
| 802 | * This function returns %0 on success and a negative error code on failure. |
| 803 | */ |
| 804 | struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, |
| 805 | int offs, void *sbuf) |
| 806 | { |
| 807 | struct ubifs_scan_leb *sleb; |
| 808 | int next_lnum; |
| 809 | |
| 810 | dbg_rcvry("LEB %d", lnum); |
| 811 | next_lnum = lnum + 1; |
| 812 | if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) |
| 813 | next_lnum = UBIFS_LOG_LNUM; |
| 814 | if (next_lnum != c->ltail_lnum) { |
| 815 | /* |
| 816 | * We can only recover at the end of the log, so check that the |
| 817 | * next log LEB is empty or out of date. |
| 818 | */ |
| 819 | sleb = ubifs_scan(c, next_lnum, 0, sbuf); |
| 820 | if (IS_ERR(sleb)) |
| 821 | return sleb; |
| 822 | if (sleb->nodes_cnt) { |
| 823 | struct ubifs_scan_node *snod; |
| 824 | unsigned long long cs_sqnum = c->cs_sqnum; |
| 825 | |
| 826 | snod = list_entry(sleb->nodes.next, |
| 827 | struct ubifs_scan_node, list); |
| 828 | if (cs_sqnum == 0) { |
| 829 | int err; |
| 830 | |
| 831 | err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); |
| 832 | if (err) { |
| 833 | ubifs_scan_destroy(sleb); |
| 834 | return ERR_PTR(err); |
| 835 | } |
| 836 | } |
| 837 | if (snod->sqnum > cs_sqnum) { |
| 838 | ubifs_err("unrecoverable log corruption " |
| 839 | "in LEB %d", lnum); |
| 840 | ubifs_scan_destroy(sleb); |
| 841 | return ERR_PTR(-EUCLEAN); |
| 842 | } |
| 843 | } |
| 844 | ubifs_scan_destroy(sleb); |
| 845 | } |
| 846 | return ubifs_recover_leb(c, lnum, offs, sbuf, 0); |
| 847 | } |
| 848 | |
| 849 | /** |
| 850 | * recover_head - recover a head. |
| 851 | * @c: UBIFS file-system description object |
| 852 | * @lnum: LEB number of head to recover |
| 853 | * @offs: offset of head to recover |
| 854 | * @sbuf: LEB-sized buffer to use |
| 855 | * |
| 856 | * This function ensures that there is no data on the flash at a head location. |
| 857 | * |
| 858 | * This function returns %0 on success and a negative error code on failure. |
| 859 | */ |
| 860 | static int recover_head(const struct ubifs_info *c, int lnum, int offs, |
| 861 | void *sbuf) |
| 862 | { |
| 863 | int len, err, need_clean = 0; |
| 864 | |
| 865 | if (c->min_io_size > 1) |
| 866 | len = c->min_io_size; |
| 867 | else |
| 868 | len = 512; |
| 869 | if (offs + len > c->leb_size) |
| 870 | len = c->leb_size - offs; |
| 871 | |
| 872 | if (!len) |
| 873 | return 0; |
| 874 | |
| 875 | /* Read at the head location and check it is empty flash */ |
| 876 | err = ubi_read(c->ubi, lnum, sbuf, offs, len); |
| 877 | if (err) |
| 878 | need_clean = 1; |
| 879 | else { |
| 880 | uint8_t *p = sbuf; |
| 881 | |
| 882 | while (len--) |
| 883 | if (*p++ != 0xff) { |
| 884 | need_clean = 1; |
| 885 | break; |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | if (need_clean) { |
| 890 | dbg_rcvry("cleaning head at %d:%d", lnum, offs); |
| 891 | if (offs == 0) |
| 892 | return ubifs_leb_unmap(c, lnum); |
| 893 | err = ubi_read(c->ubi, lnum, sbuf, 0, offs); |
| 894 | if (err) |
| 895 | return err; |
| 896 | return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN); |
| 897 | } |
| 898 | |
| 899 | return 0; |
| 900 | } |
| 901 | |
| 902 | /** |
| 903 | * ubifs_recover_inl_heads - recover index and LPT heads. |
| 904 | * @c: UBIFS file-system description object |
| 905 | * @sbuf: LEB-sized buffer to use |
| 906 | * |
| 907 | * This function ensures that there is no data on the flash at the index and |
| 908 | * LPT head locations. |
| 909 | * |
| 910 | * This deals with the recovery of a half-completed journal commit. UBIFS is |
| 911 | * careful never to overwrite the last version of the index or the LPT. Because |
| 912 | * the index and LPT are wandering trees, data from a half-completed commit will |
| 913 | * not be referenced anywhere in UBIFS. The data will be either in LEBs that are |
| 914 | * assumed to be empty and will be unmapped anyway before use, or in the index |
| 915 | * and LPT heads. |
| 916 | * |
| 917 | * This function returns %0 on success and a negative error code on failure. |
| 918 | */ |
| 919 | int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf) |
| 920 | { |
| 921 | int err; |
| 922 | |
| 923 | ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw); |
| 924 | |
| 925 | dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); |
| 926 | err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); |
| 927 | if (err) |
| 928 | return err; |
| 929 | |
| 930 | dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); |
| 931 | err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); |
| 932 | if (err) |
| 933 | return err; |
| 934 | |
| 935 | return 0; |
| 936 | } |
| 937 | |
| 938 | /** |
| 939 | * clean_an_unclean_leb - read and write a LEB to remove corruption. |
| 940 | * @c: UBIFS file-system description object |
| 941 | * @ucleb: unclean LEB information |
| 942 | * @sbuf: LEB-sized buffer to use |
| 943 | * |
| 944 | * This function reads a LEB up to a point pre-determined by the mount recovery, |
| 945 | * checks the nodes, and writes the result back to the flash, thereby cleaning |
| 946 | * off any following corruption, or non-fatal ECC errors. |
| 947 | * |
| 948 | * This function returns %0 on success and a negative error code on failure. |
| 949 | */ |
| 950 | static int clean_an_unclean_leb(const struct ubifs_info *c, |
| 951 | struct ubifs_unclean_leb *ucleb, void *sbuf) |
| 952 | { |
| 953 | int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; |
| 954 | void *buf = sbuf; |
| 955 | |
| 956 | dbg_rcvry("LEB %d len %d", lnum, len); |
| 957 | |
| 958 | if (len == 0) { |
| 959 | /* Nothing to read, just unmap it */ |
| 960 | err = ubifs_leb_unmap(c, lnum); |
| 961 | if (err) |
| 962 | return err; |
| 963 | return 0; |
| 964 | } |
| 965 | |
| 966 | err = ubi_read(c->ubi, lnum, buf, offs, len); |
| 967 | if (err && err != -EBADMSG) |
| 968 | return err; |
| 969 | |
| 970 | while (len >= 8) { |
| 971 | int ret; |
| 972 | |
| 973 | cond_resched(); |
| 974 | |
| 975 | /* Scan quietly until there is an error */ |
| 976 | ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); |
| 977 | |
| 978 | if (ret == SCANNED_A_NODE) { |
| 979 | /* A valid node, and not a padding node */ |
| 980 | struct ubifs_ch *ch = buf; |
| 981 | int node_len; |
| 982 | |
| 983 | node_len = ALIGN(le32_to_cpu(ch->len), 8); |
| 984 | offs += node_len; |
| 985 | buf += node_len; |
| 986 | len -= node_len; |
| 987 | continue; |
| 988 | } |
| 989 | |
| 990 | if (ret > 0) { |
| 991 | /* Padding bytes or a valid padding node */ |
| 992 | offs += ret; |
| 993 | buf += ret; |
| 994 | len -= ret; |
| 995 | continue; |
| 996 | } |
| 997 | |
| 998 | if (ret == SCANNED_EMPTY_SPACE) { |
| 999 | ubifs_err("unexpected empty space at %d:%d", |
| 1000 | lnum, offs); |
| 1001 | return -EUCLEAN; |
| 1002 | } |
| 1003 | |
| 1004 | if (quiet) { |
| 1005 | /* Redo the last scan but noisily */ |
| 1006 | quiet = 0; |
| 1007 | continue; |
| 1008 | } |
| 1009 | |
| 1010 | ubifs_scanned_corruption(c, lnum, offs, buf); |
| 1011 | return -EUCLEAN; |
| 1012 | } |
| 1013 | |
| 1014 | /* Pad to min_io_size */ |
| 1015 | len = ALIGN(ucleb->endpt, c->min_io_size); |
| 1016 | if (len > ucleb->endpt) { |
| 1017 | int pad_len = len - ALIGN(ucleb->endpt, 8); |
| 1018 | |
| 1019 | if (pad_len > 0) { |
| 1020 | buf = c->sbuf + len - pad_len; |
| 1021 | ubifs_pad(c, buf, pad_len); |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | /* Write back the LEB atomically */ |
| 1026 | err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN); |
| 1027 | if (err) |
| 1028 | return err; |
| 1029 | |
| 1030 | dbg_rcvry("cleaned LEB %d", lnum); |
| 1031 | |
| 1032 | return 0; |
| 1033 | } |
| 1034 | |
| 1035 | /** |
| 1036 | * ubifs_clean_lebs - clean LEBs recovered during read-only mount. |
| 1037 | * @c: UBIFS file-system description object |
| 1038 | * @sbuf: LEB-sized buffer to use |
| 1039 | * |
| 1040 | * This function cleans a LEB identified during recovery that needs to be |
| 1041 | * written but was not because UBIFS was mounted read-only. This happens when |
| 1042 | * remounting to read-write mode. |
| 1043 | * |
| 1044 | * This function returns %0 on success and a negative error code on failure. |
| 1045 | */ |
| 1046 | int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf) |
| 1047 | { |
| 1048 | dbg_rcvry("recovery"); |
| 1049 | while (!list_empty(&c->unclean_leb_list)) { |
| 1050 | struct ubifs_unclean_leb *ucleb; |
| 1051 | int err; |
| 1052 | |
| 1053 | ucleb = list_entry(c->unclean_leb_list.next, |
| 1054 | struct ubifs_unclean_leb, list); |
| 1055 | err = clean_an_unclean_leb(c, ucleb, sbuf); |
| 1056 | if (err) |
| 1057 | return err; |
| 1058 | list_del(&ucleb->list); |
| 1059 | kfree(ucleb); |
| 1060 | } |
| 1061 | return 0; |
| 1062 | } |
| 1063 | |
| 1064 | /** |
| 1065 | * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. |
| 1066 | * @c: UBIFS file-system description object |
| 1067 | * |
| 1068 | * Out-of-place garbage collection requires always one empty LEB with which to |
| 1069 | * start garbage collection. The LEB number is recorded in c->gc_lnum and is |
| 1070 | * written to the master node on unmounting. In the case of an unclean unmount |
| 1071 | * the value of gc_lnum recorded in the master node is out of date and cannot |
| 1072 | * be used. Instead, recovery must allocate an empty LEB for this purpose. |
| 1073 | * However, there may not be enough empty space, in which case it must be |
| 1074 | * possible to GC the dirtiest LEB into the GC head LEB. |
| 1075 | * |
| 1076 | * This function also runs the commit which causes the TNC updates from |
| 1077 | * size-recovery and orphans to be written to the flash. That is important to |
| 1078 | * ensure correct replay order for subsequent mounts. |
| 1079 | * |
| 1080 | * This function returns %0 on success and a negative error code on failure. |
| 1081 | */ |
| 1082 | int ubifs_rcvry_gc_commit(struct ubifs_info *c) |
| 1083 | { |
| 1084 | struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; |
| 1085 | struct ubifs_lprops lp; |
| 1086 | int lnum, err; |
| 1087 | |
| 1088 | c->gc_lnum = -1; |
| 1089 | if (wbuf->lnum == -1) { |
| 1090 | dbg_rcvry("no GC head LEB"); |
| 1091 | goto find_free; |
| 1092 | } |
| 1093 | /* |
| 1094 | * See whether the used space in the dirtiest LEB fits in the GC head |
| 1095 | * LEB. |
| 1096 | */ |
| 1097 | if (wbuf->offs == c->leb_size) { |
| 1098 | dbg_rcvry("no room in GC head LEB"); |
| 1099 | goto find_free; |
| 1100 | } |
| 1101 | err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); |
| 1102 | if (err) { |
| 1103 | if (err == -ENOSPC) |
| 1104 | dbg_err("could not find a dirty LEB"); |
| 1105 | return err; |
| 1106 | } |
| 1107 | ubifs_assert(!(lp.flags & LPROPS_INDEX)); |
| 1108 | lnum = lp.lnum; |
| 1109 | if (lp.free + lp.dirty == c->leb_size) { |
| 1110 | /* An empty LEB was returned */ |
| 1111 | if (lp.free != c->leb_size) { |
| 1112 | err = ubifs_change_one_lp(c, lnum, c->leb_size, |
| 1113 | 0, 0, 0, 0); |
| 1114 | if (err) |
| 1115 | return err; |
| 1116 | } |
| 1117 | err = ubifs_leb_unmap(c, lnum); |
| 1118 | if (err) |
| 1119 | return err; |
| 1120 | c->gc_lnum = lnum; |
| 1121 | dbg_rcvry("allocated LEB %d for GC", lnum); |
| 1122 | /* Run the commit */ |
| 1123 | dbg_rcvry("committing"); |
| 1124 | return ubifs_run_commit(c); |
| 1125 | } |
| 1126 | /* |
| 1127 | * There was no empty LEB so the used space in the dirtiest LEB must fit |
| 1128 | * in the GC head LEB. |
| 1129 | */ |
| 1130 | if (lp.free + lp.dirty < wbuf->offs) { |
| 1131 | dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d", |
| 1132 | lnum, wbuf->lnum, wbuf->offs); |
| 1133 | err = ubifs_return_leb(c, lnum); |
| 1134 | if (err) |
| 1135 | return err; |
| 1136 | goto find_free; |
| 1137 | } |
| 1138 | /* |
| 1139 | * We run the commit before garbage collection otherwise subsequent |
| 1140 | * mounts will see the GC and orphan deletion in a different order. |
| 1141 | */ |
| 1142 | dbg_rcvry("committing"); |
| 1143 | err = ubifs_run_commit(c); |
| 1144 | if (err) |
| 1145 | return err; |
| 1146 | /* |
| 1147 | * The data in the dirtiest LEB fits in the GC head LEB, so do the GC |
| 1148 | * - use locking to keep 'ubifs_assert()' happy. |
| 1149 | */ |
| 1150 | dbg_rcvry("GC'ing LEB %d", lnum); |
| 1151 | mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); |
| 1152 | err = ubifs_garbage_collect_leb(c, &lp); |
| 1153 | if (err >= 0) { |
| 1154 | int err2 = ubifs_wbuf_sync_nolock(wbuf); |
| 1155 | |
| 1156 | if (err2) |
| 1157 | err = err2; |
| 1158 | } |
| 1159 | mutex_unlock(&wbuf->io_mutex); |
| 1160 | if (err < 0) { |
| 1161 | dbg_err("GC failed, error %d", err); |
| 1162 | if (err == -EAGAIN) |
| 1163 | err = -EINVAL; |
| 1164 | return err; |
| 1165 | } |
| 1166 | if (err != LEB_RETAINED) { |
| 1167 | dbg_err("GC returned %d", err); |
| 1168 | return -EINVAL; |
| 1169 | } |
| 1170 | err = ubifs_leb_unmap(c, c->gc_lnum); |
| 1171 | if (err) |
| 1172 | return err; |
| 1173 | dbg_rcvry("allocated LEB %d for GC", lnum); |
| 1174 | return 0; |
| 1175 | |
| 1176 | find_free: |
| 1177 | /* |
| 1178 | * There is no GC head LEB or the free space in the GC head LEB is too |
| 1179 | * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so |
| 1180 | * GC is not run. |
| 1181 | */ |
| 1182 | lnum = ubifs_find_free_leb_for_idx(c); |
| 1183 | if (lnum < 0) { |
| 1184 | dbg_err("could not find an empty LEB"); |
| 1185 | return lnum; |
| 1186 | } |
| 1187 | /* And reset the index flag */ |
| 1188 | err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, |
| 1189 | LPROPS_INDEX, 0); |
| 1190 | if (err) |
| 1191 | return err; |
| 1192 | c->gc_lnum = lnum; |
| 1193 | dbg_rcvry("allocated LEB %d for GC", lnum); |
| 1194 | /* Run the commit */ |
| 1195 | dbg_rcvry("committing"); |
| 1196 | return ubifs_run_commit(c); |
| 1197 | } |
| 1198 | |
| 1199 | /** |
| 1200 | * struct size_entry - inode size information for recovery. |
| 1201 | * @rb: link in the RB-tree of sizes |
| 1202 | * @inum: inode number |
| 1203 | * @i_size: size on inode |
| 1204 | * @d_size: maximum size based on data nodes |
| 1205 | * @exists: indicates whether the inode exists |
| 1206 | * @inode: inode if pinned in memory awaiting rw mode to fix it |
| 1207 | */ |
| 1208 | struct size_entry { |
| 1209 | struct rb_node rb; |
| 1210 | ino_t inum; |
| 1211 | loff_t i_size; |
| 1212 | loff_t d_size; |
| 1213 | int exists; |
| 1214 | struct inode *inode; |
| 1215 | }; |
| 1216 | |
| 1217 | /** |
| 1218 | * add_ino - add an entry to the size tree. |
| 1219 | * @c: UBIFS file-system description object |
| 1220 | * @inum: inode number |
| 1221 | * @i_size: size on inode |
| 1222 | * @d_size: maximum size based on data nodes |
| 1223 | * @exists: indicates whether the inode exists |
| 1224 | */ |
| 1225 | static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, |
| 1226 | loff_t d_size, int exists) |
| 1227 | { |
| 1228 | struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; |
| 1229 | struct size_entry *e; |
| 1230 | |
| 1231 | while (*p) { |
| 1232 | parent = *p; |
| 1233 | e = rb_entry(parent, struct size_entry, rb); |
| 1234 | if (inum < e->inum) |
| 1235 | p = &(*p)->rb_left; |
| 1236 | else |
| 1237 | p = &(*p)->rb_right; |
| 1238 | } |
| 1239 | |
| 1240 | e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); |
| 1241 | if (!e) |
| 1242 | return -ENOMEM; |
| 1243 | |
| 1244 | e->inum = inum; |
| 1245 | e->i_size = i_size; |
| 1246 | e->d_size = d_size; |
| 1247 | e->exists = exists; |
| 1248 | |
| 1249 | rb_link_node(&e->rb, parent, p); |
| 1250 | rb_insert_color(&e->rb, &c->size_tree); |
| 1251 | |
| 1252 | return 0; |
| 1253 | } |
| 1254 | |
| 1255 | /** |
| 1256 | * find_ino - find an entry on the size tree. |
| 1257 | * @c: UBIFS file-system description object |
| 1258 | * @inum: inode number |
| 1259 | */ |
| 1260 | static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) |
| 1261 | { |
| 1262 | struct rb_node *p = c->size_tree.rb_node; |
| 1263 | struct size_entry *e; |
| 1264 | |
| 1265 | while (p) { |
| 1266 | e = rb_entry(p, struct size_entry, rb); |
| 1267 | if (inum < e->inum) |
| 1268 | p = p->rb_left; |
| 1269 | else if (inum > e->inum) |
| 1270 | p = p->rb_right; |
| 1271 | else |
| 1272 | return e; |
| 1273 | } |
| 1274 | return NULL; |
| 1275 | } |
| 1276 | |
| 1277 | /** |
| 1278 | * remove_ino - remove an entry from the size tree. |
| 1279 | * @c: UBIFS file-system description object |
| 1280 | * @inum: inode number |
| 1281 | */ |
| 1282 | static void remove_ino(struct ubifs_info *c, ino_t inum) |
| 1283 | { |
| 1284 | struct size_entry *e = find_ino(c, inum); |
| 1285 | |
| 1286 | if (!e) |
| 1287 | return; |
| 1288 | rb_erase(&e->rb, &c->size_tree); |
| 1289 | kfree(e); |
| 1290 | } |
| 1291 | |
| 1292 | /** |
| 1293 | * ubifs_destroy_size_tree - free resources related to the size tree. |
| 1294 | * @c: UBIFS file-system description object |
| 1295 | */ |
| 1296 | void ubifs_destroy_size_tree(struct ubifs_info *c) |
| 1297 | { |
| 1298 | struct rb_node *this = c->size_tree.rb_node; |
| 1299 | struct size_entry *e; |
| 1300 | |
| 1301 | while (this) { |
| 1302 | if (this->rb_left) { |
| 1303 | this = this->rb_left; |
| 1304 | continue; |
| 1305 | } else if (this->rb_right) { |
| 1306 | this = this->rb_right; |
| 1307 | continue; |
| 1308 | } |
| 1309 | e = rb_entry(this, struct size_entry, rb); |
| 1310 | if (e->inode) |
| 1311 | iput(e->inode); |
| 1312 | this = rb_parent(this); |
| 1313 | if (this) { |
| 1314 | if (this->rb_left == &e->rb) |
| 1315 | this->rb_left = NULL; |
| 1316 | else |
| 1317 | this->rb_right = NULL; |
| 1318 | } |
| 1319 | kfree(e); |
| 1320 | } |
| 1321 | c->size_tree = RB_ROOT; |
| 1322 | } |
| 1323 | |
| 1324 | /** |
| 1325 | * ubifs_recover_size_accum - accumulate inode sizes for recovery. |
| 1326 | * @c: UBIFS file-system description object |
| 1327 | * @key: node key |
| 1328 | * @deletion: node is for a deletion |
| 1329 | * @new_size: inode size |
| 1330 | * |
| 1331 | * This function has two purposes: |
| 1332 | * 1) to ensure there are no data nodes that fall outside the inode size |
| 1333 | * 2) to ensure there are no data nodes for inodes that do not exist |
| 1334 | * To accomplish those purposes, a rb-tree is constructed containing an entry |
| 1335 | * for each inode number in the journal that has not been deleted, and recording |
| 1336 | * the size from the inode node, the maximum size of any data node (also altered |
| 1337 | * by truncations) and a flag indicating a inode number for which no inode node |
| 1338 | * was present in the journal. |
| 1339 | * |
| 1340 | * Note that there is still the possibility that there are data nodes that have |
| 1341 | * been committed that are beyond the inode size, however the only way to find |
| 1342 | * them would be to scan the entire index. Alternatively, some provision could |
| 1343 | * be made to record the size of inodes at the start of commit, which would seem |
| 1344 | * very cumbersome for a scenario that is quite unlikely and the only negative |
| 1345 | * consequence of which is wasted space. |
| 1346 | * |
| 1347 | * This functions returns %0 on success and a negative error code on failure. |
| 1348 | */ |
| 1349 | int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, |
| 1350 | int deletion, loff_t new_size) |
| 1351 | { |
| 1352 | ino_t inum = key_inum(c, key); |
| 1353 | struct size_entry *e; |
| 1354 | int err; |
| 1355 | |
| 1356 | switch (key_type(c, key)) { |
| 1357 | case UBIFS_INO_KEY: |
| 1358 | if (deletion) |
| 1359 | remove_ino(c, inum); |
| 1360 | else { |
| 1361 | e = find_ino(c, inum); |
| 1362 | if (e) { |
| 1363 | e->i_size = new_size; |
| 1364 | e->exists = 1; |
| 1365 | } else { |
| 1366 | err = add_ino(c, inum, new_size, 0, 1); |
| 1367 | if (err) |
| 1368 | return err; |
| 1369 | } |
| 1370 | } |
| 1371 | break; |
| 1372 | case UBIFS_DATA_KEY: |
| 1373 | e = find_ino(c, inum); |
| 1374 | if (e) { |
| 1375 | if (new_size > e->d_size) |
| 1376 | e->d_size = new_size; |
| 1377 | } else { |
| 1378 | err = add_ino(c, inum, 0, new_size, 0); |
| 1379 | if (err) |
| 1380 | return err; |
| 1381 | } |
| 1382 | break; |
| 1383 | case UBIFS_TRUN_KEY: |
| 1384 | e = find_ino(c, inum); |
| 1385 | if (e) |
| 1386 | e->d_size = new_size; |
| 1387 | break; |
| 1388 | } |
| 1389 | return 0; |
| 1390 | } |
| 1391 | |
| 1392 | /** |
| 1393 | * fix_size_in_place - fix inode size in place on flash. |
| 1394 | * @c: UBIFS file-system description object |
| 1395 | * @e: inode size information for recovery |
| 1396 | */ |
| 1397 | static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) |
| 1398 | { |
| 1399 | struct ubifs_ino_node *ino = c->sbuf; |
| 1400 | unsigned char *p; |
| 1401 | union ubifs_key key; |
| 1402 | int err, lnum, offs, len; |
| 1403 | loff_t i_size; |
| 1404 | uint32_t crc; |
| 1405 | |
| 1406 | /* Locate the inode node LEB number and offset */ |
| 1407 | ino_key_init(c, &key, e->inum); |
| 1408 | err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); |
| 1409 | if (err) |
| 1410 | goto out; |
| 1411 | /* |
| 1412 | * If the size recorded on the inode node is greater than the size that |
| 1413 | * was calculated from nodes in the journal then don't change the inode. |
| 1414 | */ |
| 1415 | i_size = le64_to_cpu(ino->size); |
| 1416 | if (i_size >= e->d_size) |
| 1417 | return 0; |
| 1418 | /* Read the LEB */ |
| 1419 | err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size); |
| 1420 | if (err) |
| 1421 | goto out; |
| 1422 | /* Change the size field and recalculate the CRC */ |
| 1423 | ino = c->sbuf + offs; |
| 1424 | ino->size = cpu_to_le64(e->d_size); |
| 1425 | len = le32_to_cpu(ino->ch.len); |
| 1426 | crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); |
| 1427 | ino->ch.crc = cpu_to_le32(crc); |
| 1428 | /* Work out where data in the LEB ends and free space begins */ |
| 1429 | p = c->sbuf; |
| 1430 | len = c->leb_size - 1; |
| 1431 | while (p[len] == 0xff) |
| 1432 | len -= 1; |
| 1433 | len = ALIGN(len + 1, c->min_io_size); |
| 1434 | /* Atomically write the fixed LEB back again */ |
| 1435 | err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN); |
| 1436 | if (err) |
| 1437 | goto out; |
| 1438 | dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ", e->inum, lnum, offs, |
| 1439 | i_size, e->d_size); |
| 1440 | return 0; |
| 1441 | |
| 1442 | out: |
| 1443 | ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d", |
| 1444 | e->inum, e->i_size, e->d_size, err); |
| 1445 | return err; |
| 1446 | } |
| 1447 | |
| 1448 | /** |
| 1449 | * ubifs_recover_size - recover inode size. |
| 1450 | * @c: UBIFS file-system description object |
| 1451 | * |
| 1452 | * This function attempts to fix inode size discrepancies identified by the |
| 1453 | * 'ubifs_recover_size_accum()' function. |
| 1454 | * |
| 1455 | * This functions returns %0 on success and a negative error code on failure. |
| 1456 | */ |
| 1457 | int ubifs_recover_size(struct ubifs_info *c) |
| 1458 | { |
| 1459 | struct rb_node *this = rb_first(&c->size_tree); |
| 1460 | |
| 1461 | while (this) { |
| 1462 | struct size_entry *e; |
| 1463 | int err; |
| 1464 | |
| 1465 | e = rb_entry(this, struct size_entry, rb); |
| 1466 | if (!e->exists) { |
| 1467 | union ubifs_key key; |
| 1468 | |
| 1469 | ino_key_init(c, &key, e->inum); |
| 1470 | err = ubifs_tnc_lookup(c, &key, c->sbuf); |
| 1471 | if (err && err != -ENOENT) |
| 1472 | return err; |
| 1473 | if (err == -ENOENT) { |
| 1474 | /* Remove data nodes that have no inode */ |
| 1475 | dbg_rcvry("removing ino %lu", e->inum); |
| 1476 | err = ubifs_tnc_remove_ino(c, e->inum); |
| 1477 | if (err) |
| 1478 | return err; |
| 1479 | } else { |
| 1480 | struct ubifs_ino_node *ino = c->sbuf; |
| 1481 | |
| 1482 | e->exists = 1; |
| 1483 | e->i_size = le64_to_cpu(ino->size); |
| 1484 | } |
| 1485 | } |
| 1486 | if (e->exists && e->i_size < e->d_size) { |
| 1487 | if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) { |
| 1488 | /* Fix the inode size and pin it in memory */ |
| 1489 | struct inode *inode; |
| 1490 | |
| 1491 | inode = ubifs_iget(c->vfs_sb, e->inum); |
| 1492 | if (IS_ERR(inode)) |
| 1493 | return PTR_ERR(inode); |
| 1494 | if (inode->i_size < e->d_size) { |
| 1495 | dbg_rcvry("ino %lu size %lld -> %lld", |
| 1496 | e->inum, e->d_size, |
| 1497 | inode->i_size); |
| 1498 | inode->i_size = e->d_size; |
| 1499 | ubifs_inode(inode)->ui_size = e->d_size; |
| 1500 | e->inode = inode; |
| 1501 | this = rb_next(this); |
| 1502 | continue; |
| 1503 | } |
| 1504 | iput(inode); |
| 1505 | } else { |
| 1506 | /* Fix the size in place */ |
| 1507 | err = fix_size_in_place(c, e); |
| 1508 | if (err) |
| 1509 | return err; |
| 1510 | if (e->inode) |
| 1511 | iput(e->inode); |
| 1512 | } |
| 1513 | } |
| 1514 | this = rb_next(this); |
| 1515 | rb_erase(&e->rb, &c->size_tree); |
| 1516 | kfree(e); |
| 1517 | } |
| 1518 | return 0; |
| 1519 | } |