Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
| 3 | * operating system. INET is implemented using the BSD Socket |
| 4 | * interface as the means of communication with the user level. |
| 5 | * |
| 6 | * Implementation of the Transmission Control Protocol(TCP). |
| 7 | * |
| 8 | * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $ |
| 9 | * |
| 10 | * Authors: Ross Biro, <bir7@leland.Stanford.Edu> |
| 11 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| 12 | * Mark Evans, <evansmp@uhura.aston.ac.uk> |
| 13 | * Corey Minyard <wf-rch!minyard@relay.EU.net> |
| 14 | * Florian La Roche, <flla@stud.uni-sb.de> |
| 15 | * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> |
| 16 | * Linus Torvalds, <torvalds@cs.helsinki.fi> |
| 17 | * Alan Cox, <gw4pts@gw4pts.ampr.org> |
| 18 | * Matthew Dillon, <dillon@apollo.west.oic.com> |
| 19 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
| 20 | * Jorge Cwik, <jorge@laser.satlink.net> |
| 21 | */ |
| 22 | |
| 23 | /* |
| 24 | * Changes: Pedro Roque : Retransmit queue handled by TCP. |
| 25 | * : Fragmentation on mtu decrease |
| 26 | * : Segment collapse on retransmit |
| 27 | * : AF independence |
| 28 | * |
| 29 | * Linus Torvalds : send_delayed_ack |
| 30 | * David S. Miller : Charge memory using the right skb |
| 31 | * during syn/ack processing. |
| 32 | * David S. Miller : Output engine completely rewritten. |
| 33 | * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. |
| 34 | * Cacophonix Gaul : draft-minshall-nagle-01 |
| 35 | * J Hadi Salim : ECN support |
| 36 | * |
| 37 | */ |
| 38 | |
| 39 | #include <net/tcp.h> |
| 40 | |
| 41 | #include <linux/compiler.h> |
| 42 | #include <linux/module.h> |
| 43 | #include <linux/smp_lock.h> |
| 44 | |
| 45 | /* People can turn this off for buggy TCP's found in printers etc. */ |
| 46 | int sysctl_tcp_retrans_collapse = 1; |
| 47 | |
| 48 | /* This limits the percentage of the congestion window which we |
| 49 | * will allow a single TSO frame to consume. Building TSO frames |
| 50 | * which are too large can cause TCP streams to be bursty. |
| 51 | */ |
| 52 | int sysctl_tcp_tso_win_divisor = 8; |
| 53 | |
| 54 | static inline void update_send_head(struct sock *sk, struct tcp_sock *tp, |
| 55 | struct sk_buff *skb) |
| 56 | { |
| 57 | sk->sk_send_head = skb->next; |
| 58 | if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue) |
| 59 | sk->sk_send_head = NULL; |
| 60 | tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; |
| 61 | tcp_packets_out_inc(sk, tp, skb); |
| 62 | } |
| 63 | |
| 64 | /* SND.NXT, if window was not shrunk. |
| 65 | * If window has been shrunk, what should we make? It is not clear at all. |
| 66 | * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( |
| 67 | * Anything in between SND.UNA...SND.UNA+SND.WND also can be already |
| 68 | * invalid. OK, let's make this for now: |
| 69 | */ |
| 70 | static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp) |
| 71 | { |
| 72 | if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt)) |
| 73 | return tp->snd_nxt; |
| 74 | else |
| 75 | return tp->snd_una+tp->snd_wnd; |
| 76 | } |
| 77 | |
| 78 | /* Calculate mss to advertise in SYN segment. |
| 79 | * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: |
| 80 | * |
| 81 | * 1. It is independent of path mtu. |
| 82 | * 2. Ideally, it is maximal possible segment size i.e. 65535-40. |
| 83 | * 3. For IPv4 it is reasonable to calculate it from maximal MTU of |
| 84 | * attached devices, because some buggy hosts are confused by |
| 85 | * large MSS. |
| 86 | * 4. We do not make 3, we advertise MSS, calculated from first |
| 87 | * hop device mtu, but allow to raise it to ip_rt_min_advmss. |
| 88 | * This may be overridden via information stored in routing table. |
| 89 | * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, |
| 90 | * probably even Jumbo". |
| 91 | */ |
| 92 | static __u16 tcp_advertise_mss(struct sock *sk) |
| 93 | { |
| 94 | struct tcp_sock *tp = tcp_sk(sk); |
| 95 | struct dst_entry *dst = __sk_dst_get(sk); |
| 96 | int mss = tp->advmss; |
| 97 | |
| 98 | if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { |
| 99 | mss = dst_metric(dst, RTAX_ADVMSS); |
| 100 | tp->advmss = mss; |
| 101 | } |
| 102 | |
| 103 | return (__u16)mss; |
| 104 | } |
| 105 | |
| 106 | /* RFC2861. Reset CWND after idle period longer RTO to "restart window". |
| 107 | * This is the first part of cwnd validation mechanism. */ |
| 108 | static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst) |
| 109 | { |
| 110 | s32 delta = tcp_time_stamp - tp->lsndtime; |
| 111 | u32 restart_cwnd = tcp_init_cwnd(tp, dst); |
| 112 | u32 cwnd = tp->snd_cwnd; |
| 113 | |
| 114 | if (tcp_is_vegas(tp)) |
| 115 | tcp_vegas_enable(tp); |
| 116 | |
| 117 | tp->snd_ssthresh = tcp_current_ssthresh(tp); |
| 118 | restart_cwnd = min(restart_cwnd, cwnd); |
| 119 | |
| 120 | while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd) |
| 121 | cwnd >>= 1; |
| 122 | tp->snd_cwnd = max(cwnd, restart_cwnd); |
| 123 | tp->snd_cwnd_stamp = tcp_time_stamp; |
| 124 | tp->snd_cwnd_used = 0; |
| 125 | } |
| 126 | |
| 127 | static inline void tcp_event_data_sent(struct tcp_sock *tp, |
| 128 | struct sk_buff *skb, struct sock *sk) |
| 129 | { |
| 130 | u32 now = tcp_time_stamp; |
| 131 | |
| 132 | if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto) |
| 133 | tcp_cwnd_restart(tp, __sk_dst_get(sk)); |
| 134 | |
| 135 | tp->lsndtime = now; |
| 136 | |
| 137 | /* If it is a reply for ato after last received |
| 138 | * packet, enter pingpong mode. |
| 139 | */ |
| 140 | if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato) |
| 141 | tp->ack.pingpong = 1; |
| 142 | } |
| 143 | |
| 144 | static __inline__ void tcp_event_ack_sent(struct sock *sk) |
| 145 | { |
| 146 | struct tcp_sock *tp = tcp_sk(sk); |
| 147 | |
| 148 | tcp_dec_quickack_mode(tp); |
| 149 | tcp_clear_xmit_timer(sk, TCP_TIME_DACK); |
| 150 | } |
| 151 | |
| 152 | /* Determine a window scaling and initial window to offer. |
| 153 | * Based on the assumption that the given amount of space |
| 154 | * will be offered. Store the results in the tp structure. |
| 155 | * NOTE: for smooth operation initial space offering should |
| 156 | * be a multiple of mss if possible. We assume here that mss >= 1. |
| 157 | * This MUST be enforced by all callers. |
| 158 | */ |
| 159 | void tcp_select_initial_window(int __space, __u32 mss, |
| 160 | __u32 *rcv_wnd, __u32 *window_clamp, |
| 161 | int wscale_ok, __u8 *rcv_wscale) |
| 162 | { |
| 163 | unsigned int space = (__space < 0 ? 0 : __space); |
| 164 | |
| 165 | /* If no clamp set the clamp to the max possible scaled window */ |
| 166 | if (*window_clamp == 0) |
| 167 | (*window_clamp) = (65535 << 14); |
| 168 | space = min(*window_clamp, space); |
| 169 | |
| 170 | /* Quantize space offering to a multiple of mss if possible. */ |
| 171 | if (space > mss) |
| 172 | space = (space / mss) * mss; |
| 173 | |
| 174 | /* NOTE: offering an initial window larger than 32767 |
| 175 | * will break some buggy TCP stacks. We try to be nice. |
| 176 | * If we are not window scaling, then this truncates |
| 177 | * our initial window offering to 32k. There should also |
| 178 | * be a sysctl option to stop being nice. |
| 179 | */ |
| 180 | (*rcv_wnd) = min(space, MAX_TCP_WINDOW); |
| 181 | (*rcv_wscale) = 0; |
| 182 | if (wscale_ok) { |
| 183 | /* Set window scaling on max possible window |
| 184 | * See RFC1323 for an explanation of the limit to 14 |
| 185 | */ |
| 186 | space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); |
| 187 | while (space > 65535 && (*rcv_wscale) < 14) { |
| 188 | space >>= 1; |
| 189 | (*rcv_wscale)++; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | /* Set initial window to value enough for senders, |
| 194 | * following RFC1414. Senders, not following this RFC, |
| 195 | * will be satisfied with 2. |
| 196 | */ |
| 197 | if (mss > (1<<*rcv_wscale)) { |
| 198 | int init_cwnd = 4; |
| 199 | if (mss > 1460*3) |
| 200 | init_cwnd = 2; |
| 201 | else if (mss > 1460) |
| 202 | init_cwnd = 3; |
| 203 | if (*rcv_wnd > init_cwnd*mss) |
| 204 | *rcv_wnd = init_cwnd*mss; |
| 205 | } |
| 206 | |
| 207 | /* Set the clamp no higher than max representable value */ |
| 208 | (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); |
| 209 | } |
| 210 | |
| 211 | /* Chose a new window to advertise, update state in tcp_sock for the |
| 212 | * socket, and return result with RFC1323 scaling applied. The return |
| 213 | * value can be stuffed directly into th->window for an outgoing |
| 214 | * frame. |
| 215 | */ |
| 216 | static __inline__ u16 tcp_select_window(struct sock *sk) |
| 217 | { |
| 218 | struct tcp_sock *tp = tcp_sk(sk); |
| 219 | u32 cur_win = tcp_receive_window(tp); |
| 220 | u32 new_win = __tcp_select_window(sk); |
| 221 | |
| 222 | /* Never shrink the offered window */ |
| 223 | if(new_win < cur_win) { |
| 224 | /* Danger Will Robinson! |
| 225 | * Don't update rcv_wup/rcv_wnd here or else |
| 226 | * we will not be able to advertise a zero |
| 227 | * window in time. --DaveM |
| 228 | * |
| 229 | * Relax Will Robinson. |
| 230 | */ |
| 231 | new_win = cur_win; |
| 232 | } |
| 233 | tp->rcv_wnd = new_win; |
| 234 | tp->rcv_wup = tp->rcv_nxt; |
| 235 | |
| 236 | /* Make sure we do not exceed the maximum possible |
| 237 | * scaled window. |
| 238 | */ |
| 239 | if (!tp->rx_opt.rcv_wscale) |
| 240 | new_win = min(new_win, MAX_TCP_WINDOW); |
| 241 | else |
| 242 | new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); |
| 243 | |
| 244 | /* RFC1323 scaling applied */ |
| 245 | new_win >>= tp->rx_opt.rcv_wscale; |
| 246 | |
| 247 | /* If we advertise zero window, disable fast path. */ |
| 248 | if (new_win == 0) |
| 249 | tp->pred_flags = 0; |
| 250 | |
| 251 | return new_win; |
| 252 | } |
| 253 | |
| 254 | |
| 255 | /* This routine actually transmits TCP packets queued in by |
| 256 | * tcp_do_sendmsg(). This is used by both the initial |
| 257 | * transmission and possible later retransmissions. |
| 258 | * All SKB's seen here are completely headerless. It is our |
| 259 | * job to build the TCP header, and pass the packet down to |
| 260 | * IP so it can do the same plus pass the packet off to the |
| 261 | * device. |
| 262 | * |
| 263 | * We are working here with either a clone of the original |
| 264 | * SKB, or a fresh unique copy made by the retransmit engine. |
| 265 | */ |
| 266 | static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb) |
| 267 | { |
| 268 | if (skb != NULL) { |
| 269 | struct inet_sock *inet = inet_sk(sk); |
| 270 | struct tcp_sock *tp = tcp_sk(sk); |
| 271 | struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); |
| 272 | int tcp_header_size = tp->tcp_header_len; |
| 273 | struct tcphdr *th; |
| 274 | int sysctl_flags; |
| 275 | int err; |
| 276 | |
| 277 | BUG_ON(!tcp_skb_pcount(skb)); |
| 278 | |
| 279 | #define SYSCTL_FLAG_TSTAMPS 0x1 |
| 280 | #define SYSCTL_FLAG_WSCALE 0x2 |
| 281 | #define SYSCTL_FLAG_SACK 0x4 |
| 282 | |
| 283 | sysctl_flags = 0; |
| 284 | if (tcb->flags & TCPCB_FLAG_SYN) { |
| 285 | tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS; |
| 286 | if(sysctl_tcp_timestamps) { |
| 287 | tcp_header_size += TCPOLEN_TSTAMP_ALIGNED; |
| 288 | sysctl_flags |= SYSCTL_FLAG_TSTAMPS; |
| 289 | } |
| 290 | if(sysctl_tcp_window_scaling) { |
| 291 | tcp_header_size += TCPOLEN_WSCALE_ALIGNED; |
| 292 | sysctl_flags |= SYSCTL_FLAG_WSCALE; |
| 293 | } |
| 294 | if(sysctl_tcp_sack) { |
| 295 | sysctl_flags |= SYSCTL_FLAG_SACK; |
| 296 | if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS)) |
| 297 | tcp_header_size += TCPOLEN_SACKPERM_ALIGNED; |
| 298 | } |
| 299 | } else if (tp->rx_opt.eff_sacks) { |
| 300 | /* A SACK is 2 pad bytes, a 2 byte header, plus |
| 301 | * 2 32-bit sequence numbers for each SACK block. |
| 302 | */ |
| 303 | tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED + |
| 304 | (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * If the connection is idle and we are restarting, |
| 309 | * then we don't want to do any Vegas calculations |
| 310 | * until we get fresh RTT samples. So when we |
| 311 | * restart, we reset our Vegas state to a clean |
| 312 | * slate. After we get acks for this flight of |
| 313 | * packets, _then_ we can make Vegas calculations |
| 314 | * again. |
| 315 | */ |
| 316 | if (tcp_is_vegas(tp) && tcp_packets_in_flight(tp) == 0) |
| 317 | tcp_vegas_enable(tp); |
| 318 | |
| 319 | th = (struct tcphdr *) skb_push(skb, tcp_header_size); |
| 320 | skb->h.th = th; |
| 321 | skb_set_owner_w(skb, sk); |
| 322 | |
| 323 | /* Build TCP header and checksum it. */ |
| 324 | th->source = inet->sport; |
| 325 | th->dest = inet->dport; |
| 326 | th->seq = htonl(tcb->seq); |
| 327 | th->ack_seq = htonl(tp->rcv_nxt); |
| 328 | *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags); |
| 329 | if (tcb->flags & TCPCB_FLAG_SYN) { |
| 330 | /* RFC1323: The window in SYN & SYN/ACK segments |
| 331 | * is never scaled. |
| 332 | */ |
| 333 | th->window = htons(tp->rcv_wnd); |
| 334 | } else { |
| 335 | th->window = htons(tcp_select_window(sk)); |
| 336 | } |
| 337 | th->check = 0; |
| 338 | th->urg_ptr = 0; |
| 339 | |
| 340 | if (tp->urg_mode && |
| 341 | between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) { |
| 342 | th->urg_ptr = htons(tp->snd_up-tcb->seq); |
| 343 | th->urg = 1; |
| 344 | } |
| 345 | |
| 346 | if (tcb->flags & TCPCB_FLAG_SYN) { |
| 347 | tcp_syn_build_options((__u32 *)(th + 1), |
| 348 | tcp_advertise_mss(sk), |
| 349 | (sysctl_flags & SYSCTL_FLAG_TSTAMPS), |
| 350 | (sysctl_flags & SYSCTL_FLAG_SACK), |
| 351 | (sysctl_flags & SYSCTL_FLAG_WSCALE), |
| 352 | tp->rx_opt.rcv_wscale, |
| 353 | tcb->when, |
| 354 | tp->rx_opt.ts_recent); |
| 355 | } else { |
| 356 | tcp_build_and_update_options((__u32 *)(th + 1), |
| 357 | tp, tcb->when); |
| 358 | |
| 359 | TCP_ECN_send(sk, tp, skb, tcp_header_size); |
| 360 | } |
| 361 | tp->af_specific->send_check(sk, th, skb->len, skb); |
| 362 | |
| 363 | if (tcb->flags & TCPCB_FLAG_ACK) |
| 364 | tcp_event_ack_sent(sk); |
| 365 | |
| 366 | if (skb->len != tcp_header_size) |
| 367 | tcp_event_data_sent(tp, skb, sk); |
| 368 | |
| 369 | TCP_INC_STATS(TCP_MIB_OUTSEGS); |
| 370 | |
| 371 | err = tp->af_specific->queue_xmit(skb, 0); |
| 372 | if (err <= 0) |
| 373 | return err; |
| 374 | |
| 375 | tcp_enter_cwr(tp); |
| 376 | |
| 377 | /* NET_XMIT_CN is special. It does not guarantee, |
| 378 | * that this packet is lost. It tells that device |
| 379 | * is about to start to drop packets or already |
| 380 | * drops some packets of the same priority and |
| 381 | * invokes us to send less aggressively. |
| 382 | */ |
| 383 | return err == NET_XMIT_CN ? 0 : err; |
| 384 | } |
| 385 | return -ENOBUFS; |
| 386 | #undef SYSCTL_FLAG_TSTAMPS |
| 387 | #undef SYSCTL_FLAG_WSCALE |
| 388 | #undef SYSCTL_FLAG_SACK |
| 389 | } |
| 390 | |
| 391 | |
| 392 | /* This routine just queue's the buffer |
| 393 | * |
| 394 | * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, |
| 395 | * otherwise socket can stall. |
| 396 | */ |
| 397 | static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) |
| 398 | { |
| 399 | struct tcp_sock *tp = tcp_sk(sk); |
| 400 | |
| 401 | /* Advance write_seq and place onto the write_queue. */ |
| 402 | tp->write_seq = TCP_SKB_CB(skb)->end_seq; |
| 403 | skb_header_release(skb); |
| 404 | __skb_queue_tail(&sk->sk_write_queue, skb); |
| 405 | sk_charge_skb(sk, skb); |
| 406 | |
| 407 | /* Queue it, remembering where we must start sending. */ |
| 408 | if (sk->sk_send_head == NULL) |
| 409 | sk->sk_send_head = skb; |
| 410 | } |
| 411 | |
| 412 | static inline void tcp_tso_set_push(struct sk_buff *skb) |
| 413 | { |
| 414 | /* Force push to be on for any TSO frames to workaround |
| 415 | * problems with busted implementations like Mac OS-X that |
| 416 | * hold off socket receive wakeups until push is seen. |
| 417 | */ |
| 418 | if (tcp_skb_pcount(skb) > 1) |
| 419 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; |
| 420 | } |
| 421 | |
| 422 | /* Send _single_ skb sitting at the send head. This function requires |
| 423 | * true push pending frames to setup probe timer etc. |
| 424 | */ |
| 425 | void tcp_push_one(struct sock *sk, unsigned cur_mss) |
| 426 | { |
| 427 | struct tcp_sock *tp = tcp_sk(sk); |
| 428 | struct sk_buff *skb = sk->sk_send_head; |
| 429 | |
| 430 | if (tcp_snd_test(tp, skb, cur_mss, TCP_NAGLE_PUSH)) { |
| 431 | /* Send it out now. */ |
| 432 | TCP_SKB_CB(skb)->when = tcp_time_stamp; |
| 433 | tcp_tso_set_push(skb); |
| 434 | if (!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation))) { |
| 435 | sk->sk_send_head = NULL; |
| 436 | tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; |
| 437 | tcp_packets_out_inc(sk, tp, skb); |
| 438 | return; |
| 439 | } |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_std) |
| 444 | { |
| 445 | if (skb->len <= mss_std) { |
| 446 | /* Avoid the costly divide in the normal |
| 447 | * non-TSO case. |
| 448 | */ |
| 449 | skb_shinfo(skb)->tso_segs = 1; |
| 450 | skb_shinfo(skb)->tso_size = 0; |
| 451 | } else { |
| 452 | unsigned int factor; |
| 453 | |
| 454 | factor = skb->len + (mss_std - 1); |
| 455 | factor /= mss_std; |
| 456 | skb_shinfo(skb)->tso_segs = factor; |
| 457 | skb_shinfo(skb)->tso_size = mss_std; |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | /* Function to create two new TCP segments. Shrinks the given segment |
| 462 | * to the specified size and appends a new segment with the rest of the |
| 463 | * packet to the list. This won't be called frequently, I hope. |
| 464 | * Remember, these are still headerless SKBs at this point. |
| 465 | */ |
| 466 | static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len) |
| 467 | { |
| 468 | struct tcp_sock *tp = tcp_sk(sk); |
| 469 | struct sk_buff *buff; |
| 470 | int nsize; |
| 471 | u16 flags; |
| 472 | |
| 473 | nsize = skb_headlen(skb) - len; |
| 474 | if (nsize < 0) |
| 475 | nsize = 0; |
| 476 | |
| 477 | if (skb_cloned(skb) && |
| 478 | skb_is_nonlinear(skb) && |
| 479 | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) |
| 480 | return -ENOMEM; |
| 481 | |
| 482 | /* Get a new skb... force flag on. */ |
| 483 | buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); |
| 484 | if (buff == NULL) |
| 485 | return -ENOMEM; /* We'll just try again later. */ |
| 486 | sk_charge_skb(sk, buff); |
| 487 | |
| 488 | /* Correct the sequence numbers. */ |
| 489 | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; |
| 490 | TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; |
| 491 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; |
| 492 | |
| 493 | /* PSH and FIN should only be set in the second packet. */ |
| 494 | flags = TCP_SKB_CB(skb)->flags; |
| 495 | TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); |
| 496 | TCP_SKB_CB(buff)->flags = flags; |
| 497 | TCP_SKB_CB(buff)->sacked = |
| 498 | (TCP_SKB_CB(skb)->sacked & |
| 499 | (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL)); |
| 500 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL; |
| 501 | |
| 502 | if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) { |
| 503 | /* Copy and checksum data tail into the new buffer. */ |
| 504 | buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize), |
| 505 | nsize, 0); |
| 506 | |
| 507 | skb_trim(skb, len); |
| 508 | |
| 509 | skb->csum = csum_block_sub(skb->csum, buff->csum, len); |
| 510 | } else { |
| 511 | skb->ip_summed = CHECKSUM_HW; |
| 512 | skb_split(skb, buff, len); |
| 513 | } |
| 514 | |
| 515 | buff->ip_summed = skb->ip_summed; |
| 516 | |
| 517 | /* Looks stupid, but our code really uses when of |
| 518 | * skbs, which it never sent before. --ANK |
| 519 | */ |
| 520 | TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; |
| 521 | |
| 522 | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { |
| 523 | tp->lost_out -= tcp_skb_pcount(skb); |
| 524 | tp->left_out -= tcp_skb_pcount(skb); |
| 525 | } |
| 526 | |
| 527 | /* Fix up tso_factor for both original and new SKB. */ |
| 528 | tcp_set_skb_tso_segs(skb, tp->mss_cache_std); |
| 529 | tcp_set_skb_tso_segs(buff, tp->mss_cache_std); |
| 530 | |
| 531 | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { |
| 532 | tp->lost_out += tcp_skb_pcount(skb); |
| 533 | tp->left_out += tcp_skb_pcount(skb); |
| 534 | } |
| 535 | |
| 536 | if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) { |
| 537 | tp->lost_out += tcp_skb_pcount(buff); |
| 538 | tp->left_out += tcp_skb_pcount(buff); |
| 539 | } |
| 540 | |
| 541 | /* Link BUFF into the send queue. */ |
| 542 | __skb_append(skb, buff); |
| 543 | |
| 544 | return 0; |
| 545 | } |
| 546 | |
| 547 | /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c |
| 548 | * eventually). The difference is that pulled data not copied, but |
| 549 | * immediately discarded. |
| 550 | */ |
| 551 | static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len) |
| 552 | { |
| 553 | int i, k, eat; |
| 554 | |
| 555 | eat = len; |
| 556 | k = 0; |
| 557 | for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { |
| 558 | if (skb_shinfo(skb)->frags[i].size <= eat) { |
| 559 | put_page(skb_shinfo(skb)->frags[i].page); |
| 560 | eat -= skb_shinfo(skb)->frags[i].size; |
| 561 | } else { |
| 562 | skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; |
| 563 | if (eat) { |
| 564 | skb_shinfo(skb)->frags[k].page_offset += eat; |
| 565 | skb_shinfo(skb)->frags[k].size -= eat; |
| 566 | eat = 0; |
| 567 | } |
| 568 | k++; |
| 569 | } |
| 570 | } |
| 571 | skb_shinfo(skb)->nr_frags = k; |
| 572 | |
| 573 | skb->tail = skb->data; |
| 574 | skb->data_len -= len; |
| 575 | skb->len = skb->data_len; |
| 576 | return skb->tail; |
| 577 | } |
| 578 | |
| 579 | int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) |
| 580 | { |
| 581 | if (skb_cloned(skb) && |
| 582 | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) |
| 583 | return -ENOMEM; |
| 584 | |
| 585 | if (len <= skb_headlen(skb)) { |
| 586 | __skb_pull(skb, len); |
| 587 | } else { |
| 588 | if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL) |
| 589 | return -ENOMEM; |
| 590 | } |
| 591 | |
| 592 | TCP_SKB_CB(skb)->seq += len; |
| 593 | skb->ip_summed = CHECKSUM_HW; |
| 594 | |
| 595 | skb->truesize -= len; |
| 596 | sk->sk_wmem_queued -= len; |
| 597 | sk->sk_forward_alloc += len; |
| 598 | sock_set_flag(sk, SOCK_QUEUE_SHRUNK); |
| 599 | |
| 600 | /* Any change of skb->len requires recalculation of tso |
| 601 | * factor and mss. |
| 602 | */ |
| 603 | if (tcp_skb_pcount(skb) > 1) |
| 604 | tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); |
| 605 | |
| 606 | return 0; |
| 607 | } |
| 608 | |
| 609 | /* This function synchronize snd mss to current pmtu/exthdr set. |
| 610 | |
| 611 | tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts |
| 612 | for TCP options, but includes only bare TCP header. |
| 613 | |
| 614 | tp->rx_opt.mss_clamp is mss negotiated at connection setup. |
| 615 | It is minumum of user_mss and mss received with SYN. |
| 616 | It also does not include TCP options. |
| 617 | |
| 618 | tp->pmtu_cookie is last pmtu, seen by this function. |
| 619 | |
| 620 | tp->mss_cache is current effective sending mss, including |
| 621 | all tcp options except for SACKs. It is evaluated, |
| 622 | taking into account current pmtu, but never exceeds |
| 623 | tp->rx_opt.mss_clamp. |
| 624 | |
| 625 | NOTE1. rfc1122 clearly states that advertised MSS |
| 626 | DOES NOT include either tcp or ip options. |
| 627 | |
| 628 | NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside |
| 629 | this function. --ANK (980731) |
| 630 | */ |
| 631 | |
| 632 | unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) |
| 633 | { |
| 634 | struct tcp_sock *tp = tcp_sk(sk); |
| 635 | int mss_now; |
| 636 | |
| 637 | /* Calculate base mss without TCP options: |
| 638 | It is MMS_S - sizeof(tcphdr) of rfc1122 |
| 639 | */ |
| 640 | mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr); |
| 641 | |
| 642 | /* Clamp it (mss_clamp does not include tcp options) */ |
| 643 | if (mss_now > tp->rx_opt.mss_clamp) |
| 644 | mss_now = tp->rx_opt.mss_clamp; |
| 645 | |
| 646 | /* Now subtract optional transport overhead */ |
| 647 | mss_now -= tp->ext_header_len; |
| 648 | |
| 649 | /* Then reserve room for full set of TCP options and 8 bytes of data */ |
| 650 | if (mss_now < 48) |
| 651 | mss_now = 48; |
| 652 | |
| 653 | /* Now subtract TCP options size, not including SACKs */ |
| 654 | mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); |
| 655 | |
| 656 | /* Bound mss with half of window */ |
| 657 | if (tp->max_window && mss_now > (tp->max_window>>1)) |
| 658 | mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len); |
| 659 | |
| 660 | /* And store cached results */ |
| 661 | tp->pmtu_cookie = pmtu; |
| 662 | tp->mss_cache = tp->mss_cache_std = mss_now; |
| 663 | |
| 664 | return mss_now; |
| 665 | } |
| 666 | |
| 667 | /* Compute the current effective MSS, taking SACKs and IP options, |
| 668 | * and even PMTU discovery events into account. |
| 669 | * |
| 670 | * LARGESEND note: !urg_mode is overkill, only frames up to snd_up |
| 671 | * cannot be large. However, taking into account rare use of URG, this |
| 672 | * is not a big flaw. |
| 673 | */ |
| 674 | |
| 675 | unsigned int tcp_current_mss(struct sock *sk, int large) |
| 676 | { |
| 677 | struct tcp_sock *tp = tcp_sk(sk); |
| 678 | struct dst_entry *dst = __sk_dst_get(sk); |
| 679 | unsigned int do_large, mss_now; |
| 680 | |
| 681 | mss_now = tp->mss_cache_std; |
| 682 | if (dst) { |
| 683 | u32 mtu = dst_mtu(dst); |
| 684 | if (mtu != tp->pmtu_cookie) |
| 685 | mss_now = tcp_sync_mss(sk, mtu); |
| 686 | } |
| 687 | |
| 688 | do_large = (large && |
| 689 | (sk->sk_route_caps & NETIF_F_TSO) && |
| 690 | !tp->urg_mode); |
| 691 | |
| 692 | if (do_large) { |
| 693 | unsigned int large_mss, factor, limit; |
| 694 | |
| 695 | large_mss = 65535 - tp->af_specific->net_header_len - |
| 696 | tp->ext_header_len - tp->tcp_header_len; |
| 697 | |
| 698 | if (tp->max_window && large_mss > (tp->max_window>>1)) |
| 699 | large_mss = max((tp->max_window>>1), |
| 700 | 68U - tp->tcp_header_len); |
| 701 | |
| 702 | factor = large_mss / mss_now; |
| 703 | |
| 704 | /* Always keep large mss multiple of real mss, but |
| 705 | * do not exceed 1/tso_win_divisor of the congestion window |
| 706 | * so we can keep the ACK clock ticking and minimize |
| 707 | * bursting. |
| 708 | */ |
| 709 | limit = tp->snd_cwnd; |
| 710 | if (sysctl_tcp_tso_win_divisor) |
| 711 | limit /= sysctl_tcp_tso_win_divisor; |
| 712 | limit = max(1U, limit); |
| 713 | if (factor > limit) |
| 714 | factor = limit; |
| 715 | |
| 716 | tp->mss_cache = mss_now * factor; |
| 717 | |
| 718 | mss_now = tp->mss_cache; |
| 719 | } |
| 720 | |
| 721 | if (tp->rx_opt.eff_sacks) |
| 722 | mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + |
| 723 | (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); |
| 724 | return mss_now; |
| 725 | } |
| 726 | |
| 727 | /* This routine writes packets to the network. It advances the |
| 728 | * send_head. This happens as incoming acks open up the remote |
| 729 | * window for us. |
| 730 | * |
| 731 | * Returns 1, if no segments are in flight and we have queued segments, but |
| 732 | * cannot send anything now because of SWS or another problem. |
| 733 | */ |
| 734 | int tcp_write_xmit(struct sock *sk, int nonagle) |
| 735 | { |
| 736 | struct tcp_sock *tp = tcp_sk(sk); |
| 737 | unsigned int mss_now; |
| 738 | |
| 739 | /* If we are closed, the bytes will have to remain here. |
| 740 | * In time closedown will finish, we empty the write queue and all |
| 741 | * will be happy. |
| 742 | */ |
| 743 | if (sk->sk_state != TCP_CLOSE) { |
| 744 | struct sk_buff *skb; |
| 745 | int sent_pkts = 0; |
| 746 | |
| 747 | /* Account for SACKS, we may need to fragment due to this. |
| 748 | * It is just like the real MSS changing on us midstream. |
| 749 | * We also handle things correctly when the user adds some |
| 750 | * IP options mid-stream. Silly to do, but cover it. |
| 751 | */ |
| 752 | mss_now = tcp_current_mss(sk, 1); |
| 753 | |
| 754 | while ((skb = sk->sk_send_head) && |
| 755 | tcp_snd_test(tp, skb, mss_now, |
| 756 | tcp_skb_is_last(sk, skb) ? nonagle : |
| 757 | TCP_NAGLE_PUSH)) { |
| 758 | if (skb->len > mss_now) { |
| 759 | if (tcp_fragment(sk, skb, mss_now)) |
| 760 | break; |
| 761 | } |
| 762 | |
| 763 | TCP_SKB_CB(skb)->when = tcp_time_stamp; |
| 764 | tcp_tso_set_push(skb); |
| 765 | if (tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC))) |
| 766 | break; |
| 767 | |
| 768 | /* Advance the send_head. This one is sent out. |
| 769 | * This call will increment packets_out. |
| 770 | */ |
| 771 | update_send_head(sk, tp, skb); |
| 772 | |
| 773 | tcp_minshall_update(tp, mss_now, skb); |
| 774 | sent_pkts = 1; |
| 775 | } |
| 776 | |
| 777 | if (sent_pkts) { |
| 778 | tcp_cwnd_validate(sk, tp); |
| 779 | return 0; |
| 780 | } |
| 781 | |
| 782 | return !tp->packets_out && sk->sk_send_head; |
| 783 | } |
| 784 | return 0; |
| 785 | } |
| 786 | |
| 787 | /* This function returns the amount that we can raise the |
| 788 | * usable window based on the following constraints |
| 789 | * |
| 790 | * 1. The window can never be shrunk once it is offered (RFC 793) |
| 791 | * 2. We limit memory per socket |
| 792 | * |
| 793 | * RFC 1122: |
| 794 | * "the suggested [SWS] avoidance algorithm for the receiver is to keep |
| 795 | * RECV.NEXT + RCV.WIN fixed until: |
| 796 | * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" |
| 797 | * |
| 798 | * i.e. don't raise the right edge of the window until you can raise |
| 799 | * it at least MSS bytes. |
| 800 | * |
| 801 | * Unfortunately, the recommended algorithm breaks header prediction, |
| 802 | * since header prediction assumes th->window stays fixed. |
| 803 | * |
| 804 | * Strictly speaking, keeping th->window fixed violates the receiver |
| 805 | * side SWS prevention criteria. The problem is that under this rule |
| 806 | * a stream of single byte packets will cause the right side of the |
| 807 | * window to always advance by a single byte. |
| 808 | * |
| 809 | * Of course, if the sender implements sender side SWS prevention |
| 810 | * then this will not be a problem. |
| 811 | * |
| 812 | * BSD seems to make the following compromise: |
| 813 | * |
| 814 | * If the free space is less than the 1/4 of the maximum |
| 815 | * space available and the free space is less than 1/2 mss, |
| 816 | * then set the window to 0. |
| 817 | * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] |
| 818 | * Otherwise, just prevent the window from shrinking |
| 819 | * and from being larger than the largest representable value. |
| 820 | * |
| 821 | * This prevents incremental opening of the window in the regime |
| 822 | * where TCP is limited by the speed of the reader side taking |
| 823 | * data out of the TCP receive queue. It does nothing about |
| 824 | * those cases where the window is constrained on the sender side |
| 825 | * because the pipeline is full. |
| 826 | * |
| 827 | * BSD also seems to "accidentally" limit itself to windows that are a |
| 828 | * multiple of MSS, at least until the free space gets quite small. |
| 829 | * This would appear to be a side effect of the mbuf implementation. |
| 830 | * Combining these two algorithms results in the observed behavior |
| 831 | * of having a fixed window size at almost all times. |
| 832 | * |
| 833 | * Below we obtain similar behavior by forcing the offered window to |
| 834 | * a multiple of the mss when it is feasible to do so. |
| 835 | * |
| 836 | * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. |
| 837 | * Regular options like TIMESTAMP are taken into account. |
| 838 | */ |
| 839 | u32 __tcp_select_window(struct sock *sk) |
| 840 | { |
| 841 | struct tcp_sock *tp = tcp_sk(sk); |
| 842 | /* MSS for the peer's data. Previous verions used mss_clamp |
| 843 | * here. I don't know if the value based on our guesses |
| 844 | * of peer's MSS is better for the performance. It's more correct |
| 845 | * but may be worse for the performance because of rcv_mss |
| 846 | * fluctuations. --SAW 1998/11/1 |
| 847 | */ |
| 848 | int mss = tp->ack.rcv_mss; |
| 849 | int free_space = tcp_space(sk); |
| 850 | int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); |
| 851 | int window; |
| 852 | |
| 853 | if (mss > full_space) |
| 854 | mss = full_space; |
| 855 | |
| 856 | if (free_space < full_space/2) { |
| 857 | tp->ack.quick = 0; |
| 858 | |
| 859 | if (tcp_memory_pressure) |
| 860 | tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss); |
| 861 | |
| 862 | if (free_space < mss) |
| 863 | return 0; |
| 864 | } |
| 865 | |
| 866 | if (free_space > tp->rcv_ssthresh) |
| 867 | free_space = tp->rcv_ssthresh; |
| 868 | |
| 869 | /* Don't do rounding if we are using window scaling, since the |
| 870 | * scaled window will not line up with the MSS boundary anyway. |
| 871 | */ |
| 872 | window = tp->rcv_wnd; |
| 873 | if (tp->rx_opt.rcv_wscale) { |
| 874 | window = free_space; |
| 875 | |
| 876 | /* Advertise enough space so that it won't get scaled away. |
| 877 | * Import case: prevent zero window announcement if |
| 878 | * 1<<rcv_wscale > mss. |
| 879 | */ |
| 880 | if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) |
| 881 | window = (((window >> tp->rx_opt.rcv_wscale) + 1) |
| 882 | << tp->rx_opt.rcv_wscale); |
| 883 | } else { |
| 884 | /* Get the largest window that is a nice multiple of mss. |
| 885 | * Window clamp already applied above. |
| 886 | * If our current window offering is within 1 mss of the |
| 887 | * free space we just keep it. This prevents the divide |
| 888 | * and multiply from happening most of the time. |
| 889 | * We also don't do any window rounding when the free space |
| 890 | * is too small. |
| 891 | */ |
| 892 | if (window <= free_space - mss || window > free_space) |
| 893 | window = (free_space/mss)*mss; |
| 894 | } |
| 895 | |
| 896 | return window; |
| 897 | } |
| 898 | |
| 899 | /* Attempt to collapse two adjacent SKB's during retransmission. */ |
| 900 | static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now) |
| 901 | { |
| 902 | struct tcp_sock *tp = tcp_sk(sk); |
| 903 | struct sk_buff *next_skb = skb->next; |
| 904 | |
| 905 | /* The first test we must make is that neither of these two |
| 906 | * SKB's are still referenced by someone else. |
| 907 | */ |
| 908 | if (!skb_cloned(skb) && !skb_cloned(next_skb)) { |
| 909 | int skb_size = skb->len, next_skb_size = next_skb->len; |
| 910 | u16 flags = TCP_SKB_CB(skb)->flags; |
| 911 | |
| 912 | /* Also punt if next skb has been SACK'd. */ |
| 913 | if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) |
| 914 | return; |
| 915 | |
| 916 | /* Next skb is out of window. */ |
| 917 | if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd)) |
| 918 | return; |
| 919 | |
| 920 | /* Punt if not enough space exists in the first SKB for |
| 921 | * the data in the second, or the total combined payload |
| 922 | * would exceed the MSS. |
| 923 | */ |
| 924 | if ((next_skb_size > skb_tailroom(skb)) || |
| 925 | ((skb_size + next_skb_size) > mss_now)) |
| 926 | return; |
| 927 | |
| 928 | BUG_ON(tcp_skb_pcount(skb) != 1 || |
| 929 | tcp_skb_pcount(next_skb) != 1); |
| 930 | |
| 931 | /* Ok. We will be able to collapse the packet. */ |
| 932 | __skb_unlink(next_skb, next_skb->list); |
| 933 | |
| 934 | memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size); |
| 935 | |
| 936 | if (next_skb->ip_summed == CHECKSUM_HW) |
| 937 | skb->ip_summed = CHECKSUM_HW; |
| 938 | |
| 939 | if (skb->ip_summed != CHECKSUM_HW) |
| 940 | skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); |
| 941 | |
| 942 | /* Update sequence range on original skb. */ |
| 943 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; |
| 944 | |
| 945 | /* Merge over control information. */ |
| 946 | flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ |
| 947 | TCP_SKB_CB(skb)->flags = flags; |
| 948 | |
| 949 | /* All done, get rid of second SKB and account for it so |
| 950 | * packet counting does not break. |
| 951 | */ |
| 952 | TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL); |
| 953 | if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS) |
| 954 | tp->retrans_out -= tcp_skb_pcount(next_skb); |
| 955 | if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) { |
| 956 | tp->lost_out -= tcp_skb_pcount(next_skb); |
| 957 | tp->left_out -= tcp_skb_pcount(next_skb); |
| 958 | } |
| 959 | /* Reno case is special. Sigh... */ |
| 960 | if (!tp->rx_opt.sack_ok && tp->sacked_out) { |
| 961 | tcp_dec_pcount_approx(&tp->sacked_out, next_skb); |
| 962 | tp->left_out -= tcp_skb_pcount(next_skb); |
| 963 | } |
| 964 | |
| 965 | /* Not quite right: it can be > snd.fack, but |
| 966 | * it is better to underestimate fackets. |
| 967 | */ |
| 968 | tcp_dec_pcount_approx(&tp->fackets_out, next_skb); |
| 969 | tcp_packets_out_dec(tp, next_skb); |
| 970 | sk_stream_free_skb(sk, next_skb); |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | /* Do a simple retransmit without using the backoff mechanisms in |
| 975 | * tcp_timer. This is used for path mtu discovery. |
| 976 | * The socket is already locked here. |
| 977 | */ |
| 978 | void tcp_simple_retransmit(struct sock *sk) |
| 979 | { |
| 980 | struct tcp_sock *tp = tcp_sk(sk); |
| 981 | struct sk_buff *skb; |
| 982 | unsigned int mss = tcp_current_mss(sk, 0); |
| 983 | int lost = 0; |
| 984 | |
| 985 | sk_stream_for_retrans_queue(skb, sk) { |
| 986 | if (skb->len > mss && |
| 987 | !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { |
| 988 | if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { |
| 989 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; |
| 990 | tp->retrans_out -= tcp_skb_pcount(skb); |
| 991 | } |
| 992 | if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) { |
| 993 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; |
| 994 | tp->lost_out += tcp_skb_pcount(skb); |
| 995 | lost = 1; |
| 996 | } |
| 997 | } |
| 998 | } |
| 999 | |
| 1000 | if (!lost) |
| 1001 | return; |
| 1002 | |
| 1003 | tcp_sync_left_out(tp); |
| 1004 | |
| 1005 | /* Don't muck with the congestion window here. |
| 1006 | * Reason is that we do not increase amount of _data_ |
| 1007 | * in network, but units changed and effective |
| 1008 | * cwnd/ssthresh really reduced now. |
| 1009 | */ |
| 1010 | if (tp->ca_state != TCP_CA_Loss) { |
| 1011 | tp->high_seq = tp->snd_nxt; |
| 1012 | tp->snd_ssthresh = tcp_current_ssthresh(tp); |
| 1013 | tp->prior_ssthresh = 0; |
| 1014 | tp->undo_marker = 0; |
| 1015 | tcp_set_ca_state(tp, TCP_CA_Loss); |
| 1016 | } |
| 1017 | tcp_xmit_retransmit_queue(sk); |
| 1018 | } |
| 1019 | |
| 1020 | /* This retransmits one SKB. Policy decisions and retransmit queue |
| 1021 | * state updates are done by the caller. Returns non-zero if an |
| 1022 | * error occurred which prevented the send. |
| 1023 | */ |
| 1024 | int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) |
| 1025 | { |
| 1026 | struct tcp_sock *tp = tcp_sk(sk); |
| 1027 | unsigned int cur_mss = tcp_current_mss(sk, 0); |
| 1028 | int err; |
| 1029 | |
| 1030 | /* Do not sent more than we queued. 1/4 is reserved for possible |
| 1031 | * copying overhead: frgagmentation, tunneling, mangling etc. |
| 1032 | */ |
| 1033 | if (atomic_read(&sk->sk_wmem_alloc) > |
| 1034 | min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) |
| 1035 | return -EAGAIN; |
| 1036 | |
| 1037 | if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { |
| 1038 | if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) |
| 1039 | BUG(); |
| 1040 | |
| 1041 | if (sk->sk_route_caps & NETIF_F_TSO) { |
| 1042 | sk->sk_route_caps &= ~NETIF_F_TSO; |
| 1043 | sock_set_flag(sk, SOCK_NO_LARGESEND); |
| 1044 | tp->mss_cache = tp->mss_cache_std; |
| 1045 | } |
| 1046 | |
| 1047 | if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) |
| 1048 | return -ENOMEM; |
| 1049 | } |
| 1050 | |
| 1051 | /* If receiver has shrunk his window, and skb is out of |
| 1052 | * new window, do not retransmit it. The exception is the |
| 1053 | * case, when window is shrunk to zero. In this case |
| 1054 | * our retransmit serves as a zero window probe. |
| 1055 | */ |
| 1056 | if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd) |
| 1057 | && TCP_SKB_CB(skb)->seq != tp->snd_una) |
| 1058 | return -EAGAIN; |
| 1059 | |
| 1060 | if (skb->len > cur_mss) { |
| 1061 | int old_factor = tcp_skb_pcount(skb); |
| 1062 | int new_factor; |
| 1063 | |
| 1064 | if (tcp_fragment(sk, skb, cur_mss)) |
| 1065 | return -ENOMEM; /* We'll try again later. */ |
| 1066 | |
| 1067 | /* New SKB created, account for it. */ |
| 1068 | new_factor = tcp_skb_pcount(skb); |
| 1069 | tp->packets_out -= old_factor - new_factor; |
| 1070 | tp->packets_out += tcp_skb_pcount(skb->next); |
| 1071 | } |
| 1072 | |
| 1073 | /* Collapse two adjacent packets if worthwhile and we can. */ |
| 1074 | if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && |
| 1075 | (skb->len < (cur_mss >> 1)) && |
| 1076 | (skb->next != sk->sk_send_head) && |
| 1077 | (skb->next != (struct sk_buff *)&sk->sk_write_queue) && |
| 1078 | (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) && |
| 1079 | (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) && |
| 1080 | (sysctl_tcp_retrans_collapse != 0)) |
| 1081 | tcp_retrans_try_collapse(sk, skb, cur_mss); |
| 1082 | |
| 1083 | if(tp->af_specific->rebuild_header(sk)) |
| 1084 | return -EHOSTUNREACH; /* Routing failure or similar. */ |
| 1085 | |
| 1086 | /* Some Solaris stacks overoptimize and ignore the FIN on a |
| 1087 | * retransmit when old data is attached. So strip it off |
| 1088 | * since it is cheap to do so and saves bytes on the network. |
| 1089 | */ |
| 1090 | if(skb->len > 0 && |
| 1091 | (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && |
| 1092 | tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { |
| 1093 | if (!pskb_trim(skb, 0)) { |
| 1094 | TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1; |
| 1095 | skb_shinfo(skb)->tso_segs = 1; |
| 1096 | skb_shinfo(skb)->tso_size = 0; |
| 1097 | skb->ip_summed = CHECKSUM_NONE; |
| 1098 | skb->csum = 0; |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | /* Make a copy, if the first transmission SKB clone we made |
| 1103 | * is still in somebody's hands, else make a clone. |
| 1104 | */ |
| 1105 | TCP_SKB_CB(skb)->when = tcp_time_stamp; |
| 1106 | tcp_tso_set_push(skb); |
| 1107 | |
| 1108 | err = tcp_transmit_skb(sk, (skb_cloned(skb) ? |
| 1109 | pskb_copy(skb, GFP_ATOMIC): |
| 1110 | skb_clone(skb, GFP_ATOMIC))); |
| 1111 | |
| 1112 | if (err == 0) { |
| 1113 | /* Update global TCP statistics. */ |
| 1114 | TCP_INC_STATS(TCP_MIB_RETRANSSEGS); |
| 1115 | |
| 1116 | tp->total_retrans++; |
| 1117 | |
| 1118 | #if FASTRETRANS_DEBUG > 0 |
| 1119 | if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { |
| 1120 | if (net_ratelimit()) |
| 1121 | printk(KERN_DEBUG "retrans_out leaked.\n"); |
| 1122 | } |
| 1123 | #endif |
| 1124 | TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; |
| 1125 | tp->retrans_out += tcp_skb_pcount(skb); |
| 1126 | |
| 1127 | /* Save stamp of the first retransmit. */ |
| 1128 | if (!tp->retrans_stamp) |
| 1129 | tp->retrans_stamp = TCP_SKB_CB(skb)->when; |
| 1130 | |
| 1131 | tp->undo_retrans++; |
| 1132 | |
| 1133 | /* snd_nxt is stored to detect loss of retransmitted segment, |
| 1134 | * see tcp_input.c tcp_sacktag_write_queue(). |
| 1135 | */ |
| 1136 | TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; |
| 1137 | } |
| 1138 | return err; |
| 1139 | } |
| 1140 | |
| 1141 | /* This gets called after a retransmit timeout, and the initially |
| 1142 | * retransmitted data is acknowledged. It tries to continue |
| 1143 | * resending the rest of the retransmit queue, until either |
| 1144 | * we've sent it all or the congestion window limit is reached. |
| 1145 | * If doing SACK, the first ACK which comes back for a timeout |
| 1146 | * based retransmit packet might feed us FACK information again. |
| 1147 | * If so, we use it to avoid unnecessarily retransmissions. |
| 1148 | */ |
| 1149 | void tcp_xmit_retransmit_queue(struct sock *sk) |
| 1150 | { |
| 1151 | struct tcp_sock *tp = tcp_sk(sk); |
| 1152 | struct sk_buff *skb; |
| 1153 | int packet_cnt = tp->lost_out; |
| 1154 | |
| 1155 | /* First pass: retransmit lost packets. */ |
| 1156 | if (packet_cnt) { |
| 1157 | sk_stream_for_retrans_queue(skb, sk) { |
| 1158 | __u8 sacked = TCP_SKB_CB(skb)->sacked; |
| 1159 | |
| 1160 | /* Assume this retransmit will generate |
| 1161 | * only one packet for congestion window |
| 1162 | * calculation purposes. This works because |
| 1163 | * tcp_retransmit_skb() will chop up the |
| 1164 | * packet to be MSS sized and all the |
| 1165 | * packet counting works out. |
| 1166 | */ |
| 1167 | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) |
| 1168 | return; |
| 1169 | |
| 1170 | if (sacked&TCPCB_LOST) { |
| 1171 | if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { |
| 1172 | if (tcp_retransmit_skb(sk, skb)) |
| 1173 | return; |
| 1174 | if (tp->ca_state != TCP_CA_Loss) |
| 1175 | NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS); |
| 1176 | else |
| 1177 | NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS); |
| 1178 | |
| 1179 | if (skb == |
| 1180 | skb_peek(&sk->sk_write_queue)) |
| 1181 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); |
| 1182 | } |
| 1183 | |
| 1184 | packet_cnt -= tcp_skb_pcount(skb); |
| 1185 | if (packet_cnt <= 0) |
| 1186 | break; |
| 1187 | } |
| 1188 | } |
| 1189 | } |
| 1190 | |
| 1191 | /* OK, demanded retransmission is finished. */ |
| 1192 | |
| 1193 | /* Forward retransmissions are possible only during Recovery. */ |
| 1194 | if (tp->ca_state != TCP_CA_Recovery) |
| 1195 | return; |
| 1196 | |
| 1197 | /* No forward retransmissions in Reno are possible. */ |
| 1198 | if (!tp->rx_opt.sack_ok) |
| 1199 | return; |
| 1200 | |
| 1201 | /* Yeah, we have to make difficult choice between forward transmission |
| 1202 | * and retransmission... Both ways have their merits... |
| 1203 | * |
| 1204 | * For now we do not retransmit anything, while we have some new |
| 1205 | * segments to send. |
| 1206 | */ |
| 1207 | |
| 1208 | if (tcp_may_send_now(sk, tp)) |
| 1209 | return; |
| 1210 | |
| 1211 | packet_cnt = 0; |
| 1212 | |
| 1213 | sk_stream_for_retrans_queue(skb, sk) { |
| 1214 | /* Similar to the retransmit loop above we |
| 1215 | * can pretend that the retransmitted SKB |
| 1216 | * we send out here will be composed of one |
| 1217 | * real MSS sized packet because tcp_retransmit_skb() |
| 1218 | * will fragment it if necessary. |
| 1219 | */ |
| 1220 | if (++packet_cnt > tp->fackets_out) |
| 1221 | break; |
| 1222 | |
| 1223 | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) |
| 1224 | break; |
| 1225 | |
| 1226 | if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) |
| 1227 | continue; |
| 1228 | |
| 1229 | /* Ok, retransmit it. */ |
| 1230 | if (tcp_retransmit_skb(sk, skb)) |
| 1231 | break; |
| 1232 | |
| 1233 | if (skb == skb_peek(&sk->sk_write_queue)) |
| 1234 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); |
| 1235 | |
| 1236 | NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS); |
| 1237 | } |
| 1238 | } |
| 1239 | |
| 1240 | |
| 1241 | /* Send a fin. The caller locks the socket for us. This cannot be |
| 1242 | * allowed to fail queueing a FIN frame under any circumstances. |
| 1243 | */ |
| 1244 | void tcp_send_fin(struct sock *sk) |
| 1245 | { |
| 1246 | struct tcp_sock *tp = tcp_sk(sk); |
| 1247 | struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue); |
| 1248 | int mss_now; |
| 1249 | |
| 1250 | /* Optimization, tack on the FIN if we have a queue of |
| 1251 | * unsent frames. But be careful about outgoing SACKS |
| 1252 | * and IP options. |
| 1253 | */ |
| 1254 | mss_now = tcp_current_mss(sk, 1); |
| 1255 | |
| 1256 | if (sk->sk_send_head != NULL) { |
| 1257 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; |
| 1258 | TCP_SKB_CB(skb)->end_seq++; |
| 1259 | tp->write_seq++; |
| 1260 | } else { |
| 1261 | /* Socket is locked, keep trying until memory is available. */ |
| 1262 | for (;;) { |
| 1263 | skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL); |
| 1264 | if (skb) |
| 1265 | break; |
| 1266 | yield(); |
| 1267 | } |
| 1268 | |
| 1269 | /* Reserve space for headers and prepare control bits. */ |
| 1270 | skb_reserve(skb, MAX_TCP_HEADER); |
| 1271 | skb->csum = 0; |
| 1272 | TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); |
| 1273 | TCP_SKB_CB(skb)->sacked = 0; |
| 1274 | skb_shinfo(skb)->tso_segs = 1; |
| 1275 | skb_shinfo(skb)->tso_size = 0; |
| 1276 | |
| 1277 | /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ |
| 1278 | TCP_SKB_CB(skb)->seq = tp->write_seq; |
| 1279 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; |
| 1280 | tcp_queue_skb(sk, skb); |
| 1281 | } |
| 1282 | __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF); |
| 1283 | } |
| 1284 | |
| 1285 | /* We get here when a process closes a file descriptor (either due to |
| 1286 | * an explicit close() or as a byproduct of exit()'ing) and there |
| 1287 | * was unread data in the receive queue. This behavior is recommended |
| 1288 | * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM |
| 1289 | */ |
| 1290 | void tcp_send_active_reset(struct sock *sk, int priority) |
| 1291 | { |
| 1292 | struct tcp_sock *tp = tcp_sk(sk); |
| 1293 | struct sk_buff *skb; |
| 1294 | |
| 1295 | /* NOTE: No TCP options attached and we never retransmit this. */ |
| 1296 | skb = alloc_skb(MAX_TCP_HEADER, priority); |
| 1297 | if (!skb) { |
| 1298 | NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); |
| 1299 | return; |
| 1300 | } |
| 1301 | |
| 1302 | /* Reserve space for headers and prepare control bits. */ |
| 1303 | skb_reserve(skb, MAX_TCP_HEADER); |
| 1304 | skb->csum = 0; |
| 1305 | TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST); |
| 1306 | TCP_SKB_CB(skb)->sacked = 0; |
| 1307 | skb_shinfo(skb)->tso_segs = 1; |
| 1308 | skb_shinfo(skb)->tso_size = 0; |
| 1309 | |
| 1310 | /* Send it off. */ |
| 1311 | TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp); |
| 1312 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; |
| 1313 | TCP_SKB_CB(skb)->when = tcp_time_stamp; |
| 1314 | if (tcp_transmit_skb(sk, skb)) |
| 1315 | NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); |
| 1316 | } |
| 1317 | |
| 1318 | /* WARNING: This routine must only be called when we have already sent |
| 1319 | * a SYN packet that crossed the incoming SYN that caused this routine |
| 1320 | * to get called. If this assumption fails then the initial rcv_wnd |
| 1321 | * and rcv_wscale values will not be correct. |
| 1322 | */ |
| 1323 | int tcp_send_synack(struct sock *sk) |
| 1324 | { |
| 1325 | struct sk_buff* skb; |
| 1326 | |
| 1327 | skb = skb_peek(&sk->sk_write_queue); |
| 1328 | if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) { |
| 1329 | printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); |
| 1330 | return -EFAULT; |
| 1331 | } |
| 1332 | if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) { |
| 1333 | if (skb_cloned(skb)) { |
| 1334 | struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); |
| 1335 | if (nskb == NULL) |
| 1336 | return -ENOMEM; |
| 1337 | __skb_unlink(skb, &sk->sk_write_queue); |
| 1338 | skb_header_release(nskb); |
| 1339 | __skb_queue_head(&sk->sk_write_queue, nskb); |
| 1340 | sk_stream_free_skb(sk, skb); |
| 1341 | sk_charge_skb(sk, nskb); |
| 1342 | skb = nskb; |
| 1343 | } |
| 1344 | |
| 1345 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; |
| 1346 | TCP_ECN_send_synack(tcp_sk(sk), skb); |
| 1347 | } |
| 1348 | TCP_SKB_CB(skb)->when = tcp_time_stamp; |
| 1349 | return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); |
| 1350 | } |
| 1351 | |
| 1352 | /* |
| 1353 | * Prepare a SYN-ACK. |
| 1354 | */ |
| 1355 | struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst, |
| 1356 | struct open_request *req) |
| 1357 | { |
| 1358 | struct tcp_sock *tp = tcp_sk(sk); |
| 1359 | struct tcphdr *th; |
| 1360 | int tcp_header_size; |
| 1361 | struct sk_buff *skb; |
| 1362 | |
| 1363 | skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); |
| 1364 | if (skb == NULL) |
| 1365 | return NULL; |
| 1366 | |
| 1367 | /* Reserve space for headers. */ |
| 1368 | skb_reserve(skb, MAX_TCP_HEADER); |
| 1369 | |
| 1370 | skb->dst = dst_clone(dst); |
| 1371 | |
| 1372 | tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS + |
| 1373 | (req->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) + |
| 1374 | (req->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) + |
| 1375 | /* SACK_PERM is in the place of NOP NOP of TS */ |
| 1376 | ((req->sack_ok && !req->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0)); |
| 1377 | skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size); |
| 1378 | |
| 1379 | memset(th, 0, sizeof(struct tcphdr)); |
| 1380 | th->syn = 1; |
| 1381 | th->ack = 1; |
| 1382 | if (dst->dev->features&NETIF_F_TSO) |
| 1383 | req->ecn_ok = 0; |
| 1384 | TCP_ECN_make_synack(req, th); |
| 1385 | th->source = inet_sk(sk)->sport; |
| 1386 | th->dest = req->rmt_port; |
| 1387 | TCP_SKB_CB(skb)->seq = req->snt_isn; |
| 1388 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; |
| 1389 | TCP_SKB_CB(skb)->sacked = 0; |
| 1390 | skb_shinfo(skb)->tso_segs = 1; |
| 1391 | skb_shinfo(skb)->tso_size = 0; |
| 1392 | th->seq = htonl(TCP_SKB_CB(skb)->seq); |
| 1393 | th->ack_seq = htonl(req->rcv_isn + 1); |
| 1394 | if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ |
| 1395 | __u8 rcv_wscale; |
| 1396 | /* Set this up on the first call only */ |
| 1397 | req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); |
| 1398 | /* tcp_full_space because it is guaranteed to be the first packet */ |
| 1399 | tcp_select_initial_window(tcp_full_space(sk), |
| 1400 | dst_metric(dst, RTAX_ADVMSS) - (req->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), |
| 1401 | &req->rcv_wnd, |
| 1402 | &req->window_clamp, |
| 1403 | req->wscale_ok, |
| 1404 | &rcv_wscale); |
| 1405 | req->rcv_wscale = rcv_wscale; |
| 1406 | } |
| 1407 | |
| 1408 | /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ |
| 1409 | th->window = htons(req->rcv_wnd); |
| 1410 | |
| 1411 | TCP_SKB_CB(skb)->when = tcp_time_stamp; |
| 1412 | tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), req->tstamp_ok, |
| 1413 | req->sack_ok, req->wscale_ok, req->rcv_wscale, |
| 1414 | TCP_SKB_CB(skb)->when, |
| 1415 | req->ts_recent); |
| 1416 | |
| 1417 | skb->csum = 0; |
| 1418 | th->doff = (tcp_header_size >> 2); |
| 1419 | TCP_INC_STATS(TCP_MIB_OUTSEGS); |
| 1420 | return skb; |
| 1421 | } |
| 1422 | |
| 1423 | /* |
| 1424 | * Do all connect socket setups that can be done AF independent. |
| 1425 | */ |
| 1426 | static inline void tcp_connect_init(struct sock *sk) |
| 1427 | { |
| 1428 | struct dst_entry *dst = __sk_dst_get(sk); |
| 1429 | struct tcp_sock *tp = tcp_sk(sk); |
| 1430 | __u8 rcv_wscale; |
| 1431 | |
| 1432 | /* We'll fix this up when we get a response from the other end. |
| 1433 | * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. |
| 1434 | */ |
| 1435 | tp->tcp_header_len = sizeof(struct tcphdr) + |
| 1436 | (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); |
| 1437 | |
| 1438 | /* If user gave his TCP_MAXSEG, record it to clamp */ |
| 1439 | if (tp->rx_opt.user_mss) |
| 1440 | tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; |
| 1441 | tp->max_window = 0; |
| 1442 | tcp_sync_mss(sk, dst_mtu(dst)); |
| 1443 | |
| 1444 | if (!tp->window_clamp) |
| 1445 | tp->window_clamp = dst_metric(dst, RTAX_WINDOW); |
| 1446 | tp->advmss = dst_metric(dst, RTAX_ADVMSS); |
| 1447 | tcp_initialize_rcv_mss(sk); |
| 1448 | tcp_ca_init(tp); |
| 1449 | |
| 1450 | tcp_select_initial_window(tcp_full_space(sk), |
| 1451 | tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), |
| 1452 | &tp->rcv_wnd, |
| 1453 | &tp->window_clamp, |
| 1454 | sysctl_tcp_window_scaling, |
| 1455 | &rcv_wscale); |
| 1456 | |
| 1457 | tp->rx_opt.rcv_wscale = rcv_wscale; |
| 1458 | tp->rcv_ssthresh = tp->rcv_wnd; |
| 1459 | |
| 1460 | sk->sk_err = 0; |
| 1461 | sock_reset_flag(sk, SOCK_DONE); |
| 1462 | tp->snd_wnd = 0; |
| 1463 | tcp_init_wl(tp, tp->write_seq, 0); |
| 1464 | tp->snd_una = tp->write_seq; |
| 1465 | tp->snd_sml = tp->write_seq; |
| 1466 | tp->rcv_nxt = 0; |
| 1467 | tp->rcv_wup = 0; |
| 1468 | tp->copied_seq = 0; |
| 1469 | |
| 1470 | tp->rto = TCP_TIMEOUT_INIT; |
| 1471 | tp->retransmits = 0; |
| 1472 | tcp_clear_retrans(tp); |
| 1473 | } |
| 1474 | |
| 1475 | /* |
| 1476 | * Build a SYN and send it off. |
| 1477 | */ |
| 1478 | int tcp_connect(struct sock *sk) |
| 1479 | { |
| 1480 | struct tcp_sock *tp = tcp_sk(sk); |
| 1481 | struct sk_buff *buff; |
| 1482 | |
| 1483 | tcp_connect_init(sk); |
| 1484 | |
| 1485 | buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation); |
| 1486 | if (unlikely(buff == NULL)) |
| 1487 | return -ENOBUFS; |
| 1488 | |
| 1489 | /* Reserve space for headers. */ |
| 1490 | skb_reserve(buff, MAX_TCP_HEADER); |
| 1491 | |
| 1492 | TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN; |
| 1493 | TCP_ECN_send_syn(sk, tp, buff); |
| 1494 | TCP_SKB_CB(buff)->sacked = 0; |
| 1495 | skb_shinfo(buff)->tso_segs = 1; |
| 1496 | skb_shinfo(buff)->tso_size = 0; |
| 1497 | buff->csum = 0; |
| 1498 | TCP_SKB_CB(buff)->seq = tp->write_seq++; |
| 1499 | TCP_SKB_CB(buff)->end_seq = tp->write_seq; |
| 1500 | tp->snd_nxt = tp->write_seq; |
| 1501 | tp->pushed_seq = tp->write_seq; |
| 1502 | tcp_ca_init(tp); |
| 1503 | |
| 1504 | /* Send it off. */ |
| 1505 | TCP_SKB_CB(buff)->when = tcp_time_stamp; |
| 1506 | tp->retrans_stamp = TCP_SKB_CB(buff)->when; |
| 1507 | skb_header_release(buff); |
| 1508 | __skb_queue_tail(&sk->sk_write_queue, buff); |
| 1509 | sk_charge_skb(sk, buff); |
| 1510 | tp->packets_out += tcp_skb_pcount(buff); |
| 1511 | tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL)); |
| 1512 | TCP_INC_STATS(TCP_MIB_ACTIVEOPENS); |
| 1513 | |
| 1514 | /* Timer for repeating the SYN until an answer. */ |
| 1515 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); |
| 1516 | return 0; |
| 1517 | } |
| 1518 | |
| 1519 | /* Send out a delayed ack, the caller does the policy checking |
| 1520 | * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() |
| 1521 | * for details. |
| 1522 | */ |
| 1523 | void tcp_send_delayed_ack(struct sock *sk) |
| 1524 | { |
| 1525 | struct tcp_sock *tp = tcp_sk(sk); |
| 1526 | int ato = tp->ack.ato; |
| 1527 | unsigned long timeout; |
| 1528 | |
| 1529 | if (ato > TCP_DELACK_MIN) { |
| 1530 | int max_ato = HZ/2; |
| 1531 | |
| 1532 | if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED)) |
| 1533 | max_ato = TCP_DELACK_MAX; |
| 1534 | |
| 1535 | /* Slow path, intersegment interval is "high". */ |
| 1536 | |
| 1537 | /* If some rtt estimate is known, use it to bound delayed ack. |
| 1538 | * Do not use tp->rto here, use results of rtt measurements |
| 1539 | * directly. |
| 1540 | */ |
| 1541 | if (tp->srtt) { |
| 1542 | int rtt = max(tp->srtt>>3, TCP_DELACK_MIN); |
| 1543 | |
| 1544 | if (rtt < max_ato) |
| 1545 | max_ato = rtt; |
| 1546 | } |
| 1547 | |
| 1548 | ato = min(ato, max_ato); |
| 1549 | } |
| 1550 | |
| 1551 | /* Stay within the limit we were given */ |
| 1552 | timeout = jiffies + ato; |
| 1553 | |
| 1554 | /* Use new timeout only if there wasn't a older one earlier. */ |
| 1555 | if (tp->ack.pending&TCP_ACK_TIMER) { |
| 1556 | /* If delack timer was blocked or is about to expire, |
| 1557 | * send ACK now. |
| 1558 | */ |
| 1559 | if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) { |
| 1560 | tcp_send_ack(sk); |
| 1561 | return; |
| 1562 | } |
| 1563 | |
| 1564 | if (!time_before(timeout, tp->ack.timeout)) |
| 1565 | timeout = tp->ack.timeout; |
| 1566 | } |
| 1567 | tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER; |
| 1568 | tp->ack.timeout = timeout; |
| 1569 | sk_reset_timer(sk, &tp->delack_timer, timeout); |
| 1570 | } |
| 1571 | |
| 1572 | /* This routine sends an ack and also updates the window. */ |
| 1573 | void tcp_send_ack(struct sock *sk) |
| 1574 | { |
| 1575 | /* If we have been reset, we may not send again. */ |
| 1576 | if (sk->sk_state != TCP_CLOSE) { |
| 1577 | struct tcp_sock *tp = tcp_sk(sk); |
| 1578 | struct sk_buff *buff; |
| 1579 | |
| 1580 | /* We are not putting this on the write queue, so |
| 1581 | * tcp_transmit_skb() will set the ownership to this |
| 1582 | * sock. |
| 1583 | */ |
| 1584 | buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); |
| 1585 | if (buff == NULL) { |
| 1586 | tcp_schedule_ack(tp); |
| 1587 | tp->ack.ato = TCP_ATO_MIN; |
| 1588 | tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX); |
| 1589 | return; |
| 1590 | } |
| 1591 | |
| 1592 | /* Reserve space for headers and prepare control bits. */ |
| 1593 | skb_reserve(buff, MAX_TCP_HEADER); |
| 1594 | buff->csum = 0; |
| 1595 | TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK; |
| 1596 | TCP_SKB_CB(buff)->sacked = 0; |
| 1597 | skb_shinfo(buff)->tso_segs = 1; |
| 1598 | skb_shinfo(buff)->tso_size = 0; |
| 1599 | |
| 1600 | /* Send it off, this clears delayed acks for us. */ |
| 1601 | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp); |
| 1602 | TCP_SKB_CB(buff)->when = tcp_time_stamp; |
| 1603 | tcp_transmit_skb(sk, buff); |
| 1604 | } |
| 1605 | } |
| 1606 | |
| 1607 | /* This routine sends a packet with an out of date sequence |
| 1608 | * number. It assumes the other end will try to ack it. |
| 1609 | * |
| 1610 | * Question: what should we make while urgent mode? |
| 1611 | * 4.4BSD forces sending single byte of data. We cannot send |
| 1612 | * out of window data, because we have SND.NXT==SND.MAX... |
| 1613 | * |
| 1614 | * Current solution: to send TWO zero-length segments in urgent mode: |
| 1615 | * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is |
| 1616 | * out-of-date with SND.UNA-1 to probe window. |
| 1617 | */ |
| 1618 | static int tcp_xmit_probe_skb(struct sock *sk, int urgent) |
| 1619 | { |
| 1620 | struct tcp_sock *tp = tcp_sk(sk); |
| 1621 | struct sk_buff *skb; |
| 1622 | |
| 1623 | /* We don't queue it, tcp_transmit_skb() sets ownership. */ |
| 1624 | skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); |
| 1625 | if (skb == NULL) |
| 1626 | return -1; |
| 1627 | |
| 1628 | /* Reserve space for headers and set control bits. */ |
| 1629 | skb_reserve(skb, MAX_TCP_HEADER); |
| 1630 | skb->csum = 0; |
| 1631 | TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK; |
| 1632 | TCP_SKB_CB(skb)->sacked = urgent; |
| 1633 | skb_shinfo(skb)->tso_segs = 1; |
| 1634 | skb_shinfo(skb)->tso_size = 0; |
| 1635 | |
| 1636 | /* Use a previous sequence. This should cause the other |
| 1637 | * end to send an ack. Don't queue or clone SKB, just |
| 1638 | * send it. |
| 1639 | */ |
| 1640 | TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1; |
| 1641 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; |
| 1642 | TCP_SKB_CB(skb)->when = tcp_time_stamp; |
| 1643 | return tcp_transmit_skb(sk, skb); |
| 1644 | } |
| 1645 | |
| 1646 | int tcp_write_wakeup(struct sock *sk) |
| 1647 | { |
| 1648 | if (sk->sk_state != TCP_CLOSE) { |
| 1649 | struct tcp_sock *tp = tcp_sk(sk); |
| 1650 | struct sk_buff *skb; |
| 1651 | |
| 1652 | if ((skb = sk->sk_send_head) != NULL && |
| 1653 | before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) { |
| 1654 | int err; |
| 1655 | unsigned int mss = tcp_current_mss(sk, 0); |
| 1656 | unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq; |
| 1657 | |
| 1658 | if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) |
| 1659 | tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; |
| 1660 | |
| 1661 | /* We are probing the opening of a window |
| 1662 | * but the window size is != 0 |
| 1663 | * must have been a result SWS avoidance ( sender ) |
| 1664 | */ |
| 1665 | if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || |
| 1666 | skb->len > mss) { |
| 1667 | seg_size = min(seg_size, mss); |
| 1668 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; |
| 1669 | if (tcp_fragment(sk, skb, seg_size)) |
| 1670 | return -1; |
| 1671 | /* SWS override triggered forced fragmentation. |
| 1672 | * Disable TSO, the connection is too sick. */ |
| 1673 | if (sk->sk_route_caps & NETIF_F_TSO) { |
| 1674 | sock_set_flag(sk, SOCK_NO_LARGESEND); |
| 1675 | sk->sk_route_caps &= ~NETIF_F_TSO; |
| 1676 | tp->mss_cache = tp->mss_cache_std; |
| 1677 | } |
| 1678 | } else if (!tcp_skb_pcount(skb)) |
| 1679 | tcp_set_skb_tso_segs(skb, tp->mss_cache_std); |
| 1680 | |
| 1681 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; |
| 1682 | TCP_SKB_CB(skb)->when = tcp_time_stamp; |
| 1683 | tcp_tso_set_push(skb); |
| 1684 | err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); |
| 1685 | if (!err) { |
| 1686 | update_send_head(sk, tp, skb); |
| 1687 | } |
| 1688 | return err; |
| 1689 | } else { |
| 1690 | if (tp->urg_mode && |
| 1691 | between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF)) |
| 1692 | tcp_xmit_probe_skb(sk, TCPCB_URG); |
| 1693 | return tcp_xmit_probe_skb(sk, 0); |
| 1694 | } |
| 1695 | } |
| 1696 | return -1; |
| 1697 | } |
| 1698 | |
| 1699 | /* A window probe timeout has occurred. If window is not closed send |
| 1700 | * a partial packet else a zero probe. |
| 1701 | */ |
| 1702 | void tcp_send_probe0(struct sock *sk) |
| 1703 | { |
| 1704 | struct tcp_sock *tp = tcp_sk(sk); |
| 1705 | int err; |
| 1706 | |
| 1707 | err = tcp_write_wakeup(sk); |
| 1708 | |
| 1709 | if (tp->packets_out || !sk->sk_send_head) { |
| 1710 | /* Cancel probe timer, if it is not required. */ |
| 1711 | tp->probes_out = 0; |
| 1712 | tp->backoff = 0; |
| 1713 | return; |
| 1714 | } |
| 1715 | |
| 1716 | if (err <= 0) { |
| 1717 | if (tp->backoff < sysctl_tcp_retries2) |
| 1718 | tp->backoff++; |
| 1719 | tp->probes_out++; |
| 1720 | tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, |
| 1721 | min(tp->rto << tp->backoff, TCP_RTO_MAX)); |
| 1722 | } else { |
| 1723 | /* If packet was not sent due to local congestion, |
| 1724 | * do not backoff and do not remember probes_out. |
| 1725 | * Let local senders to fight for local resources. |
| 1726 | * |
| 1727 | * Use accumulated backoff yet. |
| 1728 | */ |
| 1729 | if (!tp->probes_out) |
| 1730 | tp->probes_out=1; |
| 1731 | tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, |
| 1732 | min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL)); |
| 1733 | } |
| 1734 | } |
| 1735 | |
| 1736 | EXPORT_SYMBOL(tcp_connect); |
| 1737 | EXPORT_SYMBOL(tcp_make_synack); |
| 1738 | EXPORT_SYMBOL(tcp_simple_retransmit); |
| 1739 | EXPORT_SYMBOL(tcp_sync_mss); |