Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * lib/kernel_lock.c |
| 3 | * |
| 4 | * This is the traditional BKL - big kernel lock. Largely |
| 5 | * relegated to obsolescense, but used by various less |
| 6 | * important (or lazy) subsystems. |
| 7 | */ |
| 8 | #include <linux/smp_lock.h> |
| 9 | #include <linux/module.h> |
| 10 | #include <linux/kallsyms.h> |
| 11 | |
| 12 | #if defined(CONFIG_PREEMPT) && defined(__smp_processor_id) && \ |
| 13 | defined(CONFIG_DEBUG_PREEMPT) |
| 14 | |
| 15 | /* |
| 16 | * Debugging check. |
| 17 | */ |
| 18 | unsigned int smp_processor_id(void) |
| 19 | { |
| 20 | unsigned long preempt_count = preempt_count(); |
| 21 | int this_cpu = __smp_processor_id(); |
| 22 | cpumask_t this_mask; |
| 23 | |
| 24 | if (likely(preempt_count)) |
| 25 | goto out; |
| 26 | |
| 27 | if (irqs_disabled()) |
| 28 | goto out; |
| 29 | |
| 30 | /* |
| 31 | * Kernel threads bound to a single CPU can safely use |
| 32 | * smp_processor_id(): |
| 33 | */ |
| 34 | this_mask = cpumask_of_cpu(this_cpu); |
| 35 | |
| 36 | if (cpus_equal(current->cpus_allowed, this_mask)) |
| 37 | goto out; |
| 38 | |
| 39 | /* |
| 40 | * It is valid to assume CPU-locality during early bootup: |
| 41 | */ |
| 42 | if (system_state != SYSTEM_RUNNING) |
| 43 | goto out; |
| 44 | |
| 45 | /* |
| 46 | * Avoid recursion: |
| 47 | */ |
| 48 | preempt_disable(); |
| 49 | |
| 50 | if (!printk_ratelimit()) |
| 51 | goto out_enable; |
| 52 | |
| 53 | printk(KERN_ERR "BUG: using smp_processor_id() in preemptible [%08x] code: %s/%d\n", preempt_count(), current->comm, current->pid); |
| 54 | print_symbol("caller is %s\n", (long)__builtin_return_address(0)); |
| 55 | dump_stack(); |
| 56 | |
| 57 | out_enable: |
| 58 | preempt_enable_no_resched(); |
| 59 | out: |
| 60 | return this_cpu; |
| 61 | } |
| 62 | |
| 63 | EXPORT_SYMBOL(smp_processor_id); |
| 64 | |
| 65 | #endif /* PREEMPT && __smp_processor_id && DEBUG_PREEMPT */ |
| 66 | |
| 67 | #ifdef CONFIG_PREEMPT_BKL |
| 68 | /* |
| 69 | * The 'big kernel semaphore' |
| 70 | * |
| 71 | * This mutex is taken and released recursively by lock_kernel() |
| 72 | * and unlock_kernel(). It is transparently dropped and reaquired |
| 73 | * over schedule(). It is used to protect legacy code that hasn't |
| 74 | * been migrated to a proper locking design yet. |
| 75 | * |
| 76 | * Note: code locked by this semaphore will only be serialized against |
| 77 | * other code using the same locking facility. The code guarantees that |
| 78 | * the task remains on the same CPU. |
| 79 | * |
| 80 | * Don't use in new code. |
| 81 | */ |
| 82 | static DECLARE_MUTEX(kernel_sem); |
| 83 | |
| 84 | /* |
| 85 | * Re-acquire the kernel semaphore. |
| 86 | * |
| 87 | * This function is called with preemption off. |
| 88 | * |
| 89 | * We are executing in schedule() so the code must be extremely careful |
| 90 | * about recursion, both due to the down() and due to the enabling of |
| 91 | * preemption. schedule() will re-check the preemption flag after |
| 92 | * reacquiring the semaphore. |
| 93 | */ |
| 94 | int __lockfunc __reacquire_kernel_lock(void) |
| 95 | { |
| 96 | struct task_struct *task = current; |
| 97 | int saved_lock_depth = task->lock_depth; |
| 98 | |
| 99 | BUG_ON(saved_lock_depth < 0); |
| 100 | |
| 101 | task->lock_depth = -1; |
| 102 | preempt_enable_no_resched(); |
| 103 | |
| 104 | down(&kernel_sem); |
| 105 | |
| 106 | preempt_disable(); |
| 107 | task->lock_depth = saved_lock_depth; |
| 108 | |
| 109 | return 0; |
| 110 | } |
| 111 | |
| 112 | void __lockfunc __release_kernel_lock(void) |
| 113 | { |
| 114 | up(&kernel_sem); |
| 115 | } |
| 116 | |
| 117 | /* |
| 118 | * Getting the big kernel semaphore. |
| 119 | */ |
| 120 | void __lockfunc lock_kernel(void) |
| 121 | { |
| 122 | struct task_struct *task = current; |
| 123 | int depth = task->lock_depth + 1; |
| 124 | |
| 125 | if (likely(!depth)) |
| 126 | /* |
| 127 | * No recursion worries - we set up lock_depth _after_ |
| 128 | */ |
| 129 | down(&kernel_sem); |
| 130 | |
| 131 | task->lock_depth = depth; |
| 132 | } |
| 133 | |
| 134 | void __lockfunc unlock_kernel(void) |
| 135 | { |
| 136 | struct task_struct *task = current; |
| 137 | |
| 138 | BUG_ON(task->lock_depth < 0); |
| 139 | |
| 140 | if (likely(--task->lock_depth < 0)) |
| 141 | up(&kernel_sem); |
| 142 | } |
| 143 | |
| 144 | #else |
| 145 | |
| 146 | /* |
| 147 | * The 'big kernel lock' |
| 148 | * |
| 149 | * This spinlock is taken and released recursively by lock_kernel() |
| 150 | * and unlock_kernel(). It is transparently dropped and reaquired |
| 151 | * over schedule(). It is used to protect legacy code that hasn't |
| 152 | * been migrated to a proper locking design yet. |
| 153 | * |
| 154 | * Don't use in new code. |
| 155 | */ |
| 156 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag); |
| 157 | |
| 158 | |
| 159 | /* |
| 160 | * Acquire/release the underlying lock from the scheduler. |
| 161 | * |
| 162 | * This is called with preemption disabled, and should |
| 163 | * return an error value if it cannot get the lock and |
| 164 | * TIF_NEED_RESCHED gets set. |
| 165 | * |
| 166 | * If it successfully gets the lock, it should increment |
| 167 | * the preemption count like any spinlock does. |
| 168 | * |
| 169 | * (This works on UP too - _raw_spin_trylock will never |
| 170 | * return false in that case) |
| 171 | */ |
| 172 | int __lockfunc __reacquire_kernel_lock(void) |
| 173 | { |
| 174 | while (!_raw_spin_trylock(&kernel_flag)) { |
| 175 | if (test_thread_flag(TIF_NEED_RESCHED)) |
| 176 | return -EAGAIN; |
| 177 | cpu_relax(); |
| 178 | } |
| 179 | preempt_disable(); |
| 180 | return 0; |
| 181 | } |
| 182 | |
| 183 | void __lockfunc __release_kernel_lock(void) |
| 184 | { |
| 185 | _raw_spin_unlock(&kernel_flag); |
| 186 | preempt_enable_no_resched(); |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | * These are the BKL spinlocks - we try to be polite about preemption. |
| 191 | * If SMP is not on (ie UP preemption), this all goes away because the |
| 192 | * _raw_spin_trylock() will always succeed. |
| 193 | */ |
| 194 | #ifdef CONFIG_PREEMPT |
| 195 | static inline void __lock_kernel(void) |
| 196 | { |
| 197 | preempt_disable(); |
| 198 | if (unlikely(!_raw_spin_trylock(&kernel_flag))) { |
| 199 | /* |
| 200 | * If preemption was disabled even before this |
| 201 | * was called, there's nothing we can be polite |
| 202 | * about - just spin. |
| 203 | */ |
| 204 | if (preempt_count() > 1) { |
| 205 | _raw_spin_lock(&kernel_flag); |
| 206 | return; |
| 207 | } |
| 208 | |
| 209 | /* |
| 210 | * Otherwise, let's wait for the kernel lock |
| 211 | * with preemption enabled.. |
| 212 | */ |
| 213 | do { |
| 214 | preempt_enable(); |
| 215 | while (spin_is_locked(&kernel_flag)) |
| 216 | cpu_relax(); |
| 217 | preempt_disable(); |
| 218 | } while (!_raw_spin_trylock(&kernel_flag)); |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | #else |
| 223 | |
| 224 | /* |
| 225 | * Non-preemption case - just get the spinlock |
| 226 | */ |
| 227 | static inline void __lock_kernel(void) |
| 228 | { |
| 229 | _raw_spin_lock(&kernel_flag); |
| 230 | } |
| 231 | #endif |
| 232 | |
| 233 | static inline void __unlock_kernel(void) |
| 234 | { |
| 235 | _raw_spin_unlock(&kernel_flag); |
| 236 | preempt_enable(); |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * Getting the big kernel lock. |
| 241 | * |
| 242 | * This cannot happen asynchronously, so we only need to |
| 243 | * worry about other CPU's. |
| 244 | */ |
| 245 | void __lockfunc lock_kernel(void) |
| 246 | { |
| 247 | int depth = current->lock_depth+1; |
| 248 | if (likely(!depth)) |
| 249 | __lock_kernel(); |
| 250 | current->lock_depth = depth; |
| 251 | } |
| 252 | |
| 253 | void __lockfunc unlock_kernel(void) |
| 254 | { |
| 255 | BUG_ON(current->lock_depth < 0); |
| 256 | if (likely(--current->lock_depth < 0)) |
| 257 | __unlock_kernel(); |
| 258 | } |
| 259 | |
| 260 | #endif |
| 261 | |
| 262 | EXPORT_SYMBOL(lock_kernel); |
| 263 | EXPORT_SYMBOL(unlock_kernel); |
| 264 | |