Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * 2002-10-18 written by Jim Houston jim.houston@ccur.com |
| 3 | * Copyright (C) 2002 by Concurrent Computer Corporation |
| 4 | * Distributed under the GNU GPL license version 2. |
| 5 | * |
| 6 | * Modified by George Anzinger to reuse immediately and to use |
| 7 | * find bit instructions. Also removed _irq on spinlocks. |
| 8 | * |
| 9 | * Small id to pointer translation service. |
| 10 | * |
| 11 | * It uses a radix tree like structure as a sparse array indexed |
| 12 | * by the id to obtain the pointer. The bitmap makes allocating |
| 13 | * a new id quick. |
| 14 | * |
| 15 | * You call it to allocate an id (an int) an associate with that id a |
| 16 | * pointer or what ever, we treat it as a (void *). You can pass this |
| 17 | * id to a user for him to pass back at a later time. You then pass |
| 18 | * that id to this code and it returns your pointer. |
| 19 | |
| 20 | * You can release ids at any time. When all ids are released, most of |
| 21 | * the memory is returned (we keep IDR_FREE_MAX) in a local pool so we |
| 22 | * don't need to go to the memory "store" during an id allocate, just |
| 23 | * so you don't need to be too concerned about locking and conflicts |
| 24 | * with the slab allocator. |
| 25 | */ |
| 26 | |
| 27 | #ifndef TEST // to test in user space... |
| 28 | #include <linux/slab.h> |
| 29 | #include <linux/init.h> |
| 30 | #include <linux/module.h> |
| 31 | #endif |
| 32 | #include <linux/string.h> |
| 33 | #include <linux/idr.h> |
| 34 | |
| 35 | static kmem_cache_t *idr_layer_cache; |
| 36 | |
| 37 | static struct idr_layer *alloc_layer(struct idr *idp) |
| 38 | { |
| 39 | struct idr_layer *p; |
| 40 | |
| 41 | spin_lock(&idp->lock); |
| 42 | if ((p = idp->id_free)) { |
| 43 | idp->id_free = p->ary[0]; |
| 44 | idp->id_free_cnt--; |
| 45 | p->ary[0] = NULL; |
| 46 | } |
| 47 | spin_unlock(&idp->lock); |
| 48 | return(p); |
| 49 | } |
| 50 | |
| 51 | static void free_layer(struct idr *idp, struct idr_layer *p) |
| 52 | { |
| 53 | /* |
| 54 | * Depends on the return element being zeroed. |
| 55 | */ |
| 56 | spin_lock(&idp->lock); |
| 57 | p->ary[0] = idp->id_free; |
| 58 | idp->id_free = p; |
| 59 | idp->id_free_cnt++; |
| 60 | spin_unlock(&idp->lock); |
| 61 | } |
| 62 | |
| 63 | /** |
| 64 | * idr_pre_get - reserver resources for idr allocation |
| 65 | * @idp: idr handle |
| 66 | * @gfp_mask: memory allocation flags |
| 67 | * |
| 68 | * This function should be called prior to locking and calling the |
| 69 | * following function. It preallocates enough memory to satisfy |
| 70 | * the worst possible allocation. |
| 71 | * |
| 72 | * If the system is REALLY out of memory this function returns 0, |
| 73 | * otherwise 1. |
| 74 | */ |
| 75 | int idr_pre_get(struct idr *idp, unsigned gfp_mask) |
| 76 | { |
| 77 | while (idp->id_free_cnt < IDR_FREE_MAX) { |
| 78 | struct idr_layer *new; |
| 79 | new = kmem_cache_alloc(idr_layer_cache, gfp_mask); |
| 80 | if(new == NULL) |
| 81 | return (0); |
| 82 | free_layer(idp, new); |
| 83 | } |
| 84 | return 1; |
| 85 | } |
| 86 | EXPORT_SYMBOL(idr_pre_get); |
| 87 | |
| 88 | static int sub_alloc(struct idr *idp, void *ptr, int *starting_id) |
| 89 | { |
| 90 | int n, m, sh; |
| 91 | struct idr_layer *p, *new; |
| 92 | struct idr_layer *pa[MAX_LEVEL]; |
| 93 | int l, id; |
| 94 | long bm; |
| 95 | |
| 96 | id = *starting_id; |
| 97 | p = idp->top; |
| 98 | l = idp->layers; |
| 99 | pa[l--] = NULL; |
| 100 | while (1) { |
| 101 | /* |
| 102 | * We run around this while until we reach the leaf node... |
| 103 | */ |
| 104 | n = (id >> (IDR_BITS*l)) & IDR_MASK; |
| 105 | bm = ~p->bitmap; |
| 106 | m = find_next_bit(&bm, IDR_SIZE, n); |
| 107 | if (m == IDR_SIZE) { |
| 108 | /* no space available go back to previous layer. */ |
| 109 | l++; |
| 110 | id = (id | ((1 << (IDR_BITS*l))-1)) + 1; |
| 111 | if (!(p = pa[l])) { |
| 112 | *starting_id = id; |
| 113 | return -2; |
| 114 | } |
| 115 | continue; |
| 116 | } |
| 117 | if (m != n) { |
| 118 | sh = IDR_BITS*l; |
| 119 | id = ((id >> sh) ^ n ^ m) << sh; |
| 120 | } |
| 121 | if ((id >= MAX_ID_BIT) || (id < 0)) |
| 122 | return -3; |
| 123 | if (l == 0) |
| 124 | break; |
| 125 | /* |
| 126 | * Create the layer below if it is missing. |
| 127 | */ |
| 128 | if (!p->ary[m]) { |
| 129 | if (!(new = alloc_layer(idp))) |
| 130 | return -1; |
| 131 | p->ary[m] = new; |
| 132 | p->count++; |
| 133 | } |
| 134 | pa[l--] = p; |
| 135 | p = p->ary[m]; |
| 136 | } |
| 137 | /* |
| 138 | * We have reached the leaf node, plant the |
| 139 | * users pointer and return the raw id. |
| 140 | */ |
| 141 | p->ary[m] = (struct idr_layer *)ptr; |
| 142 | __set_bit(m, &p->bitmap); |
| 143 | p->count++; |
| 144 | /* |
| 145 | * If this layer is full mark the bit in the layer above |
| 146 | * to show that this part of the radix tree is full. |
| 147 | * This may complete the layer above and require walking |
| 148 | * up the radix tree. |
| 149 | */ |
| 150 | n = id; |
| 151 | while (p->bitmap == IDR_FULL) { |
| 152 | if (!(p = pa[++l])) |
| 153 | break; |
| 154 | n = n >> IDR_BITS; |
| 155 | __set_bit((n & IDR_MASK), &p->bitmap); |
| 156 | } |
| 157 | return(id); |
| 158 | } |
| 159 | |
| 160 | static int idr_get_new_above_int(struct idr *idp, void *ptr, int starting_id) |
| 161 | { |
| 162 | struct idr_layer *p, *new; |
| 163 | int layers, v, id; |
| 164 | |
| 165 | id = starting_id; |
| 166 | build_up: |
| 167 | p = idp->top; |
| 168 | layers = idp->layers; |
| 169 | if (unlikely(!p)) { |
| 170 | if (!(p = alloc_layer(idp))) |
| 171 | return -1; |
| 172 | layers = 1; |
| 173 | } |
| 174 | /* |
| 175 | * Add a new layer to the top of the tree if the requested |
| 176 | * id is larger than the currently allocated space. |
| 177 | */ |
| 178 | while ((layers < MAX_LEVEL) && (id >= (1 << (layers*IDR_BITS)))) { |
| 179 | layers++; |
| 180 | if (!p->count) |
| 181 | continue; |
| 182 | if (!(new = alloc_layer(idp))) { |
| 183 | /* |
| 184 | * The allocation failed. If we built part of |
| 185 | * the structure tear it down. |
| 186 | */ |
| 187 | for (new = p; p && p != idp->top; new = p) { |
| 188 | p = p->ary[0]; |
| 189 | new->ary[0] = NULL; |
| 190 | new->bitmap = new->count = 0; |
| 191 | free_layer(idp, new); |
| 192 | } |
| 193 | return -1; |
| 194 | } |
| 195 | new->ary[0] = p; |
| 196 | new->count = 1; |
| 197 | if (p->bitmap == IDR_FULL) |
| 198 | __set_bit(0, &new->bitmap); |
| 199 | p = new; |
| 200 | } |
| 201 | idp->top = p; |
| 202 | idp->layers = layers; |
| 203 | v = sub_alloc(idp, ptr, &id); |
| 204 | if (v == -2) |
| 205 | goto build_up; |
| 206 | return(v); |
| 207 | } |
| 208 | |
| 209 | /** |
| 210 | * idr_get_new_above - allocate new idr entry above a start id |
| 211 | * @idp: idr handle |
| 212 | * @ptr: pointer you want associated with the ide |
| 213 | * @start_id: id to start search at |
| 214 | * @id: pointer to the allocated handle |
| 215 | * |
| 216 | * This is the allocate id function. It should be called with any |
| 217 | * required locks. |
| 218 | * |
| 219 | * If memory is required, it will return -EAGAIN, you should unlock |
| 220 | * and go back to the idr_pre_get() call. If the idr is full, it will |
| 221 | * return -ENOSPC. |
| 222 | * |
| 223 | * @id returns a value in the range 0 ... 0x7fffffff |
| 224 | */ |
| 225 | int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id) |
| 226 | { |
| 227 | int rv; |
| 228 | rv = idr_get_new_above_int(idp, ptr, starting_id); |
| 229 | /* |
| 230 | * This is a cheap hack until the IDR code can be fixed to |
| 231 | * return proper error values. |
| 232 | */ |
| 233 | if (rv < 0) { |
| 234 | if (rv == -1) |
| 235 | return -EAGAIN; |
| 236 | else /* Will be -3 */ |
| 237 | return -ENOSPC; |
| 238 | } |
| 239 | *id = rv; |
| 240 | return 0; |
| 241 | } |
| 242 | EXPORT_SYMBOL(idr_get_new_above); |
| 243 | |
| 244 | /** |
| 245 | * idr_get_new - allocate new idr entry |
| 246 | * @idp: idr handle |
| 247 | * @ptr: pointer you want associated with the ide |
| 248 | * @id: pointer to the allocated handle |
| 249 | * |
| 250 | * This is the allocate id function. It should be called with any |
| 251 | * required locks. |
| 252 | * |
| 253 | * If memory is required, it will return -EAGAIN, you should unlock |
| 254 | * and go back to the idr_pre_get() call. If the idr is full, it will |
| 255 | * return -ENOSPC. |
| 256 | * |
| 257 | * @id returns a value in the range 0 ... 0x7fffffff |
| 258 | */ |
| 259 | int idr_get_new(struct idr *idp, void *ptr, int *id) |
| 260 | { |
| 261 | int rv; |
| 262 | rv = idr_get_new_above_int(idp, ptr, 0); |
| 263 | /* |
| 264 | * This is a cheap hack until the IDR code can be fixed to |
| 265 | * return proper error values. |
| 266 | */ |
| 267 | if (rv < 0) { |
| 268 | if (rv == -1) |
| 269 | return -EAGAIN; |
| 270 | else /* Will be -3 */ |
| 271 | return -ENOSPC; |
| 272 | } |
| 273 | *id = rv; |
| 274 | return 0; |
| 275 | } |
| 276 | EXPORT_SYMBOL(idr_get_new); |
| 277 | |
| 278 | static void idr_remove_warning(int id) |
| 279 | { |
| 280 | printk("idr_remove called for id=%d which is not allocated.\n", id); |
| 281 | dump_stack(); |
| 282 | } |
| 283 | |
| 284 | static void sub_remove(struct idr *idp, int shift, int id) |
| 285 | { |
| 286 | struct idr_layer *p = idp->top; |
| 287 | struct idr_layer **pa[MAX_LEVEL]; |
| 288 | struct idr_layer ***paa = &pa[0]; |
| 289 | int n; |
| 290 | |
| 291 | *paa = NULL; |
| 292 | *++paa = &idp->top; |
| 293 | |
| 294 | while ((shift > 0) && p) { |
| 295 | n = (id >> shift) & IDR_MASK; |
| 296 | __clear_bit(n, &p->bitmap); |
| 297 | *++paa = &p->ary[n]; |
| 298 | p = p->ary[n]; |
| 299 | shift -= IDR_BITS; |
| 300 | } |
| 301 | n = id & IDR_MASK; |
| 302 | if (likely(p != NULL && test_bit(n, &p->bitmap))){ |
| 303 | __clear_bit(n, &p->bitmap); |
| 304 | p->ary[n] = NULL; |
| 305 | while(*paa && ! --((**paa)->count)){ |
| 306 | free_layer(idp, **paa); |
| 307 | **paa-- = NULL; |
| 308 | } |
| 309 | if ( ! *paa ) |
| 310 | idp->layers = 0; |
| 311 | } else { |
| 312 | idr_remove_warning(id); |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | /** |
| 317 | * idr_remove - remove the given id and free it's slot |
| 318 | * idp: idr handle |
| 319 | * id: uniqueue key |
| 320 | */ |
| 321 | void idr_remove(struct idr *idp, int id) |
| 322 | { |
| 323 | struct idr_layer *p; |
| 324 | |
| 325 | /* Mask off upper bits we don't use for the search. */ |
| 326 | id &= MAX_ID_MASK; |
| 327 | |
| 328 | sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); |
| 329 | if ( idp->top && idp->top->count == 1 && |
| 330 | (idp->layers > 1) && |
| 331 | idp->top->ary[0]){ // We can drop a layer |
| 332 | |
| 333 | p = idp->top->ary[0]; |
| 334 | idp->top->bitmap = idp->top->count = 0; |
| 335 | free_layer(idp, idp->top); |
| 336 | idp->top = p; |
| 337 | --idp->layers; |
| 338 | } |
| 339 | while (idp->id_free_cnt >= IDR_FREE_MAX) { |
| 340 | |
| 341 | p = alloc_layer(idp); |
| 342 | kmem_cache_free(idr_layer_cache, p); |
| 343 | return; |
| 344 | } |
| 345 | } |
| 346 | EXPORT_SYMBOL(idr_remove); |
| 347 | |
| 348 | /** |
| 349 | * idr_find - return pointer for given id |
| 350 | * @idp: idr handle |
| 351 | * @id: lookup key |
| 352 | * |
| 353 | * Return the pointer given the id it has been registered with. A %NULL |
| 354 | * return indicates that @id is not valid or you passed %NULL in |
| 355 | * idr_get_new(). |
| 356 | * |
| 357 | * The caller must serialize idr_find() vs idr_get_new() and idr_remove(). |
| 358 | */ |
| 359 | void *idr_find(struct idr *idp, int id) |
| 360 | { |
| 361 | int n; |
| 362 | struct idr_layer *p; |
| 363 | |
| 364 | n = idp->layers * IDR_BITS; |
| 365 | p = idp->top; |
| 366 | |
| 367 | /* Mask off upper bits we don't use for the search. */ |
| 368 | id &= MAX_ID_MASK; |
| 369 | |
| 370 | if (id >= (1 << n)) |
| 371 | return NULL; |
| 372 | |
| 373 | while (n > 0 && p) { |
| 374 | n -= IDR_BITS; |
| 375 | p = p->ary[(id >> n) & IDR_MASK]; |
| 376 | } |
| 377 | return((void *)p); |
| 378 | } |
| 379 | EXPORT_SYMBOL(idr_find); |
| 380 | |
| 381 | static void idr_cache_ctor(void * idr_layer, |
| 382 | kmem_cache_t *idr_layer_cache, unsigned long flags) |
| 383 | { |
| 384 | memset(idr_layer, 0, sizeof(struct idr_layer)); |
| 385 | } |
| 386 | |
| 387 | static int init_id_cache(void) |
| 388 | { |
| 389 | if (!idr_layer_cache) |
| 390 | idr_layer_cache = kmem_cache_create("idr_layer_cache", |
| 391 | sizeof(struct idr_layer), 0, 0, idr_cache_ctor, NULL); |
| 392 | return 0; |
| 393 | } |
| 394 | |
| 395 | /** |
| 396 | * idr_init - initialize idr handle |
| 397 | * @idp: idr handle |
| 398 | * |
| 399 | * This function is use to set up the handle (@idp) that you will pass |
| 400 | * to the rest of the functions. |
| 401 | */ |
| 402 | void idr_init(struct idr *idp) |
| 403 | { |
| 404 | init_id_cache(); |
| 405 | memset(idp, 0, sizeof(struct idr)); |
| 406 | spin_lock_init(&idp->lock); |
| 407 | } |
| 408 | EXPORT_SYMBOL(idr_init); |