blob: 488c2b4befa57bac16c0b48bd03f9d39204a6e31 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001#ifndef _I386_PGTABLE_H
2#define _I386_PGTABLE_H
3
4#include <linux/config.h>
5
6/*
7 * The Linux memory management assumes a three-level page table setup. On
8 * the i386, we use that, but "fold" the mid level into the top-level page
9 * table, so that we physically have the same two-level page table as the
10 * i386 mmu expects.
11 *
12 * This file contains the functions and defines necessary to modify and use
13 * the i386 page table tree.
14 */
15#ifndef __ASSEMBLY__
16#include <asm/processor.h>
17#include <asm/fixmap.h>
18#include <linux/threads.h>
19
20#ifndef _I386_BITOPS_H
21#include <asm/bitops.h>
22#endif
23
24#include <linux/slab.h>
25#include <linux/list.h>
26#include <linux/spinlock.h>
27
28/*
29 * ZERO_PAGE is a global shared page that is always zero: used
30 * for zero-mapped memory areas etc..
31 */
32#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
33extern unsigned long empty_zero_page[1024];
34extern pgd_t swapper_pg_dir[1024];
35extern kmem_cache_t *pgd_cache;
36extern kmem_cache_t *pmd_cache;
37extern spinlock_t pgd_lock;
38extern struct page *pgd_list;
39
40void pmd_ctor(void *, kmem_cache_t *, unsigned long);
41void pgd_ctor(void *, kmem_cache_t *, unsigned long);
42void pgd_dtor(void *, kmem_cache_t *, unsigned long);
43void pgtable_cache_init(void);
44void paging_init(void);
45
46/*
47 * The Linux x86 paging architecture is 'compile-time dual-mode', it
48 * implements both the traditional 2-level x86 page tables and the
49 * newer 3-level PAE-mode page tables.
50 */
51#ifdef CONFIG_X86_PAE
52# include <asm/pgtable-3level-defs.h>
53# define PMD_SIZE (1UL << PMD_SHIFT)
54# define PMD_MASK (~(PMD_SIZE-1))
55#else
56# include <asm/pgtable-2level-defs.h>
57#endif
58
59#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
60#define PGDIR_MASK (~(PGDIR_SIZE-1))
61
62#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
63#define FIRST_USER_PGD_NR 0
64
65#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
66#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
67
68#define TWOLEVEL_PGDIR_SHIFT 22
69#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
70#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
71
72/* Just any arbitrary offset to the start of the vmalloc VM area: the
73 * current 8MB value just means that there will be a 8MB "hole" after the
74 * physical memory until the kernel virtual memory starts. That means that
75 * any out-of-bounds memory accesses will hopefully be caught.
76 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
77 * area for the same reason. ;)
78 */
79#define VMALLOC_OFFSET (8*1024*1024)
80#define VMALLOC_START (((unsigned long) high_memory + vmalloc_earlyreserve + \
81 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
82#ifdef CONFIG_HIGHMEM
83# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
84#else
85# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
86#endif
87
88/*
89 * The 4MB page is guessing.. Detailed in the infamous "Chapter H"
90 * of the Pentium details, but assuming intel did the straightforward
91 * thing, this bit set in the page directory entry just means that
92 * the page directory entry points directly to a 4MB-aligned block of
93 * memory.
94 */
95#define _PAGE_BIT_PRESENT 0
96#define _PAGE_BIT_RW 1
97#define _PAGE_BIT_USER 2
98#define _PAGE_BIT_PWT 3
99#define _PAGE_BIT_PCD 4
100#define _PAGE_BIT_ACCESSED 5
101#define _PAGE_BIT_DIRTY 6
102#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */
103#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
104#define _PAGE_BIT_UNUSED1 9 /* available for programmer */
105#define _PAGE_BIT_UNUSED2 10
106#define _PAGE_BIT_UNUSED3 11
107#define _PAGE_BIT_NX 63
108
109#define _PAGE_PRESENT 0x001
110#define _PAGE_RW 0x002
111#define _PAGE_USER 0x004
112#define _PAGE_PWT 0x008
113#define _PAGE_PCD 0x010
114#define _PAGE_ACCESSED 0x020
115#define _PAGE_DIRTY 0x040
116#define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */
117#define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
118#define _PAGE_UNUSED1 0x200 /* available for programmer */
119#define _PAGE_UNUSED2 0x400
120#define _PAGE_UNUSED3 0x800
121
122#define _PAGE_FILE 0x040 /* set:pagecache unset:swap */
123#define _PAGE_PROTNONE 0x080 /* If not present */
124#ifdef CONFIG_X86_PAE
125#define _PAGE_NX (1ULL<<_PAGE_BIT_NX)
126#else
127#define _PAGE_NX 0
128#endif
129
130#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
131#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
132#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
133
134#define PAGE_NONE \
135 __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
136#define PAGE_SHARED \
137 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
138
139#define PAGE_SHARED_EXEC \
140 __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
141#define PAGE_COPY_NOEXEC \
142 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
143#define PAGE_COPY_EXEC \
144 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
145#define PAGE_COPY \
146 PAGE_COPY_NOEXEC
147#define PAGE_READONLY \
148 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
149#define PAGE_READONLY_EXEC \
150 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
151
152#define _PAGE_KERNEL \
153 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
154#define _PAGE_KERNEL_EXEC \
155 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
156
157extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;
158#define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
159#define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD)
160#define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
161#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
162
163#define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
164#define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
165#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
166#define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
167#define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
168#define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
169
170/*
171 * The i386 can't do page protection for execute, and considers that
172 * the same are read. Also, write permissions imply read permissions.
173 * This is the closest we can get..
174 */
175#define __P000 PAGE_NONE
176#define __P001 PAGE_READONLY
177#define __P010 PAGE_COPY
178#define __P011 PAGE_COPY
179#define __P100 PAGE_READONLY_EXEC
180#define __P101 PAGE_READONLY_EXEC
181#define __P110 PAGE_COPY_EXEC
182#define __P111 PAGE_COPY_EXEC
183
184#define __S000 PAGE_NONE
185#define __S001 PAGE_READONLY
186#define __S010 PAGE_SHARED
187#define __S011 PAGE_SHARED
188#define __S100 PAGE_READONLY_EXEC
189#define __S101 PAGE_READONLY_EXEC
190#define __S110 PAGE_SHARED_EXEC
191#define __S111 PAGE_SHARED_EXEC
192
193/*
194 * Define this if things work differently on an i386 and an i486:
195 * it will (on an i486) warn about kernel memory accesses that are
196 * done without a 'verify_area(VERIFY_WRITE,..)'
197 */
198#undef TEST_VERIFY_AREA
199
200/* The boot page tables (all created as a single array) */
201extern unsigned long pg0[];
202
203#define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
204#define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
205
206#define pmd_none(x) (!pmd_val(x))
207#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
208#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
209#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
210
211
212#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
213
214/*
215 * The following only work if pte_present() is true.
216 * Undefined behaviour if not..
217 */
218static inline int pte_user(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
219static inline int pte_read(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
220static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }
221static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; }
222static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }
223
224/*
225 * The following only works if pte_present() is not true.
226 */
227static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; }
228
229static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
230static inline pte_t pte_exprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
231static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; }
232static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }
233static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; }
234static inline pte_t pte_mkread(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
235static inline pte_t pte_mkexec(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
236static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; }
237static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; }
238static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; }
239
240#ifdef CONFIG_X86_PAE
241# include <asm/pgtable-3level.h>
242#else
243# include <asm/pgtable-2level.h>
244#endif
245
246static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
247{
248 if (!pte_dirty(*ptep))
249 return 0;
250 return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte_low);
251}
252
253static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
254{
255 if (!pte_young(*ptep))
256 return 0;
257 return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte_low);
258}
259
260static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
261{
262 clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
263}
264
265/*
266 * Macro to mark a page protection value as "uncacheable". On processors which do not support
267 * it, this is a no-op.
268 */
269#define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
270 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
271
272/*
273 * Conversion functions: convert a page and protection to a page entry,
274 * and a page entry and page directory to the page they refer to.
275 */
276
277#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
278#define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE)
279
280static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
281{
282 pte.pte_low &= _PAGE_CHG_MASK;
283 pte.pte_low |= pgprot_val(newprot);
284#ifdef CONFIG_X86_PAE
285 /*
286 * Chop off the NX bit (if present), and add the NX portion of
287 * the newprot (if present):
288 */
289 pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
290 pte.pte_high |= (pgprot_val(newprot) >> 32) & \
291 (__supported_pte_mask >> 32);
292#endif
293 return pte;
294}
295
296#define page_pte(page) page_pte_prot(page, __pgprot(0))
297
298#define pmd_large(pmd) \
299((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))
300
301/*
302 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
303 *
304 * this macro returns the index of the entry in the pgd page which would
305 * control the given virtual address
306 */
307#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
308#define pgd_index_k(addr) pgd_index(addr)
309
310/*
311 * pgd_offset() returns a (pgd_t *)
312 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
313 */
314#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
315
316/*
317 * a shortcut which implies the use of the kernel's pgd, instead
318 * of a process's
319 */
320#define pgd_offset_k(address) pgd_offset(&init_mm, address)
321
322/*
323 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
324 *
325 * this macro returns the index of the entry in the pmd page which would
326 * control the given virtual address
327 */
328#define pmd_index(address) \
329 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
330
331/*
332 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
333 *
334 * this macro returns the index of the entry in the pte page which would
335 * control the given virtual address
336 */
337#define pte_index(address) \
338 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
339#define pte_offset_kernel(dir, address) \
340 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address))
341
342/*
343 * Helper function that returns the kernel pagetable entry controlling
344 * the virtual address 'address'. NULL means no pagetable entry present.
345 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
346 * as a pte too.
347 */
348extern pte_t *lookup_address(unsigned long address);
349
350/*
351 * Make a given kernel text page executable/non-executable.
352 * Returns the previous executability setting of that page (which
353 * is used to restore the previous state). Used by the SMP bootup code.
354 * NOTE: this is an __init function for security reasons.
355 */
356#ifdef CONFIG_X86_PAE
357 extern int set_kernel_exec(unsigned long vaddr, int enable);
358#else
359 static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
360#endif
361
362extern void noexec_setup(const char *str);
363
364#if defined(CONFIG_HIGHPTE)
365#define pte_offset_map(dir, address) \
366 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
367#define pte_offset_map_nested(dir, address) \
368 ((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
369#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
370#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
371#else
372#define pte_offset_map(dir, address) \
373 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
374#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
375#define pte_unmap(pte) do { } while (0)
376#define pte_unmap_nested(pte) do { } while (0)
377#endif
378
379/*
380 * The i386 doesn't have any external MMU info: the kernel page
381 * tables contain all the necessary information.
382 *
383 * Also, we only update the dirty/accessed state if we set
384 * the dirty bit by hand in the kernel, since the hardware
385 * will do the accessed bit for us, and we don't want to
386 * race with other CPU's that might be updating the dirty
387 * bit at the same time.
388 */
389#define update_mmu_cache(vma,address,pte) do { } while (0)
390#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
391#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
392 do { \
393 if (__dirty) { \
394 (__ptep)->pte_low = (__entry).pte_low; \
395 flush_tlb_page(__vma, __address); \
396 } \
397 } while (0)
398
399#endif /* !__ASSEMBLY__ */
400
401#ifndef CONFIG_DISCONTIGMEM
402#define kern_addr_valid(addr) (1)
403#endif /* !CONFIG_DISCONTIGMEM */
404
405#define io_remap_page_range(vma, vaddr, paddr, size, prot) \
406 remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot)
407
408#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
409 remap_pfn_range(vma, vaddr, pfn, size, prot)
410
411#define MK_IOSPACE_PFN(space, pfn) (pfn)
412#define GET_IOSPACE(pfn) 0
413#define GET_PFN(pfn) (pfn)
414
415#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
416#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
417#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
418#define __HAVE_ARCH_PTEP_SET_WRPROTECT
419#define __HAVE_ARCH_PTE_SAME
420#include <asm-generic/pgtable.h>
421
422#endif /* _I386_PGTABLE_H */