Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2000-2002 Silicon Graphics, Inc. All Rights Reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of version 2 of the GNU General Public License as |
| 6 | * published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it would be useful, but |
| 9 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| 11 | * |
| 12 | * Further, this software is distributed without any warranty that it is |
| 13 | * free of the rightful claim of any third person regarding infringement |
| 14 | * or the like. Any license provided herein, whether implied or |
| 15 | * otherwise, applies only to this software file. Patent licenses, if |
| 16 | * any, provided herein do not apply to combinations of this program with |
| 17 | * other software, or any other product whatsoever. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License along |
| 20 | * with this program; if not, write the Free Software Foundation, Inc., 59 |
| 21 | * Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| 22 | * |
| 23 | * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy, |
| 24 | * Mountain View, CA 94043, or: |
| 25 | * |
| 26 | * http://www.sgi.com |
| 27 | * |
| 28 | * For further information regarding this notice, see: |
| 29 | * |
| 30 | * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/ |
| 31 | */ |
| 32 | |
| 33 | /* |
| 34 | * This file contains the implementation of the xfs_inode_log_item. |
| 35 | * It contains the item operations used to manipulate the inode log |
| 36 | * items as well as utility routines used by the inode specific |
| 37 | * transaction routines. |
| 38 | */ |
| 39 | #include "xfs.h" |
| 40 | #include "xfs_macros.h" |
| 41 | #include "xfs_types.h" |
| 42 | #include "xfs_inum.h" |
| 43 | #include "xfs_log.h" |
| 44 | #include "xfs_trans.h" |
| 45 | #include "xfs_buf_item.h" |
| 46 | #include "xfs_sb.h" |
| 47 | #include "xfs_dir.h" |
| 48 | #include "xfs_dir2.h" |
| 49 | #include "xfs_dmapi.h" |
| 50 | #include "xfs_mount.h" |
| 51 | #include "xfs_trans_priv.h" |
| 52 | #include "xfs_ag.h" |
| 53 | #include "xfs_alloc_btree.h" |
| 54 | #include "xfs_bmap_btree.h" |
| 55 | #include "xfs_ialloc_btree.h" |
| 56 | #include "xfs_btree.h" |
| 57 | #include "xfs_ialloc.h" |
| 58 | #include "xfs_attr_sf.h" |
| 59 | #include "xfs_dir_sf.h" |
| 60 | #include "xfs_dir2_sf.h" |
| 61 | #include "xfs_dinode.h" |
| 62 | #include "xfs_inode_item.h" |
| 63 | #include "xfs_inode.h" |
| 64 | #include "xfs_rw.h" |
| 65 | |
| 66 | |
| 67 | kmem_zone_t *xfs_ili_zone; /* inode log item zone */ |
| 68 | |
| 69 | /* |
| 70 | * This returns the number of iovecs needed to log the given inode item. |
| 71 | * |
| 72 | * We need one iovec for the inode log format structure, one for the |
| 73 | * inode core, and possibly one for the inode data/extents/b-tree root |
| 74 | * and one for the inode attribute data/extents/b-tree root. |
| 75 | */ |
| 76 | STATIC uint |
| 77 | xfs_inode_item_size( |
| 78 | xfs_inode_log_item_t *iip) |
| 79 | { |
| 80 | uint nvecs; |
| 81 | xfs_inode_t *ip; |
| 82 | |
| 83 | ip = iip->ili_inode; |
| 84 | nvecs = 2; |
| 85 | |
| 86 | /* |
| 87 | * Only log the data/extents/b-tree root if there is something |
| 88 | * left to log. |
| 89 | */ |
| 90 | iip->ili_format.ilf_fields |= XFS_ILOG_CORE; |
| 91 | |
| 92 | switch (ip->i_d.di_format) { |
| 93 | case XFS_DINODE_FMT_EXTENTS: |
| 94 | iip->ili_format.ilf_fields &= |
| 95 | ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | |
| 96 | XFS_ILOG_DEV | XFS_ILOG_UUID); |
| 97 | if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) && |
| 98 | (ip->i_d.di_nextents > 0) && |
| 99 | (ip->i_df.if_bytes > 0)) { |
| 100 | ASSERT(ip->i_df.if_u1.if_extents != NULL); |
| 101 | nvecs++; |
| 102 | } else { |
| 103 | iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT; |
| 104 | } |
| 105 | break; |
| 106 | |
| 107 | case XFS_DINODE_FMT_BTREE: |
| 108 | ASSERT(ip->i_df.if_ext_max == |
| 109 | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t)); |
| 110 | iip->ili_format.ilf_fields &= |
| 111 | ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | |
| 112 | XFS_ILOG_DEV | XFS_ILOG_UUID); |
| 113 | if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) && |
| 114 | (ip->i_df.if_broot_bytes > 0)) { |
| 115 | ASSERT(ip->i_df.if_broot != NULL); |
| 116 | nvecs++; |
| 117 | } else { |
| 118 | ASSERT(!(iip->ili_format.ilf_fields & |
| 119 | XFS_ILOG_DBROOT)); |
| 120 | #ifdef XFS_TRANS_DEBUG |
| 121 | if (iip->ili_root_size > 0) { |
| 122 | ASSERT(iip->ili_root_size == |
| 123 | ip->i_df.if_broot_bytes); |
| 124 | ASSERT(memcmp(iip->ili_orig_root, |
| 125 | ip->i_df.if_broot, |
| 126 | iip->ili_root_size) == 0); |
| 127 | } else { |
| 128 | ASSERT(ip->i_df.if_broot_bytes == 0); |
| 129 | } |
| 130 | #endif |
| 131 | iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT; |
| 132 | } |
| 133 | break; |
| 134 | |
| 135 | case XFS_DINODE_FMT_LOCAL: |
| 136 | iip->ili_format.ilf_fields &= |
| 137 | ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | |
| 138 | XFS_ILOG_DEV | XFS_ILOG_UUID); |
| 139 | if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) && |
| 140 | (ip->i_df.if_bytes > 0)) { |
| 141 | ASSERT(ip->i_df.if_u1.if_data != NULL); |
| 142 | ASSERT(ip->i_d.di_size > 0); |
| 143 | nvecs++; |
| 144 | } else { |
| 145 | iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA; |
| 146 | } |
| 147 | break; |
| 148 | |
| 149 | case XFS_DINODE_FMT_DEV: |
| 150 | iip->ili_format.ilf_fields &= |
| 151 | ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | |
| 152 | XFS_ILOG_DEXT | XFS_ILOG_UUID); |
| 153 | break; |
| 154 | |
| 155 | case XFS_DINODE_FMT_UUID: |
| 156 | iip->ili_format.ilf_fields &= |
| 157 | ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | |
| 158 | XFS_ILOG_DEXT | XFS_ILOG_DEV); |
| 159 | break; |
| 160 | |
| 161 | default: |
| 162 | ASSERT(0); |
| 163 | break; |
| 164 | } |
| 165 | |
| 166 | /* |
| 167 | * If there are no attributes associated with this file, |
| 168 | * then there cannot be anything more to log. |
| 169 | * Clear all attribute-related log flags. |
| 170 | */ |
| 171 | if (!XFS_IFORK_Q(ip)) { |
| 172 | iip->ili_format.ilf_fields &= |
| 173 | ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); |
| 174 | return nvecs; |
| 175 | } |
| 176 | |
| 177 | /* |
| 178 | * Log any necessary attribute data. |
| 179 | */ |
| 180 | switch (ip->i_d.di_aformat) { |
| 181 | case XFS_DINODE_FMT_EXTENTS: |
| 182 | iip->ili_format.ilf_fields &= |
| 183 | ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); |
| 184 | if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) && |
| 185 | (ip->i_d.di_anextents > 0) && |
| 186 | (ip->i_afp->if_bytes > 0)) { |
| 187 | ASSERT(ip->i_afp->if_u1.if_extents != NULL); |
| 188 | nvecs++; |
| 189 | } else { |
| 190 | iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT; |
| 191 | } |
| 192 | break; |
| 193 | |
| 194 | case XFS_DINODE_FMT_BTREE: |
| 195 | iip->ili_format.ilf_fields &= |
| 196 | ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); |
| 197 | if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) && |
| 198 | (ip->i_afp->if_broot_bytes > 0)) { |
| 199 | ASSERT(ip->i_afp->if_broot != NULL); |
| 200 | nvecs++; |
| 201 | } else { |
| 202 | iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT; |
| 203 | } |
| 204 | break; |
| 205 | |
| 206 | case XFS_DINODE_FMT_LOCAL: |
| 207 | iip->ili_format.ilf_fields &= |
| 208 | ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); |
| 209 | if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) && |
| 210 | (ip->i_afp->if_bytes > 0)) { |
| 211 | ASSERT(ip->i_afp->if_u1.if_data != NULL); |
| 212 | nvecs++; |
| 213 | } else { |
| 214 | iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA; |
| 215 | } |
| 216 | break; |
| 217 | |
| 218 | default: |
| 219 | ASSERT(0); |
| 220 | break; |
| 221 | } |
| 222 | |
| 223 | return nvecs; |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * This is called to fill in the vector of log iovecs for the |
| 228 | * given inode log item. It fills the first item with an inode |
| 229 | * log format structure, the second with the on-disk inode structure, |
| 230 | * and a possible third and/or fourth with the inode data/extents/b-tree |
| 231 | * root and inode attributes data/extents/b-tree root. |
| 232 | */ |
| 233 | STATIC void |
| 234 | xfs_inode_item_format( |
| 235 | xfs_inode_log_item_t *iip, |
| 236 | xfs_log_iovec_t *log_vector) |
| 237 | { |
| 238 | uint nvecs; |
| 239 | xfs_log_iovec_t *vecp; |
| 240 | xfs_inode_t *ip; |
| 241 | size_t data_bytes; |
| 242 | xfs_bmbt_rec_t *ext_buffer; |
| 243 | int nrecs; |
| 244 | xfs_mount_t *mp; |
| 245 | |
| 246 | ip = iip->ili_inode; |
| 247 | vecp = log_vector; |
| 248 | |
| 249 | vecp->i_addr = (xfs_caddr_t)&iip->ili_format; |
| 250 | vecp->i_len = sizeof(xfs_inode_log_format_t); |
| 251 | vecp++; |
| 252 | nvecs = 1; |
| 253 | |
| 254 | /* |
| 255 | * Clear i_update_core if the timestamps (or any other |
| 256 | * non-transactional modification) need flushing/logging |
| 257 | * and we're about to log them with the rest of the core. |
| 258 | * |
| 259 | * This is the same logic as xfs_iflush() but this code can't |
| 260 | * run at the same time as xfs_iflush because we're in commit |
| 261 | * processing here and so we have the inode lock held in |
| 262 | * exclusive mode. Although it doesn't really matter |
| 263 | * for the timestamps if both routines were to grab the |
| 264 | * timestamps or not. That would be ok. |
| 265 | * |
| 266 | * We clear i_update_core before copying out the data. |
| 267 | * This is for coordination with our timestamp updates |
| 268 | * that don't hold the inode lock. They will always |
| 269 | * update the timestamps BEFORE setting i_update_core, |
| 270 | * so if we clear i_update_core after they set it we |
| 271 | * are guaranteed to see their updates to the timestamps |
| 272 | * either here. Likewise, if they set it after we clear it |
| 273 | * here, we'll see it either on the next commit of this |
| 274 | * inode or the next time the inode gets flushed via |
| 275 | * xfs_iflush(). This depends on strongly ordered memory |
| 276 | * semantics, but we have that. We use the SYNCHRONIZE |
| 277 | * macro to make sure that the compiler does not reorder |
| 278 | * the i_update_core access below the data copy below. |
| 279 | */ |
| 280 | if (ip->i_update_core) { |
| 281 | ip->i_update_core = 0; |
| 282 | SYNCHRONIZE(); |
| 283 | } |
| 284 | |
| 285 | /* |
| 286 | * We don't have to worry about re-ordering here because |
| 287 | * the update_size field is protected by the inode lock |
| 288 | * and we have that held in exclusive mode. |
| 289 | */ |
| 290 | if (ip->i_update_size) |
| 291 | ip->i_update_size = 0; |
| 292 | |
| 293 | vecp->i_addr = (xfs_caddr_t)&ip->i_d; |
| 294 | vecp->i_len = sizeof(xfs_dinode_core_t); |
| 295 | vecp++; |
| 296 | nvecs++; |
| 297 | iip->ili_format.ilf_fields |= XFS_ILOG_CORE; |
| 298 | |
| 299 | /* |
| 300 | * If this is really an old format inode, then we need to |
| 301 | * log it as such. This means that we have to copy the link |
| 302 | * count from the new field to the old. We don't have to worry |
| 303 | * about the new fields, because nothing trusts them as long as |
| 304 | * the old inode version number is there. If the superblock already |
| 305 | * has a new version number, then we don't bother converting back. |
| 306 | */ |
| 307 | mp = ip->i_mount; |
| 308 | ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 || |
| 309 | XFS_SB_VERSION_HASNLINK(&mp->m_sb)); |
| 310 | if (ip->i_d.di_version == XFS_DINODE_VERSION_1) { |
| 311 | if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) { |
| 312 | /* |
| 313 | * Convert it back. |
| 314 | */ |
| 315 | ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); |
| 316 | ip->i_d.di_onlink = ip->i_d.di_nlink; |
| 317 | } else { |
| 318 | /* |
| 319 | * The superblock version has already been bumped, |
| 320 | * so just make the conversion to the new inode |
| 321 | * format permanent. |
| 322 | */ |
| 323 | ip->i_d.di_version = XFS_DINODE_VERSION_2; |
| 324 | ip->i_d.di_onlink = 0; |
| 325 | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | switch (ip->i_d.di_format) { |
| 330 | case XFS_DINODE_FMT_EXTENTS: |
| 331 | ASSERT(!(iip->ili_format.ilf_fields & |
| 332 | (XFS_ILOG_DDATA | XFS_ILOG_DBROOT | |
| 333 | XFS_ILOG_DEV | XFS_ILOG_UUID))); |
| 334 | if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) { |
| 335 | ASSERT(ip->i_df.if_bytes > 0); |
| 336 | ASSERT(ip->i_df.if_u1.if_extents != NULL); |
| 337 | ASSERT(ip->i_d.di_nextents > 0); |
| 338 | ASSERT(iip->ili_extents_buf == NULL); |
| 339 | nrecs = ip->i_df.if_bytes / |
| 340 | (uint)sizeof(xfs_bmbt_rec_t); |
| 341 | ASSERT(nrecs > 0); |
| 342 | #if __BYTE_ORDER == __BIG_ENDIAN |
| 343 | if (nrecs == ip->i_d.di_nextents) { |
| 344 | /* |
| 345 | * There are no delayed allocation |
| 346 | * extents, so just point to the |
| 347 | * real extents array. |
| 348 | */ |
| 349 | vecp->i_addr = |
| 350 | (char *)(ip->i_df.if_u1.if_extents); |
| 351 | vecp->i_len = ip->i_df.if_bytes; |
| 352 | } else |
| 353 | #endif |
| 354 | { |
| 355 | /* |
| 356 | * There are delayed allocation extents |
| 357 | * in the inode, or we need to convert |
| 358 | * the extents to on disk format. |
| 359 | * Use xfs_iextents_copy() |
| 360 | * to copy only the real extents into |
| 361 | * a separate buffer. We'll free the |
| 362 | * buffer in the unlock routine. |
| 363 | */ |
| 364 | ext_buffer = kmem_alloc(ip->i_df.if_bytes, |
| 365 | KM_SLEEP); |
| 366 | iip->ili_extents_buf = ext_buffer; |
| 367 | vecp->i_addr = (xfs_caddr_t)ext_buffer; |
| 368 | vecp->i_len = xfs_iextents_copy(ip, ext_buffer, |
| 369 | XFS_DATA_FORK); |
| 370 | } |
| 371 | ASSERT(vecp->i_len <= ip->i_df.if_bytes); |
| 372 | iip->ili_format.ilf_dsize = vecp->i_len; |
| 373 | vecp++; |
| 374 | nvecs++; |
| 375 | } |
| 376 | break; |
| 377 | |
| 378 | case XFS_DINODE_FMT_BTREE: |
| 379 | ASSERT(!(iip->ili_format.ilf_fields & |
| 380 | (XFS_ILOG_DDATA | XFS_ILOG_DEXT | |
| 381 | XFS_ILOG_DEV | XFS_ILOG_UUID))); |
| 382 | if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) { |
| 383 | ASSERT(ip->i_df.if_broot_bytes > 0); |
| 384 | ASSERT(ip->i_df.if_broot != NULL); |
| 385 | vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot; |
| 386 | vecp->i_len = ip->i_df.if_broot_bytes; |
| 387 | vecp++; |
| 388 | nvecs++; |
| 389 | iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; |
| 390 | } |
| 391 | break; |
| 392 | |
| 393 | case XFS_DINODE_FMT_LOCAL: |
| 394 | ASSERT(!(iip->ili_format.ilf_fields & |
| 395 | (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | |
| 396 | XFS_ILOG_DEV | XFS_ILOG_UUID))); |
| 397 | if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) { |
| 398 | ASSERT(ip->i_df.if_bytes > 0); |
| 399 | ASSERT(ip->i_df.if_u1.if_data != NULL); |
| 400 | ASSERT(ip->i_d.di_size > 0); |
| 401 | |
| 402 | vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data; |
| 403 | /* |
| 404 | * Round i_bytes up to a word boundary. |
| 405 | * The underlying memory is guaranteed to |
| 406 | * to be there by xfs_idata_realloc(). |
| 407 | */ |
| 408 | data_bytes = roundup(ip->i_df.if_bytes, 4); |
| 409 | ASSERT((ip->i_df.if_real_bytes == 0) || |
| 410 | (ip->i_df.if_real_bytes == data_bytes)); |
| 411 | vecp->i_len = (int)data_bytes; |
| 412 | vecp++; |
| 413 | nvecs++; |
| 414 | iip->ili_format.ilf_dsize = (unsigned)data_bytes; |
| 415 | } |
| 416 | break; |
| 417 | |
| 418 | case XFS_DINODE_FMT_DEV: |
| 419 | ASSERT(!(iip->ili_format.ilf_fields & |
| 420 | (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | |
| 421 | XFS_ILOG_DDATA | XFS_ILOG_UUID))); |
| 422 | if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { |
| 423 | iip->ili_format.ilf_u.ilfu_rdev = |
| 424 | ip->i_df.if_u2.if_rdev; |
| 425 | } |
| 426 | break; |
| 427 | |
| 428 | case XFS_DINODE_FMT_UUID: |
| 429 | ASSERT(!(iip->ili_format.ilf_fields & |
| 430 | (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | |
| 431 | XFS_ILOG_DDATA | XFS_ILOG_DEV))); |
| 432 | if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { |
| 433 | iip->ili_format.ilf_u.ilfu_uuid = |
| 434 | ip->i_df.if_u2.if_uuid; |
| 435 | } |
| 436 | break; |
| 437 | |
| 438 | default: |
| 439 | ASSERT(0); |
| 440 | break; |
| 441 | } |
| 442 | |
| 443 | /* |
| 444 | * If there are no attributes associated with the file, |
| 445 | * then we're done. |
| 446 | * Assert that no attribute-related log flags are set. |
| 447 | */ |
| 448 | if (!XFS_IFORK_Q(ip)) { |
| 449 | ASSERT(nvecs == iip->ili_item.li_desc->lid_size); |
| 450 | iip->ili_format.ilf_size = nvecs; |
| 451 | ASSERT(!(iip->ili_format.ilf_fields & |
| 452 | (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); |
| 453 | return; |
| 454 | } |
| 455 | |
| 456 | switch (ip->i_d.di_aformat) { |
| 457 | case XFS_DINODE_FMT_EXTENTS: |
| 458 | ASSERT(!(iip->ili_format.ilf_fields & |
| 459 | (XFS_ILOG_ADATA | XFS_ILOG_ABROOT))); |
| 460 | if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) { |
| 461 | ASSERT(ip->i_afp->if_bytes > 0); |
| 462 | ASSERT(ip->i_afp->if_u1.if_extents != NULL); |
| 463 | ASSERT(ip->i_d.di_anextents > 0); |
| 464 | #ifdef DEBUG |
| 465 | nrecs = ip->i_afp->if_bytes / |
| 466 | (uint)sizeof(xfs_bmbt_rec_t); |
| 467 | #endif |
| 468 | ASSERT(nrecs > 0); |
| 469 | ASSERT(nrecs == ip->i_d.di_anextents); |
| 470 | #if __BYTE_ORDER == __BIG_ENDIAN |
| 471 | /* |
| 472 | * There are not delayed allocation extents |
| 473 | * for attributes, so just point at the array. |
| 474 | */ |
| 475 | vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents); |
| 476 | vecp->i_len = ip->i_afp->if_bytes; |
| 477 | #else |
| 478 | ASSERT(iip->ili_aextents_buf == NULL); |
| 479 | /* |
| 480 | * Need to endian flip before logging |
| 481 | */ |
| 482 | ext_buffer = kmem_alloc(ip->i_afp->if_bytes, |
| 483 | KM_SLEEP); |
| 484 | iip->ili_aextents_buf = ext_buffer; |
| 485 | vecp->i_addr = (xfs_caddr_t)ext_buffer; |
| 486 | vecp->i_len = xfs_iextents_copy(ip, ext_buffer, |
| 487 | XFS_ATTR_FORK); |
| 488 | #endif |
| 489 | iip->ili_format.ilf_asize = vecp->i_len; |
| 490 | vecp++; |
| 491 | nvecs++; |
| 492 | } |
| 493 | break; |
| 494 | |
| 495 | case XFS_DINODE_FMT_BTREE: |
| 496 | ASSERT(!(iip->ili_format.ilf_fields & |
| 497 | (XFS_ILOG_ADATA | XFS_ILOG_AEXT))); |
| 498 | if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) { |
| 499 | ASSERT(ip->i_afp->if_broot_bytes > 0); |
| 500 | ASSERT(ip->i_afp->if_broot != NULL); |
| 501 | vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot; |
| 502 | vecp->i_len = ip->i_afp->if_broot_bytes; |
| 503 | vecp++; |
| 504 | nvecs++; |
| 505 | iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; |
| 506 | } |
| 507 | break; |
| 508 | |
| 509 | case XFS_DINODE_FMT_LOCAL: |
| 510 | ASSERT(!(iip->ili_format.ilf_fields & |
| 511 | (XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); |
| 512 | if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) { |
| 513 | ASSERT(ip->i_afp->if_bytes > 0); |
| 514 | ASSERT(ip->i_afp->if_u1.if_data != NULL); |
| 515 | |
| 516 | vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data; |
| 517 | /* |
| 518 | * Round i_bytes up to a word boundary. |
| 519 | * The underlying memory is guaranteed to |
| 520 | * to be there by xfs_idata_realloc(). |
| 521 | */ |
| 522 | data_bytes = roundup(ip->i_afp->if_bytes, 4); |
| 523 | ASSERT((ip->i_afp->if_real_bytes == 0) || |
| 524 | (ip->i_afp->if_real_bytes == data_bytes)); |
| 525 | vecp->i_len = (int)data_bytes; |
| 526 | vecp++; |
| 527 | nvecs++; |
| 528 | iip->ili_format.ilf_asize = (unsigned)data_bytes; |
| 529 | } |
| 530 | break; |
| 531 | |
| 532 | default: |
| 533 | ASSERT(0); |
| 534 | break; |
| 535 | } |
| 536 | |
| 537 | ASSERT(nvecs == iip->ili_item.li_desc->lid_size); |
| 538 | iip->ili_format.ilf_size = nvecs; |
| 539 | } |
| 540 | |
| 541 | |
| 542 | /* |
| 543 | * This is called to pin the inode associated with the inode log |
| 544 | * item in memory so it cannot be written out. Do this by calling |
| 545 | * xfs_ipin() to bump the pin count in the inode while holding the |
| 546 | * inode pin lock. |
| 547 | */ |
| 548 | STATIC void |
| 549 | xfs_inode_item_pin( |
| 550 | xfs_inode_log_item_t *iip) |
| 551 | { |
| 552 | ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); |
| 553 | xfs_ipin(iip->ili_inode); |
| 554 | } |
| 555 | |
| 556 | |
| 557 | /* |
| 558 | * This is called to unpin the inode associated with the inode log |
| 559 | * item which was previously pinned with a call to xfs_inode_item_pin(). |
| 560 | * Just call xfs_iunpin() on the inode to do this. |
| 561 | */ |
| 562 | /* ARGSUSED */ |
| 563 | STATIC void |
| 564 | xfs_inode_item_unpin( |
| 565 | xfs_inode_log_item_t *iip, |
| 566 | int stale) |
| 567 | { |
| 568 | xfs_iunpin(iip->ili_inode); |
| 569 | } |
| 570 | |
| 571 | /* ARGSUSED */ |
| 572 | STATIC void |
| 573 | xfs_inode_item_unpin_remove( |
| 574 | xfs_inode_log_item_t *iip, |
| 575 | xfs_trans_t *tp) |
| 576 | { |
| 577 | xfs_iunpin(iip->ili_inode); |
| 578 | } |
| 579 | |
| 580 | /* |
| 581 | * This is called to attempt to lock the inode associated with this |
| 582 | * inode log item, in preparation for the push routine which does the actual |
| 583 | * iflush. Don't sleep on the inode lock or the flush lock. |
| 584 | * |
| 585 | * If the flush lock is already held, indicating that the inode has |
| 586 | * been or is in the process of being flushed, then (ideally) we'd like to |
| 587 | * see if the inode's buffer is still incore, and if so give it a nudge. |
| 588 | * We delay doing so until the pushbuf routine, though, to avoid holding |
| 589 | * the AIL lock across a call to the blackhole which is the buffercache. |
| 590 | * Also we don't want to sleep in any device strategy routines, which can happen |
| 591 | * if we do the subsequent bawrite in here. |
| 592 | */ |
| 593 | STATIC uint |
| 594 | xfs_inode_item_trylock( |
| 595 | xfs_inode_log_item_t *iip) |
| 596 | { |
| 597 | register xfs_inode_t *ip; |
| 598 | |
| 599 | ip = iip->ili_inode; |
| 600 | |
| 601 | if (xfs_ipincount(ip) > 0) { |
| 602 | return XFS_ITEM_PINNED; |
| 603 | } |
| 604 | |
| 605 | if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { |
| 606 | return XFS_ITEM_LOCKED; |
| 607 | } |
| 608 | |
| 609 | if (!xfs_iflock_nowait(ip)) { |
| 610 | /* |
| 611 | * If someone else isn't already trying to push the inode |
| 612 | * buffer, we get to do it. |
| 613 | */ |
| 614 | if (iip->ili_pushbuf_flag == 0) { |
| 615 | iip->ili_pushbuf_flag = 1; |
| 616 | #ifdef DEBUG |
| 617 | iip->ili_push_owner = get_thread_id(); |
| 618 | #endif |
| 619 | /* |
| 620 | * Inode is left locked in shared mode. |
| 621 | * Pushbuf routine gets to unlock it. |
| 622 | */ |
| 623 | return XFS_ITEM_PUSHBUF; |
| 624 | } else { |
| 625 | /* |
| 626 | * We hold the AIL_LOCK, so we must specify the |
| 627 | * NONOTIFY flag so that we won't double trip. |
| 628 | */ |
| 629 | xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); |
| 630 | return XFS_ITEM_FLUSHING; |
| 631 | } |
| 632 | /* NOTREACHED */ |
| 633 | } |
| 634 | |
| 635 | /* Stale items should force out the iclog */ |
| 636 | if (ip->i_flags & XFS_ISTALE) { |
| 637 | xfs_ifunlock(ip); |
| 638 | xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); |
| 639 | return XFS_ITEM_PINNED; |
| 640 | } |
| 641 | |
| 642 | #ifdef DEBUG |
| 643 | if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { |
| 644 | ASSERT(iip->ili_format.ilf_fields != 0); |
| 645 | ASSERT(iip->ili_logged == 0); |
| 646 | ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL); |
| 647 | } |
| 648 | #endif |
| 649 | return XFS_ITEM_SUCCESS; |
| 650 | } |
| 651 | |
| 652 | /* |
| 653 | * Unlock the inode associated with the inode log item. |
| 654 | * Clear the fields of the inode and inode log item that |
| 655 | * are specific to the current transaction. If the |
| 656 | * hold flags is set, do not unlock the inode. |
| 657 | */ |
| 658 | STATIC void |
| 659 | xfs_inode_item_unlock( |
| 660 | xfs_inode_log_item_t *iip) |
| 661 | { |
| 662 | uint hold; |
| 663 | uint iolocked; |
| 664 | uint lock_flags; |
| 665 | xfs_inode_t *ip; |
| 666 | |
| 667 | ASSERT(iip != NULL); |
| 668 | ASSERT(iip->ili_inode->i_itemp != NULL); |
| 669 | ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE)); |
| 670 | ASSERT((!(iip->ili_inode->i_itemp->ili_flags & |
| 671 | XFS_ILI_IOLOCKED_EXCL)) || |
| 672 | ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE)); |
| 673 | ASSERT((!(iip->ili_inode->i_itemp->ili_flags & |
| 674 | XFS_ILI_IOLOCKED_SHARED)) || |
| 675 | ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS)); |
| 676 | /* |
| 677 | * Clear the transaction pointer in the inode. |
| 678 | */ |
| 679 | ip = iip->ili_inode; |
| 680 | ip->i_transp = NULL; |
| 681 | |
| 682 | /* |
| 683 | * If the inode needed a separate buffer with which to log |
| 684 | * its extents, then free it now. |
| 685 | */ |
| 686 | if (iip->ili_extents_buf != NULL) { |
| 687 | ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); |
| 688 | ASSERT(ip->i_d.di_nextents > 0); |
| 689 | ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT); |
| 690 | ASSERT(ip->i_df.if_bytes > 0); |
| 691 | kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes); |
| 692 | iip->ili_extents_buf = NULL; |
| 693 | } |
| 694 | if (iip->ili_aextents_buf != NULL) { |
| 695 | ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); |
| 696 | ASSERT(ip->i_d.di_anextents > 0); |
| 697 | ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT); |
| 698 | ASSERT(ip->i_afp->if_bytes > 0); |
| 699 | kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes); |
| 700 | iip->ili_aextents_buf = NULL; |
| 701 | } |
| 702 | |
| 703 | /* |
| 704 | * Figure out if we should unlock the inode or not. |
| 705 | */ |
| 706 | hold = iip->ili_flags & XFS_ILI_HOLD; |
| 707 | |
| 708 | /* |
| 709 | * Before clearing out the flags, remember whether we |
| 710 | * are holding the inode's IO lock. |
| 711 | */ |
| 712 | iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY; |
| 713 | |
| 714 | /* |
| 715 | * Clear out the fields of the inode log item particular |
| 716 | * to the current transaction. |
| 717 | */ |
| 718 | iip->ili_ilock_recur = 0; |
| 719 | iip->ili_iolock_recur = 0; |
| 720 | iip->ili_flags = 0; |
| 721 | |
| 722 | /* |
| 723 | * Unlock the inode if XFS_ILI_HOLD was not set. |
| 724 | */ |
| 725 | if (!hold) { |
| 726 | lock_flags = XFS_ILOCK_EXCL; |
| 727 | if (iolocked & XFS_ILI_IOLOCKED_EXCL) { |
| 728 | lock_flags |= XFS_IOLOCK_EXCL; |
| 729 | } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) { |
| 730 | lock_flags |= XFS_IOLOCK_SHARED; |
| 731 | } |
| 732 | xfs_iput(iip->ili_inode, lock_flags); |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | /* |
| 737 | * This is called to find out where the oldest active copy of the |
| 738 | * inode log item in the on disk log resides now that the last log |
| 739 | * write of it completed at the given lsn. Since we always re-log |
| 740 | * all dirty data in an inode, the latest copy in the on disk log |
| 741 | * is the only one that matters. Therefore, simply return the |
| 742 | * given lsn. |
| 743 | */ |
| 744 | /*ARGSUSED*/ |
| 745 | STATIC xfs_lsn_t |
| 746 | xfs_inode_item_committed( |
| 747 | xfs_inode_log_item_t *iip, |
| 748 | xfs_lsn_t lsn) |
| 749 | { |
| 750 | return (lsn); |
| 751 | } |
| 752 | |
| 753 | /* |
| 754 | * The transaction with the inode locked has aborted. The inode |
| 755 | * must not be dirty within the transaction (unless we're forcibly |
| 756 | * shutting down). We simply unlock just as if the transaction |
| 757 | * had been cancelled. |
| 758 | */ |
| 759 | STATIC void |
| 760 | xfs_inode_item_abort( |
| 761 | xfs_inode_log_item_t *iip) |
| 762 | { |
| 763 | xfs_inode_item_unlock(iip); |
| 764 | return; |
| 765 | } |
| 766 | |
| 767 | |
| 768 | /* |
| 769 | * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK |
| 770 | * failed to get the inode flush lock but did get the inode locked SHARED. |
| 771 | * Here we're trying to see if the inode buffer is incore, and if so whether it's |
| 772 | * marked delayed write. If that's the case, we'll initiate a bawrite on that |
| 773 | * buffer to expedite the process. |
| 774 | * |
| 775 | * We aren't holding the AIL_LOCK (or the flush lock) when this gets called, |
| 776 | * so it is inherently race-y. |
| 777 | */ |
| 778 | STATIC void |
| 779 | xfs_inode_item_pushbuf( |
| 780 | xfs_inode_log_item_t *iip) |
| 781 | { |
| 782 | xfs_inode_t *ip; |
| 783 | xfs_mount_t *mp; |
| 784 | xfs_buf_t *bp; |
| 785 | uint dopush; |
| 786 | |
| 787 | ip = iip->ili_inode; |
| 788 | |
| 789 | ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); |
| 790 | |
| 791 | /* |
| 792 | * The ili_pushbuf_flag keeps others from |
| 793 | * trying to duplicate our effort. |
| 794 | */ |
| 795 | ASSERT(iip->ili_pushbuf_flag != 0); |
| 796 | ASSERT(iip->ili_push_owner == get_thread_id()); |
| 797 | |
| 798 | /* |
| 799 | * If flushlock isn't locked anymore, chances are that the |
| 800 | * inode flush completed and the inode was taken off the AIL. |
| 801 | * So, just get out. |
| 802 | */ |
| 803 | if ((valusema(&(ip->i_flock)) > 0) || |
| 804 | ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) { |
| 805 | iip->ili_pushbuf_flag = 0; |
| 806 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 807 | return; |
| 808 | } |
| 809 | |
| 810 | mp = ip->i_mount; |
| 811 | bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno, |
| 812 | iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK); |
| 813 | |
| 814 | if (bp != NULL) { |
| 815 | if (XFS_BUF_ISDELAYWRITE(bp)) { |
| 816 | /* |
| 817 | * We were racing with iflush because we don't hold |
| 818 | * the AIL_LOCK or the flush lock. However, at this point, |
| 819 | * we have the buffer, and we know that it's dirty. |
| 820 | * So, it's possible that iflush raced with us, and |
| 821 | * this item is already taken off the AIL. |
| 822 | * If not, we can flush it async. |
| 823 | */ |
| 824 | dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) && |
| 825 | (valusema(&(ip->i_flock)) <= 0)); |
| 826 | iip->ili_pushbuf_flag = 0; |
| 827 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 828 | xfs_buftrace("INODE ITEM PUSH", bp); |
| 829 | if (XFS_BUF_ISPINNED(bp)) { |
| 830 | xfs_log_force(mp, (xfs_lsn_t)0, |
| 831 | XFS_LOG_FORCE); |
| 832 | } |
| 833 | if (dopush) { |
| 834 | xfs_bawrite(mp, bp); |
| 835 | } else { |
| 836 | xfs_buf_relse(bp); |
| 837 | } |
| 838 | } else { |
| 839 | iip->ili_pushbuf_flag = 0; |
| 840 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 841 | xfs_buf_relse(bp); |
| 842 | } |
| 843 | return; |
| 844 | } |
| 845 | /* |
| 846 | * We have to be careful about resetting pushbuf flag too early (above). |
| 847 | * Even though in theory we can do it as soon as we have the buflock, |
| 848 | * we don't want others to be doing work needlessly. They'll come to |
| 849 | * this function thinking that pushing the buffer is their |
| 850 | * responsibility only to find that the buffer is still locked by |
| 851 | * another doing the same thing |
| 852 | */ |
| 853 | iip->ili_pushbuf_flag = 0; |
| 854 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 855 | return; |
| 856 | } |
| 857 | |
| 858 | |
| 859 | /* |
| 860 | * This is called to asynchronously write the inode associated with this |
| 861 | * inode log item out to disk. The inode will already have been locked by |
| 862 | * a successful call to xfs_inode_item_trylock(). |
| 863 | */ |
| 864 | STATIC void |
| 865 | xfs_inode_item_push( |
| 866 | xfs_inode_log_item_t *iip) |
| 867 | { |
| 868 | xfs_inode_t *ip; |
| 869 | |
| 870 | ip = iip->ili_inode; |
| 871 | |
| 872 | ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS)); |
| 873 | ASSERT(valusema(&(ip->i_flock)) <= 0); |
| 874 | /* |
| 875 | * Since we were able to lock the inode's flush lock and |
| 876 | * we found it on the AIL, the inode must be dirty. This |
| 877 | * is because the inode is removed from the AIL while still |
| 878 | * holding the flush lock in xfs_iflush_done(). Thus, if |
| 879 | * we found it in the AIL and were able to obtain the flush |
| 880 | * lock without sleeping, then there must not have been |
| 881 | * anyone in the process of flushing the inode. |
| 882 | */ |
| 883 | ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || |
| 884 | iip->ili_format.ilf_fields != 0); |
| 885 | |
| 886 | /* |
| 887 | * Write out the inode. The completion routine ('iflush_done') will |
| 888 | * pull it from the AIL, mark it clean, unlock the flush lock. |
| 889 | */ |
| 890 | (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC); |
| 891 | xfs_iunlock(ip, XFS_ILOCK_SHARED); |
| 892 | |
| 893 | return; |
| 894 | } |
| 895 | |
| 896 | /* |
| 897 | * XXX rcc - this one really has to do something. Probably needs |
| 898 | * to stamp in a new field in the incore inode. |
| 899 | */ |
| 900 | /* ARGSUSED */ |
| 901 | STATIC void |
| 902 | xfs_inode_item_committing( |
| 903 | xfs_inode_log_item_t *iip, |
| 904 | xfs_lsn_t lsn) |
| 905 | { |
| 906 | iip->ili_last_lsn = lsn; |
| 907 | return; |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | * This is the ops vector shared by all buf log items. |
| 912 | */ |
| 913 | struct xfs_item_ops xfs_inode_item_ops = { |
| 914 | .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size, |
| 915 | .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) |
| 916 | xfs_inode_item_format, |
| 917 | .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin, |
| 918 | .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin, |
| 919 | .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) |
| 920 | xfs_inode_item_unpin_remove, |
| 921 | .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock, |
| 922 | .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock, |
| 923 | .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) |
| 924 | xfs_inode_item_committed, |
| 925 | .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push, |
| 926 | .iop_abort = (void(*)(xfs_log_item_t*))xfs_inode_item_abort, |
| 927 | .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf, |
| 928 | .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) |
| 929 | xfs_inode_item_committing |
| 930 | }; |
| 931 | |
| 932 | |
| 933 | /* |
| 934 | * Initialize the inode log item for a newly allocated (in-core) inode. |
| 935 | */ |
| 936 | void |
| 937 | xfs_inode_item_init( |
| 938 | xfs_inode_t *ip, |
| 939 | xfs_mount_t *mp) |
| 940 | { |
| 941 | xfs_inode_log_item_t *iip; |
| 942 | |
| 943 | ASSERT(ip->i_itemp == NULL); |
| 944 | iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); |
| 945 | |
| 946 | iip->ili_item.li_type = XFS_LI_INODE; |
| 947 | iip->ili_item.li_ops = &xfs_inode_item_ops; |
| 948 | iip->ili_item.li_mountp = mp; |
| 949 | iip->ili_inode = ip; |
| 950 | |
| 951 | /* |
| 952 | We have zeroed memory. No need ... |
| 953 | iip->ili_extents_buf = NULL; |
| 954 | iip->ili_pushbuf_flag = 0; |
| 955 | */ |
| 956 | |
| 957 | iip->ili_format.ilf_type = XFS_LI_INODE; |
| 958 | iip->ili_format.ilf_ino = ip->i_ino; |
| 959 | iip->ili_format.ilf_blkno = ip->i_blkno; |
| 960 | iip->ili_format.ilf_len = ip->i_len; |
| 961 | iip->ili_format.ilf_boffset = ip->i_boffset; |
| 962 | } |
| 963 | |
| 964 | /* |
| 965 | * Free the inode log item and any memory hanging off of it. |
| 966 | */ |
| 967 | void |
| 968 | xfs_inode_item_destroy( |
| 969 | xfs_inode_t *ip) |
| 970 | { |
| 971 | #ifdef XFS_TRANS_DEBUG |
| 972 | if (ip->i_itemp->ili_root_size != 0) { |
| 973 | kmem_free(ip->i_itemp->ili_orig_root, |
| 974 | ip->i_itemp->ili_root_size); |
| 975 | } |
| 976 | #endif |
| 977 | kmem_zone_free(xfs_ili_zone, ip->i_itemp); |
| 978 | } |
| 979 | |
| 980 | |
| 981 | /* |
| 982 | * This is the inode flushing I/O completion routine. It is called |
| 983 | * from interrupt level when the buffer containing the inode is |
| 984 | * flushed to disk. It is responsible for removing the inode item |
| 985 | * from the AIL if it has not been re-logged, and unlocking the inode's |
| 986 | * flush lock. |
| 987 | */ |
| 988 | /*ARGSUSED*/ |
| 989 | void |
| 990 | xfs_iflush_done( |
| 991 | xfs_buf_t *bp, |
| 992 | xfs_inode_log_item_t *iip) |
| 993 | { |
| 994 | xfs_inode_t *ip; |
| 995 | SPLDECL(s); |
| 996 | |
| 997 | ip = iip->ili_inode; |
| 998 | |
| 999 | /* |
| 1000 | * We only want to pull the item from the AIL if it is |
| 1001 | * actually there and its location in the log has not |
| 1002 | * changed since we started the flush. Thus, we only bother |
| 1003 | * if the ili_logged flag is set and the inode's lsn has not |
| 1004 | * changed. First we check the lsn outside |
| 1005 | * the lock since it's cheaper, and then we recheck while |
| 1006 | * holding the lock before removing the inode from the AIL. |
| 1007 | */ |
| 1008 | if (iip->ili_logged && |
| 1009 | (iip->ili_item.li_lsn == iip->ili_flush_lsn)) { |
| 1010 | AIL_LOCK(ip->i_mount, s); |
| 1011 | if (iip->ili_item.li_lsn == iip->ili_flush_lsn) { |
| 1012 | /* |
| 1013 | * xfs_trans_delete_ail() drops the AIL lock. |
| 1014 | */ |
| 1015 | xfs_trans_delete_ail(ip->i_mount, |
| 1016 | (xfs_log_item_t*)iip, s); |
| 1017 | } else { |
| 1018 | AIL_UNLOCK(ip->i_mount, s); |
| 1019 | } |
| 1020 | } |
| 1021 | |
| 1022 | iip->ili_logged = 0; |
| 1023 | |
| 1024 | /* |
| 1025 | * Clear the ili_last_fields bits now that we know that the |
| 1026 | * data corresponding to them is safely on disk. |
| 1027 | */ |
| 1028 | iip->ili_last_fields = 0; |
| 1029 | |
| 1030 | /* |
| 1031 | * Release the inode's flush lock since we're done with it. |
| 1032 | */ |
| 1033 | xfs_ifunlock(ip); |
| 1034 | |
| 1035 | return; |
| 1036 | } |
| 1037 | |
| 1038 | /* |
| 1039 | * This is the inode flushing abort routine. It is called |
| 1040 | * from xfs_iflush when the filesystem is shutting down to clean |
| 1041 | * up the inode state. |
| 1042 | * It is responsible for removing the inode item |
| 1043 | * from the AIL if it has not been re-logged, and unlocking the inode's |
| 1044 | * flush lock. |
| 1045 | */ |
| 1046 | void |
| 1047 | xfs_iflush_abort( |
| 1048 | xfs_inode_t *ip) |
| 1049 | { |
| 1050 | xfs_inode_log_item_t *iip; |
| 1051 | xfs_mount_t *mp; |
| 1052 | SPLDECL(s); |
| 1053 | |
| 1054 | iip = ip->i_itemp; |
| 1055 | mp = ip->i_mount; |
| 1056 | if (iip) { |
| 1057 | if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { |
| 1058 | AIL_LOCK(mp, s); |
| 1059 | if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { |
| 1060 | /* |
| 1061 | * xfs_trans_delete_ail() drops the AIL lock. |
| 1062 | */ |
| 1063 | xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip, |
| 1064 | s); |
| 1065 | } else |
| 1066 | AIL_UNLOCK(mp, s); |
| 1067 | } |
| 1068 | iip->ili_logged = 0; |
| 1069 | /* |
| 1070 | * Clear the ili_last_fields bits now that we know that the |
| 1071 | * data corresponding to them is safely on disk. |
| 1072 | */ |
| 1073 | iip->ili_last_fields = 0; |
| 1074 | /* |
| 1075 | * Clear the inode logging fields so no more flushes are |
| 1076 | * attempted. |
| 1077 | */ |
| 1078 | iip->ili_format.ilf_fields = 0; |
| 1079 | } |
| 1080 | /* |
| 1081 | * Release the inode's flush lock since we're done with it. |
| 1082 | */ |
| 1083 | xfs_ifunlock(ip); |
| 1084 | } |
| 1085 | |
| 1086 | void |
| 1087 | xfs_istale_done( |
| 1088 | xfs_buf_t *bp, |
| 1089 | xfs_inode_log_item_t *iip) |
| 1090 | { |
| 1091 | xfs_iflush_abort(iip->ili_inode); |
| 1092 | } |