Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * PCI Express Hot Plug Controller Driver |
| 3 | * |
| 4 | * Copyright (C) 1995,2001 Compaq Computer Corporation |
| 5 | * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) |
| 6 | * Copyright (C) 2001 IBM Corp. |
| 7 | * Copyright (C) 2003-2004 Intel Corporation |
| 8 | * |
| 9 | * All rights reserved. |
| 10 | * |
| 11 | * This program is free software; you can redistribute it and/or modify |
| 12 | * it under the terms of the GNU General Public License as published by |
| 13 | * the Free Software Foundation; either version 2 of the License, or (at |
| 14 | * your option) any later version. |
| 15 | * |
| 16 | * This program is distributed in the hope that it will be useful, but |
| 17 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 19 | * NON INFRINGEMENT. See the GNU General Public License for more |
| 20 | * details. |
| 21 | * |
| 22 | * You should have received a copy of the GNU General Public License |
| 23 | * along with this program; if not, write to the Free Software |
| 24 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 25 | * |
| 26 | * Send feedback to <greg@kroah.com>, <dely.l.sy@intel.com> |
| 27 | * |
| 28 | */ |
| 29 | |
| 30 | #include <linux/config.h> |
| 31 | #include <linux/module.h> |
| 32 | #include <linux/kernel.h> |
| 33 | #include <linux/types.h> |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/workqueue.h> |
| 36 | #include <linux/interrupt.h> |
| 37 | #include <linux/delay.h> |
| 38 | #include <linux/wait.h> |
| 39 | #include <linux/smp_lock.h> |
| 40 | #include <linux/pci.h> |
| 41 | #include "../pci.h" |
| 42 | #include "pciehp.h" |
| 43 | #include "pciehprm.h" |
| 44 | |
| 45 | static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, |
| 46 | u8 behind_bridge, struct resource_lists *resources, u8 bridge_bus, u8 bridge_dev); |
| 47 | static int configure_new_function( struct controller *ctrl, struct pci_func *func, |
| 48 | u8 behind_bridge, struct resource_lists *resources, u8 bridge_bus, u8 bridge_dev); |
| 49 | static void interrupt_event_handler(struct controller *ctrl); |
| 50 | |
| 51 | static struct semaphore event_semaphore; /* mutex for process loop (up if something to process) */ |
| 52 | static struct semaphore event_exit; /* guard ensure thread has exited before calling it quits */ |
| 53 | static int event_finished; |
| 54 | static unsigned long pushbutton_pending; /* = 0 */ |
| 55 | static unsigned long surprise_rm_pending; /* = 0 */ |
| 56 | |
| 57 | u8 pciehp_handle_attention_button(u8 hp_slot, void *inst_id) |
| 58 | { |
| 59 | struct controller *ctrl = (struct controller *) inst_id; |
| 60 | struct slot *p_slot; |
| 61 | u8 rc = 0; |
| 62 | u8 getstatus; |
| 63 | struct pci_func *func; |
| 64 | struct event_info *taskInfo; |
| 65 | |
| 66 | /* Attention Button Change */ |
| 67 | dbg("pciehp: Attention button interrupt received.\n"); |
| 68 | |
| 69 | func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); |
| 70 | |
| 71 | /* This is the structure that tells the worker thread what to do */ |
| 72 | taskInfo = &(ctrl->event_queue[ctrl->next_event]); |
| 73 | p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| 74 | |
| 75 | p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); |
| 76 | p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); |
| 77 | |
| 78 | ctrl->next_event = (ctrl->next_event + 1) % 10; |
| 79 | taskInfo->hp_slot = hp_slot; |
| 80 | |
| 81 | rc++; |
| 82 | |
| 83 | /* |
| 84 | * Button pressed - See if need to TAKE ACTION!!! |
| 85 | */ |
| 86 | info("Button pressed on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| 87 | taskInfo->event_type = INT_BUTTON_PRESS; |
| 88 | |
| 89 | if ((p_slot->state == BLINKINGON_STATE) |
| 90 | || (p_slot->state == BLINKINGOFF_STATE)) { |
| 91 | /* Cancel if we are still blinking; this means that we press the |
| 92 | * attention again before the 5 sec. limit expires to cancel hot-add |
| 93 | * or hot-remove |
| 94 | */ |
| 95 | taskInfo->event_type = INT_BUTTON_CANCEL; |
| 96 | info("Button cancel on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| 97 | } else if ((p_slot->state == POWERON_STATE) |
| 98 | || (p_slot->state == POWEROFF_STATE)) { |
| 99 | /* Ignore if the slot is on power-on or power-off state; this |
| 100 | * means that the previous attention button action to hot-add or |
| 101 | * hot-remove is undergoing |
| 102 | */ |
| 103 | taskInfo->event_type = INT_BUTTON_IGNORE; |
| 104 | info("Button ignore on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| 105 | } |
| 106 | |
| 107 | if (rc) |
| 108 | up(&event_semaphore); /* signal event thread that new event is posted */ |
| 109 | |
| 110 | return 0; |
| 111 | |
| 112 | } |
| 113 | |
| 114 | u8 pciehp_handle_switch_change(u8 hp_slot, void *inst_id) |
| 115 | { |
| 116 | struct controller *ctrl = (struct controller *) inst_id; |
| 117 | struct slot *p_slot; |
| 118 | u8 rc = 0; |
| 119 | u8 getstatus; |
| 120 | struct pci_func *func; |
| 121 | struct event_info *taskInfo; |
| 122 | |
| 123 | /* Switch Change */ |
| 124 | dbg("pciehp: Switch interrupt received.\n"); |
| 125 | |
| 126 | func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); |
| 127 | |
| 128 | /* This is the structure that tells the worker thread |
| 129 | * what to do |
| 130 | */ |
| 131 | taskInfo = &(ctrl->event_queue[ctrl->next_event]); |
| 132 | ctrl->next_event = (ctrl->next_event + 1) % 10; |
| 133 | taskInfo->hp_slot = hp_slot; |
| 134 | |
| 135 | rc++; |
| 136 | p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| 137 | p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); |
| 138 | p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); |
| 139 | |
| 140 | if (getstatus) { |
| 141 | /* |
| 142 | * Switch opened |
| 143 | */ |
| 144 | info("Latch open on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| 145 | func->switch_save = 0; |
| 146 | taskInfo->event_type = INT_SWITCH_OPEN; |
| 147 | } else { |
| 148 | /* |
| 149 | * Switch closed |
| 150 | */ |
| 151 | info("Latch close on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| 152 | func->switch_save = 0x10; |
| 153 | taskInfo->event_type = INT_SWITCH_CLOSE; |
| 154 | } |
| 155 | |
| 156 | if (rc) |
| 157 | up(&event_semaphore); /* signal event thread that new event is posted */ |
| 158 | |
| 159 | return rc; |
| 160 | } |
| 161 | |
| 162 | u8 pciehp_handle_presence_change(u8 hp_slot, void *inst_id) |
| 163 | { |
| 164 | struct controller *ctrl = (struct controller *) inst_id; |
| 165 | struct slot *p_slot; |
| 166 | u8 rc = 0; |
| 167 | struct pci_func *func; |
| 168 | struct event_info *taskInfo; |
| 169 | |
| 170 | /* Presence Change */ |
| 171 | dbg("pciehp: Presence/Notify input change.\n"); |
| 172 | |
| 173 | func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); |
| 174 | |
| 175 | /* This is the structure that tells the worker thread |
| 176 | * what to do |
| 177 | */ |
| 178 | taskInfo = &(ctrl->event_queue[ctrl->next_event]); |
| 179 | ctrl->next_event = (ctrl->next_event + 1) % 10; |
| 180 | taskInfo->hp_slot = hp_slot; |
| 181 | |
| 182 | rc++; |
| 183 | p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| 184 | |
| 185 | /* Switch is open, assume a presence change |
| 186 | * Save the presence state |
| 187 | */ |
| 188 | p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); |
| 189 | if (func->presence_save) { |
| 190 | /* |
| 191 | * Card Present |
| 192 | */ |
| 193 | info("Card present on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| 194 | taskInfo->event_type = INT_PRESENCE_ON; |
| 195 | } else { |
| 196 | /* |
| 197 | * Not Present |
| 198 | */ |
| 199 | info("Card not present on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| 200 | taskInfo->event_type = INT_PRESENCE_OFF; |
| 201 | } |
| 202 | |
| 203 | if (rc) |
| 204 | up(&event_semaphore); /* signal event thread that new event is posted */ |
| 205 | |
| 206 | return rc; |
| 207 | } |
| 208 | |
| 209 | u8 pciehp_handle_power_fault(u8 hp_slot, void *inst_id) |
| 210 | { |
| 211 | struct controller *ctrl = (struct controller *) inst_id; |
| 212 | struct slot *p_slot; |
| 213 | u8 rc = 0; |
| 214 | struct pci_func *func; |
| 215 | struct event_info *taskInfo; |
| 216 | |
| 217 | /* power fault */ |
| 218 | dbg("pciehp: Power fault interrupt received.\n"); |
| 219 | |
| 220 | func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); |
| 221 | |
| 222 | /* this is the structure that tells the worker thread |
| 223 | * what to do |
| 224 | */ |
| 225 | taskInfo = &(ctrl->event_queue[ctrl->next_event]); |
| 226 | ctrl->next_event = (ctrl->next_event + 1) % 10; |
| 227 | taskInfo->hp_slot = hp_slot; |
| 228 | |
| 229 | rc++; |
| 230 | p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| 231 | |
| 232 | if ( !(p_slot->hpc_ops->query_power_fault(p_slot))) { |
| 233 | /* |
| 234 | * power fault Cleared |
| 235 | */ |
| 236 | info("Power fault cleared on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| 237 | func->status = 0x00; |
| 238 | taskInfo->event_type = INT_POWER_FAULT_CLEAR; |
| 239 | } else { |
| 240 | /* |
| 241 | * power fault |
| 242 | */ |
| 243 | info("Power fault on Slot(%d)\n", ctrl->first_slot + hp_slot); |
| 244 | taskInfo->event_type = INT_POWER_FAULT; |
| 245 | /* set power fault status for this board */ |
| 246 | func->status = 0xFF; |
| 247 | info("power fault bit %x set\n", hp_slot); |
| 248 | } |
| 249 | if (rc) |
| 250 | up(&event_semaphore); /* signal event thread that new event is posted */ |
| 251 | |
| 252 | return rc; |
| 253 | } |
| 254 | |
| 255 | |
| 256 | /** |
| 257 | * sort_by_size: sort nodes by their length, smallest first. |
| 258 | * |
| 259 | * @head: list to sort |
| 260 | */ |
| 261 | static int sort_by_size(struct pci_resource **head) |
| 262 | { |
| 263 | struct pci_resource *current_res; |
| 264 | struct pci_resource *next_res; |
| 265 | int out_of_order = 1; |
| 266 | |
| 267 | if (!(*head)) |
| 268 | return 1; |
| 269 | |
| 270 | if (!((*head)->next)) |
| 271 | return 0; |
| 272 | |
| 273 | while (out_of_order) { |
| 274 | out_of_order = 0; |
| 275 | |
| 276 | /* Special case for swapping list head */ |
| 277 | if (((*head)->next) && |
| 278 | ((*head)->length > (*head)->next->length)) { |
| 279 | out_of_order++; |
| 280 | current_res = *head; |
| 281 | *head = (*head)->next; |
| 282 | current_res->next = (*head)->next; |
| 283 | (*head)->next = current_res; |
| 284 | } |
| 285 | |
| 286 | current_res = *head; |
| 287 | |
| 288 | while (current_res->next && current_res->next->next) { |
| 289 | if (current_res->next->length > current_res->next->next->length) { |
| 290 | out_of_order++; |
| 291 | next_res = current_res->next; |
| 292 | current_res->next = current_res->next->next; |
| 293 | current_res = current_res->next; |
| 294 | next_res->next = current_res->next; |
| 295 | current_res->next = next_res; |
| 296 | } else |
| 297 | current_res = current_res->next; |
| 298 | } |
| 299 | } /* End of out_of_order loop */ |
| 300 | |
| 301 | return 0; |
| 302 | } |
| 303 | |
| 304 | |
| 305 | /* |
| 306 | * sort_by_max_size |
| 307 | * |
| 308 | * Sorts nodes on the list by their length. |
| 309 | * Largest first. |
| 310 | * |
| 311 | */ |
| 312 | static int sort_by_max_size(struct pci_resource **head) |
| 313 | { |
| 314 | struct pci_resource *current_res; |
| 315 | struct pci_resource *next_res; |
| 316 | int out_of_order = 1; |
| 317 | |
| 318 | if (!(*head)) |
| 319 | return 1; |
| 320 | |
| 321 | if (!((*head)->next)) |
| 322 | return 0; |
| 323 | |
| 324 | while (out_of_order) { |
| 325 | out_of_order = 0; |
| 326 | |
| 327 | /* Special case for swapping list head */ |
| 328 | if (((*head)->next) && |
| 329 | ((*head)->length < (*head)->next->length)) { |
| 330 | out_of_order++; |
| 331 | current_res = *head; |
| 332 | *head = (*head)->next; |
| 333 | current_res->next = (*head)->next; |
| 334 | (*head)->next = current_res; |
| 335 | } |
| 336 | |
| 337 | current_res = *head; |
| 338 | |
| 339 | while (current_res->next && current_res->next->next) { |
| 340 | if (current_res->next->length < current_res->next->next->length) { |
| 341 | out_of_order++; |
| 342 | next_res = current_res->next; |
| 343 | current_res->next = current_res->next->next; |
| 344 | current_res = current_res->next; |
| 345 | next_res->next = current_res->next; |
| 346 | current_res->next = next_res; |
| 347 | } else |
| 348 | current_res = current_res->next; |
| 349 | } |
| 350 | } /* End of out_of_order loop */ |
| 351 | |
| 352 | return 0; |
| 353 | } |
| 354 | |
| 355 | |
| 356 | /** |
| 357 | * do_pre_bridge_resource_split: return one unused resource node |
| 358 | * @head: list to scan |
| 359 | * |
| 360 | */ |
| 361 | static struct pci_resource * |
| 362 | do_pre_bridge_resource_split(struct pci_resource **head, |
| 363 | struct pci_resource **orig_head, u32 alignment) |
| 364 | { |
| 365 | struct pci_resource *prevnode = NULL; |
| 366 | struct pci_resource *node; |
| 367 | struct pci_resource *split_node; |
| 368 | u32 rc; |
| 369 | u32 temp_dword; |
| 370 | dbg("do_pre_bridge_resource_split\n"); |
| 371 | |
| 372 | if (!(*head) || !(*orig_head)) |
| 373 | return NULL; |
| 374 | |
| 375 | rc = pciehp_resource_sort_and_combine(head); |
| 376 | |
| 377 | if (rc) |
| 378 | return NULL; |
| 379 | |
| 380 | if ((*head)->base != (*orig_head)->base) |
| 381 | return NULL; |
| 382 | |
| 383 | if ((*head)->length == (*orig_head)->length) |
| 384 | return NULL; |
| 385 | |
| 386 | |
| 387 | /* If we got here, there the bridge requires some of the resource, but |
| 388 | * we may be able to split some off of the front |
| 389 | */ |
| 390 | node = *head; |
| 391 | |
| 392 | if (node->length & (alignment -1)) { |
| 393 | /* this one isn't an aligned length, so we'll make a new entry |
| 394 | * and split it up. |
| 395 | */ |
| 396 | split_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); |
| 397 | |
| 398 | if (!split_node) |
| 399 | return NULL; |
| 400 | |
| 401 | temp_dword = (node->length | (alignment-1)) + 1 - alignment; |
| 402 | |
| 403 | split_node->base = node->base; |
| 404 | split_node->length = temp_dword; |
| 405 | |
| 406 | node->length -= temp_dword; |
| 407 | node->base += split_node->length; |
| 408 | |
| 409 | /* Put it in the list */ |
| 410 | *head = split_node; |
| 411 | split_node->next = node; |
| 412 | } |
| 413 | |
| 414 | if (node->length < alignment) |
| 415 | return NULL; |
| 416 | |
| 417 | /* Now unlink it */ |
| 418 | if (*head == node) { |
| 419 | *head = node->next; |
| 420 | } else { |
| 421 | prevnode = *head; |
| 422 | while (prevnode->next != node) |
| 423 | prevnode = prevnode->next; |
| 424 | |
| 425 | prevnode->next = node->next; |
| 426 | } |
| 427 | node->next = NULL; |
| 428 | |
| 429 | return node; |
| 430 | } |
| 431 | |
| 432 | |
| 433 | /** |
| 434 | * do_bridge_resource_split: return one unused resource node |
| 435 | * @head: list to scan |
| 436 | * |
| 437 | */ |
| 438 | static struct pci_resource * |
| 439 | do_bridge_resource_split(struct pci_resource **head, u32 alignment) |
| 440 | { |
| 441 | struct pci_resource *prevnode = NULL; |
| 442 | struct pci_resource *node; |
| 443 | u32 rc; |
| 444 | u32 temp_dword; |
| 445 | |
| 446 | if (!(*head)) |
| 447 | return NULL; |
| 448 | |
| 449 | rc = pciehp_resource_sort_and_combine(head); |
| 450 | |
| 451 | if (rc) |
| 452 | return NULL; |
| 453 | |
| 454 | node = *head; |
| 455 | |
| 456 | while (node->next) { |
| 457 | prevnode = node; |
| 458 | node = node->next; |
| 459 | kfree(prevnode); |
| 460 | } |
| 461 | |
| 462 | if (node->length < alignment) { |
| 463 | kfree(node); |
| 464 | return NULL; |
| 465 | } |
| 466 | |
| 467 | if (node->base & (alignment - 1)) { |
| 468 | /* Short circuit if adjusted size is too small */ |
| 469 | temp_dword = (node->base | (alignment-1)) + 1; |
| 470 | if ((node->length - (temp_dword - node->base)) < alignment) { |
| 471 | kfree(node); |
| 472 | return NULL; |
| 473 | } |
| 474 | |
| 475 | node->length -= (temp_dword - node->base); |
| 476 | node->base = temp_dword; |
| 477 | } |
| 478 | |
| 479 | if (node->length & (alignment - 1)) { |
| 480 | /* There's stuff in use after this node */ |
| 481 | kfree(node); |
| 482 | return NULL; |
| 483 | } |
| 484 | |
| 485 | return node; |
| 486 | } |
| 487 | |
| 488 | |
| 489 | /* |
| 490 | * get_io_resource |
| 491 | * |
| 492 | * this function sorts the resource list by size and then |
| 493 | * returns the first node of "size" length that is not in the |
| 494 | * ISA aliasing window. If it finds a node larger than "size" |
| 495 | * it will split it up. |
| 496 | * |
| 497 | * size must be a power of two. |
| 498 | */ |
| 499 | static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) |
| 500 | { |
| 501 | struct pci_resource *prevnode; |
| 502 | struct pci_resource *node; |
| 503 | struct pci_resource *split_node = NULL; |
| 504 | u32 temp_dword; |
| 505 | |
| 506 | if (!(*head)) |
| 507 | return NULL; |
| 508 | |
| 509 | if ( pciehp_resource_sort_and_combine(head) ) |
| 510 | return NULL; |
| 511 | |
| 512 | if ( sort_by_size(head) ) |
| 513 | return NULL; |
| 514 | |
| 515 | for (node = *head; node; node = node->next) { |
| 516 | if (node->length < size) |
| 517 | continue; |
| 518 | |
| 519 | if (node->base & (size - 1)) { |
| 520 | /* this one isn't base aligned properly |
| 521 | so we'll make a new entry and split it up */ |
| 522 | temp_dword = (node->base | (size-1)) + 1; |
| 523 | |
| 524 | /*/ Short circuit if adjusted size is too small */ |
| 525 | if ((node->length - (temp_dword - node->base)) < size) |
| 526 | continue; |
| 527 | |
| 528 | split_node = kmalloc(sizeof(struct pci_resource), |
| 529 | GFP_KERNEL); |
| 530 | |
| 531 | if (!split_node) |
| 532 | return NULL; |
| 533 | |
| 534 | split_node->base = node->base; |
| 535 | split_node->length = temp_dword - node->base; |
| 536 | node->base = temp_dword; |
| 537 | node->length -= split_node->length; |
| 538 | |
| 539 | /* Put it in the list */ |
| 540 | split_node->next = node->next; |
| 541 | node->next = split_node; |
| 542 | } /* End of non-aligned base */ |
| 543 | |
| 544 | /* Don't need to check if too small since we already did */ |
| 545 | if (node->length > size) { |
| 546 | /* this one is longer than we need |
| 547 | so we'll make a new entry and split it up */ |
| 548 | split_node = kmalloc(sizeof(struct pci_resource), |
| 549 | GFP_KERNEL); |
| 550 | |
| 551 | if (!split_node) |
| 552 | return NULL; |
| 553 | |
| 554 | split_node->base = node->base + size; |
| 555 | split_node->length = node->length - size; |
| 556 | node->length = size; |
| 557 | |
| 558 | /* Put it in the list */ |
| 559 | split_node->next = node->next; |
| 560 | node->next = split_node; |
| 561 | } /* End of too big on top end */ |
| 562 | |
| 563 | /* For IO make sure it's not in the ISA aliasing space */ |
| 564 | if (node->base & 0x300L) |
| 565 | continue; |
| 566 | |
| 567 | /* If we got here, then it is the right size |
| 568 | Now take it out of the list */ |
| 569 | if (*head == node) { |
| 570 | *head = node->next; |
| 571 | } else { |
| 572 | prevnode = *head; |
| 573 | while (prevnode->next != node) |
| 574 | prevnode = prevnode->next; |
| 575 | |
| 576 | prevnode->next = node->next; |
| 577 | } |
| 578 | node->next = NULL; |
| 579 | /* Stop looping */ |
| 580 | break; |
| 581 | } |
| 582 | |
| 583 | return node; |
| 584 | } |
| 585 | |
| 586 | |
| 587 | /* |
| 588 | * get_max_resource |
| 589 | * |
| 590 | * Gets the largest node that is at least "size" big from the |
| 591 | * list pointed to by head. It aligns the node on top and bottom |
| 592 | * to "size" alignment before returning it. |
| 593 | * J.I. modified to put max size limits of; 64M->32M->16M->8M->4M->1M |
| 594 | * This is needed to avoid allocating entire ACPI _CRS res to one child bridge/slot. |
| 595 | */ |
| 596 | static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) |
| 597 | { |
| 598 | struct pci_resource *max; |
| 599 | struct pci_resource *temp; |
| 600 | struct pci_resource *split_node; |
| 601 | u32 temp_dword; |
| 602 | u32 max_size[] = { 0x4000000, 0x2000000, 0x1000000, 0x0800000, 0x0400000, 0x0200000, 0x0100000, 0x00 }; |
| 603 | int i; |
| 604 | |
| 605 | if (!(*head)) |
| 606 | return NULL; |
| 607 | |
| 608 | if (pciehp_resource_sort_and_combine(head)) |
| 609 | return NULL; |
| 610 | |
| 611 | if (sort_by_max_size(head)) |
| 612 | return NULL; |
| 613 | |
| 614 | for (max = *head;max; max = max->next) { |
| 615 | |
| 616 | /* If not big enough we could probably just bail, |
| 617 | instead we'll continue to the next. */ |
| 618 | if (max->length < size) |
| 619 | continue; |
| 620 | |
| 621 | if (max->base & (size - 1)) { |
| 622 | /* this one isn't base aligned properly |
| 623 | so we'll make a new entry and split it up */ |
| 624 | temp_dword = (max->base | (size-1)) + 1; |
| 625 | |
| 626 | /* Short circuit if adjusted size is too small */ |
| 627 | if ((max->length - (temp_dword - max->base)) < size) |
| 628 | continue; |
| 629 | |
| 630 | split_node = kmalloc(sizeof(struct pci_resource), |
| 631 | GFP_KERNEL); |
| 632 | |
| 633 | if (!split_node) |
| 634 | return NULL; |
| 635 | |
| 636 | split_node->base = max->base; |
| 637 | split_node->length = temp_dword - max->base; |
| 638 | max->base = temp_dword; |
| 639 | max->length -= split_node->length; |
| 640 | |
| 641 | /* Put it next in the list */ |
| 642 | split_node->next = max->next; |
| 643 | max->next = split_node; |
| 644 | } |
| 645 | |
| 646 | if ((max->base + max->length) & (size - 1)) { |
| 647 | /* this one isn't end aligned properly at the top |
| 648 | so we'll make a new entry and split it up */ |
| 649 | split_node = kmalloc(sizeof(struct pci_resource), |
| 650 | GFP_KERNEL); |
| 651 | |
| 652 | if (!split_node) |
| 653 | return NULL; |
| 654 | temp_dword = ((max->base + max->length) & ~(size - 1)); |
| 655 | split_node->base = temp_dword; |
| 656 | split_node->length = max->length + max->base |
| 657 | - split_node->base; |
| 658 | max->length -= split_node->length; |
| 659 | |
| 660 | /* Put it in the list */ |
| 661 | split_node->next = max->next; |
| 662 | max->next = split_node; |
| 663 | } |
| 664 | |
| 665 | /* Make sure it didn't shrink too much when we aligned it */ |
| 666 | if (max->length < size) |
| 667 | continue; |
| 668 | |
| 669 | for ( i = 0; max_size[i] > size; i++) { |
| 670 | if (max->length > max_size[i]) { |
| 671 | split_node = kmalloc(sizeof(struct pci_resource), |
| 672 | GFP_KERNEL); |
| 673 | if (!split_node) |
| 674 | break; /* return NULL; */ |
| 675 | split_node->base = max->base + max_size[i]; |
| 676 | split_node->length = max->length - max_size[i]; |
| 677 | max->length = max_size[i]; |
| 678 | /* Put it next in the list */ |
| 679 | split_node->next = max->next; |
| 680 | max->next = split_node; |
| 681 | break; |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | /* Now take it out of the list */ |
| 686 | temp = (struct pci_resource*) *head; |
| 687 | if (temp == max) { |
| 688 | *head = max->next; |
| 689 | } else { |
| 690 | while (temp && temp->next != max) { |
| 691 | temp = temp->next; |
| 692 | } |
| 693 | |
| 694 | temp->next = max->next; |
| 695 | } |
| 696 | |
| 697 | max->next = NULL; |
| 698 | return max; |
| 699 | } |
| 700 | |
| 701 | /* If we get here, we couldn't find one */ |
| 702 | return NULL; |
| 703 | } |
| 704 | |
| 705 | |
| 706 | /* |
| 707 | * get_resource |
| 708 | * |
| 709 | * this function sorts the resource list by size and then |
| 710 | * returns the first node of "size" length. If it finds a node |
| 711 | * larger than "size" it will split it up. |
| 712 | * |
| 713 | * size must be a power of two. |
| 714 | */ |
| 715 | static struct pci_resource *get_resource(struct pci_resource **head, u32 size) |
| 716 | { |
| 717 | struct pci_resource *prevnode; |
| 718 | struct pci_resource *node; |
| 719 | struct pci_resource *split_node; |
| 720 | u32 temp_dword; |
| 721 | |
| 722 | if (!(*head)) |
| 723 | return NULL; |
| 724 | |
| 725 | if ( pciehp_resource_sort_and_combine(head) ) |
| 726 | return NULL; |
| 727 | |
| 728 | if ( sort_by_size(head) ) |
| 729 | return NULL; |
| 730 | |
| 731 | for (node = *head; node; node = node->next) { |
| 732 | dbg("%s: req_size =0x%x node=%p, base=0x%x, length=0x%x\n", |
| 733 | __FUNCTION__, size, node, node->base, node->length); |
| 734 | if (node->length < size) |
| 735 | continue; |
| 736 | |
| 737 | if (node->base & (size - 1)) { |
| 738 | dbg("%s: not aligned\n", __FUNCTION__); |
| 739 | /* this one isn't base aligned properly |
| 740 | so we'll make a new entry and split it up */ |
| 741 | temp_dword = (node->base | (size-1)) + 1; |
| 742 | |
| 743 | /* Short circuit if adjusted size is too small */ |
| 744 | if ((node->length - (temp_dword - node->base)) < size) |
| 745 | continue; |
| 746 | |
| 747 | split_node = kmalloc(sizeof(struct pci_resource), |
| 748 | GFP_KERNEL); |
| 749 | |
| 750 | if (!split_node) |
| 751 | return NULL; |
| 752 | |
| 753 | split_node->base = node->base; |
| 754 | split_node->length = temp_dword - node->base; |
| 755 | node->base = temp_dword; |
| 756 | node->length -= split_node->length; |
| 757 | |
| 758 | /* Put it in the list */ |
| 759 | split_node->next = node->next; |
| 760 | node->next = split_node; |
| 761 | } /* End of non-aligned base */ |
| 762 | |
| 763 | /* Don't need to check if too small since we already did */ |
| 764 | if (node->length > size) { |
| 765 | dbg("%s: too big\n", __FUNCTION__); |
| 766 | /* this one is longer than we need |
| 767 | so we'll make a new entry and split it up */ |
| 768 | split_node = kmalloc(sizeof(struct pci_resource), |
| 769 | GFP_KERNEL); |
| 770 | |
| 771 | if (!split_node) |
| 772 | return NULL; |
| 773 | |
| 774 | split_node->base = node->base + size; |
| 775 | split_node->length = node->length - size; |
| 776 | node->length = size; |
| 777 | |
| 778 | /* Put it in the list */ |
| 779 | split_node->next = node->next; |
| 780 | node->next = split_node; |
| 781 | } /* End of too big on top end */ |
| 782 | |
| 783 | dbg("%s: got one!!!\n", __FUNCTION__); |
| 784 | /* If we got here, then it is the right size |
| 785 | Now take it out of the list */ |
| 786 | if (*head == node) { |
| 787 | *head = node->next; |
| 788 | } else { |
| 789 | prevnode = *head; |
| 790 | while (prevnode->next != node) |
| 791 | prevnode = prevnode->next; |
| 792 | |
| 793 | prevnode->next = node->next; |
| 794 | } |
| 795 | node->next = NULL; |
| 796 | /* Stop looping */ |
| 797 | break; |
| 798 | } |
| 799 | return node; |
| 800 | } |
| 801 | |
| 802 | |
| 803 | /* |
| 804 | * pciehp_resource_sort_and_combine |
| 805 | * |
| 806 | * Sorts all of the nodes in the list in ascending order by |
| 807 | * their base addresses. Also does garbage collection by |
| 808 | * combining adjacent nodes. |
| 809 | * |
| 810 | * returns 0 if success |
| 811 | */ |
| 812 | int pciehp_resource_sort_and_combine(struct pci_resource **head) |
| 813 | { |
| 814 | struct pci_resource *node1; |
| 815 | struct pci_resource *node2; |
| 816 | int out_of_order = 1; |
| 817 | |
| 818 | dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head); |
| 819 | |
| 820 | if (!(*head)) |
| 821 | return 1; |
| 822 | |
| 823 | dbg("*head->next = %p\n",(*head)->next); |
| 824 | |
| 825 | if (!(*head)->next) |
| 826 | return 0; /* only one item on the list, already sorted! */ |
| 827 | |
| 828 | dbg("*head->base = 0x%x\n",(*head)->base); |
| 829 | dbg("*head->next->base = 0x%x\n",(*head)->next->base); |
| 830 | while (out_of_order) { |
| 831 | out_of_order = 0; |
| 832 | |
| 833 | /* Special case for swapping list head */ |
| 834 | if (((*head)->next) && |
| 835 | ((*head)->base > (*head)->next->base)) { |
| 836 | node1 = *head; |
| 837 | (*head) = (*head)->next; |
| 838 | node1->next = (*head)->next; |
| 839 | (*head)->next = node1; |
| 840 | out_of_order++; |
| 841 | } |
| 842 | |
| 843 | node1 = (*head); |
| 844 | |
| 845 | while (node1->next && node1->next->next) { |
| 846 | if (node1->next->base > node1->next->next->base) { |
| 847 | out_of_order++; |
| 848 | node2 = node1->next; |
| 849 | node1->next = node1->next->next; |
| 850 | node1 = node1->next; |
| 851 | node2->next = node1->next; |
| 852 | node1->next = node2; |
| 853 | } else |
| 854 | node1 = node1->next; |
| 855 | } |
| 856 | } /* End of out_of_order loop */ |
| 857 | |
| 858 | node1 = *head; |
| 859 | |
| 860 | while (node1 && node1->next) { |
| 861 | if ((node1->base + node1->length) == node1->next->base) { |
| 862 | /* Combine */ |
| 863 | dbg("8..\n"); |
| 864 | node1->length += node1->next->length; |
| 865 | node2 = node1->next; |
| 866 | node1->next = node1->next->next; |
| 867 | kfree(node2); |
| 868 | } else |
| 869 | node1 = node1->next; |
| 870 | } |
| 871 | |
| 872 | return 0; |
| 873 | } |
| 874 | |
| 875 | |
| 876 | /** |
| 877 | * pciehp_slot_create - Creates a node and adds it to the proper bus. |
| 878 | * @busnumber - bus where new node is to be located |
| 879 | * |
| 880 | * Returns pointer to the new node or NULL if unsuccessful |
| 881 | */ |
| 882 | struct pci_func *pciehp_slot_create(u8 busnumber) |
| 883 | { |
| 884 | struct pci_func *new_slot; |
| 885 | struct pci_func *next; |
| 886 | dbg("%s: busnumber %x\n", __FUNCTION__, busnumber); |
| 887 | new_slot = kmalloc(sizeof(struct pci_func), GFP_KERNEL); |
| 888 | |
| 889 | if (new_slot == NULL) |
| 890 | return new_slot; |
| 891 | |
| 892 | memset(new_slot, 0, sizeof(struct pci_func)); |
| 893 | |
| 894 | new_slot->next = NULL; |
| 895 | new_slot->configured = 1; |
| 896 | |
| 897 | if (pciehp_slot_list[busnumber] == NULL) { |
| 898 | pciehp_slot_list[busnumber] = new_slot; |
| 899 | } else { |
| 900 | next = pciehp_slot_list[busnumber]; |
| 901 | while (next->next != NULL) |
| 902 | next = next->next; |
| 903 | next->next = new_slot; |
| 904 | } |
| 905 | return new_slot; |
| 906 | } |
| 907 | |
| 908 | |
| 909 | /** |
| 910 | * slot_remove - Removes a node from the linked list of slots. |
| 911 | * @old_slot: slot to remove |
| 912 | * |
| 913 | * Returns 0 if successful, !0 otherwise. |
| 914 | */ |
| 915 | static int slot_remove(struct pci_func * old_slot) |
| 916 | { |
| 917 | struct pci_func *next; |
| 918 | |
| 919 | if (old_slot == NULL) |
| 920 | return 1; |
| 921 | |
| 922 | next = pciehp_slot_list[old_slot->bus]; |
| 923 | |
| 924 | if (next == NULL) |
| 925 | return 1; |
| 926 | |
| 927 | if (next == old_slot) { |
| 928 | pciehp_slot_list[old_slot->bus] = old_slot->next; |
| 929 | pciehp_destroy_board_resources(old_slot); |
| 930 | kfree(old_slot); |
| 931 | return 0; |
| 932 | } |
| 933 | |
| 934 | while ((next->next != old_slot) && (next->next != NULL)) { |
| 935 | next = next->next; |
| 936 | } |
| 937 | |
| 938 | if (next->next == old_slot) { |
| 939 | next->next = old_slot->next; |
| 940 | pciehp_destroy_board_resources(old_slot); |
| 941 | kfree(old_slot); |
| 942 | return 0; |
| 943 | } else |
| 944 | return 2; |
| 945 | } |
| 946 | |
| 947 | |
| 948 | /** |
| 949 | * bridge_slot_remove - Removes a node from the linked list of slots. |
| 950 | * @bridge: bridge to remove |
| 951 | * |
| 952 | * Returns 0 if successful, !0 otherwise. |
| 953 | */ |
| 954 | static int bridge_slot_remove(struct pci_func *bridge) |
| 955 | { |
| 956 | u8 subordinateBus, secondaryBus; |
| 957 | u8 tempBus; |
| 958 | struct pci_func *next; |
| 959 | |
| 960 | if (bridge == NULL) |
| 961 | return 1; |
| 962 | |
| 963 | secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; |
| 964 | subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; |
| 965 | |
| 966 | for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { |
| 967 | next = pciehp_slot_list[tempBus]; |
| 968 | |
| 969 | while (!slot_remove(next)) { |
| 970 | next = pciehp_slot_list[tempBus]; |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | next = pciehp_slot_list[bridge->bus]; |
| 975 | |
| 976 | if (next == NULL) { |
| 977 | return 1; |
| 978 | } |
| 979 | |
| 980 | if (next == bridge) { |
| 981 | pciehp_slot_list[bridge->bus] = bridge->next; |
| 982 | kfree(bridge); |
| 983 | return 0; |
| 984 | } |
| 985 | |
| 986 | while ((next->next != bridge) && (next->next != NULL)) { |
| 987 | next = next->next; |
| 988 | } |
| 989 | |
| 990 | if (next->next == bridge) { |
| 991 | next->next = bridge->next; |
| 992 | kfree(bridge); |
| 993 | return 0; |
| 994 | } else |
| 995 | return 2; |
| 996 | } |
| 997 | |
| 998 | |
| 999 | /** |
| 1000 | * pciehp_slot_find - Looks for a node by bus, and device, multiple functions accessed |
| 1001 | * @bus: bus to find |
| 1002 | * @device: device to find |
| 1003 | * @index: is 0 for first function found, 1 for the second... |
| 1004 | * |
| 1005 | * Returns pointer to the node if successful, %NULL otherwise. |
| 1006 | */ |
| 1007 | struct pci_func *pciehp_slot_find(u8 bus, u8 device, u8 index) |
| 1008 | { |
| 1009 | int found = -1; |
| 1010 | struct pci_func *func; |
| 1011 | |
| 1012 | func = pciehp_slot_list[bus]; |
| 1013 | dbg("%s: bus %x device %x index %x\n", |
| 1014 | __FUNCTION__, bus, device, index); |
| 1015 | if (func != NULL) { |
| 1016 | dbg("%s: func-> bus %x device %x function %x pci_dev %p\n", |
| 1017 | __FUNCTION__, func->bus, func->device, func->function, |
| 1018 | func->pci_dev); |
| 1019 | } else |
| 1020 | dbg("%s: func == NULL\n", __FUNCTION__); |
| 1021 | |
| 1022 | if ((func == NULL) || ((func->device == device) && (index == 0))) |
| 1023 | return func; |
| 1024 | |
| 1025 | if (func->device == device) |
| 1026 | found++; |
| 1027 | |
| 1028 | while (func->next != NULL) { |
| 1029 | func = func->next; |
| 1030 | |
| 1031 | dbg("%s: In while loop, func-> bus %x device %x function %x pci_dev %p\n", |
| 1032 | __FUNCTION__, func->bus, func->device, func->function, |
| 1033 | func->pci_dev); |
| 1034 | if (func->device == device) |
| 1035 | found++; |
| 1036 | dbg("%s: while loop, found %d, index %d\n", __FUNCTION__, |
| 1037 | found, index); |
| 1038 | |
| 1039 | if ((found == index) || (func->function == index)) { |
| 1040 | dbg("%s: Found bus %x dev %x func %x\n", __FUNCTION__, |
| 1041 | func->bus, func->device, func->function); |
| 1042 | return func; |
| 1043 | } |
| 1044 | } |
| 1045 | |
| 1046 | return NULL; |
| 1047 | } |
| 1048 | |
| 1049 | static int is_bridge(struct pci_func * func) |
| 1050 | { |
| 1051 | /* Check the header type */ |
| 1052 | if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) |
| 1053 | return 1; |
| 1054 | else |
| 1055 | return 0; |
| 1056 | } |
| 1057 | |
| 1058 | |
| 1059 | /* The following routines constitute the bulk of the |
| 1060 | hotplug controller logic |
| 1061 | */ |
| 1062 | |
| 1063 | static void set_slot_off(struct controller *ctrl, struct slot * pslot) |
| 1064 | { |
| 1065 | /* Wait for exclusive access to hardware */ |
| 1066 | down(&ctrl->crit_sect); |
| 1067 | |
| 1068 | /* turn off slot, turn on Amber LED, turn off Green LED if supported*/ |
| 1069 | if (POWER_CTRL(ctrl->ctrlcap)) { |
| 1070 | if (pslot->hpc_ops->power_off_slot(pslot)) { |
| 1071 | err("%s: Issue of Slot Power Off command failed\n", __FUNCTION__); |
| 1072 | up(&ctrl->crit_sect); |
| 1073 | return; |
| 1074 | } |
| 1075 | wait_for_ctrl_irq (ctrl); |
| 1076 | } |
| 1077 | |
| 1078 | if (PWR_LED(ctrl->ctrlcap)) { |
| 1079 | pslot->hpc_ops->green_led_off(pslot); |
| 1080 | wait_for_ctrl_irq (ctrl); |
| 1081 | } |
| 1082 | |
| 1083 | if (ATTN_LED(ctrl->ctrlcap)) { |
| 1084 | if (pslot->hpc_ops->set_attention_status(pslot, 1)) { |
| 1085 | err("%s: Issue of Set Attention Led command failed\n", __FUNCTION__); |
| 1086 | up(&ctrl->crit_sect); |
| 1087 | return; |
| 1088 | } |
| 1089 | wait_for_ctrl_irq (ctrl); |
| 1090 | } |
| 1091 | |
| 1092 | /* Done with exclusive hardware access */ |
| 1093 | up(&ctrl->crit_sect); |
| 1094 | } |
| 1095 | |
| 1096 | /** |
| 1097 | * board_added - Called after a board has been added to the system. |
| 1098 | * |
| 1099 | * Turns power on for the board |
| 1100 | * Configures board |
| 1101 | * |
| 1102 | */ |
| 1103 | static u32 board_added(struct pci_func * func, struct controller * ctrl) |
| 1104 | { |
| 1105 | u8 hp_slot; |
| 1106 | int index; |
| 1107 | u32 temp_register = 0xFFFFFFFF; |
| 1108 | u32 rc = 0; |
| 1109 | struct pci_func *new_func = NULL; |
| 1110 | struct slot *p_slot; |
| 1111 | struct resource_lists res_lists; |
| 1112 | |
| 1113 | p_slot = pciehp_find_slot(ctrl, func->device); |
| 1114 | hp_slot = func->device - ctrl->slot_device_offset; |
| 1115 | |
| 1116 | dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot); |
| 1117 | |
| 1118 | /* Wait for exclusive access to hardware */ |
| 1119 | down(&ctrl->crit_sect); |
| 1120 | |
| 1121 | if (POWER_CTRL(ctrl->ctrlcap)) { |
| 1122 | /* Power on slot */ |
| 1123 | rc = p_slot->hpc_ops->power_on_slot(p_slot); |
| 1124 | if (rc) { |
| 1125 | up(&ctrl->crit_sect); |
| 1126 | return -1; |
| 1127 | } |
| 1128 | |
| 1129 | /* Wait for the command to complete */ |
| 1130 | wait_for_ctrl_irq (ctrl); |
| 1131 | } |
| 1132 | |
| 1133 | if (PWR_LED(ctrl->ctrlcap)) { |
| 1134 | p_slot->hpc_ops->green_led_blink(p_slot); |
| 1135 | |
| 1136 | /* Wait for the command to complete */ |
| 1137 | wait_for_ctrl_irq (ctrl); |
| 1138 | } |
| 1139 | |
| 1140 | /* Done with exclusive hardware access */ |
| 1141 | up(&ctrl->crit_sect); |
| 1142 | |
| 1143 | /* Wait for ~1 second */ |
| 1144 | dbg("%s: before long_delay\n", __FUNCTION__); |
| 1145 | wait_for_ctrl_irq (ctrl); |
| 1146 | dbg("%s: afterlong_delay\n", __FUNCTION__); |
| 1147 | |
| 1148 | /* Check link training status */ |
| 1149 | rc = p_slot->hpc_ops->check_lnk_status(ctrl); |
| 1150 | if (rc) { |
| 1151 | err("%s: Failed to check link status\n", __FUNCTION__); |
| 1152 | set_slot_off(ctrl, p_slot); |
| 1153 | return rc; |
| 1154 | } |
| 1155 | |
| 1156 | dbg("%s: func status = %x\n", __FUNCTION__, func->status); |
| 1157 | |
| 1158 | /* Check for a power fault */ |
| 1159 | if (func->status == 0xFF) { |
| 1160 | /* power fault occurred, but it was benign */ |
| 1161 | temp_register = 0xFFFFFFFF; |
| 1162 | dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register); |
| 1163 | rc = POWER_FAILURE; |
| 1164 | func->status = 0; |
| 1165 | } else { |
| 1166 | /* Get vendor/device ID u32 */ |
| 1167 | rc = pci_bus_read_config_dword (ctrl->pci_dev->subordinate, PCI_DEVFN(func->device, func->function), |
| 1168 | PCI_VENDOR_ID, &temp_register); |
| 1169 | dbg("%s: pci_bus_read_config_dword returns %d\n", __FUNCTION__, rc); |
| 1170 | dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register); |
| 1171 | |
| 1172 | if (rc != 0) { |
| 1173 | /* Something's wrong here */ |
| 1174 | temp_register = 0xFFFFFFFF; |
| 1175 | dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register); |
| 1176 | } |
| 1177 | /* Preset return code. It will be changed later if things go okay. */ |
| 1178 | rc = NO_ADAPTER_PRESENT; |
| 1179 | } |
| 1180 | |
| 1181 | /* All F's is an empty slot or an invalid board */ |
| 1182 | if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */ |
| 1183 | res_lists.io_head = ctrl->io_head; |
| 1184 | res_lists.mem_head = ctrl->mem_head; |
| 1185 | res_lists.p_mem_head = ctrl->p_mem_head; |
| 1186 | res_lists.bus_head = ctrl->bus_head; |
| 1187 | res_lists.irqs = NULL; |
| 1188 | |
| 1189 | rc = configure_new_device(ctrl, func, 0, &res_lists, 0, 0); |
| 1190 | dbg("%s: back from configure_new_device\n", __FUNCTION__); |
| 1191 | |
| 1192 | ctrl->io_head = res_lists.io_head; |
| 1193 | ctrl->mem_head = res_lists.mem_head; |
| 1194 | ctrl->p_mem_head = res_lists.p_mem_head; |
| 1195 | ctrl->bus_head = res_lists.bus_head; |
| 1196 | |
| 1197 | pciehp_resource_sort_and_combine(&(ctrl->mem_head)); |
| 1198 | pciehp_resource_sort_and_combine(&(ctrl->p_mem_head)); |
| 1199 | pciehp_resource_sort_and_combine(&(ctrl->io_head)); |
| 1200 | pciehp_resource_sort_and_combine(&(ctrl->bus_head)); |
| 1201 | |
| 1202 | if (rc) { |
| 1203 | set_slot_off(ctrl, p_slot); |
| 1204 | return rc; |
| 1205 | } |
| 1206 | pciehp_save_slot_config(ctrl, func); |
| 1207 | |
| 1208 | func->status = 0; |
| 1209 | func->switch_save = 0x10; |
| 1210 | func->is_a_board = 0x01; |
| 1211 | |
| 1212 | /* next, we will instantiate the linux pci_dev structures |
| 1213 | * (with appropriate driver notification, if already present) |
| 1214 | */ |
| 1215 | index = 0; |
| 1216 | do { |
| 1217 | new_func = pciehp_slot_find(ctrl->slot_bus, func->device, index++); |
| 1218 | if (new_func && !new_func->pci_dev) { |
| 1219 | dbg("%s:call pci_hp_configure_dev, func %x\n", |
| 1220 | __FUNCTION__, index); |
| 1221 | pciehp_configure_device(ctrl, new_func); |
| 1222 | } |
| 1223 | } while (new_func); |
| 1224 | |
| 1225 | /* |
| 1226 | * Some PCI Express root ports require fixup after hot-plug operation. |
| 1227 | */ |
| 1228 | if (pcie_mch_quirk) |
| 1229 | pci_fixup_device(pci_fixup_final, ctrl->pci_dev); |
| 1230 | |
| 1231 | if (PWR_LED(ctrl->ctrlcap)) { |
| 1232 | /* Wait for exclusive access to hardware */ |
| 1233 | down(&ctrl->crit_sect); |
| 1234 | |
| 1235 | p_slot->hpc_ops->green_led_on(p_slot); |
| 1236 | |
| 1237 | /* Wait for the command to complete */ |
| 1238 | wait_for_ctrl_irq (ctrl); |
| 1239 | |
| 1240 | /* Done with exclusive hardware access */ |
| 1241 | up(&ctrl->crit_sect); |
| 1242 | } |
| 1243 | } else { |
| 1244 | set_slot_off(ctrl, p_slot); |
| 1245 | return -1; |
| 1246 | } |
| 1247 | return 0; |
| 1248 | } |
| 1249 | |
| 1250 | |
| 1251 | /** |
| 1252 | * remove_board - Turns off slot and LED's |
| 1253 | * |
| 1254 | */ |
| 1255 | static u32 remove_board(struct pci_func *func, struct controller *ctrl) |
| 1256 | { |
| 1257 | int index; |
| 1258 | u8 skip = 0; |
| 1259 | u8 device; |
| 1260 | u8 hp_slot; |
| 1261 | u32 rc; |
| 1262 | struct resource_lists res_lists; |
| 1263 | struct pci_func *temp_func; |
| 1264 | struct slot *p_slot; |
| 1265 | |
| 1266 | if (func == NULL) |
| 1267 | return 1; |
| 1268 | |
| 1269 | if (pciehp_unconfigure_device(func)) |
| 1270 | return 1; |
| 1271 | |
| 1272 | device = func->device; |
| 1273 | |
| 1274 | hp_slot = func->device - ctrl->slot_device_offset; |
| 1275 | p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| 1276 | |
| 1277 | dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot); |
| 1278 | |
| 1279 | if ((ctrl->add_support) && |
| 1280 | !(func->bus_head || func->mem_head || func->p_mem_head || func->io_head)) { |
| 1281 | /* Here we check to see if we've saved any of the board's |
| 1282 | * resources already. If so, we'll skip the attempt to |
| 1283 | * determine what's being used. |
| 1284 | */ |
| 1285 | index = 0; |
| 1286 | |
| 1287 | temp_func = func; |
| 1288 | |
| 1289 | while ((temp_func = pciehp_slot_find(temp_func->bus, temp_func->device, index++))) { |
| 1290 | if (temp_func->bus_head || temp_func->mem_head |
| 1291 | || temp_func->p_mem_head || temp_func->io_head) { |
| 1292 | skip = 1; |
| 1293 | break; |
| 1294 | } |
| 1295 | } |
| 1296 | |
| 1297 | if (!skip) |
| 1298 | rc = pciehp_save_used_resources(ctrl, func, DISABLE_CARD); |
| 1299 | } |
| 1300 | /* Change status to shutdown */ |
| 1301 | if (func->is_a_board) |
| 1302 | func->status = 0x01; |
| 1303 | func->configured = 0; |
| 1304 | |
| 1305 | /* Wait for exclusive access to hardware */ |
| 1306 | down(&ctrl->crit_sect); |
| 1307 | |
| 1308 | if (POWER_CTRL(ctrl->ctrlcap)) { |
| 1309 | /* power off slot */ |
| 1310 | rc = p_slot->hpc_ops->power_off_slot(p_slot); |
| 1311 | if (rc) { |
| 1312 | err("%s: Issue of Slot Disable command failed\n", __FUNCTION__); |
| 1313 | up(&ctrl->crit_sect); |
| 1314 | return rc; |
| 1315 | } |
| 1316 | /* Wait for the command to complete */ |
| 1317 | wait_for_ctrl_irq (ctrl); |
| 1318 | } |
| 1319 | |
| 1320 | if (PWR_LED(ctrl->ctrlcap)) { |
| 1321 | /* turn off Green LED */ |
| 1322 | p_slot->hpc_ops->green_led_off(p_slot); |
| 1323 | |
| 1324 | /* Wait for the command to complete */ |
| 1325 | wait_for_ctrl_irq (ctrl); |
| 1326 | } |
| 1327 | |
| 1328 | /* Done with exclusive hardware access */ |
| 1329 | up(&ctrl->crit_sect); |
| 1330 | |
| 1331 | if (ctrl->add_support) { |
| 1332 | while (func) { |
| 1333 | res_lists.io_head = ctrl->io_head; |
| 1334 | res_lists.mem_head = ctrl->mem_head; |
| 1335 | res_lists.p_mem_head = ctrl->p_mem_head; |
| 1336 | res_lists.bus_head = ctrl->bus_head; |
| 1337 | |
| 1338 | dbg("Returning resources to ctlr lists for (B/D/F) = (%#x/%#x/%#x)\n", |
| 1339 | func->bus, func->device, func->function); |
| 1340 | |
| 1341 | pciehp_return_board_resources(func, &res_lists); |
| 1342 | |
| 1343 | ctrl->io_head = res_lists.io_head; |
| 1344 | ctrl->mem_head = res_lists.mem_head; |
| 1345 | ctrl->p_mem_head = res_lists.p_mem_head; |
| 1346 | ctrl->bus_head = res_lists.bus_head; |
| 1347 | |
| 1348 | pciehp_resource_sort_and_combine(&(ctrl->mem_head)); |
| 1349 | pciehp_resource_sort_and_combine(&(ctrl->p_mem_head)); |
| 1350 | pciehp_resource_sort_and_combine(&(ctrl->io_head)); |
| 1351 | pciehp_resource_sort_and_combine(&(ctrl->bus_head)); |
| 1352 | |
| 1353 | if (is_bridge(func)) { |
| 1354 | dbg("PCI Bridge Hot-Remove s:b:d:f(%02x:%02x:%02x:%02x)\n", |
| 1355 | ctrl->seg, func->bus, func->device, func->function); |
| 1356 | bridge_slot_remove(func); |
| 1357 | } else { |
| 1358 | dbg("PCI Function Hot-Remove s:b:d:f(%02x:%02x:%02x:%02x)\n", |
| 1359 | ctrl->seg, func->bus, func->device, func->function); |
| 1360 | slot_remove(func); |
| 1361 | } |
| 1362 | |
| 1363 | func = pciehp_slot_find(ctrl->slot_bus, device, 0); |
| 1364 | } |
| 1365 | |
| 1366 | /* Setup slot structure with entry for empty slot */ |
| 1367 | func = pciehp_slot_create(ctrl->slot_bus); |
| 1368 | |
| 1369 | if (func == NULL) { |
| 1370 | return 1; |
| 1371 | } |
| 1372 | |
| 1373 | func->bus = ctrl->slot_bus; |
| 1374 | func->device = device; |
| 1375 | func->function = 0; |
| 1376 | func->configured = 0; |
| 1377 | func->switch_save = 0x10; |
| 1378 | func->is_a_board = 0; |
| 1379 | } |
| 1380 | |
| 1381 | return 0; |
| 1382 | } |
| 1383 | |
| 1384 | |
| 1385 | static void pushbutton_helper_thread(unsigned long data) |
| 1386 | { |
| 1387 | pushbutton_pending = data; |
| 1388 | |
| 1389 | up(&event_semaphore); |
| 1390 | } |
| 1391 | |
| 1392 | /** |
| 1393 | * pciehp_pushbutton_thread |
| 1394 | * |
| 1395 | * Scheduled procedure to handle blocking stuff for the pushbuttons |
| 1396 | * Handles all pending events and exits. |
| 1397 | * |
| 1398 | */ |
| 1399 | static void pciehp_pushbutton_thread(unsigned long slot) |
| 1400 | { |
| 1401 | struct slot *p_slot = (struct slot *) slot; |
| 1402 | u8 getstatus; |
| 1403 | |
| 1404 | pushbutton_pending = 0; |
| 1405 | |
| 1406 | if (!p_slot) { |
| 1407 | dbg("%s: Error! slot NULL\n", __FUNCTION__); |
| 1408 | return; |
| 1409 | } |
| 1410 | |
| 1411 | p_slot->hpc_ops->get_power_status(p_slot, &getstatus); |
| 1412 | if (getstatus) { |
| 1413 | p_slot->state = POWEROFF_STATE; |
| 1414 | dbg("In power_down_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device); |
| 1415 | |
| 1416 | pciehp_disable_slot(p_slot); |
| 1417 | p_slot->state = STATIC_STATE; |
| 1418 | } else { |
| 1419 | p_slot->state = POWERON_STATE; |
| 1420 | dbg("In add_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device); |
| 1421 | |
| 1422 | if (pciehp_enable_slot(p_slot) && PWR_LED(p_slot->ctrl->ctrlcap)) { |
| 1423 | /* Wait for exclusive access to hardware */ |
| 1424 | down(&p_slot->ctrl->crit_sect); |
| 1425 | |
| 1426 | p_slot->hpc_ops->green_led_off(p_slot); |
| 1427 | |
| 1428 | /* Wait for the command to complete */ |
| 1429 | wait_for_ctrl_irq (p_slot->ctrl); |
| 1430 | |
| 1431 | /* Done with exclusive hardware access */ |
| 1432 | up(&p_slot->ctrl->crit_sect); |
| 1433 | } |
| 1434 | p_slot->state = STATIC_STATE; |
| 1435 | } |
| 1436 | |
| 1437 | return; |
| 1438 | } |
| 1439 | |
| 1440 | /** |
| 1441 | * pciehp_surprise_rm_thread |
| 1442 | * |
| 1443 | * Scheduled procedure to handle blocking stuff for the surprise removal |
| 1444 | * Handles all pending events and exits. |
| 1445 | * |
| 1446 | */ |
| 1447 | static void pciehp_surprise_rm_thread(unsigned long slot) |
| 1448 | { |
| 1449 | struct slot *p_slot = (struct slot *) slot; |
| 1450 | u8 getstatus; |
| 1451 | |
| 1452 | surprise_rm_pending = 0; |
| 1453 | |
| 1454 | if (!p_slot) { |
| 1455 | dbg("%s: Error! slot NULL\n", __FUNCTION__); |
| 1456 | return; |
| 1457 | } |
| 1458 | |
| 1459 | p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus); |
| 1460 | if (!getstatus) { |
| 1461 | p_slot->state = POWEROFF_STATE; |
| 1462 | dbg("In removing board, b:d(%x:%x)\n", p_slot->bus, p_slot->device); |
| 1463 | |
| 1464 | pciehp_disable_slot(p_slot); |
| 1465 | p_slot->state = STATIC_STATE; |
| 1466 | } else { |
| 1467 | p_slot->state = POWERON_STATE; |
| 1468 | dbg("In add_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device); |
| 1469 | |
| 1470 | if (pciehp_enable_slot(p_slot) && PWR_LED(p_slot->ctrl->ctrlcap)) { |
| 1471 | /* Wait for exclusive access to hardware */ |
| 1472 | down(&p_slot->ctrl->crit_sect); |
| 1473 | |
| 1474 | p_slot->hpc_ops->green_led_off(p_slot); |
| 1475 | |
| 1476 | /* Wait for the command to complete */ |
| 1477 | wait_for_ctrl_irq (p_slot->ctrl); |
| 1478 | |
| 1479 | /* Done with exclusive hardware access */ |
| 1480 | up(&p_slot->ctrl->crit_sect); |
| 1481 | } |
| 1482 | p_slot->state = STATIC_STATE; |
| 1483 | } |
| 1484 | |
| 1485 | return; |
| 1486 | } |
| 1487 | |
| 1488 | |
| 1489 | |
| 1490 | /* this is the main worker thread */ |
| 1491 | static int event_thread(void* data) |
| 1492 | { |
| 1493 | struct controller *ctrl; |
| 1494 | lock_kernel(); |
| 1495 | daemonize("pciehpd_event"); |
| 1496 | |
| 1497 | unlock_kernel(); |
| 1498 | |
| 1499 | while (1) { |
| 1500 | dbg("!!!!event_thread sleeping\n"); |
| 1501 | down_interruptible (&event_semaphore); |
| 1502 | dbg("event_thread woken finished = %d\n", event_finished); |
| 1503 | if (event_finished || signal_pending(current)) |
| 1504 | break; |
| 1505 | /* Do stuff here */ |
| 1506 | if (pushbutton_pending) |
| 1507 | pciehp_pushbutton_thread(pushbutton_pending); |
| 1508 | else if (surprise_rm_pending) |
| 1509 | pciehp_surprise_rm_thread(surprise_rm_pending); |
| 1510 | else |
| 1511 | for (ctrl = pciehp_ctrl_list; ctrl; ctrl=ctrl->next) |
| 1512 | interrupt_event_handler(ctrl); |
| 1513 | } |
| 1514 | dbg("event_thread signals exit\n"); |
| 1515 | up(&event_exit); |
| 1516 | return 0; |
| 1517 | } |
| 1518 | |
| 1519 | int pciehp_event_start_thread(void) |
| 1520 | { |
| 1521 | int pid; |
| 1522 | |
| 1523 | /* initialize our semaphores */ |
| 1524 | init_MUTEX_LOCKED(&event_exit); |
| 1525 | event_finished=0; |
| 1526 | |
| 1527 | init_MUTEX_LOCKED(&event_semaphore); |
| 1528 | pid = kernel_thread(event_thread, NULL, 0); |
| 1529 | |
| 1530 | if (pid < 0) { |
| 1531 | err ("Can't start up our event thread\n"); |
| 1532 | return -1; |
| 1533 | } |
| 1534 | dbg("Our event thread pid = %d\n", pid); |
| 1535 | return 0; |
| 1536 | } |
| 1537 | |
| 1538 | |
| 1539 | void pciehp_event_stop_thread(void) |
| 1540 | { |
| 1541 | event_finished = 1; |
| 1542 | dbg("event_thread finish command given\n"); |
| 1543 | up(&event_semaphore); |
| 1544 | dbg("wait for event_thread to exit\n"); |
| 1545 | down(&event_exit); |
| 1546 | } |
| 1547 | |
| 1548 | |
| 1549 | static int update_slot_info(struct slot *slot) |
| 1550 | { |
| 1551 | struct hotplug_slot_info *info; |
| 1552 | /* char buffer[SLOT_NAME_SIZE]; */ |
| 1553 | int result; |
| 1554 | |
| 1555 | info = kmalloc(sizeof(struct hotplug_slot_info), GFP_KERNEL); |
| 1556 | if (!info) |
| 1557 | return -ENOMEM; |
| 1558 | |
| 1559 | /* make_slot_name (&buffer[0], SLOT_NAME_SIZE, slot); */ |
| 1560 | |
| 1561 | slot->hpc_ops->get_power_status(slot, &(info->power_status)); |
| 1562 | slot->hpc_ops->get_attention_status(slot, &(info->attention_status)); |
| 1563 | slot->hpc_ops->get_latch_status(slot, &(info->latch_status)); |
| 1564 | slot->hpc_ops->get_adapter_status(slot, &(info->adapter_status)); |
| 1565 | |
| 1566 | /* result = pci_hp_change_slot_info(buffer, info); */ |
| 1567 | result = pci_hp_change_slot_info(slot->hotplug_slot, info); |
| 1568 | kfree (info); |
| 1569 | return result; |
| 1570 | } |
| 1571 | |
| 1572 | static void interrupt_event_handler(struct controller *ctrl) |
| 1573 | { |
| 1574 | int loop = 0; |
| 1575 | int change = 1; |
| 1576 | struct pci_func *func; |
| 1577 | u8 hp_slot; |
| 1578 | u8 getstatus; |
| 1579 | struct slot *p_slot; |
| 1580 | |
| 1581 | while (change) { |
| 1582 | change = 0; |
| 1583 | |
| 1584 | for (loop = 0; loop < 10; loop++) { |
| 1585 | if (ctrl->event_queue[loop].event_type != 0) { |
| 1586 | hp_slot = ctrl->event_queue[loop].hp_slot; |
| 1587 | |
| 1588 | func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0); |
| 1589 | |
| 1590 | p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); |
| 1591 | |
| 1592 | dbg("hp_slot %d, func %p, p_slot %p\n", hp_slot, func, p_slot); |
| 1593 | |
| 1594 | if (ctrl->event_queue[loop].event_type == INT_BUTTON_CANCEL) { |
| 1595 | dbg("button cancel\n"); |
| 1596 | del_timer(&p_slot->task_event); |
| 1597 | |
| 1598 | switch (p_slot->state) { |
| 1599 | case BLINKINGOFF_STATE: |
| 1600 | /* Wait for exclusive access to hardware */ |
| 1601 | down(&ctrl->crit_sect); |
| 1602 | |
| 1603 | if (PWR_LED(ctrl->ctrlcap)) { |
| 1604 | p_slot->hpc_ops->green_led_on(p_slot); |
| 1605 | /* Wait for the command to complete */ |
| 1606 | wait_for_ctrl_irq (ctrl); |
| 1607 | } |
| 1608 | if (ATTN_LED(ctrl->ctrlcap)) { |
| 1609 | p_slot->hpc_ops->set_attention_status(p_slot, 0); |
| 1610 | |
| 1611 | /* Wait for the command to complete */ |
| 1612 | wait_for_ctrl_irq (ctrl); |
| 1613 | } |
| 1614 | /* Done with exclusive hardware access */ |
| 1615 | up(&ctrl->crit_sect); |
| 1616 | break; |
| 1617 | case BLINKINGON_STATE: |
| 1618 | /* Wait for exclusive access to hardware */ |
| 1619 | down(&ctrl->crit_sect); |
| 1620 | |
| 1621 | if (PWR_LED(ctrl->ctrlcap)) { |
| 1622 | p_slot->hpc_ops->green_led_off(p_slot); |
| 1623 | /* Wait for the command to complete */ |
| 1624 | wait_for_ctrl_irq (ctrl); |
| 1625 | } |
| 1626 | if (ATTN_LED(ctrl->ctrlcap)){ |
| 1627 | p_slot->hpc_ops->set_attention_status(p_slot, 0); |
| 1628 | /* Wait for the command to complete */ |
| 1629 | wait_for_ctrl_irq (ctrl); |
| 1630 | } |
| 1631 | /* Done with exclusive hardware access */ |
| 1632 | up(&ctrl->crit_sect); |
| 1633 | |
| 1634 | break; |
| 1635 | default: |
| 1636 | warn("Not a valid state\n"); |
| 1637 | return; |
| 1638 | } |
| 1639 | info(msg_button_cancel, p_slot->number); |
| 1640 | p_slot->state = STATIC_STATE; |
| 1641 | } |
| 1642 | /* ***********Button Pressed (No action on 1st press...) */ |
| 1643 | else if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { |
| 1644 | |
| 1645 | if (ATTN_BUTTN(ctrl->ctrlcap)) { |
| 1646 | dbg("Button pressed\n"); |
| 1647 | p_slot->hpc_ops->get_power_status(p_slot, &getstatus); |
| 1648 | if (getstatus) { |
| 1649 | /* slot is on */ |
| 1650 | dbg("slot is on\n"); |
| 1651 | p_slot->state = BLINKINGOFF_STATE; |
| 1652 | info(msg_button_off, p_slot->number); |
| 1653 | } else { |
| 1654 | /* slot is off */ |
| 1655 | dbg("slot is off\n"); |
| 1656 | p_slot->state = BLINKINGON_STATE; |
| 1657 | info(msg_button_on, p_slot->number); |
| 1658 | } |
| 1659 | |
| 1660 | /* Wait for exclusive access to hardware */ |
| 1661 | down(&ctrl->crit_sect); |
| 1662 | |
| 1663 | /* blink green LED and turn off amber */ |
| 1664 | if (PWR_LED(ctrl->ctrlcap)) { |
| 1665 | p_slot->hpc_ops->green_led_blink(p_slot); |
| 1666 | /* Wait for the command to complete */ |
| 1667 | wait_for_ctrl_irq (ctrl); |
| 1668 | } |
| 1669 | |
| 1670 | if (ATTN_LED(ctrl->ctrlcap)) { |
| 1671 | p_slot->hpc_ops->set_attention_status(p_slot, 0); |
| 1672 | |
| 1673 | /* Wait for the command to complete */ |
| 1674 | wait_for_ctrl_irq (ctrl); |
| 1675 | } |
| 1676 | |
| 1677 | /* Done with exclusive hardware access */ |
| 1678 | up(&ctrl->crit_sect); |
| 1679 | |
| 1680 | init_timer(&p_slot->task_event); |
| 1681 | p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ |
| 1682 | p_slot->task_event.function = (void (*)(unsigned long)) pushbutton_helper_thread; |
| 1683 | p_slot->task_event.data = (unsigned long) p_slot; |
| 1684 | |
| 1685 | dbg("add_timer p_slot = %p\n", (void *) p_slot); |
| 1686 | add_timer(&p_slot->task_event); |
| 1687 | } |
| 1688 | } |
| 1689 | /***********POWER FAULT********************/ |
| 1690 | else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { |
| 1691 | if (POWER_CTRL(ctrl->ctrlcap)) { |
| 1692 | dbg("power fault\n"); |
| 1693 | /* Wait for exclusive access to hardware */ |
| 1694 | down(&ctrl->crit_sect); |
| 1695 | |
| 1696 | if (ATTN_LED(ctrl->ctrlcap)) { |
| 1697 | p_slot->hpc_ops->set_attention_status(p_slot, 1); |
| 1698 | wait_for_ctrl_irq (ctrl); |
| 1699 | } |
| 1700 | |
| 1701 | if (PWR_LED(ctrl->ctrlcap)) { |
| 1702 | p_slot->hpc_ops->green_led_off(p_slot); |
| 1703 | wait_for_ctrl_irq (ctrl); |
| 1704 | } |
| 1705 | |
| 1706 | /* Done with exclusive hardware access */ |
| 1707 | up(&ctrl->crit_sect); |
| 1708 | } |
| 1709 | } |
| 1710 | /***********SURPRISE REMOVAL********************/ |
| 1711 | else if ((ctrl->event_queue[loop].event_type == INT_PRESENCE_ON) || |
| 1712 | (ctrl->event_queue[loop].event_type == INT_PRESENCE_OFF)) { |
| 1713 | if (HP_SUPR_RM(ctrl->ctrlcap)) { |
| 1714 | dbg("Surprise Removal\n"); |
| 1715 | if (p_slot) { |
| 1716 | surprise_rm_pending = (unsigned long) p_slot; |
| 1717 | up(&event_semaphore); |
| 1718 | update_slot_info(p_slot); |
| 1719 | } |
| 1720 | } |
| 1721 | } else { |
| 1722 | /* refresh notification */ |
| 1723 | if (p_slot) |
| 1724 | update_slot_info(p_slot); |
| 1725 | } |
| 1726 | |
| 1727 | ctrl->event_queue[loop].event_type = 0; |
| 1728 | |
| 1729 | change = 1; |
| 1730 | } |
| 1731 | } /* End of FOR loop */ |
| 1732 | } |
| 1733 | } |
| 1734 | |
| 1735 | |
| 1736 | int pciehp_enable_slot(struct slot *p_slot) |
| 1737 | { |
| 1738 | u8 getstatus = 0; |
| 1739 | int rc; |
| 1740 | struct pci_func *func; |
| 1741 | |
| 1742 | func = pciehp_slot_find(p_slot->bus, p_slot->device, 0); |
| 1743 | if (!func) { |
| 1744 | dbg("%s: Error! slot NULL\n", __FUNCTION__); |
| 1745 | return 1; |
| 1746 | } |
| 1747 | |
| 1748 | /* Check to see if (latch closed, card present, power off) */ |
| 1749 | down(&p_slot->ctrl->crit_sect); |
| 1750 | |
| 1751 | rc = p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus); |
| 1752 | if (rc || !getstatus) { |
| 1753 | info("%s: no adapter on slot(%x)\n", __FUNCTION__, p_slot->number); |
| 1754 | up(&p_slot->ctrl->crit_sect); |
| 1755 | return 1; |
| 1756 | } |
| 1757 | if (MRL_SENS(p_slot->ctrl->ctrlcap)) { |
| 1758 | rc = p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); |
| 1759 | if (rc || getstatus) { |
| 1760 | info("%s: latch open on slot(%x)\n", __FUNCTION__, p_slot->number); |
| 1761 | up(&p_slot->ctrl->crit_sect); |
| 1762 | return 1; |
| 1763 | } |
| 1764 | } |
| 1765 | |
| 1766 | if (POWER_CTRL(p_slot->ctrl->ctrlcap)) { |
| 1767 | rc = p_slot->hpc_ops->get_power_status(p_slot, &getstatus); |
| 1768 | if (rc || getstatus) { |
| 1769 | info("%s: already enabled on slot(%x)\n", __FUNCTION__, p_slot->number); |
| 1770 | up(&p_slot->ctrl->crit_sect); |
| 1771 | return 1; |
| 1772 | } |
| 1773 | } |
| 1774 | up(&p_slot->ctrl->crit_sect); |
| 1775 | |
| 1776 | slot_remove(func); |
| 1777 | |
| 1778 | func = pciehp_slot_create(p_slot->bus); |
| 1779 | if (func == NULL) |
| 1780 | return 1; |
| 1781 | |
| 1782 | func->bus = p_slot->bus; |
| 1783 | func->device = p_slot->device; |
| 1784 | func->function = 0; |
| 1785 | func->configured = 0; |
| 1786 | func->is_a_board = 1; |
| 1787 | |
| 1788 | /* We have to save the presence info for these slots */ |
| 1789 | p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); |
| 1790 | p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); |
| 1791 | func->switch_save = !getstatus? 0x10:0; |
| 1792 | |
| 1793 | rc = board_added(func, p_slot->ctrl); |
| 1794 | if (rc) { |
| 1795 | if (is_bridge(func)) |
| 1796 | bridge_slot_remove(func); |
| 1797 | else |
| 1798 | slot_remove(func); |
| 1799 | |
| 1800 | /* Setup slot structure with entry for empty slot */ |
| 1801 | func = pciehp_slot_create(p_slot->bus); |
| 1802 | if (func == NULL) |
| 1803 | return 1; /* Out of memory */ |
| 1804 | |
| 1805 | func->bus = p_slot->bus; |
| 1806 | func->device = p_slot->device; |
| 1807 | func->function = 0; |
| 1808 | func->configured = 0; |
| 1809 | func->is_a_board = 1; |
| 1810 | |
| 1811 | /* We have to save the presence info for these slots */ |
| 1812 | p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save)); |
| 1813 | p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); |
| 1814 | func->switch_save = !getstatus? 0x10:0; |
| 1815 | } |
| 1816 | |
| 1817 | if (p_slot) |
| 1818 | update_slot_info(p_slot); |
| 1819 | |
| 1820 | return rc; |
| 1821 | } |
| 1822 | |
| 1823 | |
| 1824 | int pciehp_disable_slot(struct slot *p_slot) |
| 1825 | { |
| 1826 | u8 class_code, header_type, BCR; |
| 1827 | u8 index = 0; |
| 1828 | u8 getstatus = 0; |
| 1829 | u32 rc = 0; |
| 1830 | int ret = 0; |
| 1831 | unsigned int devfn; |
| 1832 | struct pci_bus *pci_bus = p_slot->ctrl->pci_dev->subordinate; |
| 1833 | struct pci_func *func; |
| 1834 | |
| 1835 | if (!p_slot->ctrl) |
| 1836 | return 1; |
| 1837 | |
| 1838 | /* Check to see if (latch closed, card present, power on) */ |
| 1839 | down(&p_slot->ctrl->crit_sect); |
| 1840 | |
| 1841 | if (!HP_SUPR_RM(p_slot->ctrl->ctrlcap)) { |
| 1842 | ret = p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus); |
| 1843 | if (ret || !getstatus) { |
| 1844 | info("%s: no adapter on slot(%x)\n", __FUNCTION__, p_slot->number); |
| 1845 | up(&p_slot->ctrl->crit_sect); |
| 1846 | return 1; |
| 1847 | } |
| 1848 | } |
| 1849 | |
| 1850 | if (MRL_SENS(p_slot->ctrl->ctrlcap)) { |
| 1851 | ret = p_slot->hpc_ops->get_latch_status(p_slot, &getstatus); |
| 1852 | if (ret || getstatus) { |
| 1853 | info("%s: latch open on slot(%x)\n", __FUNCTION__, p_slot->number); |
| 1854 | up(&p_slot->ctrl->crit_sect); |
| 1855 | return 1; |
| 1856 | } |
| 1857 | } |
| 1858 | |
| 1859 | if (POWER_CTRL(p_slot->ctrl->ctrlcap)) { |
| 1860 | ret = p_slot->hpc_ops->get_power_status(p_slot, &getstatus); |
| 1861 | if (ret || !getstatus) { |
| 1862 | info("%s: already disabled slot(%x)\n", __FUNCTION__, p_slot->number); |
| 1863 | up(&p_slot->ctrl->crit_sect); |
| 1864 | return 1; |
| 1865 | } |
| 1866 | } |
| 1867 | |
| 1868 | up(&p_slot->ctrl->crit_sect); |
| 1869 | |
| 1870 | func = pciehp_slot_find(p_slot->bus, p_slot->device, index++); |
| 1871 | |
| 1872 | /* Make sure there are no video controllers here |
| 1873 | * for all func of p_slot |
| 1874 | */ |
| 1875 | while (func && !rc) { |
| 1876 | pci_bus->number = func->bus; |
| 1877 | devfn = PCI_DEVFN(func->device, func->function); |
| 1878 | |
| 1879 | /* Check the Class Code */ |
| 1880 | rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); |
| 1881 | if (rc) |
| 1882 | return rc; |
| 1883 | |
| 1884 | if (class_code == PCI_BASE_CLASS_DISPLAY) { |
| 1885 | /* Display/Video adapter (not supported) */ |
| 1886 | rc = REMOVE_NOT_SUPPORTED; |
| 1887 | } else { |
| 1888 | /* See if it's a bridge */ |
| 1889 | rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); |
| 1890 | if (rc) |
| 1891 | return rc; |
| 1892 | |
| 1893 | /* If it's a bridge, check the VGA Enable bit */ |
| 1894 | if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { |
| 1895 | rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); |
| 1896 | if (rc) |
| 1897 | return rc; |
| 1898 | |
| 1899 | /* If the VGA Enable bit is set, remove isn't supported */ |
| 1900 | if (BCR & PCI_BRIDGE_CTL_VGA) { |
| 1901 | rc = REMOVE_NOT_SUPPORTED; |
| 1902 | } |
| 1903 | } |
| 1904 | } |
| 1905 | |
| 1906 | func = pciehp_slot_find(p_slot->bus, p_slot->device, index++); |
| 1907 | } |
| 1908 | |
| 1909 | func = pciehp_slot_find(p_slot->bus, p_slot->device, 0); |
| 1910 | if ((func != NULL) && !rc) { |
| 1911 | rc = remove_board(func, p_slot->ctrl); |
| 1912 | } else if (!rc) |
| 1913 | rc = 1; |
| 1914 | |
| 1915 | if (p_slot) |
| 1916 | update_slot_info(p_slot); |
| 1917 | |
| 1918 | return rc; |
| 1919 | } |
| 1920 | |
| 1921 | |
| 1922 | /** |
| 1923 | * configure_new_device - Configures the PCI header information of one board. |
| 1924 | * |
| 1925 | * @ctrl: pointer to controller structure |
| 1926 | * @func: pointer to function structure |
| 1927 | * @behind_bridge: 1 if this is a recursive call, 0 if not |
| 1928 | * @resources: pointer to set of resource lists |
| 1929 | * |
| 1930 | * Returns 0 if success |
| 1931 | * |
| 1932 | */ |
| 1933 | static u32 configure_new_device(struct controller * ctrl, struct pci_func * func, |
| 1934 | u8 behind_bridge, struct resource_lists * resources, u8 bridge_bus, u8 bridge_dev) |
| 1935 | { |
| 1936 | u8 temp_byte, function, max_functions, stop_it; |
| 1937 | int rc; |
| 1938 | u32 ID; |
| 1939 | struct pci_func *new_slot; |
| 1940 | struct pci_bus lpci_bus, *pci_bus; |
| 1941 | int index; |
| 1942 | |
| 1943 | new_slot = func; |
| 1944 | |
| 1945 | dbg("%s\n", __FUNCTION__); |
| 1946 | memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus)); |
| 1947 | pci_bus = &lpci_bus; |
| 1948 | pci_bus->number = func->bus; |
| 1949 | |
| 1950 | /* Check for Multi-function device */ |
| 1951 | rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); |
| 1952 | if (rc) { |
| 1953 | dbg("%s: rc = %d\n", __FUNCTION__, rc); |
| 1954 | return rc; |
| 1955 | } |
| 1956 | |
| 1957 | if (temp_byte & 0x80) /* Multi-function device */ |
| 1958 | max_functions = 8; |
| 1959 | else |
| 1960 | max_functions = 1; |
| 1961 | |
| 1962 | function = 0; |
| 1963 | |
| 1964 | do { |
| 1965 | rc = configure_new_function(ctrl, new_slot, behind_bridge, |
| 1966 | resources, bridge_bus, bridge_dev); |
| 1967 | |
| 1968 | if (rc) { |
| 1969 | dbg("configure_new_function failed: %d\n", rc); |
| 1970 | index = 0; |
| 1971 | |
| 1972 | while (new_slot) { |
| 1973 | new_slot = pciehp_slot_find(new_slot->bus, |
| 1974 | new_slot->device, index++); |
| 1975 | |
| 1976 | if (new_slot) |
| 1977 | pciehp_return_board_resources(new_slot, |
| 1978 | resources); |
| 1979 | } |
| 1980 | |
| 1981 | return rc; |
| 1982 | } |
| 1983 | |
| 1984 | function++; |
| 1985 | |
| 1986 | stop_it = 0; |
| 1987 | |
| 1988 | /* The following loop skips to the next present function |
| 1989 | * and creates a board structure |
| 1990 | */ |
| 1991 | |
| 1992 | while ((function < max_functions) && (!stop_it)) { |
| 1993 | pci_bus_read_config_dword(pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); |
| 1994 | |
| 1995 | if (ID == 0xFFFFFFFF) { /* There's nothing there. */ |
| 1996 | function++; |
| 1997 | } else { /* There's something there */ |
| 1998 | /* Setup slot structure. */ |
| 1999 | new_slot = pciehp_slot_create(func->bus); |
| 2000 | |
| 2001 | if (new_slot == NULL) { |
| 2002 | /* Out of memory */ |
| 2003 | return 1; |
| 2004 | } |
| 2005 | |
| 2006 | new_slot->bus = func->bus; |
| 2007 | new_slot->device = func->device; |
| 2008 | new_slot->function = function; |
| 2009 | new_slot->is_a_board = 1; |
| 2010 | new_slot->status = 0; |
| 2011 | |
| 2012 | stop_it++; |
| 2013 | } |
| 2014 | } |
| 2015 | |
| 2016 | } while (function < max_functions); |
| 2017 | dbg("returning from %s\n", __FUNCTION__); |
| 2018 | |
| 2019 | return 0; |
| 2020 | } |
| 2021 | |
| 2022 | /* |
| 2023 | * Configuration logic that involves the hotplug data structures and |
| 2024 | * their bookkeeping |
| 2025 | */ |
| 2026 | |
| 2027 | /** |
| 2028 | * configure_bridge: fill bridge's registers, either configure or disable it. |
| 2029 | */ |
| 2030 | static int |
| 2031 | configure_bridge(struct pci_bus *pci_bus, unsigned int devfn, |
| 2032 | struct pci_resource *mem_node, |
| 2033 | struct pci_resource **hold_mem_node, |
| 2034 | int base_addr, int limit_addr) |
| 2035 | { |
| 2036 | u16 temp_word; |
| 2037 | u32 rc; |
| 2038 | |
| 2039 | if (mem_node) { |
| 2040 | memcpy(*hold_mem_node, mem_node, sizeof(struct pci_resource)); |
| 2041 | mem_node->next = NULL; |
| 2042 | |
| 2043 | /* set Mem base and Limit registers */ |
| 2044 | RES_CHECK(mem_node->base, 16); |
| 2045 | temp_word = (u16)(mem_node->base >> 16); |
| 2046 | rc = pci_bus_write_config_word(pci_bus, devfn, base_addr, temp_word); |
| 2047 | |
| 2048 | RES_CHECK(mem_node->base + mem_node->length - 1, 16); |
| 2049 | temp_word = (u16)((mem_node->base + mem_node->length - 1) >> 16); |
| 2050 | rc = pci_bus_write_config_word(pci_bus, devfn, limit_addr, temp_word); |
| 2051 | } else { |
| 2052 | temp_word = 0xFFFF; |
| 2053 | rc = pci_bus_write_config_word(pci_bus, devfn, base_addr, temp_word); |
| 2054 | |
| 2055 | temp_word = 0x0000; |
| 2056 | rc = pci_bus_write_config_word(pci_bus, devfn, limit_addr, temp_word); |
| 2057 | |
| 2058 | kfree(*hold_mem_node); |
| 2059 | *hold_mem_node = NULL; |
| 2060 | } |
| 2061 | return rc; |
| 2062 | } |
| 2063 | |
| 2064 | static int |
| 2065 | configure_new_bridge(struct controller *ctrl, struct pci_func *func, |
| 2066 | u8 behind_bridge, struct resource_lists *resources, |
| 2067 | struct pci_bus *pci_bus) |
| 2068 | { |
| 2069 | int cloop; |
| 2070 | u8 temp_byte; |
| 2071 | u8 device; |
| 2072 | u16 temp_word; |
| 2073 | u32 rc; |
| 2074 | u32 ID; |
| 2075 | unsigned int devfn; |
| 2076 | struct pci_resource *mem_node; |
| 2077 | struct pci_resource *p_mem_node; |
| 2078 | struct pci_resource *io_node; |
| 2079 | struct pci_resource *bus_node; |
| 2080 | struct pci_resource *hold_mem_node; |
| 2081 | struct pci_resource *hold_p_mem_node; |
| 2082 | struct pci_resource *hold_IO_node; |
| 2083 | struct pci_resource *hold_bus_node; |
| 2084 | struct irq_mapping irqs; |
| 2085 | struct pci_func *new_slot; |
| 2086 | struct resource_lists temp_resources; |
| 2087 | |
| 2088 | devfn = PCI_DEVFN(func->device, func->function); |
| 2089 | |
| 2090 | /* set Primary bus */ |
| 2091 | dbg("set Primary bus = 0x%x\n", func->bus); |
| 2092 | rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); |
| 2093 | if (rc) |
| 2094 | return rc; |
| 2095 | |
| 2096 | /* find range of busses to use */ |
| 2097 | bus_node = get_max_resource(&resources->bus_head, 1L); |
| 2098 | |
| 2099 | /* If we don't have any busses to allocate, we can't continue */ |
| 2100 | if (!bus_node) { |
| 2101 | err("Got NO bus resource to use\n"); |
| 2102 | return -ENOMEM; |
| 2103 | } |
| 2104 | dbg("Got ranges of buses to use: base:len=0x%x:%x\n", bus_node->base, bus_node->length); |
| 2105 | |
| 2106 | /* set Secondary bus */ |
| 2107 | temp_byte = (u8)bus_node->base; |
| 2108 | dbg("set Secondary bus = 0x%x\n", temp_byte); |
| 2109 | rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); |
| 2110 | if (rc) |
| 2111 | return rc; |
| 2112 | |
| 2113 | /* set subordinate bus */ |
| 2114 | temp_byte = (u8)(bus_node->base + bus_node->length - 1); |
| 2115 | dbg("set subordinate bus = 0x%x\n", temp_byte); |
| 2116 | rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); |
| 2117 | if (rc) |
| 2118 | return rc; |
| 2119 | |
| 2120 | /* Set HP parameters (Cache Line Size, Latency Timer) */ |
| 2121 | rc = pciehprm_set_hpp(ctrl, func, PCI_HEADER_TYPE_BRIDGE); |
| 2122 | if (rc) |
| 2123 | return rc; |
| 2124 | |
| 2125 | /* Setup the IO, memory, and prefetchable windows */ |
| 2126 | |
| 2127 | io_node = get_max_resource(&(resources->io_head), 0x1000L); |
| 2128 | if (io_node) { |
| 2129 | dbg("io_node(base, len, next) (%x, %x, %p)\n", io_node->base, |
| 2130 | io_node->length, io_node->next); |
| 2131 | } |
| 2132 | |
| 2133 | mem_node = get_max_resource(&(resources->mem_head), 0x100000L); |
| 2134 | if (mem_node) { |
| 2135 | dbg("mem_node(base, len, next) (%x, %x, %p)\n", mem_node->base, |
| 2136 | mem_node->length, mem_node->next); |
| 2137 | } |
| 2138 | |
| 2139 | if (resources->p_mem_head) |
| 2140 | p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000L); |
| 2141 | else { |
| 2142 | /* |
| 2143 | * In some platform implementation, MEM and PMEM are not |
| 2144 | * distinguished, and hence ACPI _CRS has only MEM entries |
| 2145 | * for both MEM and PMEM. |
| 2146 | */ |
| 2147 | dbg("using MEM for PMEM\n"); |
| 2148 | p_mem_node = get_max_resource(&(resources->mem_head), 0x100000L); |
| 2149 | } |
| 2150 | if (p_mem_node) { |
| 2151 | dbg("p_mem_node(base, len, next) (%x, %x, %p)\n", p_mem_node->base, |
| 2152 | p_mem_node->length, p_mem_node->next); |
| 2153 | } |
| 2154 | |
| 2155 | /* set up the IRQ info */ |
| 2156 | if (!resources->irqs) { |
| 2157 | irqs.barber_pole = 0; |
| 2158 | irqs.interrupt[0] = 0; |
| 2159 | irqs.interrupt[1] = 0; |
| 2160 | irqs.interrupt[2] = 0; |
| 2161 | irqs.interrupt[3] = 0; |
| 2162 | irqs.valid_INT = 0; |
| 2163 | } else { |
| 2164 | irqs.barber_pole = resources->irqs->barber_pole; |
| 2165 | irqs.interrupt[0] = resources->irqs->interrupt[0]; |
| 2166 | irqs.interrupt[1] = resources->irqs->interrupt[1]; |
| 2167 | irqs.interrupt[2] = resources->irqs->interrupt[2]; |
| 2168 | irqs.interrupt[3] = resources->irqs->interrupt[3]; |
| 2169 | irqs.valid_INT = resources->irqs->valid_INT; |
| 2170 | } |
| 2171 | |
| 2172 | /* set up resource lists that are now aligned on top and bottom |
| 2173 | * for anything behind the bridge. |
| 2174 | */ |
| 2175 | temp_resources.bus_head = bus_node; |
| 2176 | temp_resources.io_head = io_node; |
| 2177 | temp_resources.mem_head = mem_node; |
| 2178 | temp_resources.p_mem_head = p_mem_node; |
| 2179 | temp_resources.irqs = &irqs; |
| 2180 | |
| 2181 | /* Make copies of the nodes we are going to pass down so that |
| 2182 | * if there is a problem,we can just use these to free resources |
| 2183 | */ |
| 2184 | hold_bus_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); |
| 2185 | hold_IO_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); |
| 2186 | hold_mem_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); |
| 2187 | hold_p_mem_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL); |
| 2188 | |
| 2189 | if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { |
| 2190 | kfree(hold_bus_node); |
| 2191 | kfree(hold_IO_node); |
| 2192 | kfree(hold_mem_node); |
| 2193 | kfree(hold_p_mem_node); |
| 2194 | |
| 2195 | return 1; |
| 2196 | } |
| 2197 | |
| 2198 | memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); |
| 2199 | |
| 2200 | bus_node->base += 1; |
| 2201 | bus_node->length -= 1; |
| 2202 | bus_node->next = NULL; |
| 2203 | |
| 2204 | /* If we have IO resources copy them and fill in the bridge's |
| 2205 | * IO range registers |
| 2206 | */ |
| 2207 | if (io_node) { |
| 2208 | memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); |
| 2209 | io_node->next = NULL; |
| 2210 | |
| 2211 | /* set IO base and Limit registers */ |
| 2212 | RES_CHECK(io_node->base, 8); |
| 2213 | temp_byte = (u8)(io_node->base >> 8); |
| 2214 | rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_BASE, temp_byte); |
| 2215 | |
| 2216 | RES_CHECK(io_node->base + io_node->length - 1, 8); |
| 2217 | temp_byte = (u8)((io_node->base + io_node->length - 1) >> 8); |
| 2218 | rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); |
| 2219 | } else { |
| 2220 | kfree(hold_IO_node); |
| 2221 | hold_IO_node = NULL; |
| 2222 | } |
| 2223 | |
| 2224 | /* If we have memory resources copy them and fill in the bridge's |
| 2225 | * memory range registers. Otherwise, fill in the range |
| 2226 | * registers with values that disable them. |
| 2227 | */ |
| 2228 | rc = configure_bridge(pci_bus, devfn, mem_node, &hold_mem_node, |
| 2229 | PCI_MEMORY_BASE, PCI_MEMORY_LIMIT); |
| 2230 | |
| 2231 | /* If we have prefetchable memory resources copy them and |
| 2232 | * fill in the bridge's memory range registers. Otherwise, |
| 2233 | * fill in the range registers with values that disable them. |
| 2234 | */ |
| 2235 | rc = configure_bridge(pci_bus, devfn, p_mem_node, &hold_p_mem_node, |
| 2236 | PCI_PREF_MEMORY_BASE, PCI_PREF_MEMORY_LIMIT); |
| 2237 | |
| 2238 | /* Adjust this to compensate for extra adjustment in first loop */ |
| 2239 | irqs.barber_pole--; |
| 2240 | |
| 2241 | rc = 0; |
| 2242 | |
| 2243 | /* Here we actually find the devices and configure them */ |
| 2244 | for (device = 0; (device <= 0x1F) && !rc; device++) { |
| 2245 | irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; |
| 2246 | |
| 2247 | ID = 0xFFFFFFFF; |
| 2248 | pci_bus->number = hold_bus_node->base; |
| 2249 | pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID); |
| 2250 | pci_bus->number = func->bus; |
| 2251 | |
| 2252 | if (ID != 0xFFFFFFFF) { /* device Present */ |
| 2253 | /* Setup slot structure. */ |
| 2254 | new_slot = pciehp_slot_create(hold_bus_node->base); |
| 2255 | |
| 2256 | if (new_slot == NULL) { |
| 2257 | /* Out of memory */ |
| 2258 | rc = -ENOMEM; |
| 2259 | continue; |
| 2260 | } |
| 2261 | |
| 2262 | new_slot->bus = hold_bus_node->base; |
| 2263 | new_slot->device = device; |
| 2264 | new_slot->function = 0; |
| 2265 | new_slot->is_a_board = 1; |
| 2266 | new_slot->status = 0; |
| 2267 | |
| 2268 | rc = configure_new_device(ctrl, new_slot, 1, |
| 2269 | &temp_resources, func->bus, |
| 2270 | func->device); |
| 2271 | dbg("configure_new_device rc=0x%x\n",rc); |
| 2272 | } /* End of IF (device in slot?) */ |
| 2273 | } /* End of FOR loop */ |
| 2274 | |
| 2275 | if (rc) { |
| 2276 | pciehp_destroy_resource_list(&temp_resources); |
| 2277 | |
| 2278 | return_resource(&(resources->bus_head), hold_bus_node); |
| 2279 | return_resource(&(resources->io_head), hold_IO_node); |
| 2280 | return_resource(&(resources->mem_head), hold_mem_node); |
| 2281 | return_resource(&(resources->p_mem_head), hold_p_mem_node); |
| 2282 | return(rc); |
| 2283 | } |
| 2284 | |
| 2285 | /* save the interrupt routing information */ |
| 2286 | if (resources->irqs) { |
| 2287 | resources->irqs->interrupt[0] = irqs.interrupt[0]; |
| 2288 | resources->irqs->interrupt[1] = irqs.interrupt[1]; |
| 2289 | resources->irqs->interrupt[2] = irqs.interrupt[2]; |
| 2290 | resources->irqs->interrupt[3] = irqs.interrupt[3]; |
| 2291 | resources->irqs->valid_INT = irqs.valid_INT; |
| 2292 | } else if (!behind_bridge) { |
| 2293 | /* We need to hook up the interrupts here */ |
| 2294 | for (cloop = 0; cloop < 4; cloop++) { |
| 2295 | if (irqs.valid_INT & (0x01 << cloop)) { |
| 2296 | rc = pciehp_set_irq(func->bus, func->device, |
| 2297 | 0x0A + cloop, irqs.interrupt[cloop]); |
| 2298 | if (rc) { |
| 2299 | pciehp_destroy_resource_list (&temp_resources); |
| 2300 | return_resource(&(resources->bus_head), hold_bus_node); |
| 2301 | return_resource(&(resources->io_head), hold_IO_node); |
| 2302 | return_resource(&(resources->mem_head), hold_mem_node); |
| 2303 | return_resource(&(resources->p_mem_head), hold_p_mem_node); |
| 2304 | return rc; |
| 2305 | } |
| 2306 | } |
| 2307 | } /* end of for loop */ |
| 2308 | } |
| 2309 | |
| 2310 | /* Return unused bus resources |
| 2311 | * First use the temporary node to store information for the board |
| 2312 | */ |
| 2313 | if (hold_bus_node && bus_node && temp_resources.bus_head) { |
| 2314 | hold_bus_node->length = bus_node->base - hold_bus_node->base; |
| 2315 | |
| 2316 | hold_bus_node->next = func->bus_head; |
| 2317 | func->bus_head = hold_bus_node; |
| 2318 | |
| 2319 | temp_byte = (u8)(temp_resources.bus_head->base - 1); |
| 2320 | |
| 2321 | /* set subordinate bus */ |
| 2322 | dbg("re-set subordinate bus = 0x%x\n", temp_byte); |
| 2323 | rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); |
| 2324 | |
| 2325 | if (temp_resources.bus_head->length == 0) { |
| 2326 | kfree(temp_resources.bus_head); |
| 2327 | temp_resources.bus_head = NULL; |
| 2328 | } else { |
| 2329 | dbg("return bus res of b:d(0x%x:%x) base:len(0x%x:%x)\n", |
| 2330 | func->bus, func->device, temp_resources.bus_head->base, temp_resources.bus_head->length); |
| 2331 | return_resource(&(resources->bus_head), temp_resources.bus_head); |
| 2332 | } |
| 2333 | } |
| 2334 | |
| 2335 | /* If we have IO space available and there is some left, |
| 2336 | * return the unused portion |
| 2337 | */ |
| 2338 | if (hold_IO_node && temp_resources.io_head) { |
| 2339 | io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), |
| 2340 | &hold_IO_node, 0x1000); |
| 2341 | |
| 2342 | /* Check if we were able to split something off */ |
| 2343 | if (io_node) { |
| 2344 | hold_IO_node->base = io_node->base + io_node->length; |
| 2345 | |
| 2346 | RES_CHECK(hold_IO_node->base, 8); |
| 2347 | temp_byte = (u8)((hold_IO_node->base) >> 8); |
| 2348 | rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_BASE, temp_byte); |
| 2349 | |
| 2350 | return_resource(&(resources->io_head), io_node); |
| 2351 | } |
| 2352 | |
| 2353 | io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); |
| 2354 | |
| 2355 | /* Check if we were able to split something off */ |
| 2356 | if (io_node) { |
| 2357 | /* First use the temporary node to store information for the board */ |
| 2358 | hold_IO_node->length = io_node->base - hold_IO_node->base; |
| 2359 | |
| 2360 | /* If we used any, add it to the board's list */ |
| 2361 | if (hold_IO_node->length) { |
| 2362 | hold_IO_node->next = func->io_head; |
| 2363 | func->io_head = hold_IO_node; |
| 2364 | |
| 2365 | RES_CHECK(io_node->base - 1, 8); |
| 2366 | temp_byte = (u8)((io_node->base - 1) >> 8); |
| 2367 | rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); |
| 2368 | |
| 2369 | return_resource(&(resources->io_head), io_node); |
| 2370 | } else { |
| 2371 | /* it doesn't need any IO */ |
| 2372 | temp_byte = 0x00; |
| 2373 | rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); |
| 2374 | |
| 2375 | return_resource(&(resources->io_head), io_node); |
| 2376 | kfree(hold_IO_node); |
| 2377 | } |
| 2378 | } else { |
| 2379 | /* it used most of the range */ |
| 2380 | hold_IO_node->next = func->io_head; |
| 2381 | func->io_head = hold_IO_node; |
| 2382 | } |
| 2383 | } else if (hold_IO_node) { |
| 2384 | /* it used the whole range */ |
| 2385 | hold_IO_node->next = func->io_head; |
| 2386 | func->io_head = hold_IO_node; |
| 2387 | } |
| 2388 | |
| 2389 | /* If we have memory space available and there is some left, |
| 2390 | * return the unused portion |
| 2391 | */ |
| 2392 | if (hold_mem_node && temp_resources.mem_head) { |
| 2393 | mem_node = do_pre_bridge_resource_split(&(temp_resources.mem_head), &hold_mem_node, 0x100000L); |
| 2394 | |
| 2395 | /* Check if we were able to split something off */ |
| 2396 | if (mem_node) { |
| 2397 | hold_mem_node->base = mem_node->base + mem_node->length; |
| 2398 | |
| 2399 | RES_CHECK(hold_mem_node->base, 16); |
| 2400 | temp_word = (u16)((hold_mem_node->base) >> 16); |
| 2401 | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word); |
| 2402 | |
| 2403 | return_resource(&(resources->mem_head), mem_node); |
| 2404 | } |
| 2405 | |
| 2406 | mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000L); |
| 2407 | |
| 2408 | /* Check if we were able to split something off */ |
| 2409 | if (mem_node) { |
| 2410 | /* First use the temporary node to store information for the board */ |
| 2411 | hold_mem_node->length = mem_node->base - hold_mem_node->base; |
| 2412 | |
| 2413 | if (hold_mem_node->length) { |
| 2414 | hold_mem_node->next = func->mem_head; |
| 2415 | func->mem_head = hold_mem_node; |
| 2416 | |
| 2417 | /* configure end address */ |
| 2418 | RES_CHECK(mem_node->base - 1, 16); |
| 2419 | temp_word = (u16)((mem_node->base - 1) >> 16); |
| 2420 | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); |
| 2421 | |
| 2422 | /* Return unused resources to the pool */ |
| 2423 | return_resource(&(resources->mem_head), mem_node); |
| 2424 | } else { |
| 2425 | /* it doesn't need any Mem */ |
| 2426 | temp_word = 0x0000; |
| 2427 | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); |
| 2428 | |
| 2429 | return_resource(&(resources->mem_head), mem_node); |
| 2430 | kfree(hold_mem_node); |
| 2431 | } |
| 2432 | } else { |
| 2433 | /* it used most of the range */ |
| 2434 | hold_mem_node->next = func->mem_head; |
| 2435 | func->mem_head = hold_mem_node; |
| 2436 | } |
| 2437 | } else if (hold_mem_node) { |
| 2438 | /* it used the whole range */ |
| 2439 | hold_mem_node->next = func->mem_head; |
| 2440 | func->mem_head = hold_mem_node; |
| 2441 | } |
| 2442 | |
| 2443 | /* If we have prefetchable memory space available and there is some |
| 2444 | * left at the end, return the unused portion |
| 2445 | */ |
| 2446 | if (hold_p_mem_node && temp_resources.p_mem_head) { |
| 2447 | p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), |
| 2448 | &hold_p_mem_node, 0x100000L); |
| 2449 | |
| 2450 | /* Check if we were able to split something off */ |
| 2451 | if (p_mem_node) { |
| 2452 | hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; |
| 2453 | |
| 2454 | RES_CHECK(hold_p_mem_node->base, 16); |
| 2455 | temp_word = (u16)((hold_p_mem_node->base) >> 16); |
| 2456 | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); |
| 2457 | |
| 2458 | return_resource(&(resources->p_mem_head), p_mem_node); |
| 2459 | } |
| 2460 | |
| 2461 | p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000L); |
| 2462 | |
| 2463 | /* Check if we were able to split something off */ |
| 2464 | if (p_mem_node) { |
| 2465 | /* First use the temporary node to store information for the board */ |
| 2466 | hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; |
| 2467 | |
| 2468 | /* If we used any, add it to the board's list */ |
| 2469 | if (hold_p_mem_node->length) { |
| 2470 | hold_p_mem_node->next = func->p_mem_head; |
| 2471 | func->p_mem_head = hold_p_mem_node; |
| 2472 | |
| 2473 | RES_CHECK(p_mem_node->base - 1, 16); |
| 2474 | temp_word = (u16)((p_mem_node->base - 1) >> 16); |
| 2475 | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); |
| 2476 | |
| 2477 | return_resource(&(resources->p_mem_head), p_mem_node); |
| 2478 | } else { |
| 2479 | /* it doesn't need any PMem */ |
| 2480 | temp_word = 0x0000; |
| 2481 | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); |
| 2482 | |
| 2483 | return_resource(&(resources->p_mem_head), p_mem_node); |
| 2484 | kfree(hold_p_mem_node); |
| 2485 | } |
| 2486 | } else { |
| 2487 | /* it used the most of the range */ |
| 2488 | hold_p_mem_node->next = func->p_mem_head; |
| 2489 | func->p_mem_head = hold_p_mem_node; |
| 2490 | } |
| 2491 | } else if (hold_p_mem_node) { |
| 2492 | /* it used the whole range */ |
| 2493 | hold_p_mem_node->next = func->p_mem_head; |
| 2494 | func->p_mem_head = hold_p_mem_node; |
| 2495 | } |
| 2496 | |
| 2497 | /* We should be configuring an IRQ and the bridge's base address |
| 2498 | * registers if it needs them. Although we have never seen such |
| 2499 | * a device |
| 2500 | */ |
| 2501 | |
| 2502 | pciehprm_enable_card(ctrl, func, PCI_HEADER_TYPE_BRIDGE); |
| 2503 | |
| 2504 | dbg("PCI Bridge Hot-Added s:b:d:f(%02x:%02x:%02x:%02x)\n", ctrl->seg, func->bus, func->device, func->function); |
| 2505 | |
| 2506 | return rc; |
| 2507 | } |
| 2508 | |
| 2509 | /** |
| 2510 | * configure_new_function - Configures the PCI header information of one device |
| 2511 | * |
| 2512 | * @ctrl: pointer to controller structure |
| 2513 | * @func: pointer to function structure |
| 2514 | * @behind_bridge: 1 if this is a recursive call, 0 if not |
| 2515 | * @resources: pointer to set of resource lists |
| 2516 | * |
| 2517 | * Calls itself recursively for bridged devices. |
| 2518 | * Returns 0 if success |
| 2519 | * |
| 2520 | */ |
| 2521 | static int |
| 2522 | configure_new_function(struct controller *ctrl, struct pci_func *func, |
| 2523 | u8 behind_bridge, struct resource_lists *resources, |
| 2524 | u8 bridge_bus, u8 bridge_dev) |
| 2525 | { |
| 2526 | int cloop; |
| 2527 | u8 temp_byte; |
| 2528 | u8 class_code; |
| 2529 | u16 temp_word; |
| 2530 | u32 rc; |
| 2531 | u32 temp_register; |
| 2532 | u32 base; |
| 2533 | unsigned int devfn; |
| 2534 | struct pci_resource *mem_node; |
| 2535 | struct pci_resource *io_node; |
| 2536 | struct pci_bus lpci_bus, *pci_bus; |
| 2537 | |
| 2538 | memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus)); |
| 2539 | pci_bus = &lpci_bus; |
| 2540 | pci_bus->number = func->bus; |
| 2541 | devfn = PCI_DEVFN(func->device, func->function); |
| 2542 | |
| 2543 | /* Check for Bridge */ |
| 2544 | rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); |
| 2545 | if (rc) |
| 2546 | return rc; |
| 2547 | dbg("%s: bus %x dev %x func %x temp_byte = %x\n", __FUNCTION__, |
| 2548 | func->bus, func->device, func->function, temp_byte); |
| 2549 | |
| 2550 | if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */ |
| 2551 | rc = configure_new_bridge(ctrl, func, behind_bridge, resources, |
| 2552 | pci_bus); |
| 2553 | |
| 2554 | if (rc) |
| 2555 | return rc; |
| 2556 | } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { |
| 2557 | /* Standard device */ |
| 2558 | u64 base64; |
| 2559 | rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); |
| 2560 | |
| 2561 | if (class_code == PCI_BASE_CLASS_DISPLAY) |
| 2562 | return DEVICE_TYPE_NOT_SUPPORTED; |
| 2563 | |
| 2564 | /* Figure out IO and memory needs */ |
| 2565 | for (cloop = PCI_BASE_ADDRESS_0; cloop <= PCI_BASE_ADDRESS_5; cloop += 4) { |
| 2566 | temp_register = 0xFFFFFFFF; |
| 2567 | |
| 2568 | rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); |
| 2569 | rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register); |
| 2570 | dbg("Bar[%x]=0x%x on bus:dev:func(0x%x:%x:%x)\n", cloop, temp_register, |
| 2571 | func->bus, func->device, func->function); |
| 2572 | |
| 2573 | if (!temp_register) |
| 2574 | continue; |
| 2575 | |
| 2576 | base64 = 0L; |
| 2577 | if (temp_register & PCI_BASE_ADDRESS_SPACE_IO) { |
| 2578 | /* Map IO */ |
| 2579 | |
| 2580 | /* set base = amount of IO space */ |
| 2581 | base = temp_register & 0xFFFFFFFC; |
| 2582 | base = ~base + 1; |
| 2583 | |
| 2584 | dbg("NEED IO length(0x%x)\n", base); |
| 2585 | io_node = get_io_resource(&(resources->io_head),(ulong)base); |
| 2586 | |
| 2587 | /* allocate the resource to the board */ |
| 2588 | if (io_node) { |
| 2589 | dbg("Got IO base=0x%x(length=0x%x)\n", io_node->base, io_node->length); |
| 2590 | base = (u32)io_node->base; |
| 2591 | io_node->next = func->io_head; |
| 2592 | func->io_head = io_node; |
| 2593 | } else { |
| 2594 | err("Got NO IO resource(length=0x%x)\n", base); |
| 2595 | return -ENOMEM; |
| 2596 | } |
| 2597 | } else { /* map MEM */ |
| 2598 | int prefetchable = 1; |
| 2599 | struct pci_resource **res_node = &func->p_mem_head; |
| 2600 | char *res_type_str = "PMEM"; |
| 2601 | u32 temp_register2; |
| 2602 | |
| 2603 | if (!(temp_register & PCI_BASE_ADDRESS_MEM_PREFETCH)) { |
| 2604 | prefetchable = 0; |
| 2605 | res_node = &func->mem_head; |
| 2606 | res_type_str++; |
| 2607 | } |
| 2608 | |
| 2609 | base = temp_register & 0xFFFFFFF0; |
| 2610 | base = ~base + 1; |
| 2611 | |
| 2612 | switch (temp_register & PCI_BASE_ADDRESS_MEM_TYPE_MASK) { |
| 2613 | case PCI_BASE_ADDRESS_MEM_TYPE_32: |
| 2614 | dbg("NEED 32 %s bar=0x%x(length=0x%x)\n", res_type_str, temp_register, base); |
| 2615 | |
| 2616 | if (prefetchable && resources->p_mem_head) |
| 2617 | mem_node=get_resource(&(resources->p_mem_head), (ulong)base); |
| 2618 | else { |
| 2619 | if (prefetchable) |
| 2620 | dbg("using MEM for PMEM\n"); |
| 2621 | mem_node = get_resource(&(resources->mem_head), (ulong)base); |
| 2622 | } |
| 2623 | |
| 2624 | /* allocate the resource to the board */ |
| 2625 | if (mem_node) { |
| 2626 | base = (u32)mem_node->base; |
| 2627 | mem_node->next = *res_node; |
| 2628 | *res_node = mem_node; |
| 2629 | dbg("Got 32 %s base=0x%x(length=0x%x)\n", res_type_str, mem_node->base, |
| 2630 | mem_node->length); |
| 2631 | } else { |
| 2632 | err("Got NO 32 %s resource(length=0x%x)\n", res_type_str, base); |
| 2633 | return -ENOMEM; |
| 2634 | } |
| 2635 | break; |
| 2636 | case PCI_BASE_ADDRESS_MEM_TYPE_64: |
| 2637 | rc = pci_bus_read_config_dword(pci_bus, devfn, cloop+4, &temp_register2); |
| 2638 | dbg("NEED 64 %s bar=0x%x:%x(length=0x%x)\n", res_type_str, temp_register2, |
| 2639 | temp_register, base); |
| 2640 | |
| 2641 | if (prefetchable && resources->p_mem_head) |
| 2642 | mem_node = get_resource(&(resources->p_mem_head), (ulong)base); |
| 2643 | else { |
| 2644 | if (prefetchable) |
| 2645 | dbg("using MEM for PMEM\n"); |
| 2646 | mem_node = get_resource(&(resources->mem_head), (ulong)base); |
| 2647 | } |
| 2648 | |
| 2649 | /* allocate the resource to the board */ |
| 2650 | if (mem_node) { |
| 2651 | base64 = mem_node->base; |
| 2652 | mem_node->next = *res_node; |
| 2653 | *res_node = mem_node; |
| 2654 | dbg("Got 64 %s base=0x%x:%x(length=%x)\n", res_type_str, (u32)(base64 >> 32), |
| 2655 | (u32)base64, mem_node->length); |
| 2656 | } else { |
| 2657 | err("Got NO 64 %s resource(length=0x%x)\n", res_type_str, base); |
| 2658 | return -ENOMEM; |
| 2659 | } |
| 2660 | break; |
| 2661 | default: |
| 2662 | dbg("reserved BAR type=0x%x\n", temp_register); |
| 2663 | break; |
| 2664 | } |
| 2665 | |
| 2666 | } |
| 2667 | |
| 2668 | if (base64) { |
| 2669 | rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, (u32)base64); |
| 2670 | cloop += 4; |
| 2671 | base64 >>= 32; |
| 2672 | |
| 2673 | if (base64) { |
| 2674 | dbg("%s: high dword of base64(0x%x) set to 0\n", __FUNCTION__, (u32)base64); |
| 2675 | base64 = 0x0L; |
| 2676 | } |
| 2677 | |
| 2678 | rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, (u32)base64); |
| 2679 | } else { |
| 2680 | rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); |
| 2681 | } |
| 2682 | } /* End of base register loop */ |
| 2683 | |
| 2684 | /* disable ROM base Address */ |
| 2685 | temp_word = 0x00L; |
| 2686 | rc = pci_bus_write_config_word (pci_bus, devfn, PCI_ROM_ADDRESS, temp_word); |
| 2687 | |
| 2688 | /* Set HP parameters (Cache Line Size, Latency Timer) */ |
| 2689 | rc = pciehprm_set_hpp(ctrl, func, PCI_HEADER_TYPE_NORMAL); |
| 2690 | if (rc) |
| 2691 | return rc; |
| 2692 | |
| 2693 | pciehprm_enable_card(ctrl, func, PCI_HEADER_TYPE_NORMAL); |
| 2694 | |
| 2695 | dbg("PCI function Hot-Added s:b:d:f(%02x:%02x:%02x:%02x)\n", ctrl->seg, func->bus, func->device, |
| 2696 | func->function); |
| 2697 | } /* End of Not-A-Bridge else */ |
| 2698 | else { |
| 2699 | /* It's some strange type of PCI adapter (Cardbus?) */ |
| 2700 | return DEVICE_TYPE_NOT_SUPPORTED; |
| 2701 | } |
| 2702 | |
| 2703 | func->configured = 1; |
| 2704 | |
| 2705 | return 0; |
| 2706 | } |