Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * FarSync WAN driver for Linux (2.6.x kernel version) |
| 3 | * |
| 4 | * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards |
| 5 | * |
| 6 | * Copyright (C) 2001-2004 FarSite Communications Ltd. |
| 7 | * www.farsite.co.uk |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or |
| 10 | * modify it under the terms of the GNU General Public License |
| 11 | * as published by the Free Software Foundation; either version |
| 12 | * 2 of the License, or (at your option) any later version. |
| 13 | * |
| 14 | * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk> |
| 15 | * Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk> |
| 16 | */ |
| 17 | |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/version.h> |
| 21 | #include <linux/pci.h> |
| 22 | #include <linux/ioport.h> |
| 23 | #include <linux/init.h> |
| 24 | #include <linux/if.h> |
| 25 | #include <linux/hdlc.h> |
| 26 | #include <asm/io.h> |
| 27 | #include <asm/uaccess.h> |
| 28 | |
| 29 | #include "farsync.h" |
| 30 | |
| 31 | /* |
| 32 | * Module info |
| 33 | */ |
| 34 | MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>"); |
| 35 | MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd."); |
| 36 | MODULE_LICENSE("GPL"); |
| 37 | |
| 38 | /* Driver configuration and global parameters |
| 39 | * ========================================== |
| 40 | */ |
| 41 | |
| 42 | /* Number of ports (per card) and cards supported |
| 43 | */ |
| 44 | #define FST_MAX_PORTS 4 |
| 45 | #define FST_MAX_CARDS 32 |
| 46 | |
| 47 | /* Default parameters for the link |
| 48 | */ |
| 49 | #define FST_TX_QUEUE_LEN 100 /* At 8Mbps a longer queue length is |
| 50 | * useful, the syncppp module forces |
| 51 | * this down assuming a slower line I |
| 52 | * guess. |
| 53 | */ |
| 54 | #define FST_TXQ_DEPTH 16 /* This one is for the buffering |
| 55 | * of frames on the way down to the card |
| 56 | * so that we can keep the card busy |
| 57 | * and maximise throughput |
| 58 | */ |
| 59 | #define FST_HIGH_WATER_MARK 12 /* Point at which we flow control |
| 60 | * network layer */ |
| 61 | #define FST_LOW_WATER_MARK 8 /* Point at which we remove flow |
| 62 | * control from network layer */ |
| 63 | #define FST_MAX_MTU 8000 /* Huge but possible */ |
| 64 | #define FST_DEF_MTU 1500 /* Common sane value */ |
| 65 | |
| 66 | #define FST_TX_TIMEOUT (2*HZ) |
| 67 | |
| 68 | #ifdef ARPHRD_RAWHDLC |
| 69 | #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */ |
| 70 | #else |
| 71 | #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */ |
| 72 | #endif |
| 73 | |
| 74 | /* |
| 75 | * Modules parameters and associated varaibles |
| 76 | */ |
| 77 | int fst_txq_low = FST_LOW_WATER_MARK; |
| 78 | int fst_txq_high = FST_HIGH_WATER_MARK; |
| 79 | int fst_max_reads = 7; |
| 80 | int fst_excluded_cards = 0; |
| 81 | int fst_excluded_list[FST_MAX_CARDS]; |
| 82 | |
| 83 | module_param(fst_txq_low, int, 0); |
| 84 | module_param(fst_txq_high, int, 0); |
| 85 | module_param(fst_max_reads, int, 0); |
| 86 | module_param(fst_excluded_cards, int, 0); |
| 87 | module_param_array(fst_excluded_list, int, NULL, 0); |
| 88 | |
| 89 | /* Card shared memory layout |
| 90 | * ========================= |
| 91 | */ |
| 92 | #pragma pack(1) |
| 93 | |
| 94 | /* This information is derived in part from the FarSite FarSync Smc.h |
| 95 | * file. Unfortunately various name clashes and the non-portability of the |
| 96 | * bit field declarations in that file have meant that I have chosen to |
| 97 | * recreate the information here. |
| 98 | * |
| 99 | * The SMC (Shared Memory Configuration) has a version number that is |
| 100 | * incremented every time there is a significant change. This number can |
| 101 | * be used to check that we have not got out of step with the firmware |
| 102 | * contained in the .CDE files. |
| 103 | */ |
| 104 | #define SMC_VERSION 24 |
| 105 | |
| 106 | #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */ |
| 107 | |
| 108 | #define SMC_BASE 0x00002000L /* Base offset of the shared memory window main |
| 109 | * configuration structure */ |
| 110 | #define BFM_BASE 0x00010000L /* Base offset of the shared memory window DMA |
| 111 | * buffers */ |
| 112 | |
| 113 | #define LEN_TX_BUFFER 8192 /* Size of packet buffers */ |
| 114 | #define LEN_RX_BUFFER 8192 |
| 115 | |
| 116 | #define LEN_SMALL_TX_BUFFER 256 /* Size of obsolete buffs used for DOS diags */ |
| 117 | #define LEN_SMALL_RX_BUFFER 256 |
| 118 | |
| 119 | #define NUM_TX_BUFFER 2 /* Must be power of 2. Fixed by firmware */ |
| 120 | #define NUM_RX_BUFFER 8 |
| 121 | |
| 122 | /* Interrupt retry time in milliseconds */ |
| 123 | #define INT_RETRY_TIME 2 |
| 124 | |
| 125 | /* The Am186CH/CC processors support a SmartDMA mode using circular pools |
| 126 | * of buffer descriptors. The structure is almost identical to that used |
| 127 | * in the LANCE Ethernet controllers. Details available as PDF from the |
| 128 | * AMD web site: http://www.amd.com/products/epd/processors/\ |
| 129 | * 2.16bitcont/3.am186cxfa/a21914/21914.pdf |
| 130 | */ |
| 131 | struct txdesc { /* Transmit descriptor */ |
| 132 | volatile u16 ladr; /* Low order address of packet. This is a |
| 133 | * linear address in the Am186 memory space |
| 134 | */ |
| 135 | volatile u8 hadr; /* High order address. Low 4 bits only, high 4 |
| 136 | * bits must be zero |
| 137 | */ |
| 138 | volatile u8 bits; /* Status and config */ |
| 139 | volatile u16 bcnt; /* 2s complement of packet size in low 15 bits. |
| 140 | * Transmit terminal count interrupt enable in |
| 141 | * top bit. |
| 142 | */ |
| 143 | u16 unused; /* Not used in Tx */ |
| 144 | }; |
| 145 | |
| 146 | struct rxdesc { /* Receive descriptor */ |
| 147 | volatile u16 ladr; /* Low order address of packet */ |
| 148 | volatile u8 hadr; /* High order address */ |
| 149 | volatile u8 bits; /* Status and config */ |
| 150 | volatile u16 bcnt; /* 2s complement of buffer size in low 15 bits. |
| 151 | * Receive terminal count interrupt enable in |
| 152 | * top bit. |
| 153 | */ |
| 154 | volatile u16 mcnt; /* Message byte count (15 bits) */ |
| 155 | }; |
| 156 | |
| 157 | /* Convert a length into the 15 bit 2's complement */ |
| 158 | /* #define cnv_bcnt(len) (( ~(len) + 1 ) & 0x7FFF ) */ |
| 159 | /* Since we need to set the high bit to enable the completion interrupt this |
| 160 | * can be made a lot simpler |
| 161 | */ |
| 162 | #define cnv_bcnt(len) (-(len)) |
| 163 | |
| 164 | /* Status and config bits for the above */ |
| 165 | #define DMA_OWN 0x80 /* SmartDMA owns the descriptor */ |
| 166 | #define TX_STP 0x02 /* Tx: start of packet */ |
| 167 | #define TX_ENP 0x01 /* Tx: end of packet */ |
| 168 | #define RX_ERR 0x40 /* Rx: error (OR of next 4 bits) */ |
| 169 | #define RX_FRAM 0x20 /* Rx: framing error */ |
| 170 | #define RX_OFLO 0x10 /* Rx: overflow error */ |
| 171 | #define RX_CRC 0x08 /* Rx: CRC error */ |
| 172 | #define RX_HBUF 0x04 /* Rx: buffer error */ |
| 173 | #define RX_STP 0x02 /* Rx: start of packet */ |
| 174 | #define RX_ENP 0x01 /* Rx: end of packet */ |
| 175 | |
| 176 | /* Interrupts from the card are caused by various events which are presented |
| 177 | * in a circular buffer as several events may be processed on one physical int |
| 178 | */ |
| 179 | #define MAX_CIRBUFF 32 |
| 180 | |
| 181 | struct cirbuff { |
| 182 | u8 rdindex; /* read, then increment and wrap */ |
| 183 | u8 wrindex; /* write, then increment and wrap */ |
| 184 | u8 evntbuff[MAX_CIRBUFF]; |
| 185 | }; |
| 186 | |
| 187 | /* Interrupt event codes. |
| 188 | * Where appropriate the two low order bits indicate the port number |
| 189 | */ |
| 190 | #define CTLA_CHG 0x18 /* Control signal changed */ |
| 191 | #define CTLB_CHG 0x19 |
| 192 | #define CTLC_CHG 0x1A |
| 193 | #define CTLD_CHG 0x1B |
| 194 | |
| 195 | #define INIT_CPLT 0x20 /* Initialisation complete */ |
| 196 | #define INIT_FAIL 0x21 /* Initialisation failed */ |
| 197 | |
| 198 | #define ABTA_SENT 0x24 /* Abort sent */ |
| 199 | #define ABTB_SENT 0x25 |
| 200 | #define ABTC_SENT 0x26 |
| 201 | #define ABTD_SENT 0x27 |
| 202 | |
| 203 | #define TXA_UNDF 0x28 /* Transmission underflow */ |
| 204 | #define TXB_UNDF 0x29 |
| 205 | #define TXC_UNDF 0x2A |
| 206 | #define TXD_UNDF 0x2B |
| 207 | |
| 208 | #define F56_INT 0x2C |
| 209 | #define M32_INT 0x2D |
| 210 | |
| 211 | #define TE1_ALMA 0x30 |
| 212 | |
| 213 | /* Port physical configuration. See farsync.h for field values */ |
| 214 | struct port_cfg { |
| 215 | u16 lineInterface; /* Physical interface type */ |
| 216 | u8 x25op; /* Unused at present */ |
| 217 | u8 internalClock; /* 1 => internal clock, 0 => external */ |
| 218 | u8 transparentMode; /* 1 => on, 0 => off */ |
| 219 | u8 invertClock; /* 0 => normal, 1 => inverted */ |
| 220 | u8 padBytes[6]; /* Padding */ |
| 221 | u32 lineSpeed; /* Speed in bps */ |
| 222 | }; |
| 223 | |
| 224 | /* TE1 port physical configuration */ |
| 225 | struct su_config { |
| 226 | u32 dataRate; |
| 227 | u8 clocking; |
| 228 | u8 framing; |
| 229 | u8 structure; |
| 230 | u8 interface; |
| 231 | u8 coding; |
| 232 | u8 lineBuildOut; |
| 233 | u8 equalizer; |
| 234 | u8 transparentMode; |
| 235 | u8 loopMode; |
| 236 | u8 range; |
| 237 | u8 txBufferMode; |
| 238 | u8 rxBufferMode; |
| 239 | u8 startingSlot; |
| 240 | u8 losThreshold; |
| 241 | u8 enableIdleCode; |
| 242 | u8 idleCode; |
| 243 | u8 spare[44]; |
| 244 | }; |
| 245 | |
| 246 | /* TE1 Status */ |
| 247 | struct su_status { |
| 248 | u32 receiveBufferDelay; |
| 249 | u32 framingErrorCount; |
| 250 | u32 codeViolationCount; |
| 251 | u32 crcErrorCount; |
| 252 | u32 lineAttenuation; |
| 253 | u8 portStarted; |
| 254 | u8 lossOfSignal; |
| 255 | u8 receiveRemoteAlarm; |
| 256 | u8 alarmIndicationSignal; |
| 257 | u8 spare[40]; |
| 258 | }; |
| 259 | |
| 260 | /* Finally sling all the above together into the shared memory structure. |
| 261 | * Sorry it's a hodge podge of arrays, structures and unused bits, it's been |
| 262 | * evolving under NT for some time so I guess we're stuck with it. |
| 263 | * The structure starts at offset SMC_BASE. |
| 264 | * See farsync.h for some field values. |
| 265 | */ |
| 266 | struct fst_shared { |
| 267 | /* DMA descriptor rings */ |
| 268 | struct rxdesc rxDescrRing[FST_MAX_PORTS][NUM_RX_BUFFER]; |
| 269 | struct txdesc txDescrRing[FST_MAX_PORTS][NUM_TX_BUFFER]; |
| 270 | |
| 271 | /* Obsolete small buffers */ |
| 272 | u8 smallRxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_SMALL_RX_BUFFER]; |
| 273 | u8 smallTxBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_SMALL_TX_BUFFER]; |
| 274 | |
| 275 | u8 taskStatus; /* 0x00 => initialising, 0x01 => running, |
| 276 | * 0xFF => halted |
| 277 | */ |
| 278 | |
| 279 | u8 interruptHandshake; /* Set to 0x01 by adapter to signal interrupt, |
| 280 | * set to 0xEE by host to acknowledge interrupt |
| 281 | */ |
| 282 | |
| 283 | u16 smcVersion; /* Must match SMC_VERSION */ |
| 284 | |
| 285 | u32 smcFirmwareVersion; /* 0xIIVVRRBB where II = product ID, VV = major |
| 286 | * version, RR = revision and BB = build |
| 287 | */ |
| 288 | |
| 289 | u16 txa_done; /* Obsolete completion flags */ |
| 290 | u16 rxa_done; |
| 291 | u16 txb_done; |
| 292 | u16 rxb_done; |
| 293 | u16 txc_done; |
| 294 | u16 rxc_done; |
| 295 | u16 txd_done; |
| 296 | u16 rxd_done; |
| 297 | |
| 298 | u16 mailbox[4]; /* Diagnostics mailbox. Not used */ |
| 299 | |
| 300 | struct cirbuff interruptEvent; /* interrupt causes */ |
| 301 | |
| 302 | u32 v24IpSts[FST_MAX_PORTS]; /* V.24 control input status */ |
| 303 | u32 v24OpSts[FST_MAX_PORTS]; /* V.24 control output status */ |
| 304 | |
| 305 | struct port_cfg portConfig[FST_MAX_PORTS]; |
| 306 | |
| 307 | u16 clockStatus[FST_MAX_PORTS]; /* lsb: 0=> present, 1=> absent */ |
| 308 | |
| 309 | u16 cableStatus; /* lsb: 0=> present, 1=> absent */ |
| 310 | |
| 311 | u16 txDescrIndex[FST_MAX_PORTS]; /* transmit descriptor ring index */ |
| 312 | u16 rxDescrIndex[FST_MAX_PORTS]; /* receive descriptor ring index */ |
| 313 | |
| 314 | u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */ |
| 315 | u16 cardMailbox[4]; /* Not used */ |
| 316 | |
| 317 | /* Number of times the card thinks the host has |
| 318 | * missed an interrupt by not acknowledging |
| 319 | * within 2mS (I guess NT has problems) |
| 320 | */ |
| 321 | u32 interruptRetryCount; |
| 322 | |
| 323 | /* Driver private data used as an ID. We'll not |
| 324 | * use this as I'd rather keep such things |
| 325 | * in main memory rather than on the PCI bus |
| 326 | */ |
| 327 | u32 portHandle[FST_MAX_PORTS]; |
| 328 | |
| 329 | /* Count of Tx underflows for stats */ |
| 330 | u32 transmitBufferUnderflow[FST_MAX_PORTS]; |
| 331 | |
| 332 | /* Debounced V.24 control input status */ |
| 333 | u32 v24DebouncedSts[FST_MAX_PORTS]; |
| 334 | |
| 335 | /* Adapter debounce timers. Don't touch */ |
| 336 | u32 ctsTimer[FST_MAX_PORTS]; |
| 337 | u32 ctsTimerRun[FST_MAX_PORTS]; |
| 338 | u32 dcdTimer[FST_MAX_PORTS]; |
| 339 | u32 dcdTimerRun[FST_MAX_PORTS]; |
| 340 | |
| 341 | u32 numberOfPorts; /* Number of ports detected at startup */ |
| 342 | |
| 343 | u16 _reserved[64]; |
| 344 | |
| 345 | u16 cardMode; /* Bit-mask to enable features: |
| 346 | * Bit 0: 1 enables LED identify mode |
| 347 | */ |
| 348 | |
| 349 | u16 portScheduleOffset; |
| 350 | |
| 351 | struct su_config suConfig; /* TE1 Bits */ |
| 352 | struct su_status suStatus; |
| 353 | |
| 354 | u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of |
| 355 | * the structure and marks the end of shared |
| 356 | * memory. Adapter code initializes it as |
| 357 | * END_SIG. |
| 358 | */ |
| 359 | }; |
| 360 | |
| 361 | /* endOfSmcSignature value */ |
| 362 | #define END_SIG 0x12345678 |
| 363 | |
| 364 | /* Mailbox values. (portMailbox) */ |
| 365 | #define NOP 0 /* No operation */ |
| 366 | #define ACK 1 /* Positive acknowledgement to PC driver */ |
| 367 | #define NAK 2 /* Negative acknowledgement to PC driver */ |
| 368 | #define STARTPORT 3 /* Start an HDLC port */ |
| 369 | #define STOPPORT 4 /* Stop an HDLC port */ |
| 370 | #define ABORTTX 5 /* Abort the transmitter for a port */ |
| 371 | #define SETV24O 6 /* Set V24 outputs */ |
| 372 | |
| 373 | /* PLX Chip Register Offsets */ |
| 374 | #define CNTRL_9052 0x50 /* Control Register */ |
| 375 | #define CNTRL_9054 0x6c /* Control Register */ |
| 376 | |
| 377 | #define INTCSR_9052 0x4c /* Interrupt control/status register */ |
| 378 | #define INTCSR_9054 0x68 /* Interrupt control/status register */ |
| 379 | |
| 380 | /* 9054 DMA Registers */ |
| 381 | /* |
| 382 | * Note that we will be using DMA Channel 0 for copying rx data |
| 383 | * and Channel 1 for copying tx data |
| 384 | */ |
| 385 | #define DMAMODE0 0x80 |
| 386 | #define DMAPADR0 0x84 |
| 387 | #define DMALADR0 0x88 |
| 388 | #define DMASIZ0 0x8c |
| 389 | #define DMADPR0 0x90 |
| 390 | #define DMAMODE1 0x94 |
| 391 | #define DMAPADR1 0x98 |
| 392 | #define DMALADR1 0x9c |
| 393 | #define DMASIZ1 0xa0 |
| 394 | #define DMADPR1 0xa4 |
| 395 | #define DMACSR0 0xa8 |
| 396 | #define DMACSR1 0xa9 |
| 397 | #define DMAARB 0xac |
| 398 | #define DMATHR 0xb0 |
| 399 | #define DMADAC0 0xb4 |
| 400 | #define DMADAC1 0xb8 |
| 401 | #define DMAMARBR 0xac |
| 402 | |
| 403 | #define FST_MIN_DMA_LEN 64 |
| 404 | #define FST_RX_DMA_INT 0x01 |
| 405 | #define FST_TX_DMA_INT 0x02 |
| 406 | #define FST_CARD_INT 0x04 |
| 407 | |
| 408 | /* Larger buffers are positioned in memory at offset BFM_BASE */ |
| 409 | struct buf_window { |
| 410 | u8 txBuffer[FST_MAX_PORTS][NUM_TX_BUFFER][LEN_TX_BUFFER]; |
| 411 | u8 rxBuffer[FST_MAX_PORTS][NUM_RX_BUFFER][LEN_RX_BUFFER]; |
| 412 | }; |
| 413 | |
| 414 | /* Calculate offset of a buffer object within the shared memory window */ |
| 415 | #define BUF_OFFSET(X) (BFM_BASE + offsetof(struct buf_window, X)) |
| 416 | |
| 417 | #pragma pack() |
| 418 | |
| 419 | /* Device driver private information |
| 420 | * ================================= |
| 421 | */ |
| 422 | /* Per port (line or channel) information |
| 423 | */ |
| 424 | struct fst_port_info { |
| 425 | struct net_device *dev; /* Device struct - must be first */ |
| 426 | struct fst_card_info *card; /* Card we're associated with */ |
| 427 | int index; /* Port index on the card */ |
| 428 | int hwif; /* Line hardware (lineInterface copy) */ |
| 429 | int run; /* Port is running */ |
| 430 | int mode; /* Normal or FarSync raw */ |
| 431 | int rxpos; /* Next Rx buffer to use */ |
| 432 | int txpos; /* Next Tx buffer to use */ |
| 433 | int txipos; /* Next Tx buffer to check for free */ |
| 434 | int start; /* Indication of start/stop to network */ |
| 435 | /* |
| 436 | * A sixteen entry transmit queue |
| 437 | */ |
| 438 | int txqs; /* index to get next buffer to tx */ |
| 439 | int txqe; /* index to queue next packet */ |
| 440 | struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */ |
| 441 | int rxqdepth; |
| 442 | }; |
| 443 | |
| 444 | /* Per card information |
| 445 | */ |
| 446 | struct fst_card_info { |
| 447 | char __iomem *mem; /* Card memory mapped to kernel space */ |
| 448 | char __iomem *ctlmem; /* Control memory for PCI cards */ |
| 449 | unsigned int phys_mem; /* Physical memory window address */ |
| 450 | unsigned int phys_ctlmem; /* Physical control memory address */ |
| 451 | unsigned int irq; /* Interrupt request line number */ |
| 452 | unsigned int nports; /* Number of serial ports */ |
| 453 | unsigned int type; /* Type index of card */ |
| 454 | unsigned int state; /* State of card */ |
| 455 | spinlock_t card_lock; /* Lock for SMP access */ |
| 456 | unsigned short pci_conf; /* PCI card config in I/O space */ |
| 457 | /* Per port info */ |
| 458 | struct fst_port_info ports[FST_MAX_PORTS]; |
| 459 | struct pci_dev *device; /* Information about the pci device */ |
| 460 | int card_no; /* Inst of the card on the system */ |
| 461 | int family; /* TxP or TxU */ |
| 462 | int dmarx_in_progress; |
| 463 | int dmatx_in_progress; |
| 464 | unsigned long int_count; |
| 465 | unsigned long int_time_ave; |
| 466 | void *rx_dma_handle_host; |
| 467 | dma_addr_t rx_dma_handle_card; |
| 468 | void *tx_dma_handle_host; |
| 469 | dma_addr_t tx_dma_handle_card; |
| 470 | struct sk_buff *dma_skb_rx; |
| 471 | struct fst_port_info *dma_port_rx; |
| 472 | struct fst_port_info *dma_port_tx; |
| 473 | int dma_len_rx; |
| 474 | int dma_len_tx; |
| 475 | int dma_txpos; |
| 476 | int dma_rxpos; |
| 477 | }; |
| 478 | |
| 479 | /* Convert an HDLC device pointer into a port info pointer and similar */ |
| 480 | #define dev_to_port(D) (dev_to_hdlc(D)->priv) |
| 481 | #define port_to_dev(P) ((P)->dev) |
| 482 | |
| 483 | |
| 484 | /* |
| 485 | * Shared memory window access macros |
| 486 | * |
| 487 | * We have a nice memory based structure above, which could be directly |
| 488 | * mapped on i386 but might not work on other architectures unless we use |
| 489 | * the readb,w,l and writeb,w,l macros. Unfortunately these macros take |
| 490 | * physical offsets so we have to convert. The only saving grace is that |
| 491 | * this should all collapse back to a simple indirection eventually. |
| 492 | */ |
| 493 | #define WIN_OFFSET(X) ((long)&(((struct fst_shared *)SMC_BASE)->X)) |
| 494 | |
| 495 | #define FST_RDB(C,E) readb ((C)->mem + WIN_OFFSET(E)) |
| 496 | #define FST_RDW(C,E) readw ((C)->mem + WIN_OFFSET(E)) |
| 497 | #define FST_RDL(C,E) readl ((C)->mem + WIN_OFFSET(E)) |
| 498 | |
| 499 | #define FST_WRB(C,E,B) writeb ((B), (C)->mem + WIN_OFFSET(E)) |
| 500 | #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E)) |
| 501 | #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E)) |
| 502 | |
| 503 | /* |
| 504 | * Debug support |
| 505 | */ |
| 506 | #if FST_DEBUG |
| 507 | |
| 508 | static int fst_debug_mask = { FST_DEBUG }; |
| 509 | |
| 510 | /* Most common debug activity is to print something if the corresponding bit |
| 511 | * is set in the debug mask. Note: this uses a non-ANSI extension in GCC to |
| 512 | * support variable numbers of macro parameters. The inverted if prevents us |
| 513 | * eating someone else's else clause. |
| 514 | */ |
| 515 | #define dbg(F,fmt,A...) if ( ! ( fst_debug_mask & (F))) \ |
| 516 | ; \ |
| 517 | else \ |
| 518 | printk ( KERN_DEBUG FST_NAME ": " fmt, ## A ) |
| 519 | |
| 520 | #else |
| 521 | #define dbg(X...) /* NOP */ |
| 522 | #endif |
| 523 | |
| 524 | /* Printing short cuts |
| 525 | */ |
| 526 | #define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A ) |
| 527 | #define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A ) |
| 528 | #define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A ) |
| 529 | |
| 530 | /* |
| 531 | * PCI ID lookup table |
| 532 | */ |
| 533 | static struct pci_device_id fst_pci_dev_id[] __devinitdata = { |
| 534 | {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID, |
| 535 | PCI_ANY_ID, 0, 0, FST_TYPE_T2P}, |
| 536 | |
| 537 | {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID, |
| 538 | PCI_ANY_ID, 0, 0, FST_TYPE_T4P}, |
| 539 | |
| 540 | {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID, |
| 541 | PCI_ANY_ID, 0, 0, FST_TYPE_T1U}, |
| 542 | |
| 543 | {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID, |
| 544 | PCI_ANY_ID, 0, 0, FST_TYPE_T2U}, |
| 545 | |
| 546 | {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID, |
| 547 | PCI_ANY_ID, 0, 0, FST_TYPE_T4U}, |
| 548 | |
| 549 | {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID, |
| 550 | PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, |
| 551 | |
| 552 | {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID, |
| 553 | PCI_ANY_ID, 0, 0, FST_TYPE_TE1}, |
| 554 | {0,} /* End */ |
| 555 | }; |
| 556 | |
| 557 | MODULE_DEVICE_TABLE(pci, fst_pci_dev_id); |
| 558 | |
| 559 | /* |
| 560 | * Device Driver Work Queues |
| 561 | * |
| 562 | * So that we don't spend too much time processing events in the |
| 563 | * Interrupt Service routine, we will declare a work queue per Card |
| 564 | * and make the ISR schedule a task in the queue for later execution. |
| 565 | * In the 2.4 Kernel we used to use the immediate queue for BH's |
| 566 | * Now that they are gone, tasklets seem to be much better than work |
| 567 | * queues. |
| 568 | */ |
| 569 | |
| 570 | static void do_bottom_half_tx(struct fst_card_info *card); |
| 571 | static void do_bottom_half_rx(struct fst_card_info *card); |
| 572 | static void fst_process_tx_work_q(unsigned long work_q); |
| 573 | static void fst_process_int_work_q(unsigned long work_q); |
| 574 | |
| 575 | DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0); |
| 576 | DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0); |
| 577 | |
| 578 | struct fst_card_info *fst_card_array[FST_MAX_CARDS]; |
| 579 | spinlock_t fst_work_q_lock; |
| 580 | u64 fst_work_txq; |
| 581 | u64 fst_work_intq; |
| 582 | |
| 583 | static void |
| 584 | fst_q_work_item(u64 * queue, int card_index) |
| 585 | { |
| 586 | unsigned long flags; |
| 587 | u64 mask; |
| 588 | |
| 589 | /* |
| 590 | * Grab the queue exclusively |
| 591 | */ |
| 592 | spin_lock_irqsave(&fst_work_q_lock, flags); |
| 593 | |
| 594 | /* |
| 595 | * Making an entry in the queue is simply a matter of setting |
| 596 | * a bit for the card indicating that there is work to do in the |
| 597 | * bottom half for the card. Note the limitation of 64 cards. |
| 598 | * That ought to be enough |
| 599 | */ |
| 600 | mask = 1 << card_index; |
| 601 | *queue |= mask; |
| 602 | spin_unlock_irqrestore(&fst_work_q_lock, flags); |
| 603 | } |
| 604 | |
| 605 | static void |
| 606 | fst_process_tx_work_q(unsigned long /*void **/work_q) |
| 607 | { |
| 608 | unsigned long flags; |
| 609 | u64 work_txq; |
| 610 | int i; |
| 611 | |
| 612 | /* |
| 613 | * Grab the queue exclusively |
| 614 | */ |
| 615 | dbg(DBG_TX, "fst_process_tx_work_q\n"); |
| 616 | spin_lock_irqsave(&fst_work_q_lock, flags); |
| 617 | work_txq = fst_work_txq; |
| 618 | fst_work_txq = 0; |
| 619 | spin_unlock_irqrestore(&fst_work_q_lock, flags); |
| 620 | |
| 621 | /* |
| 622 | * Call the bottom half for each card with work waiting |
| 623 | */ |
| 624 | for (i = 0; i < FST_MAX_CARDS; i++) { |
| 625 | if (work_txq & 0x01) { |
| 626 | if (fst_card_array[i] != NULL) { |
| 627 | dbg(DBG_TX, "Calling tx bh for card %d\n", i); |
| 628 | do_bottom_half_tx(fst_card_array[i]); |
| 629 | } |
| 630 | } |
| 631 | work_txq = work_txq >> 1; |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | static void |
| 636 | fst_process_int_work_q(unsigned long /*void **/work_q) |
| 637 | { |
| 638 | unsigned long flags; |
| 639 | u64 work_intq; |
| 640 | int i; |
| 641 | |
| 642 | /* |
| 643 | * Grab the queue exclusively |
| 644 | */ |
| 645 | dbg(DBG_INTR, "fst_process_int_work_q\n"); |
| 646 | spin_lock_irqsave(&fst_work_q_lock, flags); |
| 647 | work_intq = fst_work_intq; |
| 648 | fst_work_intq = 0; |
| 649 | spin_unlock_irqrestore(&fst_work_q_lock, flags); |
| 650 | |
| 651 | /* |
| 652 | * Call the bottom half for each card with work waiting |
| 653 | */ |
| 654 | for (i = 0; i < FST_MAX_CARDS; i++) { |
| 655 | if (work_intq & 0x01) { |
| 656 | if (fst_card_array[i] != NULL) { |
| 657 | dbg(DBG_INTR, |
| 658 | "Calling rx & tx bh for card %d\n", i); |
| 659 | do_bottom_half_rx(fst_card_array[i]); |
| 660 | do_bottom_half_tx(fst_card_array[i]); |
| 661 | } |
| 662 | } |
| 663 | work_intq = work_intq >> 1; |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | /* Card control functions |
| 668 | * ====================== |
| 669 | */ |
| 670 | /* Place the processor in reset state |
| 671 | * |
| 672 | * Used to be a simple write to card control space but a glitch in the latest |
| 673 | * AMD Am186CH processor means that we now have to do it by asserting and de- |
| 674 | * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register |
| 675 | * at offset 9052_CNTRL. Note the updates for the TXU. |
| 676 | */ |
| 677 | static inline void |
| 678 | fst_cpureset(struct fst_card_info *card) |
| 679 | { |
| 680 | unsigned char interrupt_line_register; |
| 681 | unsigned long j = jiffies + 1; |
| 682 | unsigned int regval; |
| 683 | |
| 684 | if (card->family == FST_FAMILY_TXU) { |
| 685 | if (pci_read_config_byte |
| 686 | (card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) { |
| 687 | dbg(DBG_ASS, |
| 688 | "Error in reading interrupt line register\n"); |
| 689 | } |
| 690 | /* |
| 691 | * Assert PLX software reset and Am186 hardware reset |
| 692 | * and then deassert the PLX software reset but 186 still in reset |
| 693 | */ |
| 694 | outw(0x440f, card->pci_conf + CNTRL_9054 + 2); |
| 695 | outw(0x040f, card->pci_conf + CNTRL_9054 + 2); |
| 696 | /* |
| 697 | * We are delaying here to allow the 9054 to reset itself |
| 698 | */ |
| 699 | j = jiffies + 1; |
| 700 | while (jiffies < j) |
| 701 | /* Do nothing */ ; |
| 702 | outw(0x240f, card->pci_conf + CNTRL_9054 + 2); |
| 703 | /* |
| 704 | * We are delaying here to allow the 9054 to reload its eeprom |
| 705 | */ |
| 706 | j = jiffies + 1; |
| 707 | while (jiffies < j) |
| 708 | /* Do nothing */ ; |
| 709 | outw(0x040f, card->pci_conf + CNTRL_9054 + 2); |
| 710 | |
| 711 | if (pci_write_config_byte |
| 712 | (card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) { |
| 713 | dbg(DBG_ASS, |
| 714 | "Error in writing interrupt line register\n"); |
| 715 | } |
| 716 | |
| 717 | } else { |
| 718 | regval = inl(card->pci_conf + CNTRL_9052); |
| 719 | |
| 720 | outl(regval | 0x40000000, card->pci_conf + CNTRL_9052); |
| 721 | outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052); |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | /* Release the processor from reset |
| 726 | */ |
| 727 | static inline void |
| 728 | fst_cpurelease(struct fst_card_info *card) |
| 729 | { |
| 730 | if (card->family == FST_FAMILY_TXU) { |
| 731 | /* |
| 732 | * Force posted writes to complete |
| 733 | */ |
| 734 | (void) readb(card->mem); |
| 735 | |
| 736 | /* |
| 737 | * Release LRESET DO = 1 |
| 738 | * Then release Local Hold, DO = 1 |
| 739 | */ |
| 740 | outw(0x040e, card->pci_conf + CNTRL_9054 + 2); |
| 741 | outw(0x040f, card->pci_conf + CNTRL_9054 + 2); |
| 742 | } else { |
| 743 | (void) readb(card->ctlmem); |
| 744 | } |
| 745 | } |
| 746 | |
| 747 | /* Clear the cards interrupt flag |
| 748 | */ |
| 749 | static inline void |
| 750 | fst_clear_intr(struct fst_card_info *card) |
| 751 | { |
| 752 | if (card->family == FST_FAMILY_TXU) { |
| 753 | (void) readb(card->ctlmem); |
| 754 | } else { |
| 755 | /* Poke the appropriate PLX chip register (same as enabling interrupts) |
| 756 | */ |
| 757 | outw(0x0543, card->pci_conf + INTCSR_9052); |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | /* Enable card interrupts |
| 762 | */ |
| 763 | static inline void |
| 764 | fst_enable_intr(struct fst_card_info *card) |
| 765 | { |
| 766 | if (card->family == FST_FAMILY_TXU) { |
| 767 | outl(0x0f0c0900, card->pci_conf + INTCSR_9054); |
| 768 | } else { |
| 769 | outw(0x0543, card->pci_conf + INTCSR_9052); |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | /* Disable card interrupts |
| 774 | */ |
| 775 | static inline void |
| 776 | fst_disable_intr(struct fst_card_info *card) |
| 777 | { |
| 778 | if (card->family == FST_FAMILY_TXU) { |
| 779 | outl(0x00000000, card->pci_conf + INTCSR_9054); |
| 780 | } else { |
| 781 | outw(0x0000, card->pci_conf + INTCSR_9052); |
| 782 | } |
| 783 | } |
| 784 | |
| 785 | /* Process the result of trying to pass a received frame up the stack |
| 786 | */ |
| 787 | static void |
| 788 | fst_process_rx_status(int rx_status, char *name) |
| 789 | { |
| 790 | switch (rx_status) { |
| 791 | case NET_RX_SUCCESS: |
| 792 | { |
| 793 | /* |
| 794 | * Nothing to do here |
| 795 | */ |
| 796 | break; |
| 797 | } |
| 798 | |
| 799 | case NET_RX_CN_LOW: |
| 800 | { |
| 801 | dbg(DBG_ASS, "%s: Receive Low Congestion\n", name); |
| 802 | break; |
| 803 | } |
| 804 | |
| 805 | case NET_RX_CN_MOD: |
| 806 | { |
| 807 | dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name); |
| 808 | break; |
| 809 | } |
| 810 | |
| 811 | case NET_RX_CN_HIGH: |
| 812 | { |
| 813 | dbg(DBG_ASS, "%s: Receive High Congestion\n", name); |
| 814 | break; |
| 815 | } |
| 816 | |
| 817 | case NET_RX_DROP: |
| 818 | { |
| 819 | dbg(DBG_ASS, "%s: Received packet dropped\n", name); |
| 820 | break; |
| 821 | } |
| 822 | } |
| 823 | } |
| 824 | |
| 825 | /* Initilaise DMA for PLX 9054 |
| 826 | */ |
| 827 | static inline void |
| 828 | fst_init_dma(struct fst_card_info *card) |
| 829 | { |
| 830 | /* |
| 831 | * This is only required for the PLX 9054 |
| 832 | */ |
| 833 | if (card->family == FST_FAMILY_TXU) { |
| 834 | pci_set_master(card->device); |
| 835 | outl(0x00020441, card->pci_conf + DMAMODE0); |
| 836 | outl(0x00020441, card->pci_conf + DMAMODE1); |
| 837 | outl(0x0, card->pci_conf + DMATHR); |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | /* Tx dma complete interrupt |
| 842 | */ |
| 843 | static void |
| 844 | fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, |
| 845 | int len, int txpos) |
| 846 | { |
| 847 | struct net_device *dev = port_to_dev(port); |
| 848 | struct net_device_stats *stats = hdlc_stats(dev); |
| 849 | |
| 850 | /* |
| 851 | * Everything is now set, just tell the card to go |
| 852 | */ |
| 853 | dbg(DBG_TX, "fst_tx_dma_complete\n"); |
| 854 | FST_WRB(card, txDescrRing[port->index][txpos].bits, |
| 855 | DMA_OWN | TX_STP | TX_ENP); |
| 856 | stats->tx_packets++; |
| 857 | stats->tx_bytes += len; |
| 858 | dev->trans_start = jiffies; |
| 859 | } |
| 860 | |
| 861 | /* |
| 862 | * Mark it for our own raw sockets interface |
| 863 | */ |
| 864 | static unsigned short farsync_type_trans(struct sk_buff *skb, |
| 865 | struct net_device *dev) |
| 866 | { |
| 867 | skb->dev = dev; |
| 868 | skb->mac.raw = skb->data; |
| 869 | skb->pkt_type = PACKET_HOST; |
| 870 | return htons(ETH_P_CUST); |
| 871 | } |
| 872 | |
| 873 | /* Rx dma complete interrupt |
| 874 | */ |
| 875 | static void |
| 876 | fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port, |
| 877 | int len, struct sk_buff *skb, int rxp) |
| 878 | { |
| 879 | struct net_device *dev = port_to_dev(port); |
| 880 | struct net_device_stats *stats = hdlc_stats(dev); |
| 881 | int pi; |
| 882 | int rx_status; |
| 883 | |
| 884 | dbg(DBG_TX, "fst_rx_dma_complete\n"); |
| 885 | pi = port->index; |
| 886 | memcpy(skb_put(skb, len), card->rx_dma_handle_host, len); |
| 887 | |
| 888 | /* Reset buffer descriptor */ |
| 889 | FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); |
| 890 | |
| 891 | /* Update stats */ |
| 892 | stats->rx_packets++; |
| 893 | stats->rx_bytes += len; |
| 894 | |
| 895 | /* Push upstream */ |
| 896 | dbg(DBG_RX, "Pushing the frame up the stack\n"); |
| 897 | if (port->mode == FST_RAW) |
| 898 | skb->protocol = farsync_type_trans(skb, dev); |
| 899 | else |
| 900 | skb->protocol = hdlc_type_trans(skb, dev); |
| 901 | rx_status = netif_rx(skb); |
| 902 | fst_process_rx_status(rx_status, port_to_dev(port)->name); |
| 903 | if (rx_status == NET_RX_DROP) |
| 904 | stats->rx_dropped++; |
| 905 | dev->last_rx = jiffies; |
| 906 | } |
| 907 | |
| 908 | /* |
| 909 | * Receive a frame through the DMA |
| 910 | */ |
| 911 | static inline void |
| 912 | fst_rx_dma(struct fst_card_info *card, unsigned char *skb, |
| 913 | unsigned char *mem, int len) |
| 914 | { |
| 915 | /* |
| 916 | * This routine will setup the DMA and start it |
| 917 | */ |
| 918 | |
| 919 | dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len); |
| 920 | if (card->dmarx_in_progress) { |
| 921 | dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n"); |
| 922 | } |
| 923 | |
| 924 | outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */ |
| 925 | outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */ |
| 926 | outl(len, card->pci_conf + DMASIZ0); /* for this length */ |
| 927 | outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */ |
| 928 | |
| 929 | /* |
| 930 | * We use the dmarx_in_progress flag to flag the channel as busy |
| 931 | */ |
| 932 | card->dmarx_in_progress = 1; |
| 933 | outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */ |
| 934 | } |
| 935 | |
| 936 | /* |
| 937 | * Send a frame through the DMA |
| 938 | */ |
| 939 | static inline void |
| 940 | fst_tx_dma(struct fst_card_info *card, unsigned char *skb, |
| 941 | unsigned char *mem, int len) |
| 942 | { |
| 943 | /* |
| 944 | * This routine will setup the DMA and start it. |
| 945 | */ |
| 946 | |
| 947 | dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len); |
| 948 | if (card->dmatx_in_progress) { |
| 949 | dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n"); |
| 950 | } |
| 951 | |
| 952 | outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */ |
| 953 | outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */ |
| 954 | outl(len, card->pci_conf + DMASIZ1); /* for this length */ |
| 955 | outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */ |
| 956 | |
| 957 | /* |
| 958 | * We use the dmatx_in_progress to flag the channel as busy |
| 959 | */ |
| 960 | card->dmatx_in_progress = 1; |
| 961 | outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */ |
| 962 | } |
| 963 | |
| 964 | /* Issue a Mailbox command for a port. |
| 965 | * Note we issue them on a fire and forget basis, not expecting to see an |
| 966 | * error and not waiting for completion. |
| 967 | */ |
| 968 | static void |
| 969 | fst_issue_cmd(struct fst_port_info *port, unsigned short cmd) |
| 970 | { |
| 971 | struct fst_card_info *card; |
| 972 | unsigned short mbval; |
| 973 | unsigned long flags; |
| 974 | int safety; |
| 975 | |
| 976 | card = port->card; |
| 977 | spin_lock_irqsave(&card->card_lock, flags); |
| 978 | mbval = FST_RDW(card, portMailbox[port->index][0]); |
| 979 | |
| 980 | safety = 0; |
| 981 | /* Wait for any previous command to complete */ |
| 982 | while (mbval > NAK) { |
| 983 | spin_unlock_irqrestore(&card->card_lock, flags); |
| 984 | schedule_timeout(1); |
| 985 | spin_lock_irqsave(&card->card_lock, flags); |
| 986 | |
| 987 | if (++safety > 2000) { |
| 988 | printk_err("Mailbox safety timeout\n"); |
| 989 | break; |
| 990 | } |
| 991 | |
| 992 | mbval = FST_RDW(card, portMailbox[port->index][0]); |
| 993 | } |
| 994 | if (safety > 0) { |
| 995 | dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety); |
| 996 | } |
| 997 | if (mbval == NAK) { |
| 998 | dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n"); |
| 999 | } |
| 1000 | |
| 1001 | FST_WRW(card, portMailbox[port->index][0], cmd); |
| 1002 | |
| 1003 | if (cmd == ABORTTX || cmd == STARTPORT) { |
| 1004 | port->txpos = 0; |
| 1005 | port->txipos = 0; |
| 1006 | port->start = 0; |
| 1007 | } |
| 1008 | |
| 1009 | spin_unlock_irqrestore(&card->card_lock, flags); |
| 1010 | } |
| 1011 | |
| 1012 | /* Port output signals control |
| 1013 | */ |
| 1014 | static inline void |
| 1015 | fst_op_raise(struct fst_port_info *port, unsigned int outputs) |
| 1016 | { |
| 1017 | outputs |= FST_RDL(port->card, v24OpSts[port->index]); |
| 1018 | FST_WRL(port->card, v24OpSts[port->index], outputs); |
| 1019 | |
| 1020 | if (port->run) |
| 1021 | fst_issue_cmd(port, SETV24O); |
| 1022 | } |
| 1023 | |
| 1024 | static inline void |
| 1025 | fst_op_lower(struct fst_port_info *port, unsigned int outputs) |
| 1026 | { |
| 1027 | outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]); |
| 1028 | FST_WRL(port->card, v24OpSts[port->index], outputs); |
| 1029 | |
| 1030 | if (port->run) |
| 1031 | fst_issue_cmd(port, SETV24O); |
| 1032 | } |
| 1033 | |
| 1034 | /* |
| 1035 | * Setup port Rx buffers |
| 1036 | */ |
| 1037 | static void |
| 1038 | fst_rx_config(struct fst_port_info *port) |
| 1039 | { |
| 1040 | int i; |
| 1041 | int pi; |
| 1042 | unsigned int offset; |
| 1043 | unsigned long flags; |
| 1044 | struct fst_card_info *card; |
| 1045 | |
| 1046 | pi = port->index; |
| 1047 | card = port->card; |
| 1048 | spin_lock_irqsave(&card->card_lock, flags); |
| 1049 | for (i = 0; i < NUM_RX_BUFFER; i++) { |
| 1050 | offset = BUF_OFFSET(rxBuffer[pi][i][0]); |
| 1051 | |
| 1052 | FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset); |
| 1053 | FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16)); |
| 1054 | FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER)); |
| 1055 | FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER); |
| 1056 | FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN); |
| 1057 | } |
| 1058 | port->rxpos = 0; |
| 1059 | spin_unlock_irqrestore(&card->card_lock, flags); |
| 1060 | } |
| 1061 | |
| 1062 | /* |
| 1063 | * Setup port Tx buffers |
| 1064 | */ |
| 1065 | static void |
| 1066 | fst_tx_config(struct fst_port_info *port) |
| 1067 | { |
| 1068 | int i; |
| 1069 | int pi; |
| 1070 | unsigned int offset; |
| 1071 | unsigned long flags; |
| 1072 | struct fst_card_info *card; |
| 1073 | |
| 1074 | pi = port->index; |
| 1075 | card = port->card; |
| 1076 | spin_lock_irqsave(&card->card_lock, flags); |
| 1077 | for (i = 0; i < NUM_TX_BUFFER; i++) { |
| 1078 | offset = BUF_OFFSET(txBuffer[pi][i][0]); |
| 1079 | |
| 1080 | FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset); |
| 1081 | FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16)); |
| 1082 | FST_WRW(card, txDescrRing[pi][i].bcnt, 0); |
| 1083 | FST_WRB(card, txDescrRing[pi][i].bits, 0); |
| 1084 | } |
| 1085 | port->txpos = 0; |
| 1086 | port->txipos = 0; |
| 1087 | port->start = 0; |
| 1088 | spin_unlock_irqrestore(&card->card_lock, flags); |
| 1089 | } |
| 1090 | |
| 1091 | /* TE1 Alarm change interrupt event |
| 1092 | */ |
| 1093 | static void |
| 1094 | fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port) |
| 1095 | { |
| 1096 | u8 los; |
| 1097 | u8 rra; |
| 1098 | u8 ais; |
| 1099 | |
| 1100 | los = FST_RDB(card, suStatus.lossOfSignal); |
| 1101 | rra = FST_RDB(card, suStatus.receiveRemoteAlarm); |
| 1102 | ais = FST_RDB(card, suStatus.alarmIndicationSignal); |
| 1103 | |
| 1104 | if (los) { |
| 1105 | /* |
| 1106 | * Lost the link |
| 1107 | */ |
| 1108 | if (netif_carrier_ok(port_to_dev(port))) { |
| 1109 | dbg(DBG_INTR, "Net carrier off\n"); |
| 1110 | netif_carrier_off(port_to_dev(port)); |
| 1111 | } |
| 1112 | } else { |
| 1113 | /* |
| 1114 | * Link available |
| 1115 | */ |
| 1116 | if (!netif_carrier_ok(port_to_dev(port))) { |
| 1117 | dbg(DBG_INTR, "Net carrier on\n"); |
| 1118 | netif_carrier_on(port_to_dev(port)); |
| 1119 | } |
| 1120 | } |
| 1121 | |
| 1122 | if (los) |
| 1123 | dbg(DBG_INTR, "Assert LOS Alarm\n"); |
| 1124 | else |
| 1125 | dbg(DBG_INTR, "De-assert LOS Alarm\n"); |
| 1126 | if (rra) |
| 1127 | dbg(DBG_INTR, "Assert RRA Alarm\n"); |
| 1128 | else |
| 1129 | dbg(DBG_INTR, "De-assert RRA Alarm\n"); |
| 1130 | |
| 1131 | if (ais) |
| 1132 | dbg(DBG_INTR, "Assert AIS Alarm\n"); |
| 1133 | else |
| 1134 | dbg(DBG_INTR, "De-assert AIS Alarm\n"); |
| 1135 | } |
| 1136 | |
| 1137 | /* Control signal change interrupt event |
| 1138 | */ |
| 1139 | static void |
| 1140 | fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port) |
| 1141 | { |
| 1142 | int signals; |
| 1143 | |
| 1144 | signals = FST_RDL(card, v24DebouncedSts[port->index]); |
| 1145 | |
| 1146 | if (signals & (((port->hwif == X21) || (port->hwif == X21D)) |
| 1147 | ? IPSTS_INDICATE : IPSTS_DCD)) { |
| 1148 | if (!netif_carrier_ok(port_to_dev(port))) { |
| 1149 | dbg(DBG_INTR, "DCD active\n"); |
| 1150 | netif_carrier_on(port_to_dev(port)); |
| 1151 | } |
| 1152 | } else { |
| 1153 | if (netif_carrier_ok(port_to_dev(port))) { |
| 1154 | dbg(DBG_INTR, "DCD lost\n"); |
| 1155 | netif_carrier_off(port_to_dev(port)); |
| 1156 | } |
| 1157 | } |
| 1158 | } |
| 1159 | |
| 1160 | /* Log Rx Errors |
| 1161 | */ |
| 1162 | static void |
| 1163 | fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port, |
| 1164 | unsigned char dmabits, int rxp, unsigned short len) |
| 1165 | { |
| 1166 | struct net_device *dev = port_to_dev(port); |
| 1167 | struct net_device_stats *stats = hdlc_stats(dev); |
| 1168 | |
| 1169 | /* |
| 1170 | * Increment the appropriate error counter |
| 1171 | */ |
| 1172 | stats->rx_errors++; |
| 1173 | if (dmabits & RX_OFLO) { |
| 1174 | stats->rx_fifo_errors++; |
| 1175 | dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n", |
| 1176 | card->card_no, port->index, rxp); |
| 1177 | } |
| 1178 | if (dmabits & RX_CRC) { |
| 1179 | stats->rx_crc_errors++; |
| 1180 | dbg(DBG_ASS, "Rx crc error on card %d port %d\n", |
| 1181 | card->card_no, port->index); |
| 1182 | } |
| 1183 | if (dmabits & RX_FRAM) { |
| 1184 | stats->rx_frame_errors++; |
| 1185 | dbg(DBG_ASS, "Rx frame error on card %d port %d\n", |
| 1186 | card->card_no, port->index); |
| 1187 | } |
| 1188 | if (dmabits == (RX_STP | RX_ENP)) { |
| 1189 | stats->rx_length_errors++; |
| 1190 | dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n", |
| 1191 | len, card->card_no, port->index); |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | /* Rx Error Recovery |
| 1196 | */ |
| 1197 | static void |
| 1198 | fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port, |
| 1199 | unsigned char dmabits, int rxp, unsigned short len) |
| 1200 | { |
| 1201 | int i; |
| 1202 | int pi; |
| 1203 | |
| 1204 | pi = port->index; |
| 1205 | /* |
| 1206 | * Discard buffer descriptors until we see the start of the |
| 1207 | * next frame. Note that for long frames this could be in |
| 1208 | * a subsequent interrupt. |
| 1209 | */ |
| 1210 | i = 0; |
| 1211 | while ((dmabits & (DMA_OWN | RX_STP)) == 0) { |
| 1212 | FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); |
| 1213 | rxp = (rxp+1) % NUM_RX_BUFFER; |
| 1214 | if (++i > NUM_RX_BUFFER) { |
| 1215 | dbg(DBG_ASS, "intr_rx: Discarding more bufs" |
| 1216 | " than we have\n"); |
| 1217 | break; |
| 1218 | } |
| 1219 | dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); |
| 1220 | dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits); |
| 1221 | } |
| 1222 | dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i); |
| 1223 | |
| 1224 | /* Discard the terminal buffer */ |
| 1225 | if (!(dmabits & DMA_OWN)) { |
| 1226 | FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); |
| 1227 | rxp = (rxp+1) % NUM_RX_BUFFER; |
| 1228 | } |
| 1229 | port->rxpos = rxp; |
| 1230 | return; |
| 1231 | |
| 1232 | } |
| 1233 | |
| 1234 | /* Rx complete interrupt |
| 1235 | */ |
| 1236 | static void |
| 1237 | fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port) |
| 1238 | { |
| 1239 | unsigned char dmabits; |
| 1240 | int pi; |
| 1241 | int rxp; |
| 1242 | int rx_status; |
| 1243 | unsigned short len; |
| 1244 | struct sk_buff *skb; |
| 1245 | struct net_device *dev = port_to_dev(port); |
| 1246 | struct net_device_stats *stats = hdlc_stats(dev); |
| 1247 | |
| 1248 | /* Check we have a buffer to process */ |
| 1249 | pi = port->index; |
| 1250 | rxp = port->rxpos; |
| 1251 | dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits); |
| 1252 | if (dmabits & DMA_OWN) { |
| 1253 | dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n", |
| 1254 | pi, rxp); |
| 1255 | return; |
| 1256 | } |
| 1257 | if (card->dmarx_in_progress) { |
| 1258 | return; |
| 1259 | } |
| 1260 | |
| 1261 | /* Get buffer length */ |
| 1262 | len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt); |
| 1263 | /* Discard the CRC */ |
| 1264 | len -= 2; |
| 1265 | if (len == 0) { |
| 1266 | /* |
| 1267 | * This seems to happen on the TE1 interface sometimes |
| 1268 | * so throw the frame away and log the event. |
| 1269 | */ |
| 1270 | printk_err("Frame received with 0 length. Card %d Port %d\n", |
| 1271 | card->card_no, port->index); |
| 1272 | /* Return descriptor to card */ |
| 1273 | FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); |
| 1274 | |
| 1275 | rxp = (rxp+1) % NUM_RX_BUFFER; |
| 1276 | port->rxpos = rxp; |
| 1277 | return; |
| 1278 | } |
| 1279 | |
| 1280 | /* Check buffer length and for other errors. We insist on one packet |
| 1281 | * in one buffer. This simplifies things greatly and since we've |
| 1282 | * allocated 8K it shouldn't be a real world limitation |
| 1283 | */ |
| 1284 | dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len); |
| 1285 | if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) { |
| 1286 | fst_log_rx_error(card, port, dmabits, rxp, len); |
| 1287 | fst_recover_rx_error(card, port, dmabits, rxp, len); |
| 1288 | return; |
| 1289 | } |
| 1290 | |
| 1291 | /* Allocate SKB */ |
| 1292 | if ((skb = dev_alloc_skb(len)) == NULL) { |
| 1293 | dbg(DBG_RX, "intr_rx: can't allocate buffer\n"); |
| 1294 | |
| 1295 | stats->rx_dropped++; |
| 1296 | |
| 1297 | /* Return descriptor to card */ |
| 1298 | FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); |
| 1299 | |
| 1300 | rxp = (rxp+1) % NUM_RX_BUFFER; |
| 1301 | port->rxpos = rxp; |
| 1302 | return; |
| 1303 | } |
| 1304 | |
| 1305 | /* |
| 1306 | * We know the length we need to receive, len. |
| 1307 | * It's not worth using the DMA for reads of less than |
| 1308 | * FST_MIN_DMA_LEN |
| 1309 | */ |
| 1310 | |
| 1311 | if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) { |
| 1312 | memcpy_fromio(skb_put(skb, len), |
| 1313 | card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]), |
| 1314 | len); |
| 1315 | |
| 1316 | /* Reset buffer descriptor */ |
| 1317 | FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN); |
| 1318 | |
| 1319 | /* Update stats */ |
| 1320 | stats->rx_packets++; |
| 1321 | stats->rx_bytes += len; |
| 1322 | |
| 1323 | /* Push upstream */ |
| 1324 | dbg(DBG_RX, "Pushing frame up the stack\n"); |
| 1325 | if (port->mode == FST_RAW) |
| 1326 | skb->protocol = farsync_type_trans(skb, dev); |
| 1327 | else |
| 1328 | skb->protocol = hdlc_type_trans(skb, dev); |
| 1329 | rx_status = netif_rx(skb); |
| 1330 | fst_process_rx_status(rx_status, port_to_dev(port)->name); |
| 1331 | if (rx_status == NET_RX_DROP) { |
| 1332 | stats->rx_dropped++; |
| 1333 | } |
| 1334 | dev->last_rx = jiffies; |
| 1335 | } else { |
| 1336 | card->dma_skb_rx = skb; |
| 1337 | card->dma_port_rx = port; |
| 1338 | card->dma_len_rx = len; |
| 1339 | card->dma_rxpos = rxp; |
| 1340 | fst_rx_dma(card, (char *) card->rx_dma_handle_card, |
| 1341 | (char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len); |
| 1342 | } |
| 1343 | if (rxp != port->rxpos) { |
| 1344 | dbg(DBG_ASS, "About to increment rxpos by more than 1\n"); |
| 1345 | dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos); |
| 1346 | } |
| 1347 | rxp = (rxp+1) % NUM_RX_BUFFER; |
| 1348 | port->rxpos = rxp; |
| 1349 | } |
| 1350 | |
| 1351 | /* |
| 1352 | * The bottom halfs to the ISR |
| 1353 | * |
| 1354 | */ |
| 1355 | |
| 1356 | static void |
| 1357 | do_bottom_half_tx(struct fst_card_info *card) |
| 1358 | { |
| 1359 | struct fst_port_info *port; |
| 1360 | int pi; |
| 1361 | int txq_length; |
| 1362 | struct sk_buff *skb; |
| 1363 | unsigned long flags; |
| 1364 | struct net_device *dev; |
| 1365 | struct net_device_stats *stats; |
| 1366 | |
| 1367 | /* |
| 1368 | * Find a free buffer for the transmit |
| 1369 | * Step through each port on this card |
| 1370 | */ |
| 1371 | |
| 1372 | dbg(DBG_TX, "do_bottom_half_tx\n"); |
| 1373 | for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { |
| 1374 | if (!port->run) |
| 1375 | continue; |
| 1376 | |
| 1377 | dev = port_to_dev(port); |
| 1378 | stats = hdlc_stats(dev); |
| 1379 | while (! |
| 1380 | (FST_RDB(card, txDescrRing[pi][port->txpos].bits) & |
| 1381 | DMA_OWN) |
| 1382 | && !(card->dmatx_in_progress)) { |
| 1383 | /* |
| 1384 | * There doesn't seem to be a txdone event per-se |
| 1385 | * We seem to have to deduce it, by checking the DMA_OWN |
| 1386 | * bit on the next buffer we think we can use |
| 1387 | */ |
| 1388 | spin_lock_irqsave(&card->card_lock, flags); |
| 1389 | if ((txq_length = port->txqe - port->txqs) < 0) { |
| 1390 | /* |
| 1391 | * This is the case where one has wrapped and the |
| 1392 | * maths gives us a negative number |
| 1393 | */ |
| 1394 | txq_length = txq_length + FST_TXQ_DEPTH; |
| 1395 | } |
| 1396 | spin_unlock_irqrestore(&card->card_lock, flags); |
| 1397 | if (txq_length > 0) { |
| 1398 | /* |
| 1399 | * There is something to send |
| 1400 | */ |
| 1401 | spin_lock_irqsave(&card->card_lock, flags); |
| 1402 | skb = port->txq[port->txqs]; |
| 1403 | port->txqs++; |
| 1404 | if (port->txqs == FST_TXQ_DEPTH) { |
| 1405 | port->txqs = 0; |
| 1406 | } |
| 1407 | spin_unlock_irqrestore(&card->card_lock, flags); |
| 1408 | /* |
| 1409 | * copy the data and set the required indicators on the |
| 1410 | * card. |
| 1411 | */ |
| 1412 | FST_WRW(card, txDescrRing[pi][port->txpos].bcnt, |
| 1413 | cnv_bcnt(skb->len)); |
| 1414 | if ((skb->len < FST_MIN_DMA_LEN) |
| 1415 | || (card->family == FST_FAMILY_TXP)) { |
| 1416 | /* Enqueue the packet with normal io */ |
| 1417 | memcpy_toio(card->mem + |
| 1418 | BUF_OFFSET(txBuffer[pi] |
| 1419 | [port-> |
| 1420 | txpos][0]), |
| 1421 | skb->data, skb->len); |
| 1422 | FST_WRB(card, |
| 1423 | txDescrRing[pi][port->txpos]. |
| 1424 | bits, |
| 1425 | DMA_OWN | TX_STP | TX_ENP); |
| 1426 | stats->tx_packets++; |
| 1427 | stats->tx_bytes += skb->len; |
| 1428 | dev->trans_start = jiffies; |
| 1429 | } else { |
| 1430 | /* Or do it through dma */ |
| 1431 | memcpy(card->tx_dma_handle_host, |
| 1432 | skb->data, skb->len); |
| 1433 | card->dma_port_tx = port; |
| 1434 | card->dma_len_tx = skb->len; |
| 1435 | card->dma_txpos = port->txpos; |
| 1436 | fst_tx_dma(card, |
| 1437 | (char *) card-> |
| 1438 | tx_dma_handle_card, |
| 1439 | (char *) |
| 1440 | BUF_OFFSET(txBuffer[pi] |
| 1441 | [port->txpos][0]), |
| 1442 | skb->len); |
| 1443 | } |
| 1444 | if (++port->txpos >= NUM_TX_BUFFER) |
| 1445 | port->txpos = 0; |
| 1446 | /* |
| 1447 | * If we have flow control on, can we now release it? |
| 1448 | */ |
| 1449 | if (port->start) { |
| 1450 | if (txq_length < fst_txq_low) { |
| 1451 | netif_wake_queue(port_to_dev |
| 1452 | (port)); |
| 1453 | port->start = 0; |
| 1454 | } |
| 1455 | } |
| 1456 | dev_kfree_skb(skb); |
| 1457 | } else { |
| 1458 | /* |
| 1459 | * Nothing to send so break out of the while loop |
| 1460 | */ |
| 1461 | break; |
| 1462 | } |
| 1463 | } |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | static void |
| 1468 | do_bottom_half_rx(struct fst_card_info *card) |
| 1469 | { |
| 1470 | struct fst_port_info *port; |
| 1471 | int pi; |
| 1472 | int rx_count = 0; |
| 1473 | |
| 1474 | /* Check for rx completions on all ports on this card */ |
| 1475 | dbg(DBG_RX, "do_bottom_half_rx\n"); |
| 1476 | for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) { |
| 1477 | if (!port->run) |
| 1478 | continue; |
| 1479 | |
| 1480 | while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits) |
| 1481 | & DMA_OWN) && !(card->dmarx_in_progress)) { |
| 1482 | if (rx_count > fst_max_reads) { |
| 1483 | /* |
| 1484 | * Don't spend forever in receive processing |
| 1485 | * Schedule another event |
| 1486 | */ |
| 1487 | fst_q_work_item(&fst_work_intq, card->card_no); |
| 1488 | tasklet_schedule(&fst_int_task); |
| 1489 | break; /* Leave the loop */ |
| 1490 | } |
| 1491 | fst_intr_rx(card, port); |
| 1492 | rx_count++; |
| 1493 | } |
| 1494 | } |
| 1495 | } |
| 1496 | |
| 1497 | /* |
| 1498 | * The interrupt service routine |
| 1499 | * Dev_id is our fst_card_info pointer |
| 1500 | */ |
| 1501 | irqreturn_t |
| 1502 | fst_intr(int irq, void *dev_id, struct pt_regs *regs) |
| 1503 | { |
| 1504 | struct fst_card_info *card; |
| 1505 | struct fst_port_info *port; |
| 1506 | int rdidx; /* Event buffer indices */ |
| 1507 | int wridx; |
| 1508 | int event; /* Actual event for processing */ |
| 1509 | unsigned int dma_intcsr = 0; |
| 1510 | unsigned int do_card_interrupt; |
| 1511 | unsigned int int_retry_count; |
| 1512 | |
| 1513 | if ((card = dev_id) == NULL) { |
| 1514 | dbg(DBG_INTR, "intr: spurious %d\n", irq); |
| 1515 | return IRQ_NONE; |
| 1516 | } |
| 1517 | |
| 1518 | /* |
| 1519 | * Check to see if the interrupt was for this card |
| 1520 | * return if not |
| 1521 | * Note that the call to clear the interrupt is important |
| 1522 | */ |
| 1523 | dbg(DBG_INTR, "intr: %d %p\n", irq, card); |
| 1524 | if (card->state != FST_RUNNING) { |
| 1525 | printk_err |
| 1526 | ("Interrupt received for card %d in a non running state (%d)\n", |
| 1527 | card->card_no, card->state); |
| 1528 | |
| 1529 | /* |
| 1530 | * It is possible to really be running, i.e. we have re-loaded |
| 1531 | * a running card |
| 1532 | * Clear and reprime the interrupt source |
| 1533 | */ |
| 1534 | fst_clear_intr(card); |
| 1535 | return IRQ_HANDLED; |
| 1536 | } |
| 1537 | |
| 1538 | /* Clear and reprime the interrupt source */ |
| 1539 | fst_clear_intr(card); |
| 1540 | |
| 1541 | /* |
| 1542 | * Is the interrupt for this card (handshake == 1) |
| 1543 | */ |
| 1544 | do_card_interrupt = 0; |
| 1545 | if (FST_RDB(card, interruptHandshake) == 1) { |
| 1546 | do_card_interrupt += FST_CARD_INT; |
| 1547 | /* Set the software acknowledge */ |
| 1548 | FST_WRB(card, interruptHandshake, 0xEE); |
| 1549 | } |
| 1550 | if (card->family == FST_FAMILY_TXU) { |
| 1551 | /* |
| 1552 | * Is it a DMA Interrupt |
| 1553 | */ |
| 1554 | dma_intcsr = inl(card->pci_conf + INTCSR_9054); |
| 1555 | if (dma_intcsr & 0x00200000) { |
| 1556 | /* |
| 1557 | * DMA Channel 0 (Rx transfer complete) |
| 1558 | */ |
| 1559 | dbg(DBG_RX, "DMA Rx xfer complete\n"); |
| 1560 | outb(0x8, card->pci_conf + DMACSR0); |
| 1561 | fst_rx_dma_complete(card, card->dma_port_rx, |
| 1562 | card->dma_len_rx, card->dma_skb_rx, |
| 1563 | card->dma_rxpos); |
| 1564 | card->dmarx_in_progress = 0; |
| 1565 | do_card_interrupt += FST_RX_DMA_INT; |
| 1566 | } |
| 1567 | if (dma_intcsr & 0x00400000) { |
| 1568 | /* |
| 1569 | * DMA Channel 1 (Tx transfer complete) |
| 1570 | */ |
| 1571 | dbg(DBG_TX, "DMA Tx xfer complete\n"); |
| 1572 | outb(0x8, card->pci_conf + DMACSR1); |
| 1573 | fst_tx_dma_complete(card, card->dma_port_tx, |
| 1574 | card->dma_len_tx, card->dma_txpos); |
| 1575 | card->dmatx_in_progress = 0; |
| 1576 | do_card_interrupt += FST_TX_DMA_INT; |
| 1577 | } |
| 1578 | } |
| 1579 | |
| 1580 | /* |
| 1581 | * Have we been missing Interrupts |
| 1582 | */ |
| 1583 | int_retry_count = FST_RDL(card, interruptRetryCount); |
| 1584 | if (int_retry_count) { |
| 1585 | dbg(DBG_ASS, "Card %d int_retry_count is %d\n", |
| 1586 | card->card_no, int_retry_count); |
| 1587 | FST_WRL(card, interruptRetryCount, 0); |
| 1588 | } |
| 1589 | |
| 1590 | if (!do_card_interrupt) { |
| 1591 | return IRQ_HANDLED; |
| 1592 | } |
| 1593 | |
| 1594 | /* Scehdule the bottom half of the ISR */ |
| 1595 | fst_q_work_item(&fst_work_intq, card->card_no); |
| 1596 | tasklet_schedule(&fst_int_task); |
| 1597 | |
| 1598 | /* Drain the event queue */ |
| 1599 | rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f; |
| 1600 | wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f; |
| 1601 | while (rdidx != wridx) { |
| 1602 | event = FST_RDB(card, interruptEvent.evntbuff[rdidx]); |
| 1603 | port = &card->ports[event & 0x03]; |
| 1604 | |
| 1605 | dbg(DBG_INTR, "Processing Interrupt event: %x\n", event); |
| 1606 | |
| 1607 | switch (event) { |
| 1608 | case TE1_ALMA: |
| 1609 | dbg(DBG_INTR, "TE1 Alarm intr\n"); |
| 1610 | if (port->run) |
| 1611 | fst_intr_te1_alarm(card, port); |
| 1612 | break; |
| 1613 | |
| 1614 | case CTLA_CHG: |
| 1615 | case CTLB_CHG: |
| 1616 | case CTLC_CHG: |
| 1617 | case CTLD_CHG: |
| 1618 | if (port->run) |
| 1619 | fst_intr_ctlchg(card, port); |
| 1620 | break; |
| 1621 | |
| 1622 | case ABTA_SENT: |
| 1623 | case ABTB_SENT: |
| 1624 | case ABTC_SENT: |
| 1625 | case ABTD_SENT: |
| 1626 | dbg(DBG_TX, "Abort complete port %d\n", port->index); |
| 1627 | break; |
| 1628 | |
| 1629 | case TXA_UNDF: |
| 1630 | case TXB_UNDF: |
| 1631 | case TXC_UNDF: |
| 1632 | case TXD_UNDF: |
| 1633 | /* Difficult to see how we'd get this given that we |
| 1634 | * always load up the entire packet for DMA. |
| 1635 | */ |
| 1636 | dbg(DBG_TX, "Tx underflow port %d\n", port->index); |
| 1637 | hdlc_stats(port_to_dev(port))->tx_errors++; |
| 1638 | hdlc_stats(port_to_dev(port))->tx_fifo_errors++; |
| 1639 | dbg(DBG_ASS, "Tx underflow on card %d port %d\n", |
| 1640 | card->card_no, port->index); |
| 1641 | break; |
| 1642 | |
| 1643 | case INIT_CPLT: |
| 1644 | dbg(DBG_INIT, "Card init OK intr\n"); |
| 1645 | break; |
| 1646 | |
| 1647 | case INIT_FAIL: |
| 1648 | dbg(DBG_INIT, "Card init FAILED intr\n"); |
| 1649 | card->state = FST_IFAILED; |
| 1650 | break; |
| 1651 | |
| 1652 | default: |
| 1653 | printk_err("intr: unknown card event %d. ignored\n", |
| 1654 | event); |
| 1655 | break; |
| 1656 | } |
| 1657 | |
| 1658 | /* Bump and wrap the index */ |
| 1659 | if (++rdidx >= MAX_CIRBUFF) |
| 1660 | rdidx = 0; |
| 1661 | } |
| 1662 | FST_WRB(card, interruptEvent.rdindex, rdidx); |
| 1663 | return IRQ_HANDLED; |
| 1664 | } |
| 1665 | |
| 1666 | /* Check that the shared memory configuration is one that we can handle |
| 1667 | * and that some basic parameters are correct |
| 1668 | */ |
| 1669 | static void |
| 1670 | check_started_ok(struct fst_card_info *card) |
| 1671 | { |
| 1672 | int i; |
| 1673 | |
| 1674 | /* Check structure version and end marker */ |
| 1675 | if (FST_RDW(card, smcVersion) != SMC_VERSION) { |
| 1676 | printk_err("Bad shared memory version %d expected %d\n", |
| 1677 | FST_RDW(card, smcVersion), SMC_VERSION); |
| 1678 | card->state = FST_BADVERSION; |
| 1679 | return; |
| 1680 | } |
| 1681 | if (FST_RDL(card, endOfSmcSignature) != END_SIG) { |
| 1682 | printk_err("Missing shared memory signature\n"); |
| 1683 | card->state = FST_BADVERSION; |
| 1684 | return; |
| 1685 | } |
| 1686 | /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */ |
| 1687 | if ((i = FST_RDB(card, taskStatus)) == 0x01) { |
| 1688 | card->state = FST_RUNNING; |
| 1689 | } else if (i == 0xFF) { |
| 1690 | printk_err("Firmware initialisation failed. Card halted\n"); |
| 1691 | card->state = FST_HALTED; |
| 1692 | return; |
| 1693 | } else if (i != 0x00) { |
| 1694 | printk_err("Unknown firmware status 0x%x\n", i); |
| 1695 | card->state = FST_HALTED; |
| 1696 | return; |
| 1697 | } |
| 1698 | |
| 1699 | /* Finally check the number of ports reported by firmware against the |
| 1700 | * number we assumed at card detection. Should never happen with |
| 1701 | * existing firmware etc so we just report it for the moment. |
| 1702 | */ |
| 1703 | if (FST_RDL(card, numberOfPorts) != card->nports) { |
| 1704 | printk_warn("Port count mismatch on card %d." |
| 1705 | " Firmware thinks %d we say %d\n", card->card_no, |
| 1706 | FST_RDL(card, numberOfPorts), card->nports); |
| 1707 | } |
| 1708 | } |
| 1709 | |
| 1710 | static int |
| 1711 | set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port, |
| 1712 | struct fstioc_info *info) |
| 1713 | { |
| 1714 | int err; |
| 1715 | unsigned char my_framing; |
| 1716 | |
| 1717 | /* Set things according to the user set valid flags |
| 1718 | * Several of the old options have been invalidated/replaced by the |
| 1719 | * generic hdlc package. |
| 1720 | */ |
| 1721 | err = 0; |
| 1722 | if (info->valid & FSTVAL_PROTO) { |
| 1723 | if (info->proto == FST_RAW) |
| 1724 | port->mode = FST_RAW; |
| 1725 | else |
| 1726 | port->mode = FST_GEN_HDLC; |
| 1727 | } |
| 1728 | |
| 1729 | if (info->valid & FSTVAL_CABLE) |
| 1730 | err = -EINVAL; |
| 1731 | |
| 1732 | if (info->valid & FSTVAL_SPEED) |
| 1733 | err = -EINVAL; |
| 1734 | |
| 1735 | if (info->valid & FSTVAL_PHASE) |
| 1736 | FST_WRB(card, portConfig[port->index].invertClock, |
| 1737 | info->invertClock); |
| 1738 | if (info->valid & FSTVAL_MODE) |
| 1739 | FST_WRW(card, cardMode, info->cardMode); |
| 1740 | if (info->valid & FSTVAL_TE1) { |
| 1741 | FST_WRL(card, suConfig.dataRate, info->lineSpeed); |
| 1742 | FST_WRB(card, suConfig.clocking, info->clockSource); |
| 1743 | my_framing = FRAMING_E1; |
| 1744 | if (info->framing == E1) |
| 1745 | my_framing = FRAMING_E1; |
| 1746 | if (info->framing == T1) |
| 1747 | my_framing = FRAMING_T1; |
| 1748 | if (info->framing == J1) |
| 1749 | my_framing = FRAMING_J1; |
| 1750 | FST_WRB(card, suConfig.framing, my_framing); |
| 1751 | FST_WRB(card, suConfig.structure, info->structure); |
| 1752 | FST_WRB(card, suConfig.interface, info->interface); |
| 1753 | FST_WRB(card, suConfig.coding, info->coding); |
| 1754 | FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut); |
| 1755 | FST_WRB(card, suConfig.equalizer, info->equalizer); |
| 1756 | FST_WRB(card, suConfig.transparentMode, info->transparentMode); |
| 1757 | FST_WRB(card, suConfig.loopMode, info->loopMode); |
| 1758 | FST_WRB(card, suConfig.range, info->range); |
| 1759 | FST_WRB(card, suConfig.txBufferMode, info->txBufferMode); |
| 1760 | FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode); |
| 1761 | FST_WRB(card, suConfig.startingSlot, info->startingSlot); |
| 1762 | FST_WRB(card, suConfig.losThreshold, info->losThreshold); |
| 1763 | if (info->idleCode) |
| 1764 | FST_WRB(card, suConfig.enableIdleCode, 1); |
| 1765 | else |
| 1766 | FST_WRB(card, suConfig.enableIdleCode, 0); |
| 1767 | FST_WRB(card, suConfig.idleCode, info->idleCode); |
| 1768 | #if FST_DEBUG |
| 1769 | if (info->valid & FSTVAL_TE1) { |
| 1770 | printk("Setting TE1 data\n"); |
| 1771 | printk("Line Speed = %d\n", info->lineSpeed); |
| 1772 | printk("Start slot = %d\n", info->startingSlot); |
| 1773 | printk("Clock source = %d\n", info->clockSource); |
| 1774 | printk("Framing = %d\n", my_framing); |
| 1775 | printk("Structure = %d\n", info->structure); |
| 1776 | printk("interface = %d\n", info->interface); |
| 1777 | printk("Coding = %d\n", info->coding); |
| 1778 | printk("Line build out = %d\n", info->lineBuildOut); |
| 1779 | printk("Equaliser = %d\n", info->equalizer); |
| 1780 | printk("Transparent mode = %d\n", |
| 1781 | info->transparentMode); |
| 1782 | printk("Loop mode = %d\n", info->loopMode); |
| 1783 | printk("Range = %d\n", info->range); |
| 1784 | printk("Tx Buffer mode = %d\n", info->txBufferMode); |
| 1785 | printk("Rx Buffer mode = %d\n", info->rxBufferMode); |
| 1786 | printk("LOS Threshold = %d\n", info->losThreshold); |
| 1787 | printk("Idle Code = %d\n", info->idleCode); |
| 1788 | } |
| 1789 | #endif |
| 1790 | } |
| 1791 | #if FST_DEBUG |
| 1792 | if (info->valid & FSTVAL_DEBUG) { |
| 1793 | fst_debug_mask = info->debug; |
| 1794 | } |
| 1795 | #endif |
| 1796 | |
| 1797 | return err; |
| 1798 | } |
| 1799 | |
| 1800 | static void |
| 1801 | gather_conf_info(struct fst_card_info *card, struct fst_port_info *port, |
| 1802 | struct fstioc_info *info) |
| 1803 | { |
| 1804 | int i; |
| 1805 | |
| 1806 | memset(info, 0, sizeof (struct fstioc_info)); |
| 1807 | |
| 1808 | i = port->index; |
| 1809 | info->kernelVersion = LINUX_VERSION_CODE; |
| 1810 | info->nports = card->nports; |
| 1811 | info->type = card->type; |
| 1812 | info->state = card->state; |
| 1813 | info->proto = FST_GEN_HDLC; |
| 1814 | info->index = i; |
| 1815 | #if FST_DEBUG |
| 1816 | info->debug = fst_debug_mask; |
| 1817 | #endif |
| 1818 | |
| 1819 | /* Only mark information as valid if card is running. |
| 1820 | * Copy the data anyway in case it is useful for diagnostics |
| 1821 | */ |
| 1822 | info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD) |
| 1823 | #if FST_DEBUG |
| 1824 | | FSTVAL_DEBUG |
| 1825 | #endif |
| 1826 | ; |
| 1827 | |
| 1828 | info->lineInterface = FST_RDW(card, portConfig[i].lineInterface); |
| 1829 | info->internalClock = FST_RDB(card, portConfig[i].internalClock); |
| 1830 | info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed); |
| 1831 | info->invertClock = FST_RDB(card, portConfig[i].invertClock); |
| 1832 | info->v24IpSts = FST_RDL(card, v24IpSts[i]); |
| 1833 | info->v24OpSts = FST_RDL(card, v24OpSts[i]); |
| 1834 | info->clockStatus = FST_RDW(card, clockStatus[i]); |
| 1835 | info->cableStatus = FST_RDW(card, cableStatus); |
| 1836 | info->cardMode = FST_RDW(card, cardMode); |
| 1837 | info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion); |
| 1838 | |
| 1839 | /* |
| 1840 | * The T2U can report cable presence for both A or B |
| 1841 | * in bits 0 and 1 of cableStatus. See which port we are and |
| 1842 | * do the mapping. |
| 1843 | */ |
| 1844 | if (card->family == FST_FAMILY_TXU) { |
| 1845 | if (port->index == 0) { |
| 1846 | /* |
| 1847 | * Port A |
| 1848 | */ |
| 1849 | info->cableStatus = info->cableStatus & 1; |
| 1850 | } else { |
| 1851 | /* |
| 1852 | * Port B |
| 1853 | */ |
| 1854 | info->cableStatus = info->cableStatus >> 1; |
| 1855 | info->cableStatus = info->cableStatus & 1; |
| 1856 | } |
| 1857 | } |
| 1858 | /* |
| 1859 | * Some additional bits if we are TE1 |
| 1860 | */ |
| 1861 | if (card->type == FST_TYPE_TE1) { |
| 1862 | info->lineSpeed = FST_RDL(card, suConfig.dataRate); |
| 1863 | info->clockSource = FST_RDB(card, suConfig.clocking); |
| 1864 | info->framing = FST_RDB(card, suConfig.framing); |
| 1865 | info->structure = FST_RDB(card, suConfig.structure); |
| 1866 | info->interface = FST_RDB(card, suConfig.interface); |
| 1867 | info->coding = FST_RDB(card, suConfig.coding); |
| 1868 | info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut); |
| 1869 | info->equalizer = FST_RDB(card, suConfig.equalizer); |
| 1870 | info->loopMode = FST_RDB(card, suConfig.loopMode); |
| 1871 | info->range = FST_RDB(card, suConfig.range); |
| 1872 | info->txBufferMode = FST_RDB(card, suConfig.txBufferMode); |
| 1873 | info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode); |
| 1874 | info->startingSlot = FST_RDB(card, suConfig.startingSlot); |
| 1875 | info->losThreshold = FST_RDB(card, suConfig.losThreshold); |
| 1876 | if (FST_RDB(card, suConfig.enableIdleCode)) |
| 1877 | info->idleCode = FST_RDB(card, suConfig.idleCode); |
| 1878 | else |
| 1879 | info->idleCode = 0; |
| 1880 | info->receiveBufferDelay = |
| 1881 | FST_RDL(card, suStatus.receiveBufferDelay); |
| 1882 | info->framingErrorCount = |
| 1883 | FST_RDL(card, suStatus.framingErrorCount); |
| 1884 | info->codeViolationCount = |
| 1885 | FST_RDL(card, suStatus.codeViolationCount); |
| 1886 | info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount); |
| 1887 | info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation); |
| 1888 | info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal); |
| 1889 | info->receiveRemoteAlarm = |
| 1890 | FST_RDB(card, suStatus.receiveRemoteAlarm); |
| 1891 | info->alarmIndicationSignal = |
| 1892 | FST_RDB(card, suStatus.alarmIndicationSignal); |
| 1893 | } |
| 1894 | } |
| 1895 | |
| 1896 | static int |
| 1897 | fst_set_iface(struct fst_card_info *card, struct fst_port_info *port, |
| 1898 | struct ifreq *ifr) |
| 1899 | { |
| 1900 | sync_serial_settings sync; |
| 1901 | int i; |
| 1902 | |
| 1903 | if (ifr->ifr_settings.size != sizeof (sync)) { |
| 1904 | return -ENOMEM; |
| 1905 | } |
| 1906 | |
| 1907 | if (copy_from_user |
| 1908 | (&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) { |
| 1909 | return -EFAULT; |
| 1910 | } |
| 1911 | |
| 1912 | if (sync.loopback) |
| 1913 | return -EINVAL; |
| 1914 | |
| 1915 | i = port->index; |
| 1916 | |
| 1917 | switch (ifr->ifr_settings.type) { |
| 1918 | case IF_IFACE_V35: |
| 1919 | FST_WRW(card, portConfig[i].lineInterface, V35); |
| 1920 | port->hwif = V35; |
| 1921 | break; |
| 1922 | |
| 1923 | case IF_IFACE_V24: |
| 1924 | FST_WRW(card, portConfig[i].lineInterface, V24); |
| 1925 | port->hwif = V24; |
| 1926 | break; |
| 1927 | |
| 1928 | case IF_IFACE_X21: |
| 1929 | FST_WRW(card, portConfig[i].lineInterface, X21); |
| 1930 | port->hwif = X21; |
| 1931 | break; |
| 1932 | |
| 1933 | case IF_IFACE_X21D: |
| 1934 | FST_WRW(card, portConfig[i].lineInterface, X21D); |
| 1935 | port->hwif = X21D; |
| 1936 | break; |
| 1937 | |
| 1938 | case IF_IFACE_T1: |
| 1939 | FST_WRW(card, portConfig[i].lineInterface, T1); |
| 1940 | port->hwif = T1; |
| 1941 | break; |
| 1942 | |
| 1943 | case IF_IFACE_E1: |
| 1944 | FST_WRW(card, portConfig[i].lineInterface, E1); |
| 1945 | port->hwif = E1; |
| 1946 | break; |
| 1947 | |
| 1948 | case IF_IFACE_SYNC_SERIAL: |
| 1949 | break; |
| 1950 | |
| 1951 | default: |
| 1952 | return -EINVAL; |
| 1953 | } |
| 1954 | |
| 1955 | switch (sync.clock_type) { |
| 1956 | case CLOCK_EXT: |
| 1957 | FST_WRB(card, portConfig[i].internalClock, EXTCLK); |
| 1958 | break; |
| 1959 | |
| 1960 | case CLOCK_INT: |
| 1961 | FST_WRB(card, portConfig[i].internalClock, INTCLK); |
| 1962 | break; |
| 1963 | |
| 1964 | default: |
| 1965 | return -EINVAL; |
| 1966 | } |
| 1967 | FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate); |
| 1968 | return 0; |
| 1969 | } |
| 1970 | |
| 1971 | static int |
| 1972 | fst_get_iface(struct fst_card_info *card, struct fst_port_info *port, |
| 1973 | struct ifreq *ifr) |
| 1974 | { |
| 1975 | sync_serial_settings sync; |
| 1976 | int i; |
| 1977 | |
| 1978 | /* First check what line type is set, we'll default to reporting X.21 |
| 1979 | * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be |
| 1980 | * changed |
| 1981 | */ |
| 1982 | switch (port->hwif) { |
| 1983 | case E1: |
| 1984 | ifr->ifr_settings.type = IF_IFACE_E1; |
| 1985 | break; |
| 1986 | case T1: |
| 1987 | ifr->ifr_settings.type = IF_IFACE_T1; |
| 1988 | break; |
| 1989 | case V35: |
| 1990 | ifr->ifr_settings.type = IF_IFACE_V35; |
| 1991 | break; |
| 1992 | case V24: |
| 1993 | ifr->ifr_settings.type = IF_IFACE_V24; |
| 1994 | break; |
| 1995 | case X21D: |
| 1996 | ifr->ifr_settings.type = IF_IFACE_X21D; |
| 1997 | break; |
| 1998 | case X21: |
| 1999 | default: |
| 2000 | ifr->ifr_settings.type = IF_IFACE_X21; |
| 2001 | break; |
| 2002 | } |
| 2003 | if (ifr->ifr_settings.size == 0) { |
| 2004 | return 0; /* only type requested */ |
| 2005 | } |
| 2006 | if (ifr->ifr_settings.size < sizeof (sync)) { |
| 2007 | return -ENOMEM; |
| 2008 | } |
| 2009 | |
| 2010 | i = port->index; |
| 2011 | sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed); |
| 2012 | /* Lucky card and linux use same encoding here */ |
| 2013 | sync.clock_type = FST_RDB(card, portConfig[i].internalClock) == |
| 2014 | INTCLK ? CLOCK_INT : CLOCK_EXT; |
| 2015 | sync.loopback = 0; |
| 2016 | |
| 2017 | if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) { |
| 2018 | return -EFAULT; |
| 2019 | } |
| 2020 | |
| 2021 | ifr->ifr_settings.size = sizeof (sync); |
| 2022 | return 0; |
| 2023 | } |
| 2024 | |
| 2025 | static int |
| 2026 | fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) |
| 2027 | { |
| 2028 | struct fst_card_info *card; |
| 2029 | struct fst_port_info *port; |
| 2030 | struct fstioc_write wrthdr; |
| 2031 | struct fstioc_info info; |
| 2032 | unsigned long flags; |
| 2033 | |
| 2034 | dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data); |
| 2035 | |
| 2036 | port = dev_to_port(dev); |
| 2037 | card = port->card; |
| 2038 | |
| 2039 | if (!capable(CAP_NET_ADMIN)) |
| 2040 | return -EPERM; |
| 2041 | |
| 2042 | switch (cmd) { |
| 2043 | case FSTCPURESET: |
| 2044 | fst_cpureset(card); |
| 2045 | card->state = FST_RESET; |
| 2046 | return 0; |
| 2047 | |
| 2048 | case FSTCPURELEASE: |
| 2049 | fst_cpurelease(card); |
| 2050 | card->state = FST_STARTING; |
| 2051 | return 0; |
| 2052 | |
| 2053 | case FSTWRITE: /* Code write (download) */ |
| 2054 | |
| 2055 | /* First copy in the header with the length and offset of data |
| 2056 | * to write |
| 2057 | */ |
| 2058 | if (ifr->ifr_data == NULL) { |
| 2059 | return -EINVAL; |
| 2060 | } |
| 2061 | if (copy_from_user(&wrthdr, ifr->ifr_data, |
| 2062 | sizeof (struct fstioc_write))) { |
| 2063 | return -EFAULT; |
| 2064 | } |
| 2065 | |
| 2066 | /* Sanity check the parameters. We don't support partial writes |
| 2067 | * when going over the top |
| 2068 | */ |
| 2069 | if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE |
| 2070 | || wrthdr.size + wrthdr.offset > FST_MEMSIZE) { |
| 2071 | return -ENXIO; |
| 2072 | } |
| 2073 | |
| 2074 | /* Now copy the data to the card. |
| 2075 | * This will probably break on some architectures. |
| 2076 | * I'll fix it when I have something to test on. |
| 2077 | */ |
| 2078 | if (copy_from_user(card->mem + wrthdr.offset, |
| 2079 | ifr->ifr_data + sizeof (struct fstioc_write), |
| 2080 | wrthdr.size)) { |
| 2081 | return -EFAULT; |
| 2082 | } |
| 2083 | |
| 2084 | /* Writes to the memory of a card in the reset state constitute |
| 2085 | * a download |
| 2086 | */ |
| 2087 | if (card->state == FST_RESET) { |
| 2088 | card->state = FST_DOWNLOAD; |
| 2089 | } |
| 2090 | return 0; |
| 2091 | |
| 2092 | case FSTGETCONF: |
| 2093 | |
| 2094 | /* If card has just been started check the shared memory config |
| 2095 | * version and marker |
| 2096 | */ |
| 2097 | if (card->state == FST_STARTING) { |
| 2098 | check_started_ok(card); |
| 2099 | |
| 2100 | /* If everything checked out enable card interrupts */ |
| 2101 | if (card->state == FST_RUNNING) { |
| 2102 | spin_lock_irqsave(&card->card_lock, flags); |
| 2103 | fst_enable_intr(card); |
| 2104 | FST_WRB(card, interruptHandshake, 0xEE); |
| 2105 | spin_unlock_irqrestore(&card->card_lock, flags); |
| 2106 | } |
| 2107 | } |
| 2108 | |
| 2109 | if (ifr->ifr_data == NULL) { |
| 2110 | return -EINVAL; |
| 2111 | } |
| 2112 | |
| 2113 | gather_conf_info(card, port, &info); |
| 2114 | |
| 2115 | if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) { |
| 2116 | return -EFAULT; |
| 2117 | } |
| 2118 | return 0; |
| 2119 | |
| 2120 | case FSTSETCONF: |
| 2121 | |
| 2122 | /* |
| 2123 | * Most of the settings have been moved to the generic ioctls |
| 2124 | * this just covers debug and board ident now |
| 2125 | */ |
| 2126 | |
| 2127 | if (card->state != FST_RUNNING) { |
| 2128 | printk_err |
| 2129 | ("Attempt to configure card %d in non-running state (%d)\n", |
| 2130 | card->card_no, card->state); |
| 2131 | return -EIO; |
| 2132 | } |
| 2133 | if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) { |
| 2134 | return -EFAULT; |
| 2135 | } |
| 2136 | |
| 2137 | return set_conf_from_info(card, port, &info); |
| 2138 | |
| 2139 | case SIOCWANDEV: |
| 2140 | switch (ifr->ifr_settings.type) { |
| 2141 | case IF_GET_IFACE: |
| 2142 | return fst_get_iface(card, port, ifr); |
| 2143 | |
| 2144 | case IF_IFACE_SYNC_SERIAL: |
| 2145 | case IF_IFACE_V35: |
| 2146 | case IF_IFACE_V24: |
| 2147 | case IF_IFACE_X21: |
| 2148 | case IF_IFACE_X21D: |
| 2149 | case IF_IFACE_T1: |
| 2150 | case IF_IFACE_E1: |
| 2151 | return fst_set_iface(card, port, ifr); |
| 2152 | |
| 2153 | case IF_PROTO_RAW: |
| 2154 | port->mode = FST_RAW; |
| 2155 | return 0; |
| 2156 | |
| 2157 | case IF_GET_PROTO: |
| 2158 | if (port->mode == FST_RAW) { |
| 2159 | ifr->ifr_settings.type = IF_PROTO_RAW; |
| 2160 | return 0; |
| 2161 | } |
| 2162 | return hdlc_ioctl(dev, ifr, cmd); |
| 2163 | |
| 2164 | default: |
| 2165 | port->mode = FST_GEN_HDLC; |
| 2166 | dbg(DBG_IOCTL, "Passing this type to hdlc %x\n", |
| 2167 | ifr->ifr_settings.type); |
| 2168 | return hdlc_ioctl(dev, ifr, cmd); |
| 2169 | } |
| 2170 | |
| 2171 | default: |
| 2172 | /* Not one of ours. Pass through to HDLC package */ |
| 2173 | return hdlc_ioctl(dev, ifr, cmd); |
| 2174 | } |
| 2175 | } |
| 2176 | |
| 2177 | static void |
| 2178 | fst_openport(struct fst_port_info *port) |
| 2179 | { |
| 2180 | int signals; |
| 2181 | int txq_length; |
| 2182 | |
| 2183 | /* Only init things if card is actually running. This allows open to |
| 2184 | * succeed for downloads etc. |
| 2185 | */ |
| 2186 | if (port->card->state == FST_RUNNING) { |
| 2187 | if (port->run) { |
| 2188 | dbg(DBG_OPEN, "open: found port already running\n"); |
| 2189 | |
| 2190 | fst_issue_cmd(port, STOPPORT); |
| 2191 | port->run = 0; |
| 2192 | } |
| 2193 | |
| 2194 | fst_rx_config(port); |
| 2195 | fst_tx_config(port); |
| 2196 | fst_op_raise(port, OPSTS_RTS | OPSTS_DTR); |
| 2197 | |
| 2198 | fst_issue_cmd(port, STARTPORT); |
| 2199 | port->run = 1; |
| 2200 | |
| 2201 | signals = FST_RDL(port->card, v24DebouncedSts[port->index]); |
| 2202 | if (signals & (((port->hwif == X21) || (port->hwif == X21D)) |
| 2203 | ? IPSTS_INDICATE : IPSTS_DCD)) |
| 2204 | netif_carrier_on(port_to_dev(port)); |
| 2205 | else |
| 2206 | netif_carrier_off(port_to_dev(port)); |
| 2207 | |
| 2208 | txq_length = port->txqe - port->txqs; |
| 2209 | port->txqe = 0; |
| 2210 | port->txqs = 0; |
| 2211 | } |
| 2212 | |
| 2213 | } |
| 2214 | |
| 2215 | static void |
| 2216 | fst_closeport(struct fst_port_info *port) |
| 2217 | { |
| 2218 | if (port->card->state == FST_RUNNING) { |
| 2219 | if (port->run) { |
| 2220 | port->run = 0; |
| 2221 | fst_op_lower(port, OPSTS_RTS | OPSTS_DTR); |
| 2222 | |
| 2223 | fst_issue_cmd(port, STOPPORT); |
| 2224 | } else { |
| 2225 | dbg(DBG_OPEN, "close: port not running\n"); |
| 2226 | } |
| 2227 | } |
| 2228 | } |
| 2229 | |
| 2230 | static int |
| 2231 | fst_open(struct net_device *dev) |
| 2232 | { |
| 2233 | int err; |
| 2234 | struct fst_port_info *port; |
| 2235 | |
| 2236 | port = dev_to_port(dev); |
| 2237 | if (!try_module_get(THIS_MODULE)) |
| 2238 | return -EBUSY; |
| 2239 | |
| 2240 | if (port->mode != FST_RAW) { |
| 2241 | err = hdlc_open(dev); |
| 2242 | if (err) |
| 2243 | return err; |
| 2244 | } |
| 2245 | |
| 2246 | fst_openport(port); |
| 2247 | netif_wake_queue(dev); |
| 2248 | return 0; |
| 2249 | } |
| 2250 | |
| 2251 | static int |
| 2252 | fst_close(struct net_device *dev) |
| 2253 | { |
| 2254 | struct fst_port_info *port; |
| 2255 | struct fst_card_info *card; |
| 2256 | unsigned char tx_dma_done; |
| 2257 | unsigned char rx_dma_done; |
| 2258 | |
| 2259 | port = dev_to_port(dev); |
| 2260 | card = port->card; |
| 2261 | |
| 2262 | tx_dma_done = inb(card->pci_conf + DMACSR1); |
| 2263 | rx_dma_done = inb(card->pci_conf + DMACSR0); |
| 2264 | dbg(DBG_OPEN, |
| 2265 | "Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n", |
| 2266 | card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress, |
| 2267 | rx_dma_done); |
| 2268 | |
| 2269 | netif_stop_queue(dev); |
| 2270 | fst_closeport(dev_to_port(dev)); |
| 2271 | if (port->mode != FST_RAW) { |
| 2272 | hdlc_close(dev); |
| 2273 | } |
| 2274 | module_put(THIS_MODULE); |
| 2275 | return 0; |
| 2276 | } |
| 2277 | |
| 2278 | static int |
| 2279 | fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) |
| 2280 | { |
| 2281 | /* |
| 2282 | * Setting currently fixed in FarSync card so we check and forget |
| 2283 | */ |
| 2284 | if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT) |
| 2285 | return -EINVAL; |
| 2286 | return 0; |
| 2287 | } |
| 2288 | |
| 2289 | static void |
| 2290 | fst_tx_timeout(struct net_device *dev) |
| 2291 | { |
| 2292 | struct fst_port_info *port; |
| 2293 | struct fst_card_info *card; |
| 2294 | struct net_device_stats *stats = hdlc_stats(dev); |
| 2295 | |
| 2296 | port = dev_to_port(dev); |
| 2297 | card = port->card; |
| 2298 | stats->tx_errors++; |
| 2299 | stats->tx_aborted_errors++; |
| 2300 | dbg(DBG_ASS, "Tx timeout card %d port %d\n", |
| 2301 | card->card_no, port->index); |
| 2302 | fst_issue_cmd(port, ABORTTX); |
| 2303 | |
| 2304 | dev->trans_start = jiffies; |
| 2305 | netif_wake_queue(dev); |
| 2306 | port->start = 0; |
| 2307 | } |
| 2308 | |
| 2309 | static int |
| 2310 | fst_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 2311 | { |
| 2312 | struct fst_card_info *card; |
| 2313 | struct fst_port_info *port; |
| 2314 | struct net_device_stats *stats = hdlc_stats(dev); |
| 2315 | unsigned long flags; |
| 2316 | int txq_length; |
| 2317 | |
| 2318 | port = dev_to_port(dev); |
| 2319 | card = port->card; |
| 2320 | dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len); |
| 2321 | |
| 2322 | /* Drop packet with error if we don't have carrier */ |
| 2323 | if (!netif_carrier_ok(dev)) { |
| 2324 | dev_kfree_skb(skb); |
| 2325 | stats->tx_errors++; |
| 2326 | stats->tx_carrier_errors++; |
| 2327 | dbg(DBG_ASS, |
| 2328 | "Tried to transmit but no carrier on card %d port %d\n", |
| 2329 | card->card_no, port->index); |
| 2330 | return 0; |
| 2331 | } |
| 2332 | |
| 2333 | /* Drop it if it's too big! MTU failure ? */ |
| 2334 | if (skb->len > LEN_TX_BUFFER) { |
| 2335 | dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len, |
| 2336 | LEN_TX_BUFFER); |
| 2337 | dev_kfree_skb(skb); |
| 2338 | stats->tx_errors++; |
| 2339 | return 0; |
| 2340 | } |
| 2341 | |
| 2342 | /* |
| 2343 | * We are always going to queue the packet |
| 2344 | * so that the bottom half is the only place we tx from |
| 2345 | * Check there is room in the port txq |
| 2346 | */ |
| 2347 | spin_lock_irqsave(&card->card_lock, flags); |
| 2348 | if ((txq_length = port->txqe - port->txqs) < 0) { |
| 2349 | /* |
| 2350 | * This is the case where the next free has wrapped but the |
| 2351 | * last used hasn't |
| 2352 | */ |
| 2353 | txq_length = txq_length + FST_TXQ_DEPTH; |
| 2354 | } |
| 2355 | spin_unlock_irqrestore(&card->card_lock, flags); |
| 2356 | if (txq_length > fst_txq_high) { |
| 2357 | /* |
| 2358 | * We have got enough buffers in the pipeline. Ask the network |
| 2359 | * layer to stop sending frames down |
| 2360 | */ |
| 2361 | netif_stop_queue(dev); |
| 2362 | port->start = 1; /* I'm using this to signal stop sent up */ |
| 2363 | } |
| 2364 | |
| 2365 | if (txq_length == FST_TXQ_DEPTH - 1) { |
| 2366 | /* |
| 2367 | * This shouldn't have happened but such is life |
| 2368 | */ |
| 2369 | dev_kfree_skb(skb); |
| 2370 | stats->tx_errors++; |
| 2371 | dbg(DBG_ASS, "Tx queue overflow card %d port %d\n", |
| 2372 | card->card_no, port->index); |
| 2373 | return 0; |
| 2374 | } |
| 2375 | |
| 2376 | /* |
| 2377 | * queue the buffer |
| 2378 | */ |
| 2379 | spin_lock_irqsave(&card->card_lock, flags); |
| 2380 | port->txq[port->txqe] = skb; |
| 2381 | port->txqe++; |
| 2382 | if (port->txqe == FST_TXQ_DEPTH) |
| 2383 | port->txqe = 0; |
| 2384 | spin_unlock_irqrestore(&card->card_lock, flags); |
| 2385 | |
| 2386 | /* Scehdule the bottom half which now does transmit processing */ |
| 2387 | fst_q_work_item(&fst_work_txq, card->card_no); |
| 2388 | tasklet_schedule(&fst_tx_task); |
| 2389 | |
| 2390 | return 0; |
| 2391 | } |
| 2392 | |
| 2393 | /* |
| 2394 | * Card setup having checked hardware resources. |
| 2395 | * Should be pretty bizarre if we get an error here (kernel memory |
| 2396 | * exhaustion is one possibility). If we do see a problem we report it |
| 2397 | * via a printk and leave the corresponding interface and all that follow |
| 2398 | * disabled. |
| 2399 | */ |
| 2400 | static char *type_strings[] __devinitdata = { |
| 2401 | "no hardware", /* Should never be seen */ |
| 2402 | "FarSync T2P", |
| 2403 | "FarSync T4P", |
| 2404 | "FarSync T1U", |
| 2405 | "FarSync T2U", |
| 2406 | "FarSync T4U", |
| 2407 | "FarSync TE1" |
| 2408 | }; |
| 2409 | |
| 2410 | static void __devinit |
| 2411 | fst_init_card(struct fst_card_info *card) |
| 2412 | { |
| 2413 | int i; |
| 2414 | int err; |
| 2415 | |
| 2416 | /* We're working on a number of ports based on the card ID. If the |
| 2417 | * firmware detects something different later (should never happen) |
| 2418 | * we'll have to revise it in some way then. |
| 2419 | */ |
| 2420 | for (i = 0; i < card->nports; i++) { |
| 2421 | err = register_hdlc_device(card->ports[i].dev); |
| 2422 | if (err < 0) { |
| 2423 | int j; |
| 2424 | printk_err ("Cannot register HDLC device for port %d" |
| 2425 | " (errno %d)\n", i, -err ); |
| 2426 | for (j = i; j < card->nports; j++) { |
| 2427 | free_netdev(card->ports[j].dev); |
| 2428 | card->ports[j].dev = NULL; |
| 2429 | } |
| 2430 | card->nports = i; |
| 2431 | break; |
| 2432 | } |
| 2433 | } |
| 2434 | |
| 2435 | printk_info("%s-%s: %s IRQ%d, %d ports\n", |
| 2436 | port_to_dev(&card->ports[0])->name, |
| 2437 | port_to_dev(&card->ports[card->nports - 1])->name, |
| 2438 | type_strings[card->type], card->irq, card->nports); |
| 2439 | } |
| 2440 | |
| 2441 | /* |
| 2442 | * Initialise card when detected. |
| 2443 | * Returns 0 to indicate success, or errno otherwise. |
| 2444 | */ |
| 2445 | static int __devinit |
| 2446 | fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent) |
| 2447 | { |
| 2448 | static int firsttime_done = 0; |
| 2449 | static int no_of_cards_added = 0; |
| 2450 | struct fst_card_info *card; |
| 2451 | int err = 0; |
| 2452 | int i; |
| 2453 | |
| 2454 | if (!firsttime_done) { |
| 2455 | printk_info("FarSync WAN driver " FST_USER_VERSION |
| 2456 | " (c) 2001-2004 FarSite Communications Ltd.\n"); |
| 2457 | firsttime_done = 1; |
| 2458 | dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask); |
| 2459 | } |
| 2460 | |
| 2461 | /* |
| 2462 | * We are going to be clever and allow certain cards not to be |
| 2463 | * configured. An exclude list can be provided in /etc/modules.conf |
| 2464 | */ |
| 2465 | if (fst_excluded_cards != 0) { |
| 2466 | /* |
| 2467 | * There are cards to exclude |
| 2468 | * |
| 2469 | */ |
| 2470 | for (i = 0; i < fst_excluded_cards; i++) { |
| 2471 | if ((pdev->devfn) >> 3 == fst_excluded_list[i]) { |
| 2472 | printk_info("FarSync PCI device %d not assigned\n", |
| 2473 | (pdev->devfn) >> 3); |
| 2474 | return -EBUSY; |
| 2475 | } |
| 2476 | } |
| 2477 | } |
| 2478 | |
| 2479 | /* Allocate driver private data */ |
| 2480 | card = kmalloc(sizeof (struct fst_card_info), GFP_KERNEL); |
| 2481 | if (card == NULL) { |
| 2482 | printk_err("FarSync card found but insufficient memory for" |
| 2483 | " driver storage\n"); |
| 2484 | return -ENOMEM; |
| 2485 | } |
| 2486 | memset(card, 0, sizeof (struct fst_card_info)); |
| 2487 | |
| 2488 | /* Try to enable the device */ |
| 2489 | if ((err = pci_enable_device(pdev)) != 0) { |
| 2490 | printk_err("Failed to enable card. Err %d\n", -err); |
| 2491 | kfree(card); |
| 2492 | return err; |
| 2493 | } |
| 2494 | |
| 2495 | if ((err = pci_request_regions(pdev, "FarSync")) !=0) { |
| 2496 | printk_err("Failed to allocate regions. Err %d\n", -err); |
| 2497 | pci_disable_device(pdev); |
| 2498 | kfree(card); |
| 2499 | return err; |
| 2500 | } |
| 2501 | |
| 2502 | /* Get virtual addresses of memory regions */ |
| 2503 | card->pci_conf = pci_resource_start(pdev, 1); |
| 2504 | card->phys_mem = pci_resource_start(pdev, 2); |
| 2505 | card->phys_ctlmem = pci_resource_start(pdev, 3); |
| 2506 | if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) { |
| 2507 | printk_err("Physical memory remap failed\n"); |
| 2508 | pci_release_regions(pdev); |
| 2509 | pci_disable_device(pdev); |
| 2510 | kfree(card); |
| 2511 | return -ENODEV; |
| 2512 | } |
| 2513 | if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) { |
| 2514 | printk_err("Control memory remap failed\n"); |
| 2515 | pci_release_regions(pdev); |
| 2516 | pci_disable_device(pdev); |
| 2517 | kfree(card); |
| 2518 | return -ENODEV; |
| 2519 | } |
| 2520 | dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem); |
| 2521 | |
| 2522 | /* Register the interrupt handler */ |
| 2523 | if (request_irq(pdev->irq, fst_intr, SA_SHIRQ, FST_DEV_NAME, card)) { |
| 2524 | printk_err("Unable to register interrupt %d\n", card->irq); |
| 2525 | pci_release_regions(pdev); |
| 2526 | pci_disable_device(pdev); |
| 2527 | iounmap(card->ctlmem); |
| 2528 | iounmap(card->mem); |
| 2529 | kfree(card); |
| 2530 | return -ENODEV; |
| 2531 | } |
| 2532 | |
| 2533 | /* Record info we need */ |
| 2534 | card->irq = pdev->irq; |
| 2535 | card->type = ent->driver_data; |
| 2536 | card->family = ((ent->driver_data == FST_TYPE_T2P) || |
| 2537 | (ent->driver_data == FST_TYPE_T4P)) |
| 2538 | ? FST_FAMILY_TXP : FST_FAMILY_TXU; |
| 2539 | if ((ent->driver_data == FST_TYPE_T1U) || |
| 2540 | (ent->driver_data == FST_TYPE_TE1)) |
| 2541 | card->nports = 1; |
| 2542 | else |
| 2543 | card->nports = ((ent->driver_data == FST_TYPE_T2P) || |
| 2544 | (ent->driver_data == FST_TYPE_T2U)) ? 2 : 4; |
| 2545 | |
| 2546 | card->state = FST_UNINIT; |
| 2547 | spin_lock_init ( &card->card_lock ); |
| 2548 | |
| 2549 | for ( i = 0 ; i < card->nports ; i++ ) { |
| 2550 | struct net_device *dev = alloc_hdlcdev(&card->ports[i]); |
| 2551 | hdlc_device *hdlc; |
| 2552 | if (!dev) { |
| 2553 | while (i--) |
| 2554 | free_netdev(card->ports[i].dev); |
| 2555 | printk_err ("FarSync: out of memory\n"); |
| 2556 | free_irq(card->irq, card); |
| 2557 | pci_release_regions(pdev); |
| 2558 | pci_disable_device(pdev); |
| 2559 | iounmap(card->ctlmem); |
| 2560 | iounmap(card->mem); |
| 2561 | kfree(card); |
| 2562 | return -ENODEV; |
| 2563 | } |
| 2564 | card->ports[i].dev = dev; |
| 2565 | card->ports[i].card = card; |
| 2566 | card->ports[i].index = i; |
| 2567 | card->ports[i].run = 0; |
| 2568 | |
| 2569 | hdlc = dev_to_hdlc(dev); |
| 2570 | |
| 2571 | /* Fill in the net device info */ |
| 2572 | /* Since this is a PCI setup this is purely |
| 2573 | * informational. Give them the buffer addresses |
| 2574 | * and basic card I/O. |
| 2575 | */ |
| 2576 | dev->mem_start = card->phys_mem |
| 2577 | + BUF_OFFSET ( txBuffer[i][0][0]); |
| 2578 | dev->mem_end = card->phys_mem |
| 2579 | + BUF_OFFSET ( txBuffer[i][NUM_TX_BUFFER][0]); |
| 2580 | dev->base_addr = card->pci_conf; |
| 2581 | dev->irq = card->irq; |
| 2582 | |
| 2583 | dev->tx_queue_len = FST_TX_QUEUE_LEN; |
| 2584 | dev->open = fst_open; |
| 2585 | dev->stop = fst_close; |
| 2586 | dev->do_ioctl = fst_ioctl; |
| 2587 | dev->watchdog_timeo = FST_TX_TIMEOUT; |
| 2588 | dev->tx_timeout = fst_tx_timeout; |
| 2589 | hdlc->attach = fst_attach; |
| 2590 | hdlc->xmit = fst_start_xmit; |
| 2591 | } |
| 2592 | |
| 2593 | card->device = pdev; |
| 2594 | |
| 2595 | dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type, |
| 2596 | card->nports, card->irq); |
| 2597 | dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n", |
| 2598 | card->pci_conf, card->phys_mem, card->phys_ctlmem); |
| 2599 | |
| 2600 | /* Reset the card's processor */ |
| 2601 | fst_cpureset(card); |
| 2602 | card->state = FST_RESET; |
| 2603 | |
| 2604 | /* Initialise DMA (if required) */ |
| 2605 | fst_init_dma(card); |
| 2606 | |
| 2607 | /* Record driver data for later use */ |
| 2608 | pci_set_drvdata(pdev, card); |
| 2609 | |
| 2610 | /* Remainder of card setup */ |
| 2611 | fst_card_array[no_of_cards_added] = card; |
| 2612 | card->card_no = no_of_cards_added++; /* Record instance and bump it */ |
| 2613 | fst_init_card(card); |
| 2614 | if (card->family == FST_FAMILY_TXU) { |
| 2615 | /* |
| 2616 | * Allocate a dma buffer for transmit and receives |
| 2617 | */ |
| 2618 | card->rx_dma_handle_host = |
| 2619 | pci_alloc_consistent(card->device, FST_MAX_MTU, |
| 2620 | &card->rx_dma_handle_card); |
| 2621 | if (card->rx_dma_handle_host == NULL) { |
| 2622 | printk_err("Could not allocate rx dma buffer\n"); |
| 2623 | fst_disable_intr(card); |
| 2624 | pci_release_regions(pdev); |
| 2625 | pci_disable_device(pdev); |
| 2626 | iounmap(card->ctlmem); |
| 2627 | iounmap(card->mem); |
| 2628 | kfree(card); |
| 2629 | return -ENOMEM; |
| 2630 | } |
| 2631 | card->tx_dma_handle_host = |
| 2632 | pci_alloc_consistent(card->device, FST_MAX_MTU, |
| 2633 | &card->tx_dma_handle_card); |
| 2634 | if (card->tx_dma_handle_host == NULL) { |
| 2635 | printk_err("Could not allocate tx dma buffer\n"); |
| 2636 | fst_disable_intr(card); |
| 2637 | pci_release_regions(pdev); |
| 2638 | pci_disable_device(pdev); |
| 2639 | iounmap(card->ctlmem); |
| 2640 | iounmap(card->mem); |
| 2641 | kfree(card); |
| 2642 | return -ENOMEM; |
| 2643 | } |
| 2644 | } |
| 2645 | return 0; /* Success */ |
| 2646 | } |
| 2647 | |
| 2648 | /* |
| 2649 | * Cleanup and close down a card |
| 2650 | */ |
| 2651 | static void __devexit |
| 2652 | fst_remove_one(struct pci_dev *pdev) |
| 2653 | { |
| 2654 | struct fst_card_info *card; |
| 2655 | int i; |
| 2656 | |
| 2657 | card = pci_get_drvdata(pdev); |
| 2658 | |
| 2659 | for (i = 0; i < card->nports; i++) { |
| 2660 | struct net_device *dev = port_to_dev(&card->ports[i]); |
| 2661 | unregister_hdlc_device(dev); |
| 2662 | } |
| 2663 | |
| 2664 | fst_disable_intr(card); |
| 2665 | free_irq(card->irq, card); |
| 2666 | |
| 2667 | iounmap(card->ctlmem); |
| 2668 | iounmap(card->mem); |
| 2669 | pci_release_regions(pdev); |
| 2670 | if (card->family == FST_FAMILY_TXU) { |
| 2671 | /* |
| 2672 | * Free dma buffers |
| 2673 | */ |
| 2674 | pci_free_consistent(card->device, FST_MAX_MTU, |
| 2675 | card->rx_dma_handle_host, |
| 2676 | card->rx_dma_handle_card); |
| 2677 | pci_free_consistent(card->device, FST_MAX_MTU, |
| 2678 | card->tx_dma_handle_host, |
| 2679 | card->tx_dma_handle_card); |
| 2680 | } |
| 2681 | fst_card_array[card->card_no] = NULL; |
| 2682 | } |
| 2683 | |
| 2684 | static struct pci_driver fst_driver = { |
| 2685 | .name = FST_NAME, |
| 2686 | .id_table = fst_pci_dev_id, |
| 2687 | .probe = fst_add_one, |
| 2688 | .remove = __devexit_p(fst_remove_one), |
| 2689 | .suspend = NULL, |
| 2690 | .resume = NULL, |
| 2691 | }; |
| 2692 | |
| 2693 | static int __init |
| 2694 | fst_init(void) |
| 2695 | { |
| 2696 | int i; |
| 2697 | |
| 2698 | for (i = 0; i < FST_MAX_CARDS; i++) |
| 2699 | fst_card_array[i] = NULL; |
| 2700 | spin_lock_init(&fst_work_q_lock); |
| 2701 | return pci_module_init(&fst_driver); |
| 2702 | } |
| 2703 | |
| 2704 | static void __exit |
| 2705 | fst_cleanup_module(void) |
| 2706 | { |
| 2707 | printk_info("FarSync WAN driver unloading\n"); |
| 2708 | pci_unregister_driver(&fst_driver); |
| 2709 | } |
| 2710 | |
| 2711 | module_init(fst_init); |
| 2712 | module_exit(fst_cleanup_module); |