Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /************************************************************************ |
| 2 | * s2io.c: A Linux PCI-X Ethernet driver for S2IO 10GbE Server NIC |
| 3 | * Copyright(c) 2002-2005 Neterion Inc. |
| 4 | |
| 5 | * This software may be used and distributed according to the terms of |
| 6 | * the GNU General Public License (GPL), incorporated herein by reference. |
| 7 | * Drivers based on or derived from this code fall under the GPL and must |
| 8 | * retain the authorship, copyright and license notice. This file is not |
| 9 | * a complete program and may only be used when the entire operating |
| 10 | * system is licensed under the GPL. |
| 11 | * See the file COPYING in this distribution for more information. |
| 12 | * |
| 13 | * Credits: |
| 14 | * Jeff Garzik : For pointing out the improper error condition |
| 15 | * check in the s2io_xmit routine and also some |
| 16 | * issues in the Tx watch dog function. Also for |
| 17 | * patiently answering all those innumerable |
| 18 | * questions regaring the 2.6 porting issues. |
| 19 | * Stephen Hemminger : Providing proper 2.6 porting mechanism for some |
| 20 | * macros available only in 2.6 Kernel. |
| 21 | * Francois Romieu : For pointing out all code part that were |
| 22 | * deprecated and also styling related comments. |
| 23 | * Grant Grundler : For helping me get rid of some Architecture |
| 24 | * dependent code. |
| 25 | * Christopher Hellwig : Some more 2.6 specific issues in the driver. |
| 26 | * |
| 27 | * The module loadable parameters that are supported by the driver and a brief |
| 28 | * explaination of all the variables. |
| 29 | * rx_ring_num : This can be used to program the number of receive rings used |
| 30 | * in the driver. |
| 31 | * rx_ring_len: This defines the number of descriptors each ring can have. This |
| 32 | * is also an array of size 8. |
| 33 | * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. |
| 34 | * tx_fifo_len: This too is an array of 8. Each element defines the number of |
| 35 | * Tx descriptors that can be associated with each corresponding FIFO. |
| 36 | * in PCI Configuration space. |
| 37 | ************************************************************************/ |
| 38 | |
| 39 | #include <linux/config.h> |
| 40 | #include <linux/module.h> |
| 41 | #include <linux/types.h> |
| 42 | #include <linux/errno.h> |
| 43 | #include <linux/ioport.h> |
| 44 | #include <linux/pci.h> |
| 45 | #include <linux/kernel.h> |
| 46 | #include <linux/netdevice.h> |
| 47 | #include <linux/etherdevice.h> |
| 48 | #include <linux/skbuff.h> |
| 49 | #include <linux/init.h> |
| 50 | #include <linux/delay.h> |
| 51 | #include <linux/stddef.h> |
| 52 | #include <linux/ioctl.h> |
| 53 | #include <linux/timex.h> |
| 54 | #include <linux/sched.h> |
| 55 | #include <linux/ethtool.h> |
| 56 | #include <linux/version.h> |
| 57 | #include <linux/workqueue.h> |
| 58 | |
| 59 | #include <asm/io.h> |
| 60 | #include <asm/system.h> |
| 61 | #include <asm/uaccess.h> |
| 62 | |
| 63 | /* local include */ |
| 64 | #include "s2io.h" |
| 65 | #include "s2io-regs.h" |
| 66 | |
| 67 | /* S2io Driver name & version. */ |
| 68 | static char s2io_driver_name[] = "s2io"; |
| 69 | static char s2io_driver_version[] = "Version 1.7.7.1"; |
| 70 | |
| 71 | /* |
| 72 | * Cards with following subsystem_id have a link state indication |
| 73 | * problem, 600B, 600C, 600D, 640B, 640C and 640D. |
| 74 | * macro below identifies these cards given the subsystem_id. |
| 75 | */ |
| 76 | #define CARDS_WITH_FAULTY_LINK_INDICATORS(subid) \ |
| 77 | (((subid >= 0x600B) && (subid <= 0x600D)) || \ |
| 78 | ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0 |
| 79 | |
| 80 | #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ |
| 81 | ADAPTER_STATUS_RMAC_LOCAL_FAULT))) |
| 82 | #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status)) |
| 83 | #define PANIC 1 |
| 84 | #define LOW 2 |
| 85 | static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring) |
| 86 | { |
| 87 | int level = 0; |
| 88 | if ((sp->pkt_cnt[ring] - rxb_size) > 16) { |
| 89 | level = LOW; |
| 90 | if ((sp->pkt_cnt[ring] - rxb_size) < MAX_RXDS_PER_BLOCK) { |
| 91 | level = PANIC; |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | return level; |
| 96 | } |
| 97 | |
| 98 | /* Ethtool related variables and Macros. */ |
| 99 | static char s2io_gstrings[][ETH_GSTRING_LEN] = { |
| 100 | "Register test\t(offline)", |
| 101 | "Eeprom test\t(offline)", |
| 102 | "Link test\t(online)", |
| 103 | "RLDRAM test\t(offline)", |
| 104 | "BIST Test\t(offline)" |
| 105 | }; |
| 106 | |
| 107 | static char ethtool_stats_keys[][ETH_GSTRING_LEN] = { |
| 108 | {"tmac_frms"}, |
| 109 | {"tmac_data_octets"}, |
| 110 | {"tmac_drop_frms"}, |
| 111 | {"tmac_mcst_frms"}, |
| 112 | {"tmac_bcst_frms"}, |
| 113 | {"tmac_pause_ctrl_frms"}, |
| 114 | {"tmac_any_err_frms"}, |
| 115 | {"tmac_vld_ip_octets"}, |
| 116 | {"tmac_vld_ip"}, |
| 117 | {"tmac_drop_ip"}, |
| 118 | {"tmac_icmp"}, |
| 119 | {"tmac_rst_tcp"}, |
| 120 | {"tmac_tcp"}, |
| 121 | {"tmac_udp"}, |
| 122 | {"rmac_vld_frms"}, |
| 123 | {"rmac_data_octets"}, |
| 124 | {"rmac_fcs_err_frms"}, |
| 125 | {"rmac_drop_frms"}, |
| 126 | {"rmac_vld_mcst_frms"}, |
| 127 | {"rmac_vld_bcst_frms"}, |
| 128 | {"rmac_in_rng_len_err_frms"}, |
| 129 | {"rmac_long_frms"}, |
| 130 | {"rmac_pause_ctrl_frms"}, |
| 131 | {"rmac_discarded_frms"}, |
| 132 | {"rmac_usized_frms"}, |
| 133 | {"rmac_osized_frms"}, |
| 134 | {"rmac_frag_frms"}, |
| 135 | {"rmac_jabber_frms"}, |
| 136 | {"rmac_ip"}, |
| 137 | {"rmac_ip_octets"}, |
| 138 | {"rmac_hdr_err_ip"}, |
| 139 | {"rmac_drop_ip"}, |
| 140 | {"rmac_icmp"}, |
| 141 | {"rmac_tcp"}, |
| 142 | {"rmac_udp"}, |
| 143 | {"rmac_err_drp_udp"}, |
| 144 | {"rmac_pause_cnt"}, |
| 145 | {"rmac_accepted_ip"}, |
| 146 | {"rmac_err_tcp"}, |
| 147 | }; |
| 148 | |
| 149 | #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN |
| 150 | #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN |
| 151 | |
| 152 | #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN |
| 153 | #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN |
| 154 | |
| 155 | |
| 156 | /* |
| 157 | * Constants to be programmed into the Xena's registers, to configure |
| 158 | * the XAUI. |
| 159 | */ |
| 160 | |
| 161 | #define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL |
| 162 | #define END_SIGN 0x0 |
| 163 | |
| 164 | static u64 default_mdio_cfg[] = { |
| 165 | /* Reset PMA PLL */ |
| 166 | 0xC001010000000000ULL, 0xC0010100000000E0ULL, |
| 167 | 0xC0010100008000E4ULL, |
| 168 | /* Remove Reset from PMA PLL */ |
| 169 | 0xC001010000000000ULL, 0xC0010100000000E0ULL, |
| 170 | 0xC0010100000000E4ULL, |
| 171 | END_SIGN |
| 172 | }; |
| 173 | |
| 174 | static u64 default_dtx_cfg[] = { |
| 175 | 0x8000051500000000ULL, 0x80000515000000E0ULL, |
| 176 | 0x80000515D93500E4ULL, 0x8001051500000000ULL, |
| 177 | 0x80010515000000E0ULL, 0x80010515001E00E4ULL, |
| 178 | 0x8002051500000000ULL, 0x80020515000000E0ULL, |
| 179 | 0x80020515F21000E4ULL, |
| 180 | /* Set PADLOOPBACKN */ |
| 181 | 0x8002051500000000ULL, 0x80020515000000E0ULL, |
| 182 | 0x80020515B20000E4ULL, 0x8003051500000000ULL, |
| 183 | 0x80030515000000E0ULL, 0x80030515B20000E4ULL, |
| 184 | 0x8004051500000000ULL, 0x80040515000000E0ULL, |
| 185 | 0x80040515B20000E4ULL, 0x8005051500000000ULL, |
| 186 | 0x80050515000000E0ULL, 0x80050515B20000E4ULL, |
| 187 | SWITCH_SIGN, |
| 188 | /* Remove PADLOOPBACKN */ |
| 189 | 0x8002051500000000ULL, 0x80020515000000E0ULL, |
| 190 | 0x80020515F20000E4ULL, 0x8003051500000000ULL, |
| 191 | 0x80030515000000E0ULL, 0x80030515F20000E4ULL, |
| 192 | 0x8004051500000000ULL, 0x80040515000000E0ULL, |
| 193 | 0x80040515F20000E4ULL, 0x8005051500000000ULL, |
| 194 | 0x80050515000000E0ULL, 0x80050515F20000E4ULL, |
| 195 | END_SIGN |
| 196 | }; |
| 197 | |
| 198 | |
| 199 | /* |
| 200 | * Constants for Fixing the MacAddress problem seen mostly on |
| 201 | * Alpha machines. |
| 202 | */ |
| 203 | static u64 fix_mac[] = { |
| 204 | 0x0060000000000000ULL, 0x0060600000000000ULL, |
| 205 | 0x0040600000000000ULL, 0x0000600000000000ULL, |
| 206 | 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 207 | 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 208 | 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 209 | 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 210 | 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 211 | 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 212 | 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 213 | 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 214 | 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 215 | 0x0020600000000000ULL, 0x0060600000000000ULL, |
| 216 | 0x0020600000000000ULL, 0x0000600000000000ULL, |
| 217 | 0x0040600000000000ULL, 0x0060600000000000ULL, |
| 218 | END_SIGN |
| 219 | }; |
| 220 | |
| 221 | /* Module Loadable parameters. */ |
| 222 | static unsigned int tx_fifo_num = 1; |
| 223 | static unsigned int tx_fifo_len[MAX_TX_FIFOS] = |
| 224 | {[0 ...(MAX_TX_FIFOS - 1)] = 0 }; |
| 225 | static unsigned int rx_ring_num = 1; |
| 226 | static unsigned int rx_ring_sz[MAX_RX_RINGS] = |
| 227 | {[0 ...(MAX_RX_RINGS - 1)] = 0 }; |
| 228 | static unsigned int Stats_refresh_time = 4; |
| 229 | static unsigned int rmac_pause_time = 65535; |
| 230 | static unsigned int mc_pause_threshold_q0q3 = 187; |
| 231 | static unsigned int mc_pause_threshold_q4q7 = 187; |
| 232 | static unsigned int shared_splits; |
| 233 | static unsigned int tmac_util_period = 5; |
| 234 | static unsigned int rmac_util_period = 5; |
| 235 | #ifndef CONFIG_S2IO_NAPI |
| 236 | static unsigned int indicate_max_pkts; |
| 237 | #endif |
| 238 | |
| 239 | /* |
| 240 | * S2IO device table. |
| 241 | * This table lists all the devices that this driver supports. |
| 242 | */ |
| 243 | static struct pci_device_id s2io_tbl[] __devinitdata = { |
| 244 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, |
| 245 | PCI_ANY_ID, PCI_ANY_ID}, |
| 246 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, |
| 247 | PCI_ANY_ID, PCI_ANY_ID}, |
| 248 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, |
| 249 | PCI_ANY_ID, PCI_ANY_ID}, |
| 250 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, |
| 251 | PCI_ANY_ID, PCI_ANY_ID}, |
| 252 | {0,} |
| 253 | }; |
| 254 | |
| 255 | MODULE_DEVICE_TABLE(pci, s2io_tbl); |
| 256 | |
| 257 | static struct pci_driver s2io_driver = { |
| 258 | .name = "S2IO", |
| 259 | .id_table = s2io_tbl, |
| 260 | .probe = s2io_init_nic, |
| 261 | .remove = __devexit_p(s2io_rem_nic), |
| 262 | }; |
| 263 | |
| 264 | /* A simplifier macro used both by init and free shared_mem Fns(). */ |
| 265 | #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) |
| 266 | |
| 267 | /** |
| 268 | * init_shared_mem - Allocation and Initialization of Memory |
| 269 | * @nic: Device private variable. |
| 270 | * Description: The function allocates all the memory areas shared |
| 271 | * between the NIC and the driver. This includes Tx descriptors, |
| 272 | * Rx descriptors and the statistics block. |
| 273 | */ |
| 274 | |
| 275 | static int init_shared_mem(struct s2io_nic *nic) |
| 276 | { |
| 277 | u32 size; |
| 278 | void *tmp_v_addr, *tmp_v_addr_next; |
| 279 | dma_addr_t tmp_p_addr, tmp_p_addr_next; |
| 280 | RxD_block_t *pre_rxd_blk = NULL; |
| 281 | int i, j, blk_cnt; |
| 282 | int lst_size, lst_per_page; |
| 283 | struct net_device *dev = nic->dev; |
| 284 | #ifdef CONFIG_2BUFF_MODE |
| 285 | unsigned long tmp; |
| 286 | buffAdd_t *ba; |
| 287 | #endif |
| 288 | |
| 289 | mac_info_t *mac_control; |
| 290 | struct config_param *config; |
| 291 | |
| 292 | mac_control = &nic->mac_control; |
| 293 | config = &nic->config; |
| 294 | |
| 295 | |
| 296 | /* Allocation and initialization of TXDLs in FIOFs */ |
| 297 | size = 0; |
| 298 | for (i = 0; i < config->tx_fifo_num; i++) { |
| 299 | size += config->tx_cfg[i].fifo_len; |
| 300 | } |
| 301 | if (size > MAX_AVAILABLE_TXDS) { |
| 302 | DBG_PRINT(ERR_DBG, "%s: Total number of Tx FIFOs ", |
| 303 | dev->name); |
| 304 | DBG_PRINT(ERR_DBG, "exceeds the maximum value "); |
| 305 | DBG_PRINT(ERR_DBG, "that can be used\n"); |
| 306 | return FAILURE; |
| 307 | } |
| 308 | |
| 309 | lst_size = (sizeof(TxD_t) * config->max_txds); |
| 310 | lst_per_page = PAGE_SIZE / lst_size; |
| 311 | |
| 312 | for (i = 0; i < config->tx_fifo_num; i++) { |
| 313 | int fifo_len = config->tx_cfg[i].fifo_len; |
| 314 | int list_holder_size = fifo_len * sizeof(list_info_hold_t); |
| 315 | nic->list_info[i] = kmalloc(list_holder_size, GFP_KERNEL); |
| 316 | if (!nic->list_info[i]) { |
| 317 | DBG_PRINT(ERR_DBG, |
| 318 | "Malloc failed for list_info\n"); |
| 319 | return -ENOMEM; |
| 320 | } |
| 321 | memset(nic->list_info[i], 0, list_holder_size); |
| 322 | } |
| 323 | for (i = 0; i < config->tx_fifo_num; i++) { |
| 324 | int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, |
| 325 | lst_per_page); |
| 326 | mac_control->tx_curr_put_info[i].offset = 0; |
| 327 | mac_control->tx_curr_put_info[i].fifo_len = |
| 328 | config->tx_cfg[i].fifo_len - 1; |
| 329 | mac_control->tx_curr_get_info[i].offset = 0; |
| 330 | mac_control->tx_curr_get_info[i].fifo_len = |
| 331 | config->tx_cfg[i].fifo_len - 1; |
| 332 | for (j = 0; j < page_num; j++) { |
| 333 | int k = 0; |
| 334 | dma_addr_t tmp_p; |
| 335 | void *tmp_v; |
| 336 | tmp_v = pci_alloc_consistent(nic->pdev, |
| 337 | PAGE_SIZE, &tmp_p); |
| 338 | if (!tmp_v) { |
| 339 | DBG_PRINT(ERR_DBG, |
| 340 | "pci_alloc_consistent "); |
| 341 | DBG_PRINT(ERR_DBG, "failed for TxDL\n"); |
| 342 | return -ENOMEM; |
| 343 | } |
| 344 | while (k < lst_per_page) { |
| 345 | int l = (j * lst_per_page) + k; |
| 346 | if (l == config->tx_cfg[i].fifo_len) |
| 347 | goto end_txd_alloc; |
| 348 | nic->list_info[i][l].list_virt_addr = |
| 349 | tmp_v + (k * lst_size); |
| 350 | nic->list_info[i][l].list_phy_addr = |
| 351 | tmp_p + (k * lst_size); |
| 352 | k++; |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | end_txd_alloc: |
| 357 | |
| 358 | /* Allocation and initialization of RXDs in Rings */ |
| 359 | size = 0; |
| 360 | for (i = 0; i < config->rx_ring_num; i++) { |
| 361 | if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) { |
| 362 | DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name); |
| 363 | DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", |
| 364 | i); |
| 365 | DBG_PRINT(ERR_DBG, "RxDs per Block"); |
| 366 | return FAILURE; |
| 367 | } |
| 368 | size += config->rx_cfg[i].num_rxd; |
| 369 | nic->block_count[i] = |
| 370 | config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); |
| 371 | nic->pkt_cnt[i] = |
| 372 | config->rx_cfg[i].num_rxd - nic->block_count[i]; |
| 373 | } |
| 374 | |
| 375 | for (i = 0; i < config->rx_ring_num; i++) { |
| 376 | mac_control->rx_curr_get_info[i].block_index = 0; |
| 377 | mac_control->rx_curr_get_info[i].offset = 0; |
| 378 | mac_control->rx_curr_get_info[i].ring_len = |
| 379 | config->rx_cfg[i].num_rxd - 1; |
| 380 | mac_control->rx_curr_put_info[i].block_index = 0; |
| 381 | mac_control->rx_curr_put_info[i].offset = 0; |
| 382 | mac_control->rx_curr_put_info[i].ring_len = |
| 383 | config->rx_cfg[i].num_rxd - 1; |
| 384 | blk_cnt = |
| 385 | config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); |
| 386 | /* Allocating all the Rx blocks */ |
| 387 | for (j = 0; j < blk_cnt; j++) { |
| 388 | #ifndef CONFIG_2BUFF_MODE |
| 389 | size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); |
| 390 | #else |
| 391 | size = SIZE_OF_BLOCK; |
| 392 | #endif |
| 393 | tmp_v_addr = pci_alloc_consistent(nic->pdev, size, |
| 394 | &tmp_p_addr); |
| 395 | if (tmp_v_addr == NULL) { |
| 396 | /* |
| 397 | * In case of failure, free_shared_mem() |
| 398 | * is called, which should free any |
| 399 | * memory that was alloced till the |
| 400 | * failure happened. |
| 401 | */ |
| 402 | nic->rx_blocks[i][j].block_virt_addr = |
| 403 | tmp_v_addr; |
| 404 | return -ENOMEM; |
| 405 | } |
| 406 | memset(tmp_v_addr, 0, size); |
| 407 | nic->rx_blocks[i][j].block_virt_addr = tmp_v_addr; |
| 408 | nic->rx_blocks[i][j].block_dma_addr = tmp_p_addr; |
| 409 | } |
| 410 | /* Interlinking all Rx Blocks */ |
| 411 | for (j = 0; j < blk_cnt; j++) { |
| 412 | tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr; |
| 413 | tmp_v_addr_next = |
| 414 | nic->rx_blocks[i][(j + 1) % |
| 415 | blk_cnt].block_virt_addr; |
| 416 | tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr; |
| 417 | tmp_p_addr_next = |
| 418 | nic->rx_blocks[i][(j + 1) % |
| 419 | blk_cnt].block_dma_addr; |
| 420 | |
| 421 | pre_rxd_blk = (RxD_block_t *) tmp_v_addr; |
| 422 | pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD |
| 423 | * marker. |
| 424 | */ |
| 425 | #ifndef CONFIG_2BUFF_MODE |
| 426 | pre_rxd_blk->reserved_2_pNext_RxD_block = |
| 427 | (unsigned long) tmp_v_addr_next; |
| 428 | #endif |
| 429 | pre_rxd_blk->pNext_RxD_Blk_physical = |
| 430 | (u64) tmp_p_addr_next; |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | #ifdef CONFIG_2BUFF_MODE |
| 435 | /* |
| 436 | * Allocation of Storages for buffer addresses in 2BUFF mode |
| 437 | * and the buffers as well. |
| 438 | */ |
| 439 | for (i = 0; i < config->rx_ring_num; i++) { |
| 440 | blk_cnt = |
| 441 | config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); |
| 442 | nic->ba[i] = kmalloc((sizeof(buffAdd_t *) * blk_cnt), |
| 443 | GFP_KERNEL); |
| 444 | if (!nic->ba[i]) |
| 445 | return -ENOMEM; |
| 446 | for (j = 0; j < blk_cnt; j++) { |
| 447 | int k = 0; |
| 448 | nic->ba[i][j] = kmalloc((sizeof(buffAdd_t) * |
| 449 | (MAX_RXDS_PER_BLOCK + 1)), |
| 450 | GFP_KERNEL); |
| 451 | if (!nic->ba[i][j]) |
| 452 | return -ENOMEM; |
| 453 | while (k != MAX_RXDS_PER_BLOCK) { |
| 454 | ba = &nic->ba[i][j][k]; |
| 455 | |
| 456 | ba->ba_0_org = kmalloc |
| 457 | (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL); |
| 458 | if (!ba->ba_0_org) |
| 459 | return -ENOMEM; |
| 460 | tmp = (unsigned long) ba->ba_0_org; |
| 461 | tmp += ALIGN_SIZE; |
| 462 | tmp &= ~((unsigned long) ALIGN_SIZE); |
| 463 | ba->ba_0 = (void *) tmp; |
| 464 | |
| 465 | ba->ba_1_org = kmalloc |
| 466 | (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL); |
| 467 | if (!ba->ba_1_org) |
| 468 | return -ENOMEM; |
| 469 | tmp = (unsigned long) ba->ba_1_org; |
| 470 | tmp += ALIGN_SIZE; |
| 471 | tmp &= ~((unsigned long) ALIGN_SIZE); |
| 472 | ba->ba_1 = (void *) tmp; |
| 473 | k++; |
| 474 | } |
| 475 | } |
| 476 | } |
| 477 | #endif |
| 478 | |
| 479 | /* Allocation and initialization of Statistics block */ |
| 480 | size = sizeof(StatInfo_t); |
| 481 | mac_control->stats_mem = pci_alloc_consistent |
| 482 | (nic->pdev, size, &mac_control->stats_mem_phy); |
| 483 | |
| 484 | if (!mac_control->stats_mem) { |
| 485 | /* |
| 486 | * In case of failure, free_shared_mem() is called, which |
| 487 | * should free any memory that was alloced till the |
| 488 | * failure happened. |
| 489 | */ |
| 490 | return -ENOMEM; |
| 491 | } |
| 492 | mac_control->stats_mem_sz = size; |
| 493 | |
| 494 | tmp_v_addr = mac_control->stats_mem; |
| 495 | mac_control->stats_info = (StatInfo_t *) tmp_v_addr; |
| 496 | memset(tmp_v_addr, 0, size); |
| 497 | |
| 498 | DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name, |
| 499 | (unsigned long long) tmp_p_addr); |
| 500 | |
| 501 | return SUCCESS; |
| 502 | } |
| 503 | |
| 504 | /** |
| 505 | * free_shared_mem - Free the allocated Memory |
| 506 | * @nic: Device private variable. |
| 507 | * Description: This function is to free all memory locations allocated by |
| 508 | * the init_shared_mem() function and return it to the kernel. |
| 509 | */ |
| 510 | |
| 511 | static void free_shared_mem(struct s2io_nic *nic) |
| 512 | { |
| 513 | int i, j, blk_cnt, size; |
| 514 | void *tmp_v_addr; |
| 515 | dma_addr_t tmp_p_addr; |
| 516 | mac_info_t *mac_control; |
| 517 | struct config_param *config; |
| 518 | int lst_size, lst_per_page; |
| 519 | |
| 520 | |
| 521 | if (!nic) |
| 522 | return; |
| 523 | |
| 524 | mac_control = &nic->mac_control; |
| 525 | config = &nic->config; |
| 526 | |
| 527 | lst_size = (sizeof(TxD_t) * config->max_txds); |
| 528 | lst_per_page = PAGE_SIZE / lst_size; |
| 529 | |
| 530 | for (i = 0; i < config->tx_fifo_num; i++) { |
| 531 | int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, |
| 532 | lst_per_page); |
| 533 | for (j = 0; j < page_num; j++) { |
| 534 | int mem_blks = (j * lst_per_page); |
| 535 | if (!nic->list_info[i][mem_blks].list_virt_addr) |
| 536 | break; |
| 537 | pci_free_consistent(nic->pdev, PAGE_SIZE, |
| 538 | nic->list_info[i][mem_blks]. |
| 539 | list_virt_addr, |
| 540 | nic->list_info[i][mem_blks]. |
| 541 | list_phy_addr); |
| 542 | } |
| 543 | kfree(nic->list_info[i]); |
| 544 | } |
| 545 | |
| 546 | #ifndef CONFIG_2BUFF_MODE |
| 547 | size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); |
| 548 | #else |
| 549 | size = SIZE_OF_BLOCK; |
| 550 | #endif |
| 551 | for (i = 0; i < config->rx_ring_num; i++) { |
| 552 | blk_cnt = nic->block_count[i]; |
| 553 | for (j = 0; j < blk_cnt; j++) { |
| 554 | tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr; |
| 555 | tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr; |
| 556 | if (tmp_v_addr == NULL) |
| 557 | break; |
| 558 | pci_free_consistent(nic->pdev, size, |
| 559 | tmp_v_addr, tmp_p_addr); |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | #ifdef CONFIG_2BUFF_MODE |
| 564 | /* Freeing buffer storage addresses in 2BUFF mode. */ |
| 565 | for (i = 0; i < config->rx_ring_num; i++) { |
| 566 | blk_cnt = |
| 567 | config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); |
| 568 | if (!nic->ba[i]) |
| 569 | goto end_free; |
| 570 | for (j = 0; j < blk_cnt; j++) { |
| 571 | int k = 0; |
| 572 | if (!nic->ba[i][j]) { |
| 573 | kfree(nic->ba[i]); |
| 574 | goto end_free; |
| 575 | } |
| 576 | while (k != MAX_RXDS_PER_BLOCK) { |
| 577 | buffAdd_t *ba = &nic->ba[i][j][k]; |
| 578 | if (!ba || !ba->ba_0_org || !ba->ba_1_org) |
| 579 | { |
| 580 | kfree(nic->ba[i]); |
| 581 | kfree(nic->ba[i][j]); |
| 582 | if(ba->ba_0_org) |
| 583 | kfree(ba->ba_0_org); |
| 584 | if(ba->ba_1_org) |
| 585 | kfree(ba->ba_1_org); |
| 586 | goto end_free; |
| 587 | } |
| 588 | kfree(ba->ba_0_org); |
| 589 | kfree(ba->ba_1_org); |
| 590 | k++; |
| 591 | } |
| 592 | kfree(nic->ba[i][j]); |
| 593 | } |
| 594 | kfree(nic->ba[i]); |
| 595 | } |
| 596 | end_free: |
| 597 | #endif |
| 598 | |
| 599 | if (mac_control->stats_mem) { |
| 600 | pci_free_consistent(nic->pdev, |
| 601 | mac_control->stats_mem_sz, |
| 602 | mac_control->stats_mem, |
| 603 | mac_control->stats_mem_phy); |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | /** |
| 608 | * init_nic - Initialization of hardware |
| 609 | * @nic: device peivate variable |
| 610 | * Description: The function sequentially configures every block |
| 611 | * of the H/W from their reset values. |
| 612 | * Return Value: SUCCESS on success and |
| 613 | * '-1' on failure (endian settings incorrect). |
| 614 | */ |
| 615 | |
| 616 | static int init_nic(struct s2io_nic *nic) |
| 617 | { |
| 618 | XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| 619 | struct net_device *dev = nic->dev; |
| 620 | register u64 val64 = 0; |
| 621 | void __iomem *add; |
| 622 | u32 time; |
| 623 | int i, j; |
| 624 | mac_info_t *mac_control; |
| 625 | struct config_param *config; |
| 626 | int mdio_cnt = 0, dtx_cnt = 0; |
| 627 | unsigned long long mem_share; |
| 628 | |
| 629 | mac_control = &nic->mac_control; |
| 630 | config = &nic->config; |
| 631 | |
| 632 | /* Initialize swapper control register */ |
| 633 | if (s2io_set_swapper(nic)) { |
| 634 | DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n"); |
| 635 | return -1; |
| 636 | } |
| 637 | |
| 638 | /* Remove XGXS from reset state */ |
| 639 | val64 = 0; |
| 640 | writeq(val64, &bar0->sw_reset); |
| 641 | val64 = readq(&bar0->sw_reset); |
| 642 | msleep(500); |
| 643 | |
| 644 | /* Enable Receiving broadcasts */ |
| 645 | add = &bar0->mac_cfg; |
| 646 | val64 = readq(&bar0->mac_cfg); |
| 647 | val64 |= MAC_RMAC_BCAST_ENABLE; |
| 648 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| 649 | writel((u32) val64, add); |
| 650 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| 651 | writel((u32) (val64 >> 32), (add + 4)); |
| 652 | |
| 653 | /* Read registers in all blocks */ |
| 654 | val64 = readq(&bar0->mac_int_mask); |
| 655 | val64 = readq(&bar0->mc_int_mask); |
| 656 | val64 = readq(&bar0->xgxs_int_mask); |
| 657 | |
| 658 | /* Set MTU */ |
| 659 | val64 = dev->mtu; |
| 660 | writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); |
| 661 | |
| 662 | /* |
| 663 | * Configuring the XAUI Interface of Xena. |
| 664 | * *************************************** |
| 665 | * To Configure the Xena's XAUI, one has to write a series |
| 666 | * of 64 bit values into two registers in a particular |
| 667 | * sequence. Hence a macro 'SWITCH_SIGN' has been defined |
| 668 | * which will be defined in the array of configuration values |
| 669 | * (default_dtx_cfg & default_mdio_cfg) at appropriate places |
| 670 | * to switch writing from one regsiter to another. We continue |
| 671 | * writing these values until we encounter the 'END_SIGN' macro. |
| 672 | * For example, After making a series of 21 writes into |
| 673 | * dtx_control register the 'SWITCH_SIGN' appears and hence we |
| 674 | * start writing into mdio_control until we encounter END_SIGN. |
| 675 | */ |
| 676 | while (1) { |
| 677 | dtx_cfg: |
| 678 | while (default_dtx_cfg[dtx_cnt] != END_SIGN) { |
| 679 | if (default_dtx_cfg[dtx_cnt] == SWITCH_SIGN) { |
| 680 | dtx_cnt++; |
| 681 | goto mdio_cfg; |
| 682 | } |
| 683 | SPECIAL_REG_WRITE(default_dtx_cfg[dtx_cnt], |
| 684 | &bar0->dtx_control, UF); |
| 685 | val64 = readq(&bar0->dtx_control); |
| 686 | dtx_cnt++; |
| 687 | } |
| 688 | mdio_cfg: |
| 689 | while (default_mdio_cfg[mdio_cnt] != END_SIGN) { |
| 690 | if (default_mdio_cfg[mdio_cnt] == SWITCH_SIGN) { |
| 691 | mdio_cnt++; |
| 692 | goto dtx_cfg; |
| 693 | } |
| 694 | SPECIAL_REG_WRITE(default_mdio_cfg[mdio_cnt], |
| 695 | &bar0->mdio_control, UF); |
| 696 | val64 = readq(&bar0->mdio_control); |
| 697 | mdio_cnt++; |
| 698 | } |
| 699 | if ((default_dtx_cfg[dtx_cnt] == END_SIGN) && |
| 700 | (default_mdio_cfg[mdio_cnt] == END_SIGN)) { |
| 701 | break; |
| 702 | } else { |
| 703 | goto dtx_cfg; |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | /* Tx DMA Initialization */ |
| 708 | val64 = 0; |
| 709 | writeq(val64, &bar0->tx_fifo_partition_0); |
| 710 | writeq(val64, &bar0->tx_fifo_partition_1); |
| 711 | writeq(val64, &bar0->tx_fifo_partition_2); |
| 712 | writeq(val64, &bar0->tx_fifo_partition_3); |
| 713 | |
| 714 | |
| 715 | for (i = 0, j = 0; i < config->tx_fifo_num; i++) { |
| 716 | val64 |= |
| 717 | vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19), |
| 718 | 13) | vBIT(config->tx_cfg[i].fifo_priority, |
| 719 | ((i * 32) + 5), 3); |
| 720 | |
| 721 | if (i == (config->tx_fifo_num - 1)) { |
| 722 | if (i % 2 == 0) |
| 723 | i++; |
| 724 | } |
| 725 | |
| 726 | switch (i) { |
| 727 | case 1: |
| 728 | writeq(val64, &bar0->tx_fifo_partition_0); |
| 729 | val64 = 0; |
| 730 | break; |
| 731 | case 3: |
| 732 | writeq(val64, &bar0->tx_fifo_partition_1); |
| 733 | val64 = 0; |
| 734 | break; |
| 735 | case 5: |
| 736 | writeq(val64, &bar0->tx_fifo_partition_2); |
| 737 | val64 = 0; |
| 738 | break; |
| 739 | case 7: |
| 740 | writeq(val64, &bar0->tx_fifo_partition_3); |
| 741 | break; |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | /* Enable Tx FIFO partition 0. */ |
| 746 | val64 = readq(&bar0->tx_fifo_partition_0); |
| 747 | val64 |= BIT(0); /* To enable the FIFO partition. */ |
| 748 | writeq(val64, &bar0->tx_fifo_partition_0); |
| 749 | |
| 750 | val64 = readq(&bar0->tx_fifo_partition_0); |
| 751 | DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", |
| 752 | &bar0->tx_fifo_partition_0, (unsigned long long) val64); |
| 753 | |
| 754 | /* |
| 755 | * Initialization of Tx_PA_CONFIG register to ignore packet |
| 756 | * integrity checking. |
| 757 | */ |
| 758 | val64 = readq(&bar0->tx_pa_cfg); |
| 759 | val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI | |
| 760 | TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR; |
| 761 | writeq(val64, &bar0->tx_pa_cfg); |
| 762 | |
| 763 | /* Rx DMA intialization. */ |
| 764 | val64 = 0; |
| 765 | for (i = 0; i < config->rx_ring_num; i++) { |
| 766 | val64 |= |
| 767 | vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)), |
| 768 | 3); |
| 769 | } |
| 770 | writeq(val64, &bar0->rx_queue_priority); |
| 771 | |
| 772 | /* |
| 773 | * Allocating equal share of memory to all the |
| 774 | * configured Rings. |
| 775 | */ |
| 776 | val64 = 0; |
| 777 | for (i = 0; i < config->rx_ring_num; i++) { |
| 778 | switch (i) { |
| 779 | case 0: |
| 780 | mem_share = (64 / config->rx_ring_num + |
| 781 | 64 % config->rx_ring_num); |
| 782 | val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); |
| 783 | continue; |
| 784 | case 1: |
| 785 | mem_share = (64 / config->rx_ring_num); |
| 786 | val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); |
| 787 | continue; |
| 788 | case 2: |
| 789 | mem_share = (64 / config->rx_ring_num); |
| 790 | val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); |
| 791 | continue; |
| 792 | case 3: |
| 793 | mem_share = (64 / config->rx_ring_num); |
| 794 | val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); |
| 795 | continue; |
| 796 | case 4: |
| 797 | mem_share = (64 / config->rx_ring_num); |
| 798 | val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); |
| 799 | continue; |
| 800 | case 5: |
| 801 | mem_share = (64 / config->rx_ring_num); |
| 802 | val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); |
| 803 | continue; |
| 804 | case 6: |
| 805 | mem_share = (64 / config->rx_ring_num); |
| 806 | val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); |
| 807 | continue; |
| 808 | case 7: |
| 809 | mem_share = (64 / config->rx_ring_num); |
| 810 | val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); |
| 811 | continue; |
| 812 | } |
| 813 | } |
| 814 | writeq(val64, &bar0->rx_queue_cfg); |
| 815 | |
| 816 | /* |
| 817 | * Initializing the Tx round robin registers to 0. |
| 818 | * Filling Tx and Rx round robin registers as per the |
| 819 | * number of FIFOs and Rings is still TODO. |
| 820 | */ |
| 821 | writeq(0, &bar0->tx_w_round_robin_0); |
| 822 | writeq(0, &bar0->tx_w_round_robin_1); |
| 823 | writeq(0, &bar0->tx_w_round_robin_2); |
| 824 | writeq(0, &bar0->tx_w_round_robin_3); |
| 825 | writeq(0, &bar0->tx_w_round_robin_4); |
| 826 | |
| 827 | /* |
| 828 | * TODO |
| 829 | * Disable Rx steering. Hard coding all packets be steered to |
| 830 | * Queue 0 for now. |
| 831 | */ |
| 832 | val64 = 0x8080808080808080ULL; |
| 833 | writeq(val64, &bar0->rts_qos_steering); |
| 834 | |
| 835 | /* UDP Fix */ |
| 836 | val64 = 0; |
| 837 | for (i = 1; i < 8; i++) |
| 838 | writeq(val64, &bar0->rts_frm_len_n[i]); |
| 839 | |
| 840 | /* Set rts_frm_len register for fifo 0 */ |
| 841 | writeq(MAC_RTS_FRM_LEN_SET(dev->mtu + 22), |
| 842 | &bar0->rts_frm_len_n[0]); |
| 843 | |
| 844 | /* Enable statistics */ |
| 845 | writeq(mac_control->stats_mem_phy, &bar0->stat_addr); |
| 846 | val64 = SET_UPDT_PERIOD(Stats_refresh_time) | |
| 847 | STAT_CFG_STAT_RO | STAT_CFG_STAT_EN; |
| 848 | writeq(val64, &bar0->stat_cfg); |
| 849 | |
| 850 | /* |
| 851 | * Initializing the sampling rate for the device to calculate the |
| 852 | * bandwidth utilization. |
| 853 | */ |
| 854 | val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | |
| 855 | MAC_RX_LINK_UTIL_VAL(rmac_util_period); |
| 856 | writeq(val64, &bar0->mac_link_util); |
| 857 | |
| 858 | |
| 859 | /* |
| 860 | * Initializing the Transmit and Receive Traffic Interrupt |
| 861 | * Scheme. |
| 862 | */ |
| 863 | /* TTI Initialization. Default Tx timer gets us about |
| 864 | * 250 interrupts per sec. Continuous interrupts are enabled |
| 865 | * by default. |
| 866 | */ |
| 867 | val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078) | |
| 868 | TTI_DATA1_MEM_TX_URNG_A(0xA) | |
| 869 | TTI_DATA1_MEM_TX_URNG_B(0x10) | |
| 870 | TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN | |
| 871 | TTI_DATA1_MEM_TX_TIMER_CI_EN; |
| 872 | writeq(val64, &bar0->tti_data1_mem); |
| 873 | |
| 874 | val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | |
| 875 | TTI_DATA2_MEM_TX_UFC_B(0x20) | |
| 876 | TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80); |
| 877 | writeq(val64, &bar0->tti_data2_mem); |
| 878 | |
| 879 | val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD; |
| 880 | writeq(val64, &bar0->tti_command_mem); |
| 881 | |
| 882 | /* |
| 883 | * Once the operation completes, the Strobe bit of the command |
| 884 | * register will be reset. We poll for this particular condition |
| 885 | * We wait for a maximum of 500ms for the operation to complete, |
| 886 | * if it's not complete by then we return error. |
| 887 | */ |
| 888 | time = 0; |
| 889 | while (TRUE) { |
| 890 | val64 = readq(&bar0->tti_command_mem); |
| 891 | if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { |
| 892 | break; |
| 893 | } |
| 894 | if (time > 10) { |
| 895 | DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n", |
| 896 | dev->name); |
| 897 | return -1; |
| 898 | } |
| 899 | msleep(50); |
| 900 | time++; |
| 901 | } |
| 902 | |
| 903 | /* RTI Initialization */ |
| 904 | val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF) | |
| 905 | RTI_DATA1_MEM_RX_URNG_A(0xA) | |
| 906 | RTI_DATA1_MEM_RX_URNG_B(0x10) | |
| 907 | RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN; |
| 908 | |
| 909 | writeq(val64, &bar0->rti_data1_mem); |
| 910 | |
| 911 | val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | |
| 912 | RTI_DATA2_MEM_RX_UFC_B(0x2) | |
| 913 | RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80); |
| 914 | writeq(val64, &bar0->rti_data2_mem); |
| 915 | |
| 916 | val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD; |
| 917 | writeq(val64, &bar0->rti_command_mem); |
| 918 | |
| 919 | /* |
| 920 | * Once the operation completes, the Strobe bit of the command |
| 921 | * register will be reset. We poll for this particular condition |
| 922 | * We wait for a maximum of 500ms for the operation to complete, |
| 923 | * if it's not complete by then we return error. |
| 924 | */ |
| 925 | time = 0; |
| 926 | while (TRUE) { |
| 927 | val64 = readq(&bar0->rti_command_mem); |
| 928 | if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { |
| 929 | break; |
| 930 | } |
| 931 | if (time > 10) { |
| 932 | DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n", |
| 933 | dev->name); |
| 934 | return -1; |
| 935 | } |
| 936 | time++; |
| 937 | msleep(50); |
| 938 | } |
| 939 | |
| 940 | /* |
| 941 | * Initializing proper values as Pause threshold into all |
| 942 | * the 8 Queues on Rx side. |
| 943 | */ |
| 944 | writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); |
| 945 | writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); |
| 946 | |
| 947 | /* Disable RMAC PAD STRIPPING */ |
| 948 | add = &bar0->mac_cfg; |
| 949 | val64 = readq(&bar0->mac_cfg); |
| 950 | val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); |
| 951 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| 952 | writel((u32) (val64), add); |
| 953 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| 954 | writel((u32) (val64 >> 32), (add + 4)); |
| 955 | val64 = readq(&bar0->mac_cfg); |
| 956 | |
| 957 | /* |
| 958 | * Set the time value to be inserted in the pause frame |
| 959 | * generated by xena. |
| 960 | */ |
| 961 | val64 = readq(&bar0->rmac_pause_cfg); |
| 962 | val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); |
| 963 | val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); |
| 964 | writeq(val64, &bar0->rmac_pause_cfg); |
| 965 | |
| 966 | /* |
| 967 | * Set the Threshold Limit for Generating the pause frame |
| 968 | * If the amount of data in any Queue exceeds ratio of |
| 969 | * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 |
| 970 | * pause frame is generated |
| 971 | */ |
| 972 | val64 = 0; |
| 973 | for (i = 0; i < 4; i++) { |
| 974 | val64 |= |
| 975 | (((u64) 0xFF00 | nic->mac_control. |
| 976 | mc_pause_threshold_q0q3) |
| 977 | << (i * 2 * 8)); |
| 978 | } |
| 979 | writeq(val64, &bar0->mc_pause_thresh_q0q3); |
| 980 | |
| 981 | val64 = 0; |
| 982 | for (i = 0; i < 4; i++) { |
| 983 | val64 |= |
| 984 | (((u64) 0xFF00 | nic->mac_control. |
| 985 | mc_pause_threshold_q4q7) |
| 986 | << (i * 2 * 8)); |
| 987 | } |
| 988 | writeq(val64, &bar0->mc_pause_thresh_q4q7); |
| 989 | |
| 990 | /* |
| 991 | * TxDMA will stop Read request if the number of read split has |
| 992 | * exceeded the limit pointed by shared_splits |
| 993 | */ |
| 994 | val64 = readq(&bar0->pic_control); |
| 995 | val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); |
| 996 | writeq(val64, &bar0->pic_control); |
| 997 | |
| 998 | return SUCCESS; |
| 999 | } |
| 1000 | |
| 1001 | /** |
| 1002 | * en_dis_able_nic_intrs - Enable or Disable the interrupts |
| 1003 | * @nic: device private variable, |
| 1004 | * @mask: A mask indicating which Intr block must be modified and, |
| 1005 | * @flag: A flag indicating whether to enable or disable the Intrs. |
| 1006 | * Description: This function will either disable or enable the interrupts |
| 1007 | * depending on the flag argument. The mask argument can be used to |
| 1008 | * enable/disable any Intr block. |
| 1009 | * Return Value: NONE. |
| 1010 | */ |
| 1011 | |
| 1012 | static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) |
| 1013 | { |
| 1014 | XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| 1015 | register u64 val64 = 0, temp64 = 0; |
| 1016 | |
| 1017 | /* Top level interrupt classification */ |
| 1018 | /* PIC Interrupts */ |
| 1019 | if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) { |
| 1020 | /* Enable PIC Intrs in the general intr mask register */ |
| 1021 | val64 = TXPIC_INT_M | PIC_RX_INT_M; |
| 1022 | if (flag == ENABLE_INTRS) { |
| 1023 | temp64 = readq(&bar0->general_int_mask); |
| 1024 | temp64 &= ~((u64) val64); |
| 1025 | writeq(temp64, &bar0->general_int_mask); |
| 1026 | /* |
| 1027 | * Disabled all PCIX, Flash, MDIO, IIC and GPIO |
| 1028 | * interrupts for now. |
| 1029 | * TODO |
| 1030 | */ |
| 1031 | writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); |
| 1032 | /* |
| 1033 | * No MSI Support is available presently, so TTI and |
| 1034 | * RTI interrupts are also disabled. |
| 1035 | */ |
| 1036 | } else if (flag == DISABLE_INTRS) { |
| 1037 | /* |
| 1038 | * Disable PIC Intrs in the general |
| 1039 | * intr mask register |
| 1040 | */ |
| 1041 | writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); |
| 1042 | temp64 = readq(&bar0->general_int_mask); |
| 1043 | val64 |= temp64; |
| 1044 | writeq(val64, &bar0->general_int_mask); |
| 1045 | } |
| 1046 | } |
| 1047 | |
| 1048 | /* DMA Interrupts */ |
| 1049 | /* Enabling/Disabling Tx DMA interrupts */ |
| 1050 | if (mask & TX_DMA_INTR) { |
| 1051 | /* Enable TxDMA Intrs in the general intr mask register */ |
| 1052 | val64 = TXDMA_INT_M; |
| 1053 | if (flag == ENABLE_INTRS) { |
| 1054 | temp64 = readq(&bar0->general_int_mask); |
| 1055 | temp64 &= ~((u64) val64); |
| 1056 | writeq(temp64, &bar0->general_int_mask); |
| 1057 | /* |
| 1058 | * Keep all interrupts other than PFC interrupt |
| 1059 | * and PCC interrupt disabled in DMA level. |
| 1060 | */ |
| 1061 | val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M | |
| 1062 | TXDMA_PCC_INT_M); |
| 1063 | writeq(val64, &bar0->txdma_int_mask); |
| 1064 | /* |
| 1065 | * Enable only the MISC error 1 interrupt in PFC block |
| 1066 | */ |
| 1067 | val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1); |
| 1068 | writeq(val64, &bar0->pfc_err_mask); |
| 1069 | /* |
| 1070 | * Enable only the FB_ECC error interrupt in PCC block |
| 1071 | */ |
| 1072 | val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR); |
| 1073 | writeq(val64, &bar0->pcc_err_mask); |
| 1074 | } else if (flag == DISABLE_INTRS) { |
| 1075 | /* |
| 1076 | * Disable TxDMA Intrs in the general intr mask |
| 1077 | * register |
| 1078 | */ |
| 1079 | writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask); |
| 1080 | writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask); |
| 1081 | temp64 = readq(&bar0->general_int_mask); |
| 1082 | val64 |= temp64; |
| 1083 | writeq(val64, &bar0->general_int_mask); |
| 1084 | } |
| 1085 | } |
| 1086 | |
| 1087 | /* Enabling/Disabling Rx DMA interrupts */ |
| 1088 | if (mask & RX_DMA_INTR) { |
| 1089 | /* Enable RxDMA Intrs in the general intr mask register */ |
| 1090 | val64 = RXDMA_INT_M; |
| 1091 | if (flag == ENABLE_INTRS) { |
| 1092 | temp64 = readq(&bar0->general_int_mask); |
| 1093 | temp64 &= ~((u64) val64); |
| 1094 | writeq(temp64, &bar0->general_int_mask); |
| 1095 | /* |
| 1096 | * All RxDMA block interrupts are disabled for now |
| 1097 | * TODO |
| 1098 | */ |
| 1099 | writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); |
| 1100 | } else if (flag == DISABLE_INTRS) { |
| 1101 | /* |
| 1102 | * Disable RxDMA Intrs in the general intr mask |
| 1103 | * register |
| 1104 | */ |
| 1105 | writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); |
| 1106 | temp64 = readq(&bar0->general_int_mask); |
| 1107 | val64 |= temp64; |
| 1108 | writeq(val64, &bar0->general_int_mask); |
| 1109 | } |
| 1110 | } |
| 1111 | |
| 1112 | /* MAC Interrupts */ |
| 1113 | /* Enabling/Disabling MAC interrupts */ |
| 1114 | if (mask & (TX_MAC_INTR | RX_MAC_INTR)) { |
| 1115 | val64 = TXMAC_INT_M | RXMAC_INT_M; |
| 1116 | if (flag == ENABLE_INTRS) { |
| 1117 | temp64 = readq(&bar0->general_int_mask); |
| 1118 | temp64 &= ~((u64) val64); |
| 1119 | writeq(temp64, &bar0->general_int_mask); |
| 1120 | /* |
| 1121 | * All MAC block error interrupts are disabled for now |
| 1122 | * except the link status change interrupt. |
| 1123 | * TODO |
| 1124 | */ |
| 1125 | val64 = MAC_INT_STATUS_RMAC_INT; |
| 1126 | temp64 = readq(&bar0->mac_int_mask); |
| 1127 | temp64 &= ~((u64) val64); |
| 1128 | writeq(temp64, &bar0->mac_int_mask); |
| 1129 | |
| 1130 | val64 = readq(&bar0->mac_rmac_err_mask); |
| 1131 | val64 &= ~((u64) RMAC_LINK_STATE_CHANGE_INT); |
| 1132 | writeq(val64, &bar0->mac_rmac_err_mask); |
| 1133 | } else if (flag == DISABLE_INTRS) { |
| 1134 | /* |
| 1135 | * Disable MAC Intrs in the general intr mask register |
| 1136 | */ |
| 1137 | writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask); |
| 1138 | writeq(DISABLE_ALL_INTRS, |
| 1139 | &bar0->mac_rmac_err_mask); |
| 1140 | |
| 1141 | temp64 = readq(&bar0->general_int_mask); |
| 1142 | val64 |= temp64; |
| 1143 | writeq(val64, &bar0->general_int_mask); |
| 1144 | } |
| 1145 | } |
| 1146 | |
| 1147 | /* XGXS Interrupts */ |
| 1148 | if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) { |
| 1149 | val64 = TXXGXS_INT_M | RXXGXS_INT_M; |
| 1150 | if (flag == ENABLE_INTRS) { |
| 1151 | temp64 = readq(&bar0->general_int_mask); |
| 1152 | temp64 &= ~((u64) val64); |
| 1153 | writeq(temp64, &bar0->general_int_mask); |
| 1154 | /* |
| 1155 | * All XGXS block error interrupts are disabled for now |
| 1156 | * TODO |
| 1157 | */ |
| 1158 | writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); |
| 1159 | } else if (flag == DISABLE_INTRS) { |
| 1160 | /* |
| 1161 | * Disable MC Intrs in the general intr mask register |
| 1162 | */ |
| 1163 | writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); |
| 1164 | temp64 = readq(&bar0->general_int_mask); |
| 1165 | val64 |= temp64; |
| 1166 | writeq(val64, &bar0->general_int_mask); |
| 1167 | } |
| 1168 | } |
| 1169 | |
| 1170 | /* Memory Controller(MC) interrupts */ |
| 1171 | if (mask & MC_INTR) { |
| 1172 | val64 = MC_INT_M; |
| 1173 | if (flag == ENABLE_INTRS) { |
| 1174 | temp64 = readq(&bar0->general_int_mask); |
| 1175 | temp64 &= ~((u64) val64); |
| 1176 | writeq(temp64, &bar0->general_int_mask); |
| 1177 | /* |
| 1178 | * All MC block error interrupts are disabled for now |
| 1179 | * TODO |
| 1180 | */ |
| 1181 | writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); |
| 1182 | } else if (flag == DISABLE_INTRS) { |
| 1183 | /* |
| 1184 | * Disable MC Intrs in the general intr mask register |
| 1185 | */ |
| 1186 | writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); |
| 1187 | temp64 = readq(&bar0->general_int_mask); |
| 1188 | val64 |= temp64; |
| 1189 | writeq(val64, &bar0->general_int_mask); |
| 1190 | } |
| 1191 | } |
| 1192 | |
| 1193 | |
| 1194 | /* Tx traffic interrupts */ |
| 1195 | if (mask & TX_TRAFFIC_INTR) { |
| 1196 | val64 = TXTRAFFIC_INT_M; |
| 1197 | if (flag == ENABLE_INTRS) { |
| 1198 | temp64 = readq(&bar0->general_int_mask); |
| 1199 | temp64 &= ~((u64) val64); |
| 1200 | writeq(temp64, &bar0->general_int_mask); |
| 1201 | /* |
| 1202 | * Enable all the Tx side interrupts |
| 1203 | * writing 0 Enables all 64 TX interrupt levels |
| 1204 | */ |
| 1205 | writeq(0x0, &bar0->tx_traffic_mask); |
| 1206 | } else if (flag == DISABLE_INTRS) { |
| 1207 | /* |
| 1208 | * Disable Tx Traffic Intrs in the general intr mask |
| 1209 | * register. |
| 1210 | */ |
| 1211 | writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); |
| 1212 | temp64 = readq(&bar0->general_int_mask); |
| 1213 | val64 |= temp64; |
| 1214 | writeq(val64, &bar0->general_int_mask); |
| 1215 | } |
| 1216 | } |
| 1217 | |
| 1218 | /* Rx traffic interrupts */ |
| 1219 | if (mask & RX_TRAFFIC_INTR) { |
| 1220 | val64 = RXTRAFFIC_INT_M; |
| 1221 | if (flag == ENABLE_INTRS) { |
| 1222 | temp64 = readq(&bar0->general_int_mask); |
| 1223 | temp64 &= ~((u64) val64); |
| 1224 | writeq(temp64, &bar0->general_int_mask); |
| 1225 | /* writing 0 Enables all 8 RX interrupt levels */ |
| 1226 | writeq(0x0, &bar0->rx_traffic_mask); |
| 1227 | } else if (flag == DISABLE_INTRS) { |
| 1228 | /* |
| 1229 | * Disable Rx Traffic Intrs in the general intr mask |
| 1230 | * register. |
| 1231 | */ |
| 1232 | writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); |
| 1233 | temp64 = readq(&bar0->general_int_mask); |
| 1234 | val64 |= temp64; |
| 1235 | writeq(val64, &bar0->general_int_mask); |
| 1236 | } |
| 1237 | } |
| 1238 | } |
| 1239 | |
| 1240 | /** |
| 1241 | * verify_xena_quiescence - Checks whether the H/W is ready |
| 1242 | * @val64 : Value read from adapter status register. |
| 1243 | * @flag : indicates if the adapter enable bit was ever written once |
| 1244 | * before. |
| 1245 | * Description: Returns whether the H/W is ready to go or not. Depending |
| 1246 | * on whether adapter enable bit was written or not the comparison |
| 1247 | * differs and the calling function passes the input argument flag to |
| 1248 | * indicate this. |
| 1249 | * Return: 1 If xena is quiescence |
| 1250 | * 0 If Xena is not quiescence |
| 1251 | */ |
| 1252 | |
| 1253 | static int verify_xena_quiescence(u64 val64, int flag) |
| 1254 | { |
| 1255 | int ret = 0; |
| 1256 | u64 tmp64 = ~((u64) val64); |
| 1257 | |
| 1258 | if (! |
| 1259 | (tmp64 & |
| 1260 | (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY | |
| 1261 | ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY | |
| 1262 | ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY | |
| 1263 | ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK | |
| 1264 | ADAPTER_STATUS_P_PLL_LOCK))) { |
| 1265 | if (flag == FALSE) { |
| 1266 | if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) && |
| 1267 | ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == |
| 1268 | ADAPTER_STATUS_RC_PRC_QUIESCENT)) { |
| 1269 | |
| 1270 | ret = 1; |
| 1271 | |
| 1272 | } |
| 1273 | } else { |
| 1274 | if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == |
| 1275 | ADAPTER_STATUS_RMAC_PCC_IDLE) && |
| 1276 | (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) || |
| 1277 | ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == |
| 1278 | ADAPTER_STATUS_RC_PRC_QUIESCENT))) { |
| 1279 | |
| 1280 | ret = 1; |
| 1281 | |
| 1282 | } |
| 1283 | } |
| 1284 | } |
| 1285 | |
| 1286 | return ret; |
| 1287 | } |
| 1288 | |
| 1289 | /** |
| 1290 | * fix_mac_address - Fix for Mac addr problem on Alpha platforms |
| 1291 | * @sp: Pointer to device specifc structure |
| 1292 | * Description : |
| 1293 | * New procedure to clear mac address reading problems on Alpha platforms |
| 1294 | * |
| 1295 | */ |
| 1296 | |
| 1297 | static void fix_mac_address(nic_t * sp) |
| 1298 | { |
| 1299 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 1300 | u64 val64; |
| 1301 | int i = 0; |
| 1302 | |
| 1303 | while (fix_mac[i] != END_SIGN) { |
| 1304 | writeq(fix_mac[i++], &bar0->gpio_control); |
| 1305 | val64 = readq(&bar0->gpio_control); |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | /** |
| 1310 | * start_nic - Turns the device on |
| 1311 | * @nic : device private variable. |
| 1312 | * Description: |
| 1313 | * This function actually turns the device on. Before this function is |
| 1314 | * called,all Registers are configured from their reset states |
| 1315 | * and shared memory is allocated but the NIC is still quiescent. On |
| 1316 | * calling this function, the device interrupts are cleared and the NIC is |
| 1317 | * literally switched on by writing into the adapter control register. |
| 1318 | * Return Value: |
| 1319 | * SUCCESS on success and -1 on failure. |
| 1320 | */ |
| 1321 | |
| 1322 | static int start_nic(struct s2io_nic *nic) |
| 1323 | { |
| 1324 | XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| 1325 | struct net_device *dev = nic->dev; |
| 1326 | register u64 val64 = 0; |
| 1327 | u16 interruptible, i; |
| 1328 | u16 subid; |
| 1329 | mac_info_t *mac_control; |
| 1330 | struct config_param *config; |
| 1331 | |
| 1332 | mac_control = &nic->mac_control; |
| 1333 | config = &nic->config; |
| 1334 | |
| 1335 | /* PRC Initialization and configuration */ |
| 1336 | for (i = 0; i < config->rx_ring_num; i++) { |
| 1337 | writeq((u64) nic->rx_blocks[i][0].block_dma_addr, |
| 1338 | &bar0->prc_rxd0_n[i]); |
| 1339 | |
| 1340 | val64 = readq(&bar0->prc_ctrl_n[i]); |
| 1341 | #ifndef CONFIG_2BUFF_MODE |
| 1342 | val64 |= PRC_CTRL_RC_ENABLED; |
| 1343 | #else |
| 1344 | val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; |
| 1345 | #endif |
| 1346 | writeq(val64, &bar0->prc_ctrl_n[i]); |
| 1347 | } |
| 1348 | |
| 1349 | #ifdef CONFIG_2BUFF_MODE |
| 1350 | /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ |
| 1351 | val64 = readq(&bar0->rx_pa_cfg); |
| 1352 | val64 |= RX_PA_CFG_IGNORE_L2_ERR; |
| 1353 | writeq(val64, &bar0->rx_pa_cfg); |
| 1354 | #endif |
| 1355 | |
| 1356 | /* |
| 1357 | * Enabling MC-RLDRAM. After enabling the device, we timeout |
| 1358 | * for around 100ms, which is approximately the time required |
| 1359 | * for the device to be ready for operation. |
| 1360 | */ |
| 1361 | val64 = readq(&bar0->mc_rldram_mrs); |
| 1362 | val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; |
| 1363 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); |
| 1364 | val64 = readq(&bar0->mc_rldram_mrs); |
| 1365 | |
| 1366 | msleep(100); /* Delay by around 100 ms. */ |
| 1367 | |
| 1368 | /* Enabling ECC Protection. */ |
| 1369 | val64 = readq(&bar0->adapter_control); |
| 1370 | val64 &= ~ADAPTER_ECC_EN; |
| 1371 | writeq(val64, &bar0->adapter_control); |
| 1372 | |
| 1373 | /* |
| 1374 | * Clearing any possible Link state change interrupts that |
| 1375 | * could have popped up just before Enabling the card. |
| 1376 | */ |
| 1377 | val64 = readq(&bar0->mac_rmac_err_reg); |
| 1378 | if (val64) |
| 1379 | writeq(val64, &bar0->mac_rmac_err_reg); |
| 1380 | |
| 1381 | /* |
| 1382 | * Verify if the device is ready to be enabled, if so enable |
| 1383 | * it. |
| 1384 | */ |
| 1385 | val64 = readq(&bar0->adapter_status); |
| 1386 | if (!verify_xena_quiescence(val64, nic->device_enabled_once)) { |
| 1387 | DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name); |
| 1388 | DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n", |
| 1389 | (unsigned long long) val64); |
| 1390 | return FAILURE; |
| 1391 | } |
| 1392 | |
| 1393 | /* Enable select interrupts */ |
| 1394 | interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR | |
| 1395 | RX_MAC_INTR; |
| 1396 | en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS); |
| 1397 | |
| 1398 | /* |
| 1399 | * With some switches, link might be already up at this point. |
| 1400 | * Because of this weird behavior, when we enable laser, |
| 1401 | * we may not get link. We need to handle this. We cannot |
| 1402 | * figure out which switch is misbehaving. So we are forced to |
| 1403 | * make a global change. |
| 1404 | */ |
| 1405 | |
| 1406 | /* Enabling Laser. */ |
| 1407 | val64 = readq(&bar0->adapter_control); |
| 1408 | val64 |= ADAPTER_EOI_TX_ON; |
| 1409 | writeq(val64, &bar0->adapter_control); |
| 1410 | |
| 1411 | /* SXE-002: Initialize link and activity LED */ |
| 1412 | subid = nic->pdev->subsystem_device; |
| 1413 | if ((subid & 0xFF) >= 0x07) { |
| 1414 | val64 = readq(&bar0->gpio_control); |
| 1415 | val64 |= 0x0000800000000000ULL; |
| 1416 | writeq(val64, &bar0->gpio_control); |
| 1417 | val64 = 0x0411040400000000ULL; |
| 1418 | writeq(val64, (void __iomem *) bar0 + 0x2700); |
| 1419 | } |
| 1420 | |
| 1421 | /* |
| 1422 | * Don't see link state interrupts on certain switches, so |
| 1423 | * directly scheduling a link state task from here. |
| 1424 | */ |
| 1425 | schedule_work(&nic->set_link_task); |
| 1426 | |
| 1427 | /* |
| 1428 | * Here we are performing soft reset on XGXS to |
| 1429 | * force link down. Since link is already up, we will get |
| 1430 | * link state change interrupt after this reset |
| 1431 | */ |
| 1432 | SPECIAL_REG_WRITE(0x80010515001E0000ULL, &bar0->dtx_control, UF); |
| 1433 | val64 = readq(&bar0->dtx_control); |
| 1434 | udelay(50); |
| 1435 | SPECIAL_REG_WRITE(0x80010515001E00E0ULL, &bar0->dtx_control, UF); |
| 1436 | val64 = readq(&bar0->dtx_control); |
| 1437 | udelay(50); |
| 1438 | SPECIAL_REG_WRITE(0x80070515001F00E4ULL, &bar0->dtx_control, UF); |
| 1439 | val64 = readq(&bar0->dtx_control); |
| 1440 | udelay(50); |
| 1441 | |
| 1442 | return SUCCESS; |
| 1443 | } |
| 1444 | |
| 1445 | /** |
| 1446 | * free_tx_buffers - Free all queued Tx buffers |
| 1447 | * @nic : device private variable. |
| 1448 | * Description: |
| 1449 | * Free all queued Tx buffers. |
| 1450 | * Return Value: void |
| 1451 | */ |
| 1452 | |
| 1453 | static void free_tx_buffers(struct s2io_nic *nic) |
| 1454 | { |
| 1455 | struct net_device *dev = nic->dev; |
| 1456 | struct sk_buff *skb; |
| 1457 | TxD_t *txdp; |
| 1458 | int i, j; |
| 1459 | mac_info_t *mac_control; |
| 1460 | struct config_param *config; |
| 1461 | int cnt = 0; |
| 1462 | |
| 1463 | mac_control = &nic->mac_control; |
| 1464 | config = &nic->config; |
| 1465 | |
| 1466 | for (i = 0; i < config->tx_fifo_num; i++) { |
| 1467 | for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) { |
| 1468 | txdp = (TxD_t *) nic->list_info[i][j]. |
| 1469 | list_virt_addr; |
| 1470 | skb = |
| 1471 | (struct sk_buff *) ((unsigned long) txdp-> |
| 1472 | Host_Control); |
| 1473 | if (skb == NULL) { |
| 1474 | memset(txdp, 0, sizeof(TxD_t)); |
| 1475 | continue; |
| 1476 | } |
| 1477 | dev_kfree_skb(skb); |
| 1478 | memset(txdp, 0, sizeof(TxD_t)); |
| 1479 | cnt++; |
| 1480 | } |
| 1481 | DBG_PRINT(INTR_DBG, |
| 1482 | "%s:forcibly freeing %d skbs on FIFO%d\n", |
| 1483 | dev->name, cnt, i); |
| 1484 | mac_control->tx_curr_get_info[i].offset = 0; |
| 1485 | mac_control->tx_curr_put_info[i].offset = 0; |
| 1486 | } |
| 1487 | } |
| 1488 | |
| 1489 | /** |
| 1490 | * stop_nic - To stop the nic |
| 1491 | * @nic ; device private variable. |
| 1492 | * Description: |
| 1493 | * This function does exactly the opposite of what the start_nic() |
| 1494 | * function does. This function is called to stop the device. |
| 1495 | * Return Value: |
| 1496 | * void. |
| 1497 | */ |
| 1498 | |
| 1499 | static void stop_nic(struct s2io_nic *nic) |
| 1500 | { |
| 1501 | XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| 1502 | register u64 val64 = 0; |
| 1503 | u16 interruptible, i; |
| 1504 | mac_info_t *mac_control; |
| 1505 | struct config_param *config; |
| 1506 | |
| 1507 | mac_control = &nic->mac_control; |
| 1508 | config = &nic->config; |
| 1509 | |
| 1510 | /* Disable all interrupts */ |
| 1511 | interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR | |
| 1512 | RX_MAC_INTR; |
| 1513 | en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); |
| 1514 | |
| 1515 | /* Disable PRCs */ |
| 1516 | for (i = 0; i < config->rx_ring_num; i++) { |
| 1517 | val64 = readq(&bar0->prc_ctrl_n[i]); |
| 1518 | val64 &= ~((u64) PRC_CTRL_RC_ENABLED); |
| 1519 | writeq(val64, &bar0->prc_ctrl_n[i]); |
| 1520 | } |
| 1521 | } |
| 1522 | |
| 1523 | /** |
| 1524 | * fill_rx_buffers - Allocates the Rx side skbs |
| 1525 | * @nic: device private variable |
| 1526 | * @ring_no: ring number |
| 1527 | * Description: |
| 1528 | * The function allocates Rx side skbs and puts the physical |
| 1529 | * address of these buffers into the RxD buffer pointers, so that the NIC |
| 1530 | * can DMA the received frame into these locations. |
| 1531 | * The NIC supports 3 receive modes, viz |
| 1532 | * 1. single buffer, |
| 1533 | * 2. three buffer and |
| 1534 | * 3. Five buffer modes. |
| 1535 | * Each mode defines how many fragments the received frame will be split |
| 1536 | * up into by the NIC. The frame is split into L3 header, L4 Header, |
| 1537 | * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself |
| 1538 | * is split into 3 fragments. As of now only single buffer mode is |
| 1539 | * supported. |
| 1540 | * Return Value: |
| 1541 | * SUCCESS on success or an appropriate -ve value on failure. |
| 1542 | */ |
| 1543 | |
| 1544 | static int fill_rx_buffers(struct s2io_nic *nic, int ring_no) |
| 1545 | { |
| 1546 | struct net_device *dev = nic->dev; |
| 1547 | struct sk_buff *skb; |
| 1548 | RxD_t *rxdp; |
| 1549 | int off, off1, size, block_no, block_no1; |
| 1550 | int offset, offset1; |
| 1551 | u32 alloc_tab = 0; |
| 1552 | u32 alloc_cnt = nic->pkt_cnt[ring_no] - |
| 1553 | atomic_read(&nic->rx_bufs_left[ring_no]); |
| 1554 | mac_info_t *mac_control; |
| 1555 | struct config_param *config; |
| 1556 | #ifdef CONFIG_2BUFF_MODE |
| 1557 | RxD_t *rxdpnext; |
| 1558 | int nextblk; |
| 1559 | unsigned long tmp; |
| 1560 | buffAdd_t *ba; |
| 1561 | dma_addr_t rxdpphys; |
| 1562 | #endif |
| 1563 | #ifndef CONFIG_S2IO_NAPI |
| 1564 | unsigned long flags; |
| 1565 | #endif |
| 1566 | |
| 1567 | mac_control = &nic->mac_control; |
| 1568 | config = &nic->config; |
| 1569 | |
| 1570 | size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + |
| 1571 | HEADER_802_2_SIZE + HEADER_SNAP_SIZE; |
| 1572 | |
| 1573 | while (alloc_tab < alloc_cnt) { |
| 1574 | block_no = mac_control->rx_curr_put_info[ring_no]. |
| 1575 | block_index; |
| 1576 | block_no1 = mac_control->rx_curr_get_info[ring_no]. |
| 1577 | block_index; |
| 1578 | off = mac_control->rx_curr_put_info[ring_no].offset; |
| 1579 | off1 = mac_control->rx_curr_get_info[ring_no].offset; |
| 1580 | #ifndef CONFIG_2BUFF_MODE |
| 1581 | offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off; |
| 1582 | offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1; |
| 1583 | #else |
| 1584 | offset = block_no * (MAX_RXDS_PER_BLOCK) + off; |
| 1585 | offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1; |
| 1586 | #endif |
| 1587 | |
| 1588 | rxdp = nic->rx_blocks[ring_no][block_no]. |
| 1589 | block_virt_addr + off; |
| 1590 | if ((offset == offset1) && (rxdp->Host_Control)) { |
| 1591 | DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name); |
| 1592 | DBG_PRINT(INTR_DBG, " info equated\n"); |
| 1593 | goto end; |
| 1594 | } |
| 1595 | #ifndef CONFIG_2BUFF_MODE |
| 1596 | if (rxdp->Control_1 == END_OF_BLOCK) { |
| 1597 | mac_control->rx_curr_put_info[ring_no]. |
| 1598 | block_index++; |
| 1599 | mac_control->rx_curr_put_info[ring_no]. |
| 1600 | block_index %= nic->block_count[ring_no]; |
| 1601 | block_no = mac_control->rx_curr_put_info |
| 1602 | [ring_no].block_index; |
| 1603 | off++; |
| 1604 | off %= (MAX_RXDS_PER_BLOCK + 1); |
| 1605 | mac_control->rx_curr_put_info[ring_no].offset = |
| 1606 | off; |
| 1607 | rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2); |
| 1608 | DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", |
| 1609 | dev->name, rxdp); |
| 1610 | } |
| 1611 | #ifndef CONFIG_S2IO_NAPI |
| 1612 | spin_lock_irqsave(&nic->put_lock, flags); |
| 1613 | nic->put_pos[ring_no] = |
| 1614 | (block_no * (MAX_RXDS_PER_BLOCK + 1)) + off; |
| 1615 | spin_unlock_irqrestore(&nic->put_lock, flags); |
| 1616 | #endif |
| 1617 | #else |
| 1618 | if (rxdp->Host_Control == END_OF_BLOCK) { |
| 1619 | mac_control->rx_curr_put_info[ring_no]. |
| 1620 | block_index++; |
| 1621 | mac_control->rx_curr_put_info[ring_no]. |
| 1622 | block_index %= nic->block_count[ring_no]; |
| 1623 | block_no = mac_control->rx_curr_put_info |
| 1624 | [ring_no].block_index; |
| 1625 | off = 0; |
| 1626 | DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n", |
| 1627 | dev->name, block_no, |
| 1628 | (unsigned long long) rxdp->Control_1); |
| 1629 | mac_control->rx_curr_put_info[ring_no].offset = |
| 1630 | off; |
| 1631 | rxdp = nic->rx_blocks[ring_no][block_no]. |
| 1632 | block_virt_addr; |
| 1633 | } |
| 1634 | #ifndef CONFIG_S2IO_NAPI |
| 1635 | spin_lock_irqsave(&nic->put_lock, flags); |
| 1636 | nic->put_pos[ring_no] = (block_no * |
| 1637 | (MAX_RXDS_PER_BLOCK + 1)) + off; |
| 1638 | spin_unlock_irqrestore(&nic->put_lock, flags); |
| 1639 | #endif |
| 1640 | #endif |
| 1641 | |
| 1642 | #ifndef CONFIG_2BUFF_MODE |
| 1643 | if (rxdp->Control_1 & RXD_OWN_XENA) |
| 1644 | #else |
| 1645 | if (rxdp->Control_2 & BIT(0)) |
| 1646 | #endif |
| 1647 | { |
| 1648 | mac_control->rx_curr_put_info[ring_no]. |
| 1649 | offset = off; |
| 1650 | goto end; |
| 1651 | } |
| 1652 | #ifdef CONFIG_2BUFF_MODE |
| 1653 | /* |
| 1654 | * RxDs Spanning cache lines will be replenished only |
| 1655 | * if the succeeding RxD is also owned by Host. It |
| 1656 | * will always be the ((8*i)+3) and ((8*i)+6) |
| 1657 | * descriptors for the 48 byte descriptor. The offending |
| 1658 | * decsriptor is of-course the 3rd descriptor. |
| 1659 | */ |
| 1660 | rxdpphys = nic->rx_blocks[ring_no][block_no]. |
| 1661 | block_dma_addr + (off * sizeof(RxD_t)); |
| 1662 | if (((u64) (rxdpphys)) % 128 > 80) { |
| 1663 | rxdpnext = nic->rx_blocks[ring_no][block_no]. |
| 1664 | block_virt_addr + (off + 1); |
| 1665 | if (rxdpnext->Host_Control == END_OF_BLOCK) { |
| 1666 | nextblk = (block_no + 1) % |
| 1667 | (nic->block_count[ring_no]); |
| 1668 | rxdpnext = nic->rx_blocks[ring_no] |
| 1669 | [nextblk].block_virt_addr; |
| 1670 | } |
| 1671 | if (rxdpnext->Control_2 & BIT(0)) |
| 1672 | goto end; |
| 1673 | } |
| 1674 | #endif |
| 1675 | |
| 1676 | #ifndef CONFIG_2BUFF_MODE |
| 1677 | skb = dev_alloc_skb(size + NET_IP_ALIGN); |
| 1678 | #else |
| 1679 | skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4); |
| 1680 | #endif |
| 1681 | if (!skb) { |
| 1682 | DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name); |
| 1683 | DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n"); |
| 1684 | return -ENOMEM; |
| 1685 | } |
| 1686 | #ifndef CONFIG_2BUFF_MODE |
| 1687 | skb_reserve(skb, NET_IP_ALIGN); |
| 1688 | memset(rxdp, 0, sizeof(RxD_t)); |
| 1689 | rxdp->Buffer0_ptr = pci_map_single |
| 1690 | (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE); |
| 1691 | rxdp->Control_2 &= (~MASK_BUFFER0_SIZE); |
| 1692 | rxdp->Control_2 |= SET_BUFFER0_SIZE(size); |
| 1693 | rxdp->Host_Control = (unsigned long) (skb); |
| 1694 | rxdp->Control_1 |= RXD_OWN_XENA; |
| 1695 | off++; |
| 1696 | off %= (MAX_RXDS_PER_BLOCK + 1); |
| 1697 | mac_control->rx_curr_put_info[ring_no].offset = off; |
| 1698 | #else |
| 1699 | ba = &nic->ba[ring_no][block_no][off]; |
| 1700 | skb_reserve(skb, BUF0_LEN); |
| 1701 | tmp = (unsigned long) skb->data; |
| 1702 | tmp += ALIGN_SIZE; |
| 1703 | tmp &= ~ALIGN_SIZE; |
| 1704 | skb->data = (void *) tmp; |
| 1705 | skb->tail = (void *) tmp; |
| 1706 | |
| 1707 | memset(rxdp, 0, sizeof(RxD_t)); |
| 1708 | rxdp->Buffer2_ptr = pci_map_single |
| 1709 | (nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4, |
| 1710 | PCI_DMA_FROMDEVICE); |
| 1711 | rxdp->Buffer0_ptr = |
| 1712 | pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN, |
| 1713 | PCI_DMA_FROMDEVICE); |
| 1714 | rxdp->Buffer1_ptr = |
| 1715 | pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN, |
| 1716 | PCI_DMA_FROMDEVICE); |
| 1717 | |
| 1718 | rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4); |
| 1719 | rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN); |
| 1720 | rxdp->Control_2 |= SET_BUFFER1_SIZE(1); /* dummy. */ |
| 1721 | rxdp->Control_2 |= BIT(0); /* Set Buffer_Empty bit. */ |
| 1722 | rxdp->Host_Control = (u64) ((unsigned long) (skb)); |
| 1723 | rxdp->Control_1 |= RXD_OWN_XENA; |
| 1724 | off++; |
| 1725 | mac_control->rx_curr_put_info[ring_no].offset = off; |
| 1726 | #endif |
| 1727 | atomic_inc(&nic->rx_bufs_left[ring_no]); |
| 1728 | alloc_tab++; |
| 1729 | } |
| 1730 | |
| 1731 | end: |
| 1732 | return SUCCESS; |
| 1733 | } |
| 1734 | |
| 1735 | /** |
| 1736 | * free_rx_buffers - Frees all Rx buffers |
| 1737 | * @sp: device private variable. |
| 1738 | * Description: |
| 1739 | * This function will free all Rx buffers allocated by host. |
| 1740 | * Return Value: |
| 1741 | * NONE. |
| 1742 | */ |
| 1743 | |
| 1744 | static void free_rx_buffers(struct s2io_nic *sp) |
| 1745 | { |
| 1746 | struct net_device *dev = sp->dev; |
| 1747 | int i, j, blk = 0, off, buf_cnt = 0; |
| 1748 | RxD_t *rxdp; |
| 1749 | struct sk_buff *skb; |
| 1750 | mac_info_t *mac_control; |
| 1751 | struct config_param *config; |
| 1752 | #ifdef CONFIG_2BUFF_MODE |
| 1753 | buffAdd_t *ba; |
| 1754 | #endif |
| 1755 | |
| 1756 | mac_control = &sp->mac_control; |
| 1757 | config = &sp->config; |
| 1758 | |
| 1759 | for (i = 0; i < config->rx_ring_num; i++) { |
| 1760 | for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) { |
| 1761 | off = j % (MAX_RXDS_PER_BLOCK + 1); |
| 1762 | rxdp = sp->rx_blocks[i][blk].block_virt_addr + off; |
| 1763 | |
| 1764 | #ifndef CONFIG_2BUFF_MODE |
| 1765 | if (rxdp->Control_1 == END_OF_BLOCK) { |
| 1766 | rxdp = |
| 1767 | (RxD_t *) ((unsigned long) rxdp-> |
| 1768 | Control_2); |
| 1769 | j++; |
| 1770 | blk++; |
| 1771 | } |
| 1772 | #else |
| 1773 | if (rxdp->Host_Control == END_OF_BLOCK) { |
| 1774 | blk++; |
| 1775 | continue; |
| 1776 | } |
| 1777 | #endif |
| 1778 | |
| 1779 | if (!(rxdp->Control_1 & RXD_OWN_XENA)) { |
| 1780 | memset(rxdp, 0, sizeof(RxD_t)); |
| 1781 | continue; |
| 1782 | } |
| 1783 | |
| 1784 | skb = |
| 1785 | (struct sk_buff *) ((unsigned long) rxdp-> |
| 1786 | Host_Control); |
| 1787 | if (skb) { |
| 1788 | #ifndef CONFIG_2BUFF_MODE |
| 1789 | pci_unmap_single(sp->pdev, (dma_addr_t) |
| 1790 | rxdp->Buffer0_ptr, |
| 1791 | dev->mtu + |
| 1792 | HEADER_ETHERNET_II_802_3_SIZE |
| 1793 | + HEADER_802_2_SIZE + |
| 1794 | HEADER_SNAP_SIZE, |
| 1795 | PCI_DMA_FROMDEVICE); |
| 1796 | #else |
| 1797 | ba = &sp->ba[i][blk][off]; |
| 1798 | pci_unmap_single(sp->pdev, (dma_addr_t) |
| 1799 | rxdp->Buffer0_ptr, |
| 1800 | BUF0_LEN, |
| 1801 | PCI_DMA_FROMDEVICE); |
| 1802 | pci_unmap_single(sp->pdev, (dma_addr_t) |
| 1803 | rxdp->Buffer1_ptr, |
| 1804 | BUF1_LEN, |
| 1805 | PCI_DMA_FROMDEVICE); |
| 1806 | pci_unmap_single(sp->pdev, (dma_addr_t) |
| 1807 | rxdp->Buffer2_ptr, |
| 1808 | dev->mtu + BUF0_LEN + 4, |
| 1809 | PCI_DMA_FROMDEVICE); |
| 1810 | #endif |
| 1811 | dev_kfree_skb(skb); |
| 1812 | atomic_dec(&sp->rx_bufs_left[i]); |
| 1813 | buf_cnt++; |
| 1814 | } |
| 1815 | memset(rxdp, 0, sizeof(RxD_t)); |
| 1816 | } |
| 1817 | mac_control->rx_curr_put_info[i].block_index = 0; |
| 1818 | mac_control->rx_curr_get_info[i].block_index = 0; |
| 1819 | mac_control->rx_curr_put_info[i].offset = 0; |
| 1820 | mac_control->rx_curr_get_info[i].offset = 0; |
| 1821 | atomic_set(&sp->rx_bufs_left[i], 0); |
| 1822 | DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n", |
| 1823 | dev->name, buf_cnt, i); |
| 1824 | } |
| 1825 | } |
| 1826 | |
| 1827 | /** |
| 1828 | * s2io_poll - Rx interrupt handler for NAPI support |
| 1829 | * @dev : pointer to the device structure. |
| 1830 | * @budget : The number of packets that were budgeted to be processed |
| 1831 | * during one pass through the 'Poll" function. |
| 1832 | * Description: |
| 1833 | * Comes into picture only if NAPI support has been incorporated. It does |
| 1834 | * the same thing that rx_intr_handler does, but not in a interrupt context |
| 1835 | * also It will process only a given number of packets. |
| 1836 | * Return value: |
| 1837 | * 0 on success and 1 if there are No Rx packets to be processed. |
| 1838 | */ |
| 1839 | |
| 1840 | #ifdef CONFIG_S2IO_NAPI |
| 1841 | static int s2io_poll(struct net_device *dev, int *budget) |
| 1842 | { |
| 1843 | nic_t *nic = dev->priv; |
| 1844 | XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| 1845 | int pkts_to_process = *budget, pkt_cnt = 0; |
| 1846 | register u64 val64 = 0; |
| 1847 | rx_curr_get_info_t get_info, put_info; |
| 1848 | int i, get_block, put_block, get_offset, put_offset, ring_bufs; |
| 1849 | #ifndef CONFIG_2BUFF_MODE |
| 1850 | u16 val16, cksum; |
| 1851 | #endif |
| 1852 | struct sk_buff *skb; |
| 1853 | RxD_t *rxdp; |
| 1854 | mac_info_t *mac_control; |
| 1855 | struct config_param *config; |
| 1856 | #ifdef CONFIG_2BUFF_MODE |
| 1857 | buffAdd_t *ba; |
| 1858 | #endif |
| 1859 | |
| 1860 | mac_control = &nic->mac_control; |
| 1861 | config = &nic->config; |
| 1862 | |
| 1863 | if (pkts_to_process > dev->quota) |
| 1864 | pkts_to_process = dev->quota; |
| 1865 | |
| 1866 | val64 = readq(&bar0->rx_traffic_int); |
| 1867 | writeq(val64, &bar0->rx_traffic_int); |
| 1868 | |
| 1869 | for (i = 0; i < config->rx_ring_num; i++) { |
| 1870 | get_info = mac_control->rx_curr_get_info[i]; |
| 1871 | get_block = get_info.block_index; |
| 1872 | put_info = mac_control->rx_curr_put_info[i]; |
| 1873 | put_block = put_info.block_index; |
| 1874 | ring_bufs = config->rx_cfg[i].num_rxd; |
| 1875 | rxdp = nic->rx_blocks[i][get_block].block_virt_addr + |
| 1876 | get_info.offset; |
| 1877 | #ifndef CONFIG_2BUFF_MODE |
| 1878 | get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| 1879 | get_info.offset; |
| 1880 | put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| 1881 | put_info.offset; |
| 1882 | while ((!(rxdp->Control_1 & RXD_OWN_XENA)) && |
| 1883 | (((get_offset + 1) % ring_bufs) != put_offset)) { |
| 1884 | if (--pkts_to_process < 0) { |
| 1885 | goto no_rx; |
| 1886 | } |
| 1887 | if (rxdp->Control_1 == END_OF_BLOCK) { |
| 1888 | rxdp = |
| 1889 | (RxD_t *) ((unsigned long) rxdp-> |
| 1890 | Control_2); |
| 1891 | get_info.offset++; |
| 1892 | get_info.offset %= |
| 1893 | (MAX_RXDS_PER_BLOCK + 1); |
| 1894 | get_block++; |
| 1895 | get_block %= nic->block_count[i]; |
| 1896 | mac_control->rx_curr_get_info[i]. |
| 1897 | offset = get_info.offset; |
| 1898 | mac_control->rx_curr_get_info[i]. |
| 1899 | block_index = get_block; |
| 1900 | continue; |
| 1901 | } |
| 1902 | get_offset = |
| 1903 | (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| 1904 | get_info.offset; |
| 1905 | skb = |
| 1906 | (struct sk_buff *) ((unsigned long) rxdp-> |
| 1907 | Host_Control); |
| 1908 | if (skb == NULL) { |
| 1909 | DBG_PRINT(ERR_DBG, "%s: The skb is ", |
| 1910 | dev->name); |
| 1911 | DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); |
| 1912 | goto no_rx; |
| 1913 | } |
| 1914 | val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); |
| 1915 | val16 = (u16) (val64 >> 48); |
| 1916 | cksum = RXD_GET_L4_CKSUM(rxdp->Control_1); |
| 1917 | pci_unmap_single(nic->pdev, (dma_addr_t) |
| 1918 | rxdp->Buffer0_ptr, |
| 1919 | dev->mtu + |
| 1920 | HEADER_ETHERNET_II_802_3_SIZE + |
| 1921 | HEADER_802_2_SIZE + |
| 1922 | HEADER_SNAP_SIZE, |
| 1923 | PCI_DMA_FROMDEVICE); |
| 1924 | rx_osm_handler(nic, val16, rxdp, i); |
| 1925 | pkt_cnt++; |
| 1926 | get_info.offset++; |
| 1927 | get_info.offset %= (MAX_RXDS_PER_BLOCK + 1); |
| 1928 | rxdp = |
| 1929 | nic->rx_blocks[i][get_block].block_virt_addr + |
| 1930 | get_info.offset; |
| 1931 | mac_control->rx_curr_get_info[i].offset = |
| 1932 | get_info.offset; |
| 1933 | } |
| 1934 | #else |
| 1935 | get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| 1936 | get_info.offset; |
| 1937 | put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| 1938 | put_info.offset; |
| 1939 | while (((!(rxdp->Control_1 & RXD_OWN_XENA)) && |
| 1940 | !(rxdp->Control_2 & BIT(0))) && |
| 1941 | (((get_offset + 1) % ring_bufs) != put_offset)) { |
| 1942 | if (--pkts_to_process < 0) { |
| 1943 | goto no_rx; |
| 1944 | } |
| 1945 | skb = (struct sk_buff *) ((unsigned long) |
| 1946 | rxdp->Host_Control); |
| 1947 | if (skb == NULL) { |
| 1948 | DBG_PRINT(ERR_DBG, "%s: The skb is ", |
| 1949 | dev->name); |
| 1950 | DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); |
| 1951 | goto no_rx; |
| 1952 | } |
| 1953 | |
| 1954 | pci_unmap_single(nic->pdev, (dma_addr_t) |
| 1955 | rxdp->Buffer0_ptr, |
| 1956 | BUF0_LEN, PCI_DMA_FROMDEVICE); |
| 1957 | pci_unmap_single(nic->pdev, (dma_addr_t) |
| 1958 | rxdp->Buffer1_ptr, |
| 1959 | BUF1_LEN, PCI_DMA_FROMDEVICE); |
| 1960 | pci_unmap_single(nic->pdev, (dma_addr_t) |
| 1961 | rxdp->Buffer2_ptr, |
| 1962 | dev->mtu + BUF0_LEN + 4, |
| 1963 | PCI_DMA_FROMDEVICE); |
| 1964 | ba = &nic->ba[i][get_block][get_info.offset]; |
| 1965 | |
| 1966 | rx_osm_handler(nic, rxdp, i, ba); |
| 1967 | |
| 1968 | get_info.offset++; |
| 1969 | mac_control->rx_curr_get_info[i].offset = |
| 1970 | get_info.offset; |
| 1971 | rxdp = |
| 1972 | nic->rx_blocks[i][get_block].block_virt_addr + |
| 1973 | get_info.offset; |
| 1974 | |
| 1975 | if (get_info.offset && |
| 1976 | (!(get_info.offset % MAX_RXDS_PER_BLOCK))) { |
| 1977 | get_info.offset = 0; |
| 1978 | mac_control->rx_curr_get_info[i]. |
| 1979 | offset = get_info.offset; |
| 1980 | get_block++; |
| 1981 | get_block %= nic->block_count[i]; |
| 1982 | mac_control->rx_curr_get_info[i]. |
| 1983 | block_index = get_block; |
| 1984 | rxdp = |
| 1985 | nic->rx_blocks[i][get_block]. |
| 1986 | block_virt_addr; |
| 1987 | } |
| 1988 | get_offset = |
| 1989 | (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| 1990 | get_info.offset; |
| 1991 | pkt_cnt++; |
| 1992 | } |
| 1993 | #endif |
| 1994 | } |
| 1995 | if (!pkt_cnt) |
| 1996 | pkt_cnt = 1; |
| 1997 | |
| 1998 | dev->quota -= pkt_cnt; |
| 1999 | *budget -= pkt_cnt; |
| 2000 | netif_rx_complete(dev); |
| 2001 | |
| 2002 | for (i = 0; i < config->rx_ring_num; i++) { |
| 2003 | if (fill_rx_buffers(nic, i) == -ENOMEM) { |
| 2004 | DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); |
| 2005 | DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); |
| 2006 | break; |
| 2007 | } |
| 2008 | } |
| 2009 | /* Re enable the Rx interrupts. */ |
| 2010 | en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS); |
| 2011 | return 0; |
| 2012 | |
| 2013 | no_rx: |
| 2014 | dev->quota -= pkt_cnt; |
| 2015 | *budget -= pkt_cnt; |
| 2016 | |
| 2017 | for (i = 0; i < config->rx_ring_num; i++) { |
| 2018 | if (fill_rx_buffers(nic, i) == -ENOMEM) { |
| 2019 | DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); |
| 2020 | DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); |
| 2021 | break; |
| 2022 | } |
| 2023 | } |
| 2024 | return 1; |
| 2025 | } |
| 2026 | #else |
| 2027 | /** |
| 2028 | * rx_intr_handler - Rx interrupt handler |
| 2029 | * @nic: device private variable. |
| 2030 | * Description: |
| 2031 | * If the interrupt is because of a received frame or if the |
| 2032 | * receive ring contains fresh as yet un-processed frames,this function is |
| 2033 | * called. It picks out the RxD at which place the last Rx processing had |
| 2034 | * stopped and sends the skb to the OSM's Rx handler and then increments |
| 2035 | * the offset. |
| 2036 | * Return Value: |
| 2037 | * NONE. |
| 2038 | */ |
| 2039 | |
| 2040 | static void rx_intr_handler(struct s2io_nic *nic) |
| 2041 | { |
| 2042 | struct net_device *dev = (struct net_device *) nic->dev; |
| 2043 | XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; |
| 2044 | rx_curr_get_info_t get_info, put_info; |
| 2045 | RxD_t *rxdp; |
| 2046 | struct sk_buff *skb; |
| 2047 | #ifndef CONFIG_2BUFF_MODE |
| 2048 | u16 val16, cksum; |
| 2049 | #endif |
| 2050 | register u64 val64 = 0; |
| 2051 | int get_block, get_offset, put_block, put_offset, ring_bufs; |
| 2052 | int i, pkt_cnt = 0; |
| 2053 | mac_info_t *mac_control; |
| 2054 | struct config_param *config; |
| 2055 | #ifdef CONFIG_2BUFF_MODE |
| 2056 | buffAdd_t *ba; |
| 2057 | #endif |
| 2058 | |
| 2059 | mac_control = &nic->mac_control; |
| 2060 | config = &nic->config; |
| 2061 | |
| 2062 | /* |
| 2063 | * rx_traffic_int reg is an R1 register, hence we read and write back |
| 2064 | * the samevalue in the register to clear it. |
| 2065 | */ |
| 2066 | val64 = readq(&bar0->rx_traffic_int); |
| 2067 | writeq(val64, &bar0->rx_traffic_int); |
| 2068 | |
| 2069 | for (i = 0; i < config->rx_ring_num; i++) { |
| 2070 | get_info = mac_control->rx_curr_get_info[i]; |
| 2071 | get_block = get_info.block_index; |
| 2072 | put_info = mac_control->rx_curr_put_info[i]; |
| 2073 | put_block = put_info.block_index; |
| 2074 | ring_bufs = config->rx_cfg[i].num_rxd; |
| 2075 | rxdp = nic->rx_blocks[i][get_block].block_virt_addr + |
| 2076 | get_info.offset; |
| 2077 | #ifndef CONFIG_2BUFF_MODE |
| 2078 | get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| 2079 | get_info.offset; |
| 2080 | spin_lock(&nic->put_lock); |
| 2081 | put_offset = nic->put_pos[i]; |
| 2082 | spin_unlock(&nic->put_lock); |
| 2083 | while ((!(rxdp->Control_1 & RXD_OWN_XENA)) && |
| 2084 | (((get_offset + 1) % ring_bufs) != put_offset)) { |
| 2085 | if (rxdp->Control_1 == END_OF_BLOCK) { |
| 2086 | rxdp = (RxD_t *) ((unsigned long) |
| 2087 | rxdp->Control_2); |
| 2088 | get_info.offset++; |
| 2089 | get_info.offset %= |
| 2090 | (MAX_RXDS_PER_BLOCK + 1); |
| 2091 | get_block++; |
| 2092 | get_block %= nic->block_count[i]; |
| 2093 | mac_control->rx_curr_get_info[i]. |
| 2094 | offset = get_info.offset; |
| 2095 | mac_control->rx_curr_get_info[i]. |
| 2096 | block_index = get_block; |
| 2097 | continue; |
| 2098 | } |
| 2099 | get_offset = |
| 2100 | (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| 2101 | get_info.offset; |
| 2102 | skb = (struct sk_buff *) ((unsigned long) |
| 2103 | rxdp->Host_Control); |
| 2104 | if (skb == NULL) { |
| 2105 | DBG_PRINT(ERR_DBG, "%s: The skb is ", |
| 2106 | dev->name); |
| 2107 | DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); |
| 2108 | return; |
| 2109 | } |
| 2110 | val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); |
| 2111 | val16 = (u16) (val64 >> 48); |
| 2112 | cksum = RXD_GET_L4_CKSUM(rxdp->Control_1); |
| 2113 | pci_unmap_single(nic->pdev, (dma_addr_t) |
| 2114 | rxdp->Buffer0_ptr, |
| 2115 | dev->mtu + |
| 2116 | HEADER_ETHERNET_II_802_3_SIZE + |
| 2117 | HEADER_802_2_SIZE + |
| 2118 | HEADER_SNAP_SIZE, |
| 2119 | PCI_DMA_FROMDEVICE); |
| 2120 | rx_osm_handler(nic, val16, rxdp, i); |
| 2121 | get_info.offset++; |
| 2122 | get_info.offset %= (MAX_RXDS_PER_BLOCK + 1); |
| 2123 | rxdp = |
| 2124 | nic->rx_blocks[i][get_block].block_virt_addr + |
| 2125 | get_info.offset; |
| 2126 | mac_control->rx_curr_get_info[i].offset = |
| 2127 | get_info.offset; |
| 2128 | pkt_cnt++; |
| 2129 | if ((indicate_max_pkts) |
| 2130 | && (pkt_cnt > indicate_max_pkts)) |
| 2131 | break; |
| 2132 | } |
| 2133 | #else |
| 2134 | get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| 2135 | get_info.offset; |
| 2136 | spin_lock(&nic->put_lock); |
| 2137 | put_offset = nic->put_pos[i]; |
| 2138 | spin_unlock(&nic->put_lock); |
| 2139 | while (((!(rxdp->Control_1 & RXD_OWN_XENA)) && |
| 2140 | !(rxdp->Control_2 & BIT(0))) && |
| 2141 | (((get_offset + 1) % ring_bufs) != put_offset)) { |
| 2142 | skb = (struct sk_buff *) ((unsigned long) |
| 2143 | rxdp->Host_Control); |
| 2144 | if (skb == NULL) { |
| 2145 | DBG_PRINT(ERR_DBG, "%s: The skb is ", |
| 2146 | dev->name); |
| 2147 | DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); |
| 2148 | return; |
| 2149 | } |
| 2150 | |
| 2151 | pci_unmap_single(nic->pdev, (dma_addr_t) |
| 2152 | rxdp->Buffer0_ptr, |
| 2153 | BUF0_LEN, PCI_DMA_FROMDEVICE); |
| 2154 | pci_unmap_single(nic->pdev, (dma_addr_t) |
| 2155 | rxdp->Buffer1_ptr, |
| 2156 | BUF1_LEN, PCI_DMA_FROMDEVICE); |
| 2157 | pci_unmap_single(nic->pdev, (dma_addr_t) |
| 2158 | rxdp->Buffer2_ptr, |
| 2159 | dev->mtu + BUF0_LEN + 4, |
| 2160 | PCI_DMA_FROMDEVICE); |
| 2161 | ba = &nic->ba[i][get_block][get_info.offset]; |
| 2162 | |
| 2163 | rx_osm_handler(nic, rxdp, i, ba); |
| 2164 | |
| 2165 | get_info.offset++; |
| 2166 | mac_control->rx_curr_get_info[i].offset = |
| 2167 | get_info.offset; |
| 2168 | rxdp = |
| 2169 | nic->rx_blocks[i][get_block].block_virt_addr + |
| 2170 | get_info.offset; |
| 2171 | |
| 2172 | if (get_info.offset && |
| 2173 | (!(get_info.offset % MAX_RXDS_PER_BLOCK))) { |
| 2174 | get_info.offset = 0; |
| 2175 | mac_control->rx_curr_get_info[i]. |
| 2176 | offset = get_info.offset; |
| 2177 | get_block++; |
| 2178 | get_block %= nic->block_count[i]; |
| 2179 | mac_control->rx_curr_get_info[i]. |
| 2180 | block_index = get_block; |
| 2181 | rxdp = |
| 2182 | nic->rx_blocks[i][get_block]. |
| 2183 | block_virt_addr; |
| 2184 | } |
| 2185 | get_offset = |
| 2186 | (get_block * (MAX_RXDS_PER_BLOCK + 1)) + |
| 2187 | get_info.offset; |
| 2188 | pkt_cnt++; |
| 2189 | if ((indicate_max_pkts) |
| 2190 | && (pkt_cnt > indicate_max_pkts)) |
| 2191 | break; |
| 2192 | } |
| 2193 | #endif |
| 2194 | if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) |
| 2195 | break; |
| 2196 | } |
| 2197 | } |
| 2198 | #endif |
| 2199 | /** |
| 2200 | * tx_intr_handler - Transmit interrupt handler |
| 2201 | * @nic : device private variable |
| 2202 | * Description: |
| 2203 | * If an interrupt was raised to indicate DMA complete of the |
| 2204 | * Tx packet, this function is called. It identifies the last TxD |
| 2205 | * whose buffer was freed and frees all skbs whose data have already |
| 2206 | * DMA'ed into the NICs internal memory. |
| 2207 | * Return Value: |
| 2208 | * NONE |
| 2209 | */ |
| 2210 | |
| 2211 | static void tx_intr_handler(struct s2io_nic *nic) |
| 2212 | { |
| 2213 | XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| 2214 | struct net_device *dev = (struct net_device *) nic->dev; |
| 2215 | tx_curr_get_info_t get_info, put_info; |
| 2216 | struct sk_buff *skb; |
| 2217 | TxD_t *txdlp; |
| 2218 | register u64 val64 = 0; |
| 2219 | int i; |
| 2220 | u16 j, frg_cnt; |
| 2221 | mac_info_t *mac_control; |
| 2222 | struct config_param *config; |
| 2223 | |
| 2224 | mac_control = &nic->mac_control; |
| 2225 | config = &nic->config; |
| 2226 | |
| 2227 | /* |
| 2228 | * tx_traffic_int reg is an R1 register, hence we read and write |
| 2229 | * back the samevalue in the register to clear it. |
| 2230 | */ |
| 2231 | val64 = readq(&bar0->tx_traffic_int); |
| 2232 | writeq(val64, &bar0->tx_traffic_int); |
| 2233 | |
| 2234 | for (i = 0; i < config->tx_fifo_num; i++) { |
| 2235 | get_info = mac_control->tx_curr_get_info[i]; |
| 2236 | put_info = mac_control->tx_curr_put_info[i]; |
| 2237 | txdlp = (TxD_t *) nic->list_info[i][get_info.offset]. |
| 2238 | list_virt_addr; |
| 2239 | while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && |
| 2240 | (get_info.offset != put_info.offset) && |
| 2241 | (txdlp->Host_Control)) { |
| 2242 | /* Check for TxD errors */ |
| 2243 | if (txdlp->Control_1 & TXD_T_CODE) { |
| 2244 | unsigned long long err; |
| 2245 | err = txdlp->Control_1 & TXD_T_CODE; |
| 2246 | DBG_PRINT(ERR_DBG, "***TxD error %llx\n", |
| 2247 | err); |
| 2248 | } |
| 2249 | |
| 2250 | skb = (struct sk_buff *) ((unsigned long) |
| 2251 | txdlp->Host_Control); |
| 2252 | if (skb == NULL) { |
| 2253 | DBG_PRINT(ERR_DBG, "%s: Null skb ", |
| 2254 | dev->name); |
| 2255 | DBG_PRINT(ERR_DBG, "in Tx Free Intr\n"); |
| 2256 | return; |
| 2257 | } |
| 2258 | nic->tx_pkt_count++; |
| 2259 | |
| 2260 | frg_cnt = skb_shinfo(skb)->nr_frags; |
| 2261 | |
| 2262 | /* For unfragmented skb */ |
| 2263 | pci_unmap_single(nic->pdev, (dma_addr_t) |
| 2264 | txdlp->Buffer_Pointer, |
| 2265 | skb->len - skb->data_len, |
| 2266 | PCI_DMA_TODEVICE); |
| 2267 | if (frg_cnt) { |
| 2268 | TxD_t *temp = txdlp; |
| 2269 | txdlp++; |
| 2270 | for (j = 0; j < frg_cnt; j++, txdlp++) { |
| 2271 | skb_frag_t *frag = |
| 2272 | &skb_shinfo(skb)->frags[j]; |
| 2273 | pci_unmap_page(nic->pdev, |
| 2274 | (dma_addr_t) |
| 2275 | txdlp-> |
| 2276 | Buffer_Pointer, |
| 2277 | frag->size, |
| 2278 | PCI_DMA_TODEVICE); |
| 2279 | } |
| 2280 | txdlp = temp; |
| 2281 | } |
| 2282 | memset(txdlp, 0, |
| 2283 | (sizeof(TxD_t) * config->max_txds)); |
| 2284 | |
| 2285 | /* Updating the statistics block */ |
| 2286 | nic->stats.tx_packets++; |
| 2287 | nic->stats.tx_bytes += skb->len; |
| 2288 | dev_kfree_skb_irq(skb); |
| 2289 | |
| 2290 | get_info.offset++; |
| 2291 | get_info.offset %= get_info.fifo_len + 1; |
| 2292 | txdlp = (TxD_t *) nic->list_info[i] |
| 2293 | [get_info.offset].list_virt_addr; |
| 2294 | mac_control->tx_curr_get_info[i].offset = |
| 2295 | get_info.offset; |
| 2296 | } |
| 2297 | } |
| 2298 | |
| 2299 | spin_lock(&nic->tx_lock); |
| 2300 | if (netif_queue_stopped(dev)) |
| 2301 | netif_wake_queue(dev); |
| 2302 | spin_unlock(&nic->tx_lock); |
| 2303 | } |
| 2304 | |
| 2305 | /** |
| 2306 | * alarm_intr_handler - Alarm Interrrupt handler |
| 2307 | * @nic: device private variable |
| 2308 | * Description: If the interrupt was neither because of Rx packet or Tx |
| 2309 | * complete, this function is called. If the interrupt was to indicate |
| 2310 | * a loss of link, the OSM link status handler is invoked for any other |
| 2311 | * alarm interrupt the block that raised the interrupt is displayed |
| 2312 | * and a H/W reset is issued. |
| 2313 | * Return Value: |
| 2314 | * NONE |
| 2315 | */ |
| 2316 | |
| 2317 | static void alarm_intr_handler(struct s2io_nic *nic) |
| 2318 | { |
| 2319 | struct net_device *dev = (struct net_device *) nic->dev; |
| 2320 | XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| 2321 | register u64 val64 = 0, err_reg = 0; |
| 2322 | |
| 2323 | /* Handling link status change error Intr */ |
| 2324 | err_reg = readq(&bar0->mac_rmac_err_reg); |
| 2325 | writeq(err_reg, &bar0->mac_rmac_err_reg); |
| 2326 | if (err_reg & RMAC_LINK_STATE_CHANGE_INT) { |
| 2327 | schedule_work(&nic->set_link_task); |
| 2328 | } |
| 2329 | |
| 2330 | /* In case of a serious error, the device will be Reset. */ |
| 2331 | val64 = readq(&bar0->serr_source); |
| 2332 | if (val64 & SERR_SOURCE_ANY) { |
| 2333 | DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name); |
| 2334 | DBG_PRINT(ERR_DBG, "serious error!!\n"); |
| 2335 | netif_stop_queue(dev); |
| 2336 | schedule_work(&nic->rst_timer_task); |
| 2337 | } |
| 2338 | |
| 2339 | /* |
| 2340 | * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC |
| 2341 | * Error occurs, the adapter will be recycled by disabling the |
| 2342 | * adapter enable bit and enabling it again after the device |
| 2343 | * becomes Quiescent. |
| 2344 | */ |
| 2345 | val64 = readq(&bar0->pcc_err_reg); |
| 2346 | writeq(val64, &bar0->pcc_err_reg); |
| 2347 | if (val64 & PCC_FB_ECC_DB_ERR) { |
| 2348 | u64 ac = readq(&bar0->adapter_control); |
| 2349 | ac &= ~(ADAPTER_CNTL_EN); |
| 2350 | writeq(ac, &bar0->adapter_control); |
| 2351 | ac = readq(&bar0->adapter_control); |
| 2352 | schedule_work(&nic->set_link_task); |
| 2353 | } |
| 2354 | |
| 2355 | /* Other type of interrupts are not being handled now, TODO */ |
| 2356 | } |
| 2357 | |
| 2358 | /** |
| 2359 | * wait_for_cmd_complete - waits for a command to complete. |
| 2360 | * @sp : private member of the device structure, which is a pointer to the |
| 2361 | * s2io_nic structure. |
| 2362 | * Description: Function that waits for a command to Write into RMAC |
| 2363 | * ADDR DATA registers to be completed and returns either success or |
| 2364 | * error depending on whether the command was complete or not. |
| 2365 | * Return value: |
| 2366 | * SUCCESS on success and FAILURE on failure. |
| 2367 | */ |
| 2368 | |
| 2369 | static int wait_for_cmd_complete(nic_t * sp) |
| 2370 | { |
| 2371 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 2372 | int ret = FAILURE, cnt = 0; |
| 2373 | u64 val64; |
| 2374 | |
| 2375 | while (TRUE) { |
| 2376 | val64 = readq(&bar0->rmac_addr_cmd_mem); |
| 2377 | if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) { |
| 2378 | ret = SUCCESS; |
| 2379 | break; |
| 2380 | } |
| 2381 | msleep(50); |
| 2382 | if (cnt++ > 10) |
| 2383 | break; |
| 2384 | } |
| 2385 | |
| 2386 | return ret; |
| 2387 | } |
| 2388 | |
| 2389 | /** |
| 2390 | * s2io_reset - Resets the card. |
| 2391 | * @sp : private member of the device structure. |
| 2392 | * Description: Function to Reset the card. This function then also |
| 2393 | * restores the previously saved PCI configuration space registers as |
| 2394 | * the card reset also resets the configuration space. |
| 2395 | * Return value: |
| 2396 | * void. |
| 2397 | */ |
| 2398 | |
| 2399 | static void s2io_reset(nic_t * sp) |
| 2400 | { |
| 2401 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 2402 | u64 val64; |
| 2403 | u16 subid; |
| 2404 | |
| 2405 | val64 = SW_RESET_ALL; |
| 2406 | writeq(val64, &bar0->sw_reset); |
| 2407 | |
| 2408 | /* |
| 2409 | * At this stage, if the PCI write is indeed completed, the |
| 2410 | * card is reset and so is the PCI Config space of the device. |
| 2411 | * So a read cannot be issued at this stage on any of the |
| 2412 | * registers to ensure the write into "sw_reset" register |
| 2413 | * has gone through. |
| 2414 | * Question: Is there any system call that will explicitly force |
| 2415 | * all the write commands still pending on the bus to be pushed |
| 2416 | * through? |
| 2417 | * As of now I'am just giving a 250ms delay and hoping that the |
| 2418 | * PCI write to sw_reset register is done by this time. |
| 2419 | */ |
| 2420 | msleep(250); |
| 2421 | |
| 2422 | /* Restore the PCI state saved during initializarion. */ |
| 2423 | pci_restore_state(sp->pdev); |
| 2424 | s2io_init_pci(sp); |
| 2425 | |
| 2426 | msleep(250); |
| 2427 | |
| 2428 | /* SXE-002: Configure link and activity LED to turn it off */ |
| 2429 | subid = sp->pdev->subsystem_device; |
| 2430 | if ((subid & 0xFF) >= 0x07) { |
| 2431 | val64 = readq(&bar0->gpio_control); |
| 2432 | val64 |= 0x0000800000000000ULL; |
| 2433 | writeq(val64, &bar0->gpio_control); |
| 2434 | val64 = 0x0411040400000000ULL; |
| 2435 | writeq(val64, (void __iomem *) bar0 + 0x2700); |
| 2436 | } |
| 2437 | |
| 2438 | sp->device_enabled_once = FALSE; |
| 2439 | } |
| 2440 | |
| 2441 | /** |
| 2442 | * s2io_set_swapper - to set the swapper controle on the card |
| 2443 | * @sp : private member of the device structure, |
| 2444 | * pointer to the s2io_nic structure. |
| 2445 | * Description: Function to set the swapper control on the card |
| 2446 | * correctly depending on the 'endianness' of the system. |
| 2447 | * Return value: |
| 2448 | * SUCCESS on success and FAILURE on failure. |
| 2449 | */ |
| 2450 | |
| 2451 | static int s2io_set_swapper(nic_t * sp) |
| 2452 | { |
| 2453 | struct net_device *dev = sp->dev; |
| 2454 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 2455 | u64 val64, valt, valr; |
| 2456 | |
| 2457 | /* |
| 2458 | * Set proper endian settings and verify the same by reading |
| 2459 | * the PIF Feed-back register. |
| 2460 | */ |
| 2461 | |
| 2462 | val64 = readq(&bar0->pif_rd_swapper_fb); |
| 2463 | if (val64 != 0x0123456789ABCDEFULL) { |
| 2464 | int i = 0; |
| 2465 | u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ |
| 2466 | 0x8100008181000081ULL, /* FE=1, SE=0 */ |
| 2467 | 0x4200004242000042ULL, /* FE=0, SE=1 */ |
| 2468 | 0}; /* FE=0, SE=0 */ |
| 2469 | |
| 2470 | while(i<4) { |
| 2471 | writeq(value[i], &bar0->swapper_ctrl); |
| 2472 | val64 = readq(&bar0->pif_rd_swapper_fb); |
| 2473 | if (val64 == 0x0123456789ABCDEFULL) |
| 2474 | break; |
| 2475 | i++; |
| 2476 | } |
| 2477 | if (i == 4) { |
| 2478 | DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", |
| 2479 | dev->name); |
| 2480 | DBG_PRINT(ERR_DBG, "feedback read %llx\n", |
| 2481 | (unsigned long long) val64); |
| 2482 | return FAILURE; |
| 2483 | } |
| 2484 | valr = value[i]; |
| 2485 | } else { |
| 2486 | valr = readq(&bar0->swapper_ctrl); |
| 2487 | } |
| 2488 | |
| 2489 | valt = 0x0123456789ABCDEFULL; |
| 2490 | writeq(valt, &bar0->xmsi_address); |
| 2491 | val64 = readq(&bar0->xmsi_address); |
| 2492 | |
| 2493 | if(val64 != valt) { |
| 2494 | int i = 0; |
| 2495 | u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ |
| 2496 | 0x0081810000818100ULL, /* FE=1, SE=0 */ |
| 2497 | 0x0042420000424200ULL, /* FE=0, SE=1 */ |
| 2498 | 0}; /* FE=0, SE=0 */ |
| 2499 | |
| 2500 | while(i<4) { |
| 2501 | writeq((value[i] | valr), &bar0->swapper_ctrl); |
| 2502 | writeq(valt, &bar0->xmsi_address); |
| 2503 | val64 = readq(&bar0->xmsi_address); |
| 2504 | if(val64 == valt) |
| 2505 | break; |
| 2506 | i++; |
| 2507 | } |
| 2508 | if(i == 4) { |
| 2509 | DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr "); |
| 2510 | DBG_PRINT(ERR_DBG, "reads:0x%llx\n",val64); |
| 2511 | return FAILURE; |
| 2512 | } |
| 2513 | } |
| 2514 | val64 = readq(&bar0->swapper_ctrl); |
| 2515 | val64 &= 0xFFFF000000000000ULL; |
| 2516 | |
| 2517 | #ifdef __BIG_ENDIAN |
| 2518 | /* |
| 2519 | * The device by default set to a big endian format, so a |
| 2520 | * big endian driver need not set anything. |
| 2521 | */ |
| 2522 | val64 |= (SWAPPER_CTRL_TXP_FE | |
| 2523 | SWAPPER_CTRL_TXP_SE | |
| 2524 | SWAPPER_CTRL_TXD_R_FE | |
| 2525 | SWAPPER_CTRL_TXD_W_FE | |
| 2526 | SWAPPER_CTRL_TXF_R_FE | |
| 2527 | SWAPPER_CTRL_RXD_R_FE | |
| 2528 | SWAPPER_CTRL_RXD_W_FE | |
| 2529 | SWAPPER_CTRL_RXF_W_FE | |
| 2530 | SWAPPER_CTRL_XMSI_FE | |
| 2531 | SWAPPER_CTRL_XMSI_SE | |
| 2532 | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); |
| 2533 | writeq(val64, &bar0->swapper_ctrl); |
| 2534 | #else |
| 2535 | /* |
| 2536 | * Initially we enable all bits to make it accessible by the |
| 2537 | * driver, then we selectively enable only those bits that |
| 2538 | * we want to set. |
| 2539 | */ |
| 2540 | val64 |= (SWAPPER_CTRL_TXP_FE | |
| 2541 | SWAPPER_CTRL_TXP_SE | |
| 2542 | SWAPPER_CTRL_TXD_R_FE | |
| 2543 | SWAPPER_CTRL_TXD_R_SE | |
| 2544 | SWAPPER_CTRL_TXD_W_FE | |
| 2545 | SWAPPER_CTRL_TXD_W_SE | |
| 2546 | SWAPPER_CTRL_TXF_R_FE | |
| 2547 | SWAPPER_CTRL_RXD_R_FE | |
| 2548 | SWAPPER_CTRL_RXD_R_SE | |
| 2549 | SWAPPER_CTRL_RXD_W_FE | |
| 2550 | SWAPPER_CTRL_RXD_W_SE | |
| 2551 | SWAPPER_CTRL_RXF_W_FE | |
| 2552 | SWAPPER_CTRL_XMSI_FE | |
| 2553 | SWAPPER_CTRL_XMSI_SE | |
| 2554 | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); |
| 2555 | writeq(val64, &bar0->swapper_ctrl); |
| 2556 | #endif |
| 2557 | val64 = readq(&bar0->swapper_ctrl); |
| 2558 | |
| 2559 | /* |
| 2560 | * Verifying if endian settings are accurate by reading a |
| 2561 | * feedback register. |
| 2562 | */ |
| 2563 | val64 = readq(&bar0->pif_rd_swapper_fb); |
| 2564 | if (val64 != 0x0123456789ABCDEFULL) { |
| 2565 | /* Endian settings are incorrect, calls for another dekko. */ |
| 2566 | DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", |
| 2567 | dev->name); |
| 2568 | DBG_PRINT(ERR_DBG, "feedback read %llx\n", |
| 2569 | (unsigned long long) val64); |
| 2570 | return FAILURE; |
| 2571 | } |
| 2572 | |
| 2573 | return SUCCESS; |
| 2574 | } |
| 2575 | |
| 2576 | /* ********************************************************* * |
| 2577 | * Functions defined below concern the OS part of the driver * |
| 2578 | * ********************************************************* */ |
| 2579 | |
| 2580 | /** |
| 2581 | * s2io_open - open entry point of the driver |
| 2582 | * @dev : pointer to the device structure. |
| 2583 | * Description: |
| 2584 | * This function is the open entry point of the driver. It mainly calls a |
| 2585 | * function to allocate Rx buffers and inserts them into the buffer |
| 2586 | * descriptors and then enables the Rx part of the NIC. |
| 2587 | * Return value: |
| 2588 | * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| 2589 | * file on failure. |
| 2590 | */ |
| 2591 | |
| 2592 | static int s2io_open(struct net_device *dev) |
| 2593 | { |
| 2594 | nic_t *sp = dev->priv; |
| 2595 | int err = 0; |
| 2596 | |
| 2597 | /* |
| 2598 | * Make sure you have link off by default every time |
| 2599 | * Nic is initialized |
| 2600 | */ |
| 2601 | netif_carrier_off(dev); |
| 2602 | sp->last_link_state = LINK_DOWN; |
| 2603 | |
| 2604 | /* Initialize H/W and enable interrupts */ |
| 2605 | if (s2io_card_up(sp)) { |
| 2606 | DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", |
| 2607 | dev->name); |
| 2608 | return -ENODEV; |
| 2609 | } |
| 2610 | |
| 2611 | /* After proper initialization of H/W, register ISR */ |
| 2612 | err = request_irq((int) sp->irq, s2io_isr, SA_SHIRQ, |
| 2613 | sp->name, dev); |
| 2614 | if (err) { |
| 2615 | s2io_reset(sp); |
| 2616 | DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", |
| 2617 | dev->name); |
| 2618 | return err; |
| 2619 | } |
| 2620 | |
| 2621 | if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) { |
| 2622 | DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); |
| 2623 | s2io_reset(sp); |
| 2624 | return -ENODEV; |
| 2625 | } |
| 2626 | |
| 2627 | netif_start_queue(dev); |
| 2628 | return 0; |
| 2629 | } |
| 2630 | |
| 2631 | /** |
| 2632 | * s2io_close -close entry point of the driver |
| 2633 | * @dev : device pointer. |
| 2634 | * Description: |
| 2635 | * This is the stop entry point of the driver. It needs to undo exactly |
| 2636 | * whatever was done by the open entry point,thus it's usually referred to |
| 2637 | * as the close function.Among other things this function mainly stops the |
| 2638 | * Rx side of the NIC and frees all the Rx buffers in the Rx rings. |
| 2639 | * Return value: |
| 2640 | * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| 2641 | * file on failure. |
| 2642 | */ |
| 2643 | |
| 2644 | static int s2io_close(struct net_device *dev) |
| 2645 | { |
| 2646 | nic_t *sp = dev->priv; |
| 2647 | |
| 2648 | flush_scheduled_work(); |
| 2649 | netif_stop_queue(dev); |
| 2650 | /* Reset card, kill tasklet and free Tx and Rx buffers. */ |
| 2651 | s2io_card_down(sp); |
| 2652 | |
| 2653 | free_irq(dev->irq, dev); |
| 2654 | sp->device_close_flag = TRUE; /* Device is shut down. */ |
| 2655 | return 0; |
| 2656 | } |
| 2657 | |
| 2658 | /** |
| 2659 | * s2io_xmit - Tx entry point of te driver |
| 2660 | * @skb : the socket buffer containing the Tx data. |
| 2661 | * @dev : device pointer. |
| 2662 | * Description : |
| 2663 | * This function is the Tx entry point of the driver. S2IO NIC supports |
| 2664 | * certain protocol assist features on Tx side, namely CSO, S/G, LSO. |
| 2665 | * NOTE: when device cant queue the pkt,just the trans_start variable will |
| 2666 | * not be upadted. |
| 2667 | * Return value: |
| 2668 | * 0 on success & 1 on failure. |
| 2669 | */ |
| 2670 | |
| 2671 | static int s2io_xmit(struct sk_buff *skb, struct net_device *dev) |
| 2672 | { |
| 2673 | nic_t *sp = dev->priv; |
| 2674 | u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; |
| 2675 | register u64 val64; |
| 2676 | TxD_t *txdp; |
| 2677 | TxFIFO_element_t __iomem *tx_fifo; |
| 2678 | unsigned long flags; |
| 2679 | #ifdef NETIF_F_TSO |
| 2680 | int mss; |
| 2681 | #endif |
| 2682 | mac_info_t *mac_control; |
| 2683 | struct config_param *config; |
| 2684 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 2685 | |
| 2686 | mac_control = &sp->mac_control; |
| 2687 | config = &sp->config; |
| 2688 | |
| 2689 | DBG_PRINT(TX_DBG, "%s: In S2IO Tx routine\n", dev->name); |
| 2690 | spin_lock_irqsave(&sp->tx_lock, flags); |
| 2691 | |
| 2692 | if (atomic_read(&sp->card_state) == CARD_DOWN) { |
| 2693 | DBG_PRINT(ERR_DBG, "%s: Card going down for reset\n", |
| 2694 | dev->name); |
| 2695 | spin_unlock_irqrestore(&sp->tx_lock, flags); |
| 2696 | return 1; |
| 2697 | } |
| 2698 | |
| 2699 | queue = 0; |
| 2700 | put_off = (u16) mac_control->tx_curr_put_info[queue].offset; |
| 2701 | get_off = (u16) mac_control->tx_curr_get_info[queue].offset; |
| 2702 | txdp = (TxD_t *) sp->list_info[queue][put_off].list_virt_addr; |
| 2703 | |
| 2704 | queue_len = mac_control->tx_curr_put_info[queue].fifo_len + 1; |
| 2705 | /* Avoid "put" pointer going beyond "get" pointer */ |
| 2706 | if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) { |
| 2707 | DBG_PRINT(ERR_DBG, "Error in xmit, No free TXDs.\n"); |
| 2708 | netif_stop_queue(dev); |
| 2709 | dev_kfree_skb(skb); |
| 2710 | spin_unlock_irqrestore(&sp->tx_lock, flags); |
| 2711 | return 0; |
| 2712 | } |
| 2713 | #ifdef NETIF_F_TSO |
| 2714 | mss = skb_shinfo(skb)->tso_size; |
| 2715 | if (mss) { |
| 2716 | txdp->Control_1 |= TXD_TCP_LSO_EN; |
| 2717 | txdp->Control_1 |= TXD_TCP_LSO_MSS(mss); |
| 2718 | } |
| 2719 | #endif |
| 2720 | |
| 2721 | frg_cnt = skb_shinfo(skb)->nr_frags; |
| 2722 | frg_len = skb->len - skb->data_len; |
| 2723 | |
| 2724 | txdp->Host_Control = (unsigned long) skb; |
| 2725 | txdp->Buffer_Pointer = pci_map_single |
| 2726 | (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE); |
| 2727 | if (skb->ip_summed == CHECKSUM_HW) { |
| 2728 | txdp->Control_2 |= |
| 2729 | (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN | |
| 2730 | TXD_TX_CKO_UDP_EN); |
| 2731 | } |
| 2732 | |
| 2733 | txdp->Control_2 |= config->tx_intr_type; |
| 2734 | |
| 2735 | txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) | |
| 2736 | TXD_GATHER_CODE_FIRST); |
| 2737 | txdp->Control_1 |= TXD_LIST_OWN_XENA; |
| 2738 | |
| 2739 | /* For fragmented SKB. */ |
| 2740 | for (i = 0; i < frg_cnt; i++) { |
| 2741 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; |
| 2742 | txdp++; |
| 2743 | txdp->Buffer_Pointer = (u64) pci_map_page |
| 2744 | (sp->pdev, frag->page, frag->page_offset, |
| 2745 | frag->size, PCI_DMA_TODEVICE); |
| 2746 | txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size); |
| 2747 | } |
| 2748 | txdp->Control_1 |= TXD_GATHER_CODE_LAST; |
| 2749 | |
| 2750 | tx_fifo = mac_control->tx_FIFO_start[queue]; |
| 2751 | val64 = sp->list_info[queue][put_off].list_phy_addr; |
| 2752 | writeq(val64, &tx_fifo->TxDL_Pointer); |
| 2753 | |
| 2754 | val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | |
| 2755 | TX_FIFO_LAST_LIST); |
| 2756 | #ifdef NETIF_F_TSO |
| 2757 | if (mss) |
| 2758 | val64 |= TX_FIFO_SPECIAL_FUNC; |
| 2759 | #endif |
| 2760 | writeq(val64, &tx_fifo->List_Control); |
| 2761 | |
| 2762 | /* Perform a PCI read to flush previous writes */ |
| 2763 | val64 = readq(&bar0->general_int_status); |
| 2764 | |
| 2765 | put_off++; |
| 2766 | put_off %= mac_control->tx_curr_put_info[queue].fifo_len + 1; |
| 2767 | mac_control->tx_curr_put_info[queue].offset = put_off; |
| 2768 | |
| 2769 | /* Avoid "put" pointer going beyond "get" pointer */ |
| 2770 | if (((put_off + 1) % queue_len) == get_off) { |
| 2771 | DBG_PRINT(TX_DBG, |
| 2772 | "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", |
| 2773 | put_off, get_off); |
| 2774 | netif_stop_queue(dev); |
| 2775 | } |
| 2776 | |
| 2777 | dev->trans_start = jiffies; |
| 2778 | spin_unlock_irqrestore(&sp->tx_lock, flags); |
| 2779 | |
| 2780 | return 0; |
| 2781 | } |
| 2782 | |
| 2783 | /** |
| 2784 | * s2io_isr - ISR handler of the device . |
| 2785 | * @irq: the irq of the device. |
| 2786 | * @dev_id: a void pointer to the dev structure of the NIC. |
| 2787 | * @pt_regs: pointer to the registers pushed on the stack. |
| 2788 | * Description: This function is the ISR handler of the device. It |
| 2789 | * identifies the reason for the interrupt and calls the relevant |
| 2790 | * service routines. As a contongency measure, this ISR allocates the |
| 2791 | * recv buffers, if their numbers are below the panic value which is |
| 2792 | * presently set to 25% of the original number of rcv buffers allocated. |
| 2793 | * Return value: |
| 2794 | * IRQ_HANDLED: will be returned if IRQ was handled by this routine |
| 2795 | * IRQ_NONE: will be returned if interrupt is not from our device |
| 2796 | */ |
| 2797 | static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs) |
| 2798 | { |
| 2799 | struct net_device *dev = (struct net_device *) dev_id; |
| 2800 | nic_t *sp = dev->priv; |
| 2801 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 2802 | #ifndef CONFIG_S2IO_NAPI |
| 2803 | int i, ret; |
| 2804 | #endif |
| 2805 | u64 reason = 0; |
| 2806 | mac_info_t *mac_control; |
| 2807 | struct config_param *config; |
| 2808 | |
| 2809 | mac_control = &sp->mac_control; |
| 2810 | config = &sp->config; |
| 2811 | |
| 2812 | /* |
| 2813 | * Identify the cause for interrupt and call the appropriate |
| 2814 | * interrupt handler. Causes for the interrupt could be; |
| 2815 | * 1. Rx of packet. |
| 2816 | * 2. Tx complete. |
| 2817 | * 3. Link down. |
| 2818 | * 4. Error in any functional blocks of the NIC. |
| 2819 | */ |
| 2820 | reason = readq(&bar0->general_int_status); |
| 2821 | |
| 2822 | if (!reason) { |
| 2823 | /* The interrupt was not raised by Xena. */ |
| 2824 | return IRQ_NONE; |
| 2825 | } |
| 2826 | |
| 2827 | /* If Intr is because of Tx Traffic */ |
| 2828 | if (reason & GEN_INTR_TXTRAFFIC) { |
| 2829 | tx_intr_handler(sp); |
| 2830 | } |
| 2831 | |
| 2832 | /* If Intr is because of an error */ |
| 2833 | if (reason & (GEN_ERROR_INTR)) |
| 2834 | alarm_intr_handler(sp); |
| 2835 | |
| 2836 | #ifdef CONFIG_S2IO_NAPI |
| 2837 | if (reason & GEN_INTR_RXTRAFFIC) { |
| 2838 | if (netif_rx_schedule_prep(dev)) { |
| 2839 | en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR, |
| 2840 | DISABLE_INTRS); |
| 2841 | __netif_rx_schedule(dev); |
| 2842 | } |
| 2843 | } |
| 2844 | #else |
| 2845 | /* If Intr is because of Rx Traffic */ |
| 2846 | if (reason & GEN_INTR_RXTRAFFIC) { |
| 2847 | rx_intr_handler(sp); |
| 2848 | } |
| 2849 | #endif |
| 2850 | |
| 2851 | /* |
| 2852 | * If the Rx buffer count is below the panic threshold then |
| 2853 | * reallocate the buffers from the interrupt handler itself, |
| 2854 | * else schedule a tasklet to reallocate the buffers. |
| 2855 | */ |
| 2856 | #ifndef CONFIG_S2IO_NAPI |
| 2857 | for (i = 0; i < config->rx_ring_num; i++) { |
| 2858 | int rxb_size = atomic_read(&sp->rx_bufs_left[i]); |
| 2859 | int level = rx_buffer_level(sp, rxb_size, i); |
| 2860 | |
| 2861 | if ((level == PANIC) && (!TASKLET_IN_USE)) { |
| 2862 | DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name); |
| 2863 | DBG_PRINT(INTR_DBG, "PANIC levels\n"); |
| 2864 | if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) { |
| 2865 | DBG_PRINT(ERR_DBG, "%s:Out of memory", |
| 2866 | dev->name); |
| 2867 | DBG_PRINT(ERR_DBG, " in ISR!!\n"); |
| 2868 | clear_bit(0, (&sp->tasklet_status)); |
| 2869 | return IRQ_HANDLED; |
| 2870 | } |
| 2871 | clear_bit(0, (&sp->tasklet_status)); |
| 2872 | } else if (level == LOW) { |
| 2873 | tasklet_schedule(&sp->task); |
| 2874 | } |
| 2875 | } |
| 2876 | #endif |
| 2877 | |
| 2878 | return IRQ_HANDLED; |
| 2879 | } |
| 2880 | |
| 2881 | /** |
| 2882 | * s2io_get_stats - Updates the device statistics structure. |
| 2883 | * @dev : pointer to the device structure. |
| 2884 | * Description: |
| 2885 | * This function updates the device statistics structure in the s2io_nic |
| 2886 | * structure and returns a pointer to the same. |
| 2887 | * Return value: |
| 2888 | * pointer to the updated net_device_stats structure. |
| 2889 | */ |
| 2890 | |
| 2891 | static struct net_device_stats *s2io_get_stats(struct net_device *dev) |
| 2892 | { |
| 2893 | nic_t *sp = dev->priv; |
| 2894 | mac_info_t *mac_control; |
| 2895 | struct config_param *config; |
| 2896 | |
| 2897 | mac_control = &sp->mac_control; |
| 2898 | config = &sp->config; |
| 2899 | |
| 2900 | sp->stats.tx_errors = mac_control->stats_info->tmac_any_err_frms; |
| 2901 | sp->stats.rx_errors = mac_control->stats_info->rmac_drop_frms; |
| 2902 | sp->stats.multicast = mac_control->stats_info->rmac_vld_mcst_frms; |
| 2903 | sp->stats.rx_length_errors = |
| 2904 | mac_control->stats_info->rmac_long_frms; |
| 2905 | |
| 2906 | return (&sp->stats); |
| 2907 | } |
| 2908 | |
| 2909 | /** |
| 2910 | * s2io_set_multicast - entry point for multicast address enable/disable. |
| 2911 | * @dev : pointer to the device structure |
| 2912 | * Description: |
| 2913 | * This function is a driver entry point which gets called by the kernel |
| 2914 | * whenever multicast addresses must be enabled/disabled. This also gets |
| 2915 | * called to set/reset promiscuous mode. Depending on the deivce flag, we |
| 2916 | * determine, if multicast address must be enabled or if promiscuous mode |
| 2917 | * is to be disabled etc. |
| 2918 | * Return value: |
| 2919 | * void. |
| 2920 | */ |
| 2921 | |
| 2922 | static void s2io_set_multicast(struct net_device *dev) |
| 2923 | { |
| 2924 | int i, j, prev_cnt; |
| 2925 | struct dev_mc_list *mclist; |
| 2926 | nic_t *sp = dev->priv; |
| 2927 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 2928 | u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = |
| 2929 | 0xfeffffffffffULL; |
| 2930 | u64 dis_addr = 0xffffffffffffULL, mac_addr = 0; |
| 2931 | void __iomem *add; |
| 2932 | |
| 2933 | if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { |
| 2934 | /* Enable all Multicast addresses */ |
| 2935 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), |
| 2936 | &bar0->rmac_addr_data0_mem); |
| 2937 | writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), |
| 2938 | &bar0->rmac_addr_data1_mem); |
| 2939 | val64 = RMAC_ADDR_CMD_MEM_WE | |
| 2940 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| 2941 | RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET); |
| 2942 | writeq(val64, &bar0->rmac_addr_cmd_mem); |
| 2943 | /* Wait till command completes */ |
| 2944 | wait_for_cmd_complete(sp); |
| 2945 | |
| 2946 | sp->m_cast_flg = 1; |
| 2947 | sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET; |
| 2948 | } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { |
| 2949 | /* Disable all Multicast addresses */ |
| 2950 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), |
| 2951 | &bar0->rmac_addr_data0_mem); |
| 2952 | val64 = RMAC_ADDR_CMD_MEM_WE | |
| 2953 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| 2954 | RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); |
| 2955 | writeq(val64, &bar0->rmac_addr_cmd_mem); |
| 2956 | /* Wait till command completes */ |
| 2957 | wait_for_cmd_complete(sp); |
| 2958 | |
| 2959 | sp->m_cast_flg = 0; |
| 2960 | sp->all_multi_pos = 0; |
| 2961 | } |
| 2962 | |
| 2963 | if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { |
| 2964 | /* Put the NIC into promiscuous mode */ |
| 2965 | add = &bar0->mac_cfg; |
| 2966 | val64 = readq(&bar0->mac_cfg); |
| 2967 | val64 |= MAC_CFG_RMAC_PROM_ENABLE; |
| 2968 | |
| 2969 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| 2970 | writel((u32) val64, add); |
| 2971 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| 2972 | writel((u32) (val64 >> 32), (add + 4)); |
| 2973 | |
| 2974 | val64 = readq(&bar0->mac_cfg); |
| 2975 | sp->promisc_flg = 1; |
| 2976 | DBG_PRINT(ERR_DBG, "%s: entered promiscuous mode\n", |
| 2977 | dev->name); |
| 2978 | } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { |
| 2979 | /* Remove the NIC from promiscuous mode */ |
| 2980 | add = &bar0->mac_cfg; |
| 2981 | val64 = readq(&bar0->mac_cfg); |
| 2982 | val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; |
| 2983 | |
| 2984 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| 2985 | writel((u32) val64, add); |
| 2986 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); |
| 2987 | writel((u32) (val64 >> 32), (add + 4)); |
| 2988 | |
| 2989 | val64 = readq(&bar0->mac_cfg); |
| 2990 | sp->promisc_flg = 0; |
| 2991 | DBG_PRINT(ERR_DBG, "%s: left promiscuous mode\n", |
| 2992 | dev->name); |
| 2993 | } |
| 2994 | |
| 2995 | /* Update individual M_CAST address list */ |
| 2996 | if ((!sp->m_cast_flg) && dev->mc_count) { |
| 2997 | if (dev->mc_count > |
| 2998 | (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) { |
| 2999 | DBG_PRINT(ERR_DBG, "%s: No more Rx filters ", |
| 3000 | dev->name); |
| 3001 | DBG_PRINT(ERR_DBG, "can be added, please enable "); |
| 3002 | DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n"); |
| 3003 | return; |
| 3004 | } |
| 3005 | |
| 3006 | prev_cnt = sp->mc_addr_count; |
| 3007 | sp->mc_addr_count = dev->mc_count; |
| 3008 | |
| 3009 | /* Clear out the previous list of Mc in the H/W. */ |
| 3010 | for (i = 0; i < prev_cnt; i++) { |
| 3011 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), |
| 3012 | &bar0->rmac_addr_data0_mem); |
| 3013 | writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), |
| 3014 | &bar0->rmac_addr_data1_mem); |
| 3015 | val64 = RMAC_ADDR_CMD_MEM_WE | |
| 3016 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| 3017 | RMAC_ADDR_CMD_MEM_OFFSET |
| 3018 | (MAC_MC_ADDR_START_OFFSET + i); |
| 3019 | writeq(val64, &bar0->rmac_addr_cmd_mem); |
| 3020 | |
| 3021 | /* Wait for command completes */ |
| 3022 | if (wait_for_cmd_complete(sp)) { |
| 3023 | DBG_PRINT(ERR_DBG, "%s: Adding ", |
| 3024 | dev->name); |
| 3025 | DBG_PRINT(ERR_DBG, "Multicasts failed\n"); |
| 3026 | return; |
| 3027 | } |
| 3028 | } |
| 3029 | |
| 3030 | /* Create the new Rx filter list and update the same in H/W. */ |
| 3031 | for (i = 0, mclist = dev->mc_list; i < dev->mc_count; |
| 3032 | i++, mclist = mclist->next) { |
| 3033 | memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr, |
| 3034 | ETH_ALEN); |
| 3035 | for (j = 0; j < ETH_ALEN; j++) { |
| 3036 | mac_addr |= mclist->dmi_addr[j]; |
| 3037 | mac_addr <<= 8; |
| 3038 | } |
| 3039 | mac_addr >>= 8; |
| 3040 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), |
| 3041 | &bar0->rmac_addr_data0_mem); |
| 3042 | writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), |
| 3043 | &bar0->rmac_addr_data1_mem); |
| 3044 | |
| 3045 | val64 = RMAC_ADDR_CMD_MEM_WE | |
| 3046 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| 3047 | RMAC_ADDR_CMD_MEM_OFFSET |
| 3048 | (i + MAC_MC_ADDR_START_OFFSET); |
| 3049 | writeq(val64, &bar0->rmac_addr_cmd_mem); |
| 3050 | |
| 3051 | /* Wait for command completes */ |
| 3052 | if (wait_for_cmd_complete(sp)) { |
| 3053 | DBG_PRINT(ERR_DBG, "%s: Adding ", |
| 3054 | dev->name); |
| 3055 | DBG_PRINT(ERR_DBG, "Multicasts failed\n"); |
| 3056 | return; |
| 3057 | } |
| 3058 | } |
| 3059 | } |
| 3060 | } |
| 3061 | |
| 3062 | /** |
| 3063 | * s2io_set_mac_addr - Programs the Xframe mac address |
| 3064 | * @dev : pointer to the device structure. |
| 3065 | * @addr: a uchar pointer to the new mac address which is to be set. |
| 3066 | * Description : This procedure will program the Xframe to receive |
| 3067 | * frames with new Mac Address |
| 3068 | * Return value: SUCCESS on success and an appropriate (-)ve integer |
| 3069 | * as defined in errno.h file on failure. |
| 3070 | */ |
| 3071 | |
| 3072 | int s2io_set_mac_addr(struct net_device *dev, u8 * addr) |
| 3073 | { |
| 3074 | nic_t *sp = dev->priv; |
| 3075 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 3076 | register u64 val64, mac_addr = 0; |
| 3077 | int i; |
| 3078 | |
| 3079 | /* |
| 3080 | * Set the new MAC address as the new unicast filter and reflect this |
| 3081 | * change on the device address registered with the OS. It will be |
| 3082 | * at offset 0. |
| 3083 | */ |
| 3084 | for (i = 0; i < ETH_ALEN; i++) { |
| 3085 | mac_addr <<= 8; |
| 3086 | mac_addr |= addr[i]; |
| 3087 | } |
| 3088 | |
| 3089 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), |
| 3090 | &bar0->rmac_addr_data0_mem); |
| 3091 | |
| 3092 | val64 = |
| 3093 | RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| 3094 | RMAC_ADDR_CMD_MEM_OFFSET(0); |
| 3095 | writeq(val64, &bar0->rmac_addr_cmd_mem); |
| 3096 | /* Wait till command completes */ |
| 3097 | if (wait_for_cmd_complete(sp)) { |
| 3098 | DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name); |
| 3099 | return FAILURE; |
| 3100 | } |
| 3101 | |
| 3102 | return SUCCESS; |
| 3103 | } |
| 3104 | |
| 3105 | /** |
| 3106 | * s2io_ethtool_sset - Sets different link parameters. |
| 3107 | * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. |
| 3108 | * @info: pointer to the structure with parameters given by ethtool to set |
| 3109 | * link information. |
| 3110 | * Description: |
| 3111 | * The function sets different link parameters provided by the user onto |
| 3112 | * the NIC. |
| 3113 | * Return value: |
| 3114 | * 0 on success. |
| 3115 | */ |
| 3116 | |
| 3117 | static int s2io_ethtool_sset(struct net_device *dev, |
| 3118 | struct ethtool_cmd *info) |
| 3119 | { |
| 3120 | nic_t *sp = dev->priv; |
| 3121 | if ((info->autoneg == AUTONEG_ENABLE) || |
| 3122 | (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL)) |
| 3123 | return -EINVAL; |
| 3124 | else { |
| 3125 | s2io_close(sp->dev); |
| 3126 | s2io_open(sp->dev); |
| 3127 | } |
| 3128 | |
| 3129 | return 0; |
| 3130 | } |
| 3131 | |
| 3132 | /** |
| 3133 | * s2io_ethtol_gset - Return link specific information. |
| 3134 | * @sp : private member of the device structure, pointer to the |
| 3135 | * s2io_nic structure. |
| 3136 | * @info : pointer to the structure with parameters given by ethtool |
| 3137 | * to return link information. |
| 3138 | * Description: |
| 3139 | * Returns link specific information like speed, duplex etc.. to ethtool. |
| 3140 | * Return value : |
| 3141 | * return 0 on success. |
| 3142 | */ |
| 3143 | |
| 3144 | static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) |
| 3145 | { |
| 3146 | nic_t *sp = dev->priv; |
| 3147 | info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); |
| 3148 | info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); |
| 3149 | info->port = PORT_FIBRE; |
| 3150 | /* info->transceiver?? TODO */ |
| 3151 | |
| 3152 | if (netif_carrier_ok(sp->dev)) { |
| 3153 | info->speed = 10000; |
| 3154 | info->duplex = DUPLEX_FULL; |
| 3155 | } else { |
| 3156 | info->speed = -1; |
| 3157 | info->duplex = -1; |
| 3158 | } |
| 3159 | |
| 3160 | info->autoneg = AUTONEG_DISABLE; |
| 3161 | return 0; |
| 3162 | } |
| 3163 | |
| 3164 | /** |
| 3165 | * s2io_ethtool_gdrvinfo - Returns driver specific information. |
| 3166 | * @sp : private member of the device structure, which is a pointer to the |
| 3167 | * s2io_nic structure. |
| 3168 | * @info : pointer to the structure with parameters given by ethtool to |
| 3169 | * return driver information. |
| 3170 | * Description: |
| 3171 | * Returns driver specefic information like name, version etc.. to ethtool. |
| 3172 | * Return value: |
| 3173 | * void |
| 3174 | */ |
| 3175 | |
| 3176 | static void s2io_ethtool_gdrvinfo(struct net_device *dev, |
| 3177 | struct ethtool_drvinfo *info) |
| 3178 | { |
| 3179 | nic_t *sp = dev->priv; |
| 3180 | |
| 3181 | strncpy(info->driver, s2io_driver_name, sizeof(s2io_driver_name)); |
| 3182 | strncpy(info->version, s2io_driver_version, |
| 3183 | sizeof(s2io_driver_version)); |
| 3184 | strncpy(info->fw_version, "", 32); |
| 3185 | strncpy(info->bus_info, pci_name(sp->pdev), 32); |
| 3186 | info->regdump_len = XENA_REG_SPACE; |
| 3187 | info->eedump_len = XENA_EEPROM_SPACE; |
| 3188 | info->testinfo_len = S2IO_TEST_LEN; |
| 3189 | info->n_stats = S2IO_STAT_LEN; |
| 3190 | } |
| 3191 | |
| 3192 | /** |
| 3193 | * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. |
| 3194 | * @sp: private member of the device structure, which is a pointer to the |
| 3195 | * s2io_nic structure. |
| 3196 | * @regs : pointer to the structure with parameters given by ethtool for |
| 3197 | * dumping the registers. |
| 3198 | * @reg_space: The input argumnet into which all the registers are dumped. |
| 3199 | * Description: |
| 3200 | * Dumps the entire register space of xFrame NIC into the user given |
| 3201 | * buffer area. |
| 3202 | * Return value : |
| 3203 | * void . |
| 3204 | */ |
| 3205 | |
| 3206 | static void s2io_ethtool_gregs(struct net_device *dev, |
| 3207 | struct ethtool_regs *regs, void *space) |
| 3208 | { |
| 3209 | int i; |
| 3210 | u64 reg; |
| 3211 | u8 *reg_space = (u8 *) space; |
| 3212 | nic_t *sp = dev->priv; |
| 3213 | |
| 3214 | regs->len = XENA_REG_SPACE; |
| 3215 | regs->version = sp->pdev->subsystem_device; |
| 3216 | |
| 3217 | for (i = 0; i < regs->len; i += 8) { |
| 3218 | reg = readq(sp->bar0 + i); |
| 3219 | memcpy((reg_space + i), ®, 8); |
| 3220 | } |
| 3221 | } |
| 3222 | |
| 3223 | /** |
| 3224 | * s2io_phy_id - timer function that alternates adapter LED. |
| 3225 | * @data : address of the private member of the device structure, which |
| 3226 | * is a pointer to the s2io_nic structure, provided as an u32. |
| 3227 | * Description: This is actually the timer function that alternates the |
| 3228 | * adapter LED bit of the adapter control bit to set/reset every time on |
| 3229 | * invocation. The timer is set for 1/2 a second, hence tha NIC blinks |
| 3230 | * once every second. |
| 3231 | */ |
| 3232 | static void s2io_phy_id(unsigned long data) |
| 3233 | { |
| 3234 | nic_t *sp = (nic_t *) data; |
| 3235 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 3236 | u64 val64 = 0; |
| 3237 | u16 subid; |
| 3238 | |
| 3239 | subid = sp->pdev->subsystem_device; |
| 3240 | if ((subid & 0xFF) >= 0x07) { |
| 3241 | val64 = readq(&bar0->gpio_control); |
| 3242 | val64 ^= GPIO_CTRL_GPIO_0; |
| 3243 | writeq(val64, &bar0->gpio_control); |
| 3244 | } else { |
| 3245 | val64 = readq(&bar0->adapter_control); |
| 3246 | val64 ^= ADAPTER_LED_ON; |
| 3247 | writeq(val64, &bar0->adapter_control); |
| 3248 | } |
| 3249 | |
| 3250 | mod_timer(&sp->id_timer, jiffies + HZ / 2); |
| 3251 | } |
| 3252 | |
| 3253 | /** |
| 3254 | * s2io_ethtool_idnic - To physically identify the nic on the system. |
| 3255 | * @sp : private member of the device structure, which is a pointer to the |
| 3256 | * s2io_nic structure. |
| 3257 | * @id : pointer to the structure with identification parameters given by |
| 3258 | * ethtool. |
| 3259 | * Description: Used to physically identify the NIC on the system. |
| 3260 | * The Link LED will blink for a time specified by the user for |
| 3261 | * identification. |
| 3262 | * NOTE: The Link has to be Up to be able to blink the LED. Hence |
| 3263 | * identification is possible only if it's link is up. |
| 3264 | * Return value: |
| 3265 | * int , returns 0 on success |
| 3266 | */ |
| 3267 | |
| 3268 | static int s2io_ethtool_idnic(struct net_device *dev, u32 data) |
| 3269 | { |
| 3270 | u64 val64 = 0, last_gpio_ctrl_val; |
| 3271 | nic_t *sp = dev->priv; |
| 3272 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 3273 | u16 subid; |
| 3274 | |
| 3275 | subid = sp->pdev->subsystem_device; |
| 3276 | last_gpio_ctrl_val = readq(&bar0->gpio_control); |
| 3277 | if ((subid & 0xFF) < 0x07) { |
| 3278 | val64 = readq(&bar0->adapter_control); |
| 3279 | if (!(val64 & ADAPTER_CNTL_EN)) { |
| 3280 | printk(KERN_ERR |
| 3281 | "Adapter Link down, cannot blink LED\n"); |
| 3282 | return -EFAULT; |
| 3283 | } |
| 3284 | } |
| 3285 | if (sp->id_timer.function == NULL) { |
| 3286 | init_timer(&sp->id_timer); |
| 3287 | sp->id_timer.function = s2io_phy_id; |
| 3288 | sp->id_timer.data = (unsigned long) sp; |
| 3289 | } |
| 3290 | mod_timer(&sp->id_timer, jiffies); |
| 3291 | if (data) |
| 3292 | msleep(data * 1000); |
| 3293 | else |
| 3294 | msleep(0xFFFFFFFF); |
| 3295 | del_timer_sync(&sp->id_timer); |
| 3296 | |
| 3297 | if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) { |
| 3298 | writeq(last_gpio_ctrl_val, &bar0->gpio_control); |
| 3299 | last_gpio_ctrl_val = readq(&bar0->gpio_control); |
| 3300 | } |
| 3301 | |
| 3302 | return 0; |
| 3303 | } |
| 3304 | |
| 3305 | /** |
| 3306 | * s2io_ethtool_getpause_data -Pause frame frame generation and reception. |
| 3307 | * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. |
| 3308 | * @ep : pointer to the structure with pause parameters given by ethtool. |
| 3309 | * Description: |
| 3310 | * Returns the Pause frame generation and reception capability of the NIC. |
| 3311 | * Return value: |
| 3312 | * void |
| 3313 | */ |
| 3314 | static void s2io_ethtool_getpause_data(struct net_device *dev, |
| 3315 | struct ethtool_pauseparam *ep) |
| 3316 | { |
| 3317 | u64 val64; |
| 3318 | nic_t *sp = dev->priv; |
| 3319 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 3320 | |
| 3321 | val64 = readq(&bar0->rmac_pause_cfg); |
| 3322 | if (val64 & RMAC_PAUSE_GEN_ENABLE) |
| 3323 | ep->tx_pause = TRUE; |
| 3324 | if (val64 & RMAC_PAUSE_RX_ENABLE) |
| 3325 | ep->rx_pause = TRUE; |
| 3326 | ep->autoneg = FALSE; |
| 3327 | } |
| 3328 | |
| 3329 | /** |
| 3330 | * s2io_ethtool_setpause_data - set/reset pause frame generation. |
| 3331 | * @sp : private member of the device structure, which is a pointer to the |
| 3332 | * s2io_nic structure. |
| 3333 | * @ep : pointer to the structure with pause parameters given by ethtool. |
| 3334 | * Description: |
| 3335 | * It can be used to set or reset Pause frame generation or reception |
| 3336 | * support of the NIC. |
| 3337 | * Return value: |
| 3338 | * int, returns 0 on Success |
| 3339 | */ |
| 3340 | |
| 3341 | static int s2io_ethtool_setpause_data(struct net_device *dev, |
| 3342 | struct ethtool_pauseparam *ep) |
| 3343 | { |
| 3344 | u64 val64; |
| 3345 | nic_t *sp = dev->priv; |
| 3346 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 3347 | |
| 3348 | val64 = readq(&bar0->rmac_pause_cfg); |
| 3349 | if (ep->tx_pause) |
| 3350 | val64 |= RMAC_PAUSE_GEN_ENABLE; |
| 3351 | else |
| 3352 | val64 &= ~RMAC_PAUSE_GEN_ENABLE; |
| 3353 | if (ep->rx_pause) |
| 3354 | val64 |= RMAC_PAUSE_RX_ENABLE; |
| 3355 | else |
| 3356 | val64 &= ~RMAC_PAUSE_RX_ENABLE; |
| 3357 | writeq(val64, &bar0->rmac_pause_cfg); |
| 3358 | return 0; |
| 3359 | } |
| 3360 | |
| 3361 | /** |
| 3362 | * read_eeprom - reads 4 bytes of data from user given offset. |
| 3363 | * @sp : private member of the device structure, which is a pointer to the |
| 3364 | * s2io_nic structure. |
| 3365 | * @off : offset at which the data must be written |
| 3366 | * @data : Its an output parameter where the data read at the given |
| 3367 | * offset is stored. |
| 3368 | * Description: |
| 3369 | * Will read 4 bytes of data from the user given offset and return the |
| 3370 | * read data. |
| 3371 | * NOTE: Will allow to read only part of the EEPROM visible through the |
| 3372 | * I2C bus. |
| 3373 | * Return value: |
| 3374 | * -1 on failure and 0 on success. |
| 3375 | */ |
| 3376 | |
| 3377 | #define S2IO_DEV_ID 5 |
| 3378 | static int read_eeprom(nic_t * sp, int off, u32 * data) |
| 3379 | { |
| 3380 | int ret = -1; |
| 3381 | u32 exit_cnt = 0; |
| 3382 | u64 val64; |
| 3383 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 3384 | |
| 3385 | val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | |
| 3386 | I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ | |
| 3387 | I2C_CONTROL_CNTL_START; |
| 3388 | SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); |
| 3389 | |
| 3390 | while (exit_cnt < 5) { |
| 3391 | val64 = readq(&bar0->i2c_control); |
| 3392 | if (I2C_CONTROL_CNTL_END(val64)) { |
| 3393 | *data = I2C_CONTROL_GET_DATA(val64); |
| 3394 | ret = 0; |
| 3395 | break; |
| 3396 | } |
| 3397 | msleep(50); |
| 3398 | exit_cnt++; |
| 3399 | } |
| 3400 | |
| 3401 | return ret; |
| 3402 | } |
| 3403 | |
| 3404 | /** |
| 3405 | * write_eeprom - actually writes the relevant part of the data value. |
| 3406 | * @sp : private member of the device structure, which is a pointer to the |
| 3407 | * s2io_nic structure. |
| 3408 | * @off : offset at which the data must be written |
| 3409 | * @data : The data that is to be written |
| 3410 | * @cnt : Number of bytes of the data that are actually to be written into |
| 3411 | * the Eeprom. (max of 3) |
| 3412 | * Description: |
| 3413 | * Actually writes the relevant part of the data value into the Eeprom |
| 3414 | * through the I2C bus. |
| 3415 | * Return value: |
| 3416 | * 0 on success, -1 on failure. |
| 3417 | */ |
| 3418 | |
| 3419 | static int write_eeprom(nic_t * sp, int off, u32 data, int cnt) |
| 3420 | { |
| 3421 | int exit_cnt = 0, ret = -1; |
| 3422 | u64 val64; |
| 3423 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 3424 | |
| 3425 | val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | |
| 3426 | I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA(data) | |
| 3427 | I2C_CONTROL_CNTL_START; |
| 3428 | SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); |
| 3429 | |
| 3430 | while (exit_cnt < 5) { |
| 3431 | val64 = readq(&bar0->i2c_control); |
| 3432 | if (I2C_CONTROL_CNTL_END(val64)) { |
| 3433 | if (!(val64 & I2C_CONTROL_NACK)) |
| 3434 | ret = 0; |
| 3435 | break; |
| 3436 | } |
| 3437 | msleep(50); |
| 3438 | exit_cnt++; |
| 3439 | } |
| 3440 | |
| 3441 | return ret; |
| 3442 | } |
| 3443 | |
| 3444 | /** |
| 3445 | * s2io_ethtool_geeprom - reads the value stored in the Eeprom. |
| 3446 | * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. |
| 3447 | * @eeprom : pointer to the user level structure provided by ethtool, |
| 3448 | * containing all relevant information. |
| 3449 | * @data_buf : user defined value to be written into Eeprom. |
| 3450 | * Description: Reads the values stored in the Eeprom at given offset |
| 3451 | * for a given length. Stores these values int the input argument data |
| 3452 | * buffer 'data_buf' and returns these to the caller (ethtool.) |
| 3453 | * Return value: |
| 3454 | * int 0 on success |
| 3455 | */ |
| 3456 | |
| 3457 | static int s2io_ethtool_geeprom(struct net_device *dev, |
| 3458 | struct ethtool_eeprom *eeprom, u8 * data_buf) |
| 3459 | { |
| 3460 | u32 data, i, valid; |
| 3461 | nic_t *sp = dev->priv; |
| 3462 | |
| 3463 | eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); |
| 3464 | |
| 3465 | if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) |
| 3466 | eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; |
| 3467 | |
| 3468 | for (i = 0; i < eeprom->len; i += 4) { |
| 3469 | if (read_eeprom(sp, (eeprom->offset + i), &data)) { |
| 3470 | DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); |
| 3471 | return -EFAULT; |
| 3472 | } |
| 3473 | valid = INV(data); |
| 3474 | memcpy((data_buf + i), &valid, 4); |
| 3475 | } |
| 3476 | return 0; |
| 3477 | } |
| 3478 | |
| 3479 | /** |
| 3480 | * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom |
| 3481 | * @sp : private member of the device structure, which is a pointer to the |
| 3482 | * s2io_nic structure. |
| 3483 | * @eeprom : pointer to the user level structure provided by ethtool, |
| 3484 | * containing all relevant information. |
| 3485 | * @data_buf ; user defined value to be written into Eeprom. |
| 3486 | * Description: |
| 3487 | * Tries to write the user provided value in the Eeprom, at the offset |
| 3488 | * given by the user. |
| 3489 | * Return value: |
| 3490 | * 0 on success, -EFAULT on failure. |
| 3491 | */ |
| 3492 | |
| 3493 | static int s2io_ethtool_seeprom(struct net_device *dev, |
| 3494 | struct ethtool_eeprom *eeprom, |
| 3495 | u8 * data_buf) |
| 3496 | { |
| 3497 | int len = eeprom->len, cnt = 0; |
| 3498 | u32 valid = 0, data; |
| 3499 | nic_t *sp = dev->priv; |
| 3500 | |
| 3501 | if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { |
| 3502 | DBG_PRINT(ERR_DBG, |
| 3503 | "ETHTOOL_WRITE_EEPROM Err: Magic value "); |
| 3504 | DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n", |
| 3505 | eeprom->magic); |
| 3506 | return -EFAULT; |
| 3507 | } |
| 3508 | |
| 3509 | while (len) { |
| 3510 | data = (u32) data_buf[cnt] & 0x000000FF; |
| 3511 | if (data) { |
| 3512 | valid = (u32) (data << 24); |
| 3513 | } else |
| 3514 | valid = data; |
| 3515 | |
| 3516 | if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { |
| 3517 | DBG_PRINT(ERR_DBG, |
| 3518 | "ETHTOOL_WRITE_EEPROM Err: Cannot "); |
| 3519 | DBG_PRINT(ERR_DBG, |
| 3520 | "write into the specified offset\n"); |
| 3521 | return -EFAULT; |
| 3522 | } |
| 3523 | cnt++; |
| 3524 | len--; |
| 3525 | } |
| 3526 | |
| 3527 | return 0; |
| 3528 | } |
| 3529 | |
| 3530 | /** |
| 3531 | * s2io_register_test - reads and writes into all clock domains. |
| 3532 | * @sp : private member of the device structure, which is a pointer to the |
| 3533 | * s2io_nic structure. |
| 3534 | * @data : variable that returns the result of each of the test conducted b |
| 3535 | * by the driver. |
| 3536 | * Description: |
| 3537 | * Read and write into all clock domains. The NIC has 3 clock domains, |
| 3538 | * see that registers in all the three regions are accessible. |
| 3539 | * Return value: |
| 3540 | * 0 on success. |
| 3541 | */ |
| 3542 | |
| 3543 | static int s2io_register_test(nic_t * sp, uint64_t * data) |
| 3544 | { |
| 3545 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 3546 | u64 val64 = 0; |
| 3547 | int fail = 0; |
| 3548 | |
| 3549 | val64 = readq(&bar0->pcc_enable); |
| 3550 | if (val64 != 0xff00000000000000ULL) { |
| 3551 | fail = 1; |
| 3552 | DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n"); |
| 3553 | } |
| 3554 | |
| 3555 | val64 = readq(&bar0->rmac_pause_cfg); |
| 3556 | if (val64 != 0xc000ffff00000000ULL) { |
| 3557 | fail = 1; |
| 3558 | DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n"); |
| 3559 | } |
| 3560 | |
| 3561 | val64 = readq(&bar0->rx_queue_cfg); |
| 3562 | if (val64 != 0x0808080808080808ULL) { |
| 3563 | fail = 1; |
| 3564 | DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n"); |
| 3565 | } |
| 3566 | |
| 3567 | val64 = readq(&bar0->xgxs_efifo_cfg); |
| 3568 | if (val64 != 0x000000001923141EULL) { |
| 3569 | fail = 1; |
| 3570 | DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n"); |
| 3571 | } |
| 3572 | |
| 3573 | val64 = 0x5A5A5A5A5A5A5A5AULL; |
| 3574 | writeq(val64, &bar0->xmsi_data); |
| 3575 | val64 = readq(&bar0->xmsi_data); |
| 3576 | if (val64 != 0x5A5A5A5A5A5A5A5AULL) { |
| 3577 | fail = 1; |
| 3578 | DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n"); |
| 3579 | } |
| 3580 | |
| 3581 | val64 = 0xA5A5A5A5A5A5A5A5ULL; |
| 3582 | writeq(val64, &bar0->xmsi_data); |
| 3583 | val64 = readq(&bar0->xmsi_data); |
| 3584 | if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { |
| 3585 | fail = 1; |
| 3586 | DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n"); |
| 3587 | } |
| 3588 | |
| 3589 | *data = fail; |
| 3590 | return 0; |
| 3591 | } |
| 3592 | |
| 3593 | /** |
| 3594 | * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. |
| 3595 | * @sp : private member of the device structure, which is a pointer to the |
| 3596 | * s2io_nic structure. |
| 3597 | * @data:variable that returns the result of each of the test conducted by |
| 3598 | * the driver. |
| 3599 | * Description: |
| 3600 | * Verify that EEPROM in the xena can be programmed using I2C_CONTROL |
| 3601 | * register. |
| 3602 | * Return value: |
| 3603 | * 0 on success. |
| 3604 | */ |
| 3605 | |
| 3606 | static int s2io_eeprom_test(nic_t * sp, uint64_t * data) |
| 3607 | { |
| 3608 | int fail = 0; |
| 3609 | u32 ret_data; |
| 3610 | |
| 3611 | /* Test Write Error at offset 0 */ |
| 3612 | if (!write_eeprom(sp, 0, 0, 3)) |
| 3613 | fail = 1; |
| 3614 | |
| 3615 | /* Test Write at offset 4f0 */ |
| 3616 | if (write_eeprom(sp, 0x4F0, 0x01234567, 3)) |
| 3617 | fail = 1; |
| 3618 | if (read_eeprom(sp, 0x4F0, &ret_data)) |
| 3619 | fail = 1; |
| 3620 | |
| 3621 | if (ret_data != 0x01234567) |
| 3622 | fail = 1; |
| 3623 | |
| 3624 | /* Reset the EEPROM data go FFFF */ |
| 3625 | write_eeprom(sp, 0x4F0, 0xFFFFFFFF, 3); |
| 3626 | |
| 3627 | /* Test Write Request Error at offset 0x7c */ |
| 3628 | if (!write_eeprom(sp, 0x07C, 0, 3)) |
| 3629 | fail = 1; |
| 3630 | |
| 3631 | /* Test Write Request at offset 0x7fc */ |
| 3632 | if (write_eeprom(sp, 0x7FC, 0x01234567, 3)) |
| 3633 | fail = 1; |
| 3634 | if (read_eeprom(sp, 0x7FC, &ret_data)) |
| 3635 | fail = 1; |
| 3636 | |
| 3637 | if (ret_data != 0x01234567) |
| 3638 | fail = 1; |
| 3639 | |
| 3640 | /* Reset the EEPROM data go FFFF */ |
| 3641 | write_eeprom(sp, 0x7FC, 0xFFFFFFFF, 3); |
| 3642 | |
| 3643 | /* Test Write Error at offset 0x80 */ |
| 3644 | if (!write_eeprom(sp, 0x080, 0, 3)) |
| 3645 | fail = 1; |
| 3646 | |
| 3647 | /* Test Write Error at offset 0xfc */ |
| 3648 | if (!write_eeprom(sp, 0x0FC, 0, 3)) |
| 3649 | fail = 1; |
| 3650 | |
| 3651 | /* Test Write Error at offset 0x100 */ |
| 3652 | if (!write_eeprom(sp, 0x100, 0, 3)) |
| 3653 | fail = 1; |
| 3654 | |
| 3655 | /* Test Write Error at offset 4ec */ |
| 3656 | if (!write_eeprom(sp, 0x4EC, 0, 3)) |
| 3657 | fail = 1; |
| 3658 | |
| 3659 | *data = fail; |
| 3660 | return 0; |
| 3661 | } |
| 3662 | |
| 3663 | /** |
| 3664 | * s2io_bist_test - invokes the MemBist test of the card . |
| 3665 | * @sp : private member of the device structure, which is a pointer to the |
| 3666 | * s2io_nic structure. |
| 3667 | * @data:variable that returns the result of each of the test conducted by |
| 3668 | * the driver. |
| 3669 | * Description: |
| 3670 | * This invokes the MemBist test of the card. We give around |
| 3671 | * 2 secs time for the Test to complete. If it's still not complete |
| 3672 | * within this peiod, we consider that the test failed. |
| 3673 | * Return value: |
| 3674 | * 0 on success and -1 on failure. |
| 3675 | */ |
| 3676 | |
| 3677 | static int s2io_bist_test(nic_t * sp, uint64_t * data) |
| 3678 | { |
| 3679 | u8 bist = 0; |
| 3680 | int cnt = 0, ret = -1; |
| 3681 | |
| 3682 | pci_read_config_byte(sp->pdev, PCI_BIST, &bist); |
| 3683 | bist |= PCI_BIST_START; |
| 3684 | pci_write_config_word(sp->pdev, PCI_BIST, bist); |
| 3685 | |
| 3686 | while (cnt < 20) { |
| 3687 | pci_read_config_byte(sp->pdev, PCI_BIST, &bist); |
| 3688 | if (!(bist & PCI_BIST_START)) { |
| 3689 | *data = (bist & PCI_BIST_CODE_MASK); |
| 3690 | ret = 0; |
| 3691 | break; |
| 3692 | } |
| 3693 | msleep(100); |
| 3694 | cnt++; |
| 3695 | } |
| 3696 | |
| 3697 | return ret; |
| 3698 | } |
| 3699 | |
| 3700 | /** |
| 3701 | * s2io-link_test - verifies the link state of the nic |
| 3702 | * @sp ; private member of the device structure, which is a pointer to the |
| 3703 | * s2io_nic structure. |
| 3704 | * @data: variable that returns the result of each of the test conducted by |
| 3705 | * the driver. |
| 3706 | * Description: |
| 3707 | * The function verifies the link state of the NIC and updates the input |
| 3708 | * argument 'data' appropriately. |
| 3709 | * Return value: |
| 3710 | * 0 on success. |
| 3711 | */ |
| 3712 | |
| 3713 | static int s2io_link_test(nic_t * sp, uint64_t * data) |
| 3714 | { |
| 3715 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 3716 | u64 val64; |
| 3717 | |
| 3718 | val64 = readq(&bar0->adapter_status); |
| 3719 | if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT) |
| 3720 | *data = 1; |
| 3721 | |
| 3722 | return 0; |
| 3723 | } |
| 3724 | |
| 3725 | /** |
| 3726 | * s2io_rldram_test - offline test for access to the RldRam chip on the NIC |
| 3727 | * @sp - private member of the device structure, which is a pointer to the |
| 3728 | * s2io_nic structure. |
| 3729 | * @data - variable that returns the result of each of the test |
| 3730 | * conducted by the driver. |
| 3731 | * Description: |
| 3732 | * This is one of the offline test that tests the read and write |
| 3733 | * access to the RldRam chip on the NIC. |
| 3734 | * Return value: |
| 3735 | * 0 on success. |
| 3736 | */ |
| 3737 | |
| 3738 | static int s2io_rldram_test(nic_t * sp, uint64_t * data) |
| 3739 | { |
| 3740 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 3741 | u64 val64; |
| 3742 | int cnt, iteration = 0, test_pass = 0; |
| 3743 | |
| 3744 | val64 = readq(&bar0->adapter_control); |
| 3745 | val64 &= ~ADAPTER_ECC_EN; |
| 3746 | writeq(val64, &bar0->adapter_control); |
| 3747 | |
| 3748 | val64 = readq(&bar0->mc_rldram_test_ctrl); |
| 3749 | val64 |= MC_RLDRAM_TEST_MODE; |
| 3750 | writeq(val64, &bar0->mc_rldram_test_ctrl); |
| 3751 | |
| 3752 | val64 = readq(&bar0->mc_rldram_mrs); |
| 3753 | val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; |
| 3754 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); |
| 3755 | |
| 3756 | val64 |= MC_RLDRAM_MRS_ENABLE; |
| 3757 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); |
| 3758 | |
| 3759 | while (iteration < 2) { |
| 3760 | val64 = 0x55555555aaaa0000ULL; |
| 3761 | if (iteration == 1) { |
| 3762 | val64 ^= 0xFFFFFFFFFFFF0000ULL; |
| 3763 | } |
| 3764 | writeq(val64, &bar0->mc_rldram_test_d0); |
| 3765 | |
| 3766 | val64 = 0xaaaa5a5555550000ULL; |
| 3767 | if (iteration == 1) { |
| 3768 | val64 ^= 0xFFFFFFFFFFFF0000ULL; |
| 3769 | } |
| 3770 | writeq(val64, &bar0->mc_rldram_test_d1); |
| 3771 | |
| 3772 | val64 = 0x55aaaaaaaa5a0000ULL; |
| 3773 | if (iteration == 1) { |
| 3774 | val64 ^= 0xFFFFFFFFFFFF0000ULL; |
| 3775 | } |
| 3776 | writeq(val64, &bar0->mc_rldram_test_d2); |
| 3777 | |
| 3778 | val64 = (u64) (0x0000003fffff0000ULL); |
| 3779 | writeq(val64, &bar0->mc_rldram_test_add); |
| 3780 | |
| 3781 | |
| 3782 | val64 = MC_RLDRAM_TEST_MODE; |
| 3783 | writeq(val64, &bar0->mc_rldram_test_ctrl); |
| 3784 | |
| 3785 | val64 |= |
| 3786 | MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE | |
| 3787 | MC_RLDRAM_TEST_GO; |
| 3788 | writeq(val64, &bar0->mc_rldram_test_ctrl); |
| 3789 | |
| 3790 | for (cnt = 0; cnt < 5; cnt++) { |
| 3791 | val64 = readq(&bar0->mc_rldram_test_ctrl); |
| 3792 | if (val64 & MC_RLDRAM_TEST_DONE) |
| 3793 | break; |
| 3794 | msleep(200); |
| 3795 | } |
| 3796 | |
| 3797 | if (cnt == 5) |
| 3798 | break; |
| 3799 | |
| 3800 | val64 = MC_RLDRAM_TEST_MODE; |
| 3801 | writeq(val64, &bar0->mc_rldram_test_ctrl); |
| 3802 | |
| 3803 | val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; |
| 3804 | writeq(val64, &bar0->mc_rldram_test_ctrl); |
| 3805 | |
| 3806 | for (cnt = 0; cnt < 5; cnt++) { |
| 3807 | val64 = readq(&bar0->mc_rldram_test_ctrl); |
| 3808 | if (val64 & MC_RLDRAM_TEST_DONE) |
| 3809 | break; |
| 3810 | msleep(500); |
| 3811 | } |
| 3812 | |
| 3813 | if (cnt == 5) |
| 3814 | break; |
| 3815 | |
| 3816 | val64 = readq(&bar0->mc_rldram_test_ctrl); |
| 3817 | if (val64 & MC_RLDRAM_TEST_PASS) |
| 3818 | test_pass = 1; |
| 3819 | |
| 3820 | iteration++; |
| 3821 | } |
| 3822 | |
| 3823 | if (!test_pass) |
| 3824 | *data = 1; |
| 3825 | else |
| 3826 | *data = 0; |
| 3827 | |
| 3828 | return 0; |
| 3829 | } |
| 3830 | |
| 3831 | /** |
| 3832 | * s2io_ethtool_test - conducts 6 tsets to determine the health of card. |
| 3833 | * @sp : private member of the device structure, which is a pointer to the |
| 3834 | * s2io_nic structure. |
| 3835 | * @ethtest : pointer to a ethtool command specific structure that will be |
| 3836 | * returned to the user. |
| 3837 | * @data : variable that returns the result of each of the test |
| 3838 | * conducted by the driver. |
| 3839 | * Description: |
| 3840 | * This function conducts 6 tests ( 4 offline and 2 online) to determine |
| 3841 | * the health of the card. |
| 3842 | * Return value: |
| 3843 | * void |
| 3844 | */ |
| 3845 | |
| 3846 | static void s2io_ethtool_test(struct net_device *dev, |
| 3847 | struct ethtool_test *ethtest, |
| 3848 | uint64_t * data) |
| 3849 | { |
| 3850 | nic_t *sp = dev->priv; |
| 3851 | int orig_state = netif_running(sp->dev); |
| 3852 | |
| 3853 | if (ethtest->flags == ETH_TEST_FL_OFFLINE) { |
| 3854 | /* Offline Tests. */ |
| 3855 | if (orig_state) { |
| 3856 | s2io_close(sp->dev); |
| 3857 | s2io_set_swapper(sp); |
| 3858 | } else |
| 3859 | s2io_set_swapper(sp); |
| 3860 | |
| 3861 | if (s2io_register_test(sp, &data[0])) |
| 3862 | ethtest->flags |= ETH_TEST_FL_FAILED; |
| 3863 | |
| 3864 | s2io_reset(sp); |
| 3865 | s2io_set_swapper(sp); |
| 3866 | |
| 3867 | if (s2io_rldram_test(sp, &data[3])) |
| 3868 | ethtest->flags |= ETH_TEST_FL_FAILED; |
| 3869 | |
| 3870 | s2io_reset(sp); |
| 3871 | s2io_set_swapper(sp); |
| 3872 | |
| 3873 | if (s2io_eeprom_test(sp, &data[1])) |
| 3874 | ethtest->flags |= ETH_TEST_FL_FAILED; |
| 3875 | |
| 3876 | if (s2io_bist_test(sp, &data[4])) |
| 3877 | ethtest->flags |= ETH_TEST_FL_FAILED; |
| 3878 | |
| 3879 | if (orig_state) |
| 3880 | s2io_open(sp->dev); |
| 3881 | |
| 3882 | data[2] = 0; |
| 3883 | } else { |
| 3884 | /* Online Tests. */ |
| 3885 | if (!orig_state) { |
| 3886 | DBG_PRINT(ERR_DBG, |
| 3887 | "%s: is not up, cannot run test\n", |
| 3888 | dev->name); |
| 3889 | data[0] = -1; |
| 3890 | data[1] = -1; |
| 3891 | data[2] = -1; |
| 3892 | data[3] = -1; |
| 3893 | data[4] = -1; |
| 3894 | } |
| 3895 | |
| 3896 | if (s2io_link_test(sp, &data[2])) |
| 3897 | ethtest->flags |= ETH_TEST_FL_FAILED; |
| 3898 | |
| 3899 | data[0] = 0; |
| 3900 | data[1] = 0; |
| 3901 | data[3] = 0; |
| 3902 | data[4] = 0; |
| 3903 | } |
| 3904 | } |
| 3905 | |
| 3906 | static void s2io_get_ethtool_stats(struct net_device *dev, |
| 3907 | struct ethtool_stats *estats, |
| 3908 | u64 * tmp_stats) |
| 3909 | { |
| 3910 | int i = 0; |
| 3911 | nic_t *sp = dev->priv; |
| 3912 | StatInfo_t *stat_info = sp->mac_control.stats_info; |
| 3913 | |
| 3914 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_frms); |
| 3915 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_data_octets); |
| 3916 | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms); |
| 3917 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_mcst_frms); |
| 3918 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_bcst_frms); |
| 3919 | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms); |
| 3920 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_any_err_frms); |
| 3921 | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets); |
| 3922 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_vld_ip); |
| 3923 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_drop_ip); |
| 3924 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_icmp); |
| 3925 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_rst_tcp); |
| 3926 | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp); |
| 3927 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_udp); |
| 3928 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_frms); |
| 3929 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_data_octets); |
| 3930 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms); |
| 3931 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms); |
| 3932 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_mcst_frms); |
| 3933 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_bcst_frms); |
| 3934 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms); |
| 3935 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms); |
| 3936 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms); |
| 3937 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_discarded_frms); |
| 3938 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_usized_frms); |
| 3939 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_osized_frms); |
| 3940 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_frag_frms); |
| 3941 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_jabber_frms); |
| 3942 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ip); |
| 3943 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets); |
| 3944 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip); |
| 3945 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_drop_ip); |
| 3946 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_icmp); |
| 3947 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp); |
| 3948 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_udp); |
| 3949 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_drp_udp); |
| 3950 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pause_cnt); |
| 3951 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_accepted_ip); |
| 3952 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp); |
| 3953 | } |
| 3954 | |
| 3955 | static int s2io_ethtool_get_regs_len(struct net_device *dev) |
| 3956 | { |
| 3957 | return (XENA_REG_SPACE); |
| 3958 | } |
| 3959 | |
| 3960 | |
| 3961 | static u32 s2io_ethtool_get_rx_csum(struct net_device * dev) |
| 3962 | { |
| 3963 | nic_t *sp = dev->priv; |
| 3964 | |
| 3965 | return (sp->rx_csum); |
| 3966 | } |
| 3967 | |
| 3968 | static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data) |
| 3969 | { |
| 3970 | nic_t *sp = dev->priv; |
| 3971 | |
| 3972 | if (data) |
| 3973 | sp->rx_csum = 1; |
| 3974 | else |
| 3975 | sp->rx_csum = 0; |
| 3976 | |
| 3977 | return 0; |
| 3978 | } |
| 3979 | |
| 3980 | static int s2io_get_eeprom_len(struct net_device *dev) |
| 3981 | { |
| 3982 | return (XENA_EEPROM_SPACE); |
| 3983 | } |
| 3984 | |
| 3985 | static int s2io_ethtool_self_test_count(struct net_device *dev) |
| 3986 | { |
| 3987 | return (S2IO_TEST_LEN); |
| 3988 | } |
| 3989 | |
| 3990 | static void s2io_ethtool_get_strings(struct net_device *dev, |
| 3991 | u32 stringset, u8 * data) |
| 3992 | { |
| 3993 | switch (stringset) { |
| 3994 | case ETH_SS_TEST: |
| 3995 | memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); |
| 3996 | break; |
| 3997 | case ETH_SS_STATS: |
| 3998 | memcpy(data, ðtool_stats_keys, |
| 3999 | sizeof(ethtool_stats_keys)); |
| 4000 | } |
| 4001 | } |
| 4002 | |
| 4003 | static int s2io_ethtool_get_stats_count(struct net_device *dev) |
| 4004 | { |
| 4005 | return (S2IO_STAT_LEN); |
| 4006 | } |
| 4007 | |
| 4008 | static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data) |
| 4009 | { |
| 4010 | if (data) |
| 4011 | dev->features |= NETIF_F_IP_CSUM; |
| 4012 | else |
| 4013 | dev->features &= ~NETIF_F_IP_CSUM; |
| 4014 | |
| 4015 | return 0; |
| 4016 | } |
| 4017 | |
| 4018 | |
| 4019 | static struct ethtool_ops netdev_ethtool_ops = { |
| 4020 | .get_settings = s2io_ethtool_gset, |
| 4021 | .set_settings = s2io_ethtool_sset, |
| 4022 | .get_drvinfo = s2io_ethtool_gdrvinfo, |
| 4023 | .get_regs_len = s2io_ethtool_get_regs_len, |
| 4024 | .get_regs = s2io_ethtool_gregs, |
| 4025 | .get_link = ethtool_op_get_link, |
| 4026 | .get_eeprom_len = s2io_get_eeprom_len, |
| 4027 | .get_eeprom = s2io_ethtool_geeprom, |
| 4028 | .set_eeprom = s2io_ethtool_seeprom, |
| 4029 | .get_pauseparam = s2io_ethtool_getpause_data, |
| 4030 | .set_pauseparam = s2io_ethtool_setpause_data, |
| 4031 | .get_rx_csum = s2io_ethtool_get_rx_csum, |
| 4032 | .set_rx_csum = s2io_ethtool_set_rx_csum, |
| 4033 | .get_tx_csum = ethtool_op_get_tx_csum, |
| 4034 | .set_tx_csum = s2io_ethtool_op_set_tx_csum, |
| 4035 | .get_sg = ethtool_op_get_sg, |
| 4036 | .set_sg = ethtool_op_set_sg, |
| 4037 | #ifdef NETIF_F_TSO |
| 4038 | .get_tso = ethtool_op_get_tso, |
| 4039 | .set_tso = ethtool_op_set_tso, |
| 4040 | #endif |
| 4041 | .self_test_count = s2io_ethtool_self_test_count, |
| 4042 | .self_test = s2io_ethtool_test, |
| 4043 | .get_strings = s2io_ethtool_get_strings, |
| 4044 | .phys_id = s2io_ethtool_idnic, |
| 4045 | .get_stats_count = s2io_ethtool_get_stats_count, |
| 4046 | .get_ethtool_stats = s2io_get_ethtool_stats |
| 4047 | }; |
| 4048 | |
| 4049 | /** |
| 4050 | * s2io_ioctl - Entry point for the Ioctl |
| 4051 | * @dev : Device pointer. |
| 4052 | * @ifr : An IOCTL specefic structure, that can contain a pointer to |
| 4053 | * a proprietary structure used to pass information to the driver. |
| 4054 | * @cmd : This is used to distinguish between the different commands that |
| 4055 | * can be passed to the IOCTL functions. |
| 4056 | * Description: |
| 4057 | * This function has support for ethtool, adding multiple MAC addresses on |
| 4058 | * the NIC and some DBG commands for the util tool. |
| 4059 | * Return value: |
| 4060 | * Currently the IOCTL supports no operations, hence by default this |
| 4061 | * function returns OP NOT SUPPORTED value. |
| 4062 | */ |
| 4063 | |
| 4064 | static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| 4065 | { |
| 4066 | return -EOPNOTSUPP; |
| 4067 | } |
| 4068 | |
| 4069 | /** |
| 4070 | * s2io_change_mtu - entry point to change MTU size for the device. |
| 4071 | * @dev : device pointer. |
| 4072 | * @new_mtu : the new MTU size for the device. |
| 4073 | * Description: A driver entry point to change MTU size for the device. |
| 4074 | * Before changing the MTU the device must be stopped. |
| 4075 | * Return value: |
| 4076 | * 0 on success and an appropriate (-)ve integer as defined in errno.h |
| 4077 | * file on failure. |
| 4078 | */ |
| 4079 | |
| 4080 | static int s2io_change_mtu(struct net_device *dev, int new_mtu) |
| 4081 | { |
| 4082 | nic_t *sp = dev->priv; |
| 4083 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 4084 | register u64 val64; |
| 4085 | |
| 4086 | if (netif_running(dev)) { |
| 4087 | DBG_PRINT(ERR_DBG, "%s: Must be stopped to ", dev->name); |
| 4088 | DBG_PRINT(ERR_DBG, "change its MTU \n"); |
| 4089 | return -EBUSY; |
| 4090 | } |
| 4091 | |
| 4092 | if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { |
| 4093 | DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", |
| 4094 | dev->name); |
| 4095 | return -EPERM; |
| 4096 | } |
| 4097 | |
| 4098 | /* Set the new MTU into the PYLD register of the NIC */ |
| 4099 | val64 = new_mtu; |
| 4100 | writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); |
| 4101 | |
| 4102 | dev->mtu = new_mtu; |
| 4103 | |
| 4104 | return 0; |
| 4105 | } |
| 4106 | |
| 4107 | /** |
| 4108 | * s2io_tasklet - Bottom half of the ISR. |
| 4109 | * @dev_adr : address of the device structure in dma_addr_t format. |
| 4110 | * Description: |
| 4111 | * This is the tasklet or the bottom half of the ISR. This is |
| 4112 | * an extension of the ISR which is scheduled by the scheduler to be run |
| 4113 | * when the load on the CPU is low. All low priority tasks of the ISR can |
| 4114 | * be pushed into the tasklet. For now the tasklet is used only to |
| 4115 | * replenish the Rx buffers in the Rx buffer descriptors. |
| 4116 | * Return value: |
| 4117 | * void. |
| 4118 | */ |
| 4119 | |
| 4120 | static void s2io_tasklet(unsigned long dev_addr) |
| 4121 | { |
| 4122 | struct net_device *dev = (struct net_device *) dev_addr; |
| 4123 | nic_t *sp = dev->priv; |
| 4124 | int i, ret; |
| 4125 | mac_info_t *mac_control; |
| 4126 | struct config_param *config; |
| 4127 | |
| 4128 | mac_control = &sp->mac_control; |
| 4129 | config = &sp->config; |
| 4130 | |
| 4131 | if (!TASKLET_IN_USE) { |
| 4132 | for (i = 0; i < config->rx_ring_num; i++) { |
| 4133 | ret = fill_rx_buffers(sp, i); |
| 4134 | if (ret == -ENOMEM) { |
| 4135 | DBG_PRINT(ERR_DBG, "%s: Out of ", |
| 4136 | dev->name); |
| 4137 | DBG_PRINT(ERR_DBG, "memory in tasklet\n"); |
| 4138 | break; |
| 4139 | } else if (ret == -EFILL) { |
| 4140 | DBG_PRINT(ERR_DBG, |
| 4141 | "%s: Rx Ring %d is full\n", |
| 4142 | dev->name, i); |
| 4143 | break; |
| 4144 | } |
| 4145 | } |
| 4146 | clear_bit(0, (&sp->tasklet_status)); |
| 4147 | } |
| 4148 | } |
| 4149 | |
| 4150 | /** |
| 4151 | * s2io_set_link - Set the LInk status |
| 4152 | * @data: long pointer to device private structue |
| 4153 | * Description: Sets the link status for the adapter |
| 4154 | */ |
| 4155 | |
| 4156 | static void s2io_set_link(unsigned long data) |
| 4157 | { |
| 4158 | nic_t *nic = (nic_t *) data; |
| 4159 | struct net_device *dev = nic->dev; |
| 4160 | XENA_dev_config_t __iomem *bar0 = nic->bar0; |
| 4161 | register u64 val64; |
| 4162 | u16 subid; |
| 4163 | |
| 4164 | if (test_and_set_bit(0, &(nic->link_state))) { |
| 4165 | /* The card is being reset, no point doing anything */ |
| 4166 | return; |
| 4167 | } |
| 4168 | |
| 4169 | subid = nic->pdev->subsystem_device; |
| 4170 | /* |
| 4171 | * Allow a small delay for the NICs self initiated |
| 4172 | * cleanup to complete. |
| 4173 | */ |
| 4174 | msleep(100); |
| 4175 | |
| 4176 | val64 = readq(&bar0->adapter_status); |
| 4177 | if (verify_xena_quiescence(val64, nic->device_enabled_once)) { |
| 4178 | if (LINK_IS_UP(val64)) { |
| 4179 | val64 = readq(&bar0->adapter_control); |
| 4180 | val64 |= ADAPTER_CNTL_EN; |
| 4181 | writeq(val64, &bar0->adapter_control); |
| 4182 | if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) { |
| 4183 | val64 = readq(&bar0->gpio_control); |
| 4184 | val64 |= GPIO_CTRL_GPIO_0; |
| 4185 | writeq(val64, &bar0->gpio_control); |
| 4186 | val64 = readq(&bar0->gpio_control); |
| 4187 | } else { |
| 4188 | val64 |= ADAPTER_LED_ON; |
| 4189 | writeq(val64, &bar0->adapter_control); |
| 4190 | } |
| 4191 | val64 = readq(&bar0->adapter_status); |
| 4192 | if (!LINK_IS_UP(val64)) { |
| 4193 | DBG_PRINT(ERR_DBG, "%s:", dev->name); |
| 4194 | DBG_PRINT(ERR_DBG, " Link down"); |
| 4195 | DBG_PRINT(ERR_DBG, "after "); |
| 4196 | DBG_PRINT(ERR_DBG, "enabling "); |
| 4197 | DBG_PRINT(ERR_DBG, "device \n"); |
| 4198 | } |
| 4199 | if (nic->device_enabled_once == FALSE) { |
| 4200 | nic->device_enabled_once = TRUE; |
| 4201 | } |
| 4202 | s2io_link(nic, LINK_UP); |
| 4203 | } else { |
| 4204 | if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) { |
| 4205 | val64 = readq(&bar0->gpio_control); |
| 4206 | val64 &= ~GPIO_CTRL_GPIO_0; |
| 4207 | writeq(val64, &bar0->gpio_control); |
| 4208 | val64 = readq(&bar0->gpio_control); |
| 4209 | } |
| 4210 | s2io_link(nic, LINK_DOWN); |
| 4211 | } |
| 4212 | } else { /* NIC is not Quiescent. */ |
| 4213 | DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name); |
| 4214 | DBG_PRINT(ERR_DBG, "device is not Quiescent\n"); |
| 4215 | netif_stop_queue(dev); |
| 4216 | } |
| 4217 | clear_bit(0, &(nic->link_state)); |
| 4218 | } |
| 4219 | |
| 4220 | static void s2io_card_down(nic_t * sp) |
| 4221 | { |
| 4222 | int cnt = 0; |
| 4223 | XENA_dev_config_t __iomem *bar0 = sp->bar0; |
| 4224 | unsigned long flags; |
| 4225 | register u64 val64 = 0; |
| 4226 | |
| 4227 | /* If s2io_set_link task is executing, wait till it completes. */ |
| 4228 | while (test_and_set_bit(0, &(sp->link_state))) |
| 4229 | msleep(50); |
| 4230 | atomic_set(&sp->card_state, CARD_DOWN); |
| 4231 | |
| 4232 | /* disable Tx and Rx traffic on the NIC */ |
| 4233 | stop_nic(sp); |
| 4234 | |
| 4235 | /* Kill tasklet. */ |
| 4236 | tasklet_kill(&sp->task); |
| 4237 | |
| 4238 | /* Check if the device is Quiescent and then Reset the NIC */ |
| 4239 | do { |
| 4240 | val64 = readq(&bar0->adapter_status); |
| 4241 | if (verify_xena_quiescence(val64, sp->device_enabled_once)) { |
| 4242 | break; |
| 4243 | } |
| 4244 | |
| 4245 | msleep(50); |
| 4246 | cnt++; |
| 4247 | if (cnt == 10) { |
| 4248 | DBG_PRINT(ERR_DBG, |
| 4249 | "s2io_close:Device not Quiescent "); |
| 4250 | DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n", |
| 4251 | (unsigned long long) val64); |
| 4252 | break; |
| 4253 | } |
| 4254 | } while (1); |
| 4255 | spin_lock_irqsave(&sp->tx_lock, flags); |
| 4256 | s2io_reset(sp); |
| 4257 | |
| 4258 | /* Free all unused Tx and Rx buffers */ |
| 4259 | free_tx_buffers(sp); |
| 4260 | free_rx_buffers(sp); |
| 4261 | |
| 4262 | spin_unlock_irqrestore(&sp->tx_lock, flags); |
| 4263 | clear_bit(0, &(sp->link_state)); |
| 4264 | } |
| 4265 | |
| 4266 | static int s2io_card_up(nic_t * sp) |
| 4267 | { |
| 4268 | int i, ret; |
| 4269 | mac_info_t *mac_control; |
| 4270 | struct config_param *config; |
| 4271 | struct net_device *dev = (struct net_device *) sp->dev; |
| 4272 | |
| 4273 | /* Initialize the H/W I/O registers */ |
| 4274 | if (init_nic(sp) != 0) { |
| 4275 | DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", |
| 4276 | dev->name); |
| 4277 | return -ENODEV; |
| 4278 | } |
| 4279 | |
| 4280 | /* |
| 4281 | * Initializing the Rx buffers. For now we are considering only 1 |
| 4282 | * Rx ring and initializing buffers into 30 Rx blocks |
| 4283 | */ |
| 4284 | mac_control = &sp->mac_control; |
| 4285 | config = &sp->config; |
| 4286 | |
| 4287 | for (i = 0; i < config->rx_ring_num; i++) { |
| 4288 | if ((ret = fill_rx_buffers(sp, i))) { |
| 4289 | DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", |
| 4290 | dev->name); |
| 4291 | s2io_reset(sp); |
| 4292 | free_rx_buffers(sp); |
| 4293 | return -ENOMEM; |
| 4294 | } |
| 4295 | DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, |
| 4296 | atomic_read(&sp->rx_bufs_left[i])); |
| 4297 | } |
| 4298 | |
| 4299 | /* Setting its receive mode */ |
| 4300 | s2io_set_multicast(dev); |
| 4301 | |
| 4302 | /* Enable tasklet for the device */ |
| 4303 | tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev); |
| 4304 | |
| 4305 | /* Enable Rx Traffic and interrupts on the NIC */ |
| 4306 | if (start_nic(sp)) { |
| 4307 | DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); |
| 4308 | tasklet_kill(&sp->task); |
| 4309 | s2io_reset(sp); |
| 4310 | free_irq(dev->irq, dev); |
| 4311 | free_rx_buffers(sp); |
| 4312 | return -ENODEV; |
| 4313 | } |
| 4314 | |
| 4315 | atomic_set(&sp->card_state, CARD_UP); |
| 4316 | return 0; |
| 4317 | } |
| 4318 | |
| 4319 | /** |
| 4320 | * s2io_restart_nic - Resets the NIC. |
| 4321 | * @data : long pointer to the device private structure |
| 4322 | * Description: |
| 4323 | * This function is scheduled to be run by the s2io_tx_watchdog |
| 4324 | * function after 0.5 secs to reset the NIC. The idea is to reduce |
| 4325 | * the run time of the watch dog routine which is run holding a |
| 4326 | * spin lock. |
| 4327 | */ |
| 4328 | |
| 4329 | static void s2io_restart_nic(unsigned long data) |
| 4330 | { |
| 4331 | struct net_device *dev = (struct net_device *) data; |
| 4332 | nic_t *sp = dev->priv; |
| 4333 | |
| 4334 | s2io_card_down(sp); |
| 4335 | if (s2io_card_up(sp)) { |
| 4336 | DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", |
| 4337 | dev->name); |
| 4338 | } |
| 4339 | netif_wake_queue(dev); |
| 4340 | DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", |
| 4341 | dev->name); |
| 4342 | } |
| 4343 | |
| 4344 | /** |
| 4345 | * s2io_tx_watchdog - Watchdog for transmit side. |
| 4346 | * @dev : Pointer to net device structure |
| 4347 | * Description: |
| 4348 | * This function is triggered if the Tx Queue is stopped |
| 4349 | * for a pre-defined amount of time when the Interface is still up. |
| 4350 | * If the Interface is jammed in such a situation, the hardware is |
| 4351 | * reset (by s2io_close) and restarted again (by s2io_open) to |
| 4352 | * overcome any problem that might have been caused in the hardware. |
| 4353 | * Return value: |
| 4354 | * void |
| 4355 | */ |
| 4356 | |
| 4357 | static void s2io_tx_watchdog(struct net_device *dev) |
| 4358 | { |
| 4359 | nic_t *sp = dev->priv; |
| 4360 | |
| 4361 | if (netif_carrier_ok(dev)) { |
| 4362 | schedule_work(&sp->rst_timer_task); |
| 4363 | } |
| 4364 | } |
| 4365 | |
| 4366 | /** |
| 4367 | * rx_osm_handler - To perform some OS related operations on SKB. |
| 4368 | * @sp: private member of the device structure,pointer to s2io_nic structure. |
| 4369 | * @skb : the socket buffer pointer. |
| 4370 | * @len : length of the packet |
| 4371 | * @cksum : FCS checksum of the frame. |
| 4372 | * @ring_no : the ring from which this RxD was extracted. |
| 4373 | * Description: |
| 4374 | * This function is called by the Tx interrupt serivce routine to perform |
| 4375 | * some OS related operations on the SKB before passing it to the upper |
| 4376 | * layers. It mainly checks if the checksum is OK, if so adds it to the |
| 4377 | * SKBs cksum variable, increments the Rx packet count and passes the SKB |
| 4378 | * to the upper layer. If the checksum is wrong, it increments the Rx |
| 4379 | * packet error count, frees the SKB and returns error. |
| 4380 | * Return value: |
| 4381 | * SUCCESS on success and -1 on failure. |
| 4382 | */ |
| 4383 | #ifndef CONFIG_2BUFF_MODE |
| 4384 | static int rx_osm_handler(nic_t * sp, u16 len, RxD_t * rxdp, int ring_no) |
| 4385 | #else |
| 4386 | static int rx_osm_handler(nic_t * sp, RxD_t * rxdp, int ring_no, |
| 4387 | buffAdd_t * ba) |
| 4388 | #endif |
| 4389 | { |
| 4390 | struct net_device *dev = (struct net_device *) sp->dev; |
| 4391 | struct sk_buff *skb = |
| 4392 | (struct sk_buff *) ((unsigned long) rxdp->Host_Control); |
| 4393 | u16 l3_csum, l4_csum; |
| 4394 | #ifdef CONFIG_2BUFF_MODE |
| 4395 | int buf0_len, buf2_len; |
| 4396 | unsigned char *buff; |
| 4397 | #endif |
| 4398 | |
| 4399 | l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); |
| 4400 | if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && (sp->rx_csum)) { |
| 4401 | l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); |
| 4402 | if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { |
| 4403 | /* |
| 4404 | * NIC verifies if the Checksum of the received |
| 4405 | * frame is Ok or not and accordingly returns |
| 4406 | * a flag in the RxD. |
| 4407 | */ |
| 4408 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
| 4409 | } else { |
| 4410 | /* |
| 4411 | * Packet with erroneous checksum, let the |
| 4412 | * upper layers deal with it. |
| 4413 | */ |
| 4414 | skb->ip_summed = CHECKSUM_NONE; |
| 4415 | } |
| 4416 | } else { |
| 4417 | skb->ip_summed = CHECKSUM_NONE; |
| 4418 | } |
| 4419 | |
| 4420 | if (rxdp->Control_1 & RXD_T_CODE) { |
| 4421 | unsigned long long err = rxdp->Control_1 & RXD_T_CODE; |
| 4422 | DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n", |
| 4423 | dev->name, err); |
| 4424 | } |
| 4425 | #ifdef CONFIG_2BUFF_MODE |
| 4426 | buf0_len = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); |
| 4427 | buf2_len = RXD_GET_BUFFER2_SIZE(rxdp->Control_2); |
| 4428 | #endif |
| 4429 | |
| 4430 | skb->dev = dev; |
| 4431 | #ifndef CONFIG_2BUFF_MODE |
| 4432 | skb_put(skb, len); |
| 4433 | skb->protocol = eth_type_trans(skb, dev); |
| 4434 | #else |
| 4435 | buff = skb_push(skb, buf0_len); |
| 4436 | memcpy(buff, ba->ba_0, buf0_len); |
| 4437 | skb_put(skb, buf2_len); |
| 4438 | skb->protocol = eth_type_trans(skb, dev); |
| 4439 | #endif |
| 4440 | |
| 4441 | #ifdef CONFIG_S2IO_NAPI |
| 4442 | netif_receive_skb(skb); |
| 4443 | #else |
| 4444 | netif_rx(skb); |
| 4445 | #endif |
| 4446 | |
| 4447 | dev->last_rx = jiffies; |
| 4448 | sp->rx_pkt_count++; |
| 4449 | sp->stats.rx_packets++; |
| 4450 | #ifndef CONFIG_2BUFF_MODE |
| 4451 | sp->stats.rx_bytes += len; |
| 4452 | #else |
| 4453 | sp->stats.rx_bytes += buf0_len + buf2_len; |
| 4454 | #endif |
| 4455 | |
| 4456 | atomic_dec(&sp->rx_bufs_left[ring_no]); |
| 4457 | rxdp->Host_Control = 0; |
| 4458 | return SUCCESS; |
| 4459 | } |
| 4460 | |
| 4461 | /** |
| 4462 | * s2io_link - stops/starts the Tx queue. |
| 4463 | * @sp : private member of the device structure, which is a pointer to the |
| 4464 | * s2io_nic structure. |
| 4465 | * @link : inidicates whether link is UP/DOWN. |
| 4466 | * Description: |
| 4467 | * This function stops/starts the Tx queue depending on whether the link |
| 4468 | * status of the NIC is is down or up. This is called by the Alarm |
| 4469 | * interrupt handler whenever a link change interrupt comes up. |
| 4470 | * Return value: |
| 4471 | * void. |
| 4472 | */ |
| 4473 | |
| 4474 | static void s2io_link(nic_t * sp, int link) |
| 4475 | { |
| 4476 | struct net_device *dev = (struct net_device *) sp->dev; |
| 4477 | |
| 4478 | if (link != sp->last_link_state) { |
| 4479 | if (link == LINK_DOWN) { |
| 4480 | DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); |
| 4481 | netif_carrier_off(dev); |
| 4482 | } else { |
| 4483 | DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); |
| 4484 | netif_carrier_on(dev); |
| 4485 | } |
| 4486 | } |
| 4487 | sp->last_link_state = link; |
| 4488 | } |
| 4489 | |
| 4490 | /** |
| 4491 | * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . |
| 4492 | * @sp : private member of the device structure, which is a pointer to the |
| 4493 | * s2io_nic structure. |
| 4494 | * Description: |
| 4495 | * This function initializes a few of the PCI and PCI-X configuration registers |
| 4496 | * with recommended values. |
| 4497 | * Return value: |
| 4498 | * void |
| 4499 | */ |
| 4500 | |
| 4501 | static void s2io_init_pci(nic_t * sp) |
| 4502 | { |
| 4503 | u16 pci_cmd = 0; |
| 4504 | |
| 4505 | /* Enable Data Parity Error Recovery in PCI-X command register. */ |
| 4506 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| 4507 | &(sp->pcix_cmd)); |
| 4508 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| 4509 | (sp->pcix_cmd | 1)); |
| 4510 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| 4511 | &(sp->pcix_cmd)); |
| 4512 | |
| 4513 | /* Set the PErr Response bit in PCI command register. */ |
| 4514 | pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); |
| 4515 | pci_write_config_word(sp->pdev, PCI_COMMAND, |
| 4516 | (pci_cmd | PCI_COMMAND_PARITY)); |
| 4517 | pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); |
| 4518 | |
| 4519 | /* Set MMRB count to 1024 in PCI-X Command register. */ |
| 4520 | sp->pcix_cmd &= 0xFFF3; |
| 4521 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, (sp->pcix_cmd | (0x1 << 2))); /* MMRBC 1K */ |
| 4522 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| 4523 | &(sp->pcix_cmd)); |
| 4524 | |
| 4525 | /* Setting Maximum outstanding splits based on system type. */ |
| 4526 | sp->pcix_cmd &= 0xFF8F; |
| 4527 | |
| 4528 | sp->pcix_cmd |= XENA_MAX_OUTSTANDING_SPLITS(0x1); /* 2 splits. */ |
| 4529 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| 4530 | sp->pcix_cmd); |
| 4531 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| 4532 | &(sp->pcix_cmd)); |
| 4533 | /* Forcibly disabling relaxed ordering capability of the card. */ |
| 4534 | sp->pcix_cmd &= 0xfffd; |
| 4535 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| 4536 | sp->pcix_cmd); |
| 4537 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, |
| 4538 | &(sp->pcix_cmd)); |
| 4539 | } |
| 4540 | |
| 4541 | MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>"); |
| 4542 | MODULE_LICENSE("GPL"); |
| 4543 | module_param(tx_fifo_num, int, 0); |
| 4544 | module_param_array(tx_fifo_len, int, NULL, 0); |
| 4545 | module_param(rx_ring_num, int, 0); |
| 4546 | module_param_array(rx_ring_sz, int, NULL, 0); |
| 4547 | module_param(Stats_refresh_time, int, 0); |
| 4548 | module_param(rmac_pause_time, int, 0); |
| 4549 | module_param(mc_pause_threshold_q0q3, int, 0); |
| 4550 | module_param(mc_pause_threshold_q4q7, int, 0); |
| 4551 | module_param(shared_splits, int, 0); |
| 4552 | module_param(tmac_util_period, int, 0); |
| 4553 | module_param(rmac_util_period, int, 0); |
| 4554 | #ifndef CONFIG_S2IO_NAPI |
| 4555 | module_param(indicate_max_pkts, int, 0); |
| 4556 | #endif |
| 4557 | /** |
| 4558 | * s2io_init_nic - Initialization of the adapter . |
| 4559 | * @pdev : structure containing the PCI related information of the device. |
| 4560 | * @pre: List of PCI devices supported by the driver listed in s2io_tbl. |
| 4561 | * Description: |
| 4562 | * The function initializes an adapter identified by the pci_dec structure. |
| 4563 | * All OS related initialization including memory and device structure and |
| 4564 | * initlaization of the device private variable is done. Also the swapper |
| 4565 | * control register is initialized to enable read and write into the I/O |
| 4566 | * registers of the device. |
| 4567 | * Return value: |
| 4568 | * returns 0 on success and negative on failure. |
| 4569 | */ |
| 4570 | |
| 4571 | static int __devinit |
| 4572 | s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) |
| 4573 | { |
| 4574 | nic_t *sp; |
| 4575 | struct net_device *dev; |
| 4576 | char *dev_name = "S2IO 10GE NIC"; |
| 4577 | int i, j, ret; |
| 4578 | int dma_flag = FALSE; |
| 4579 | u32 mac_up, mac_down; |
| 4580 | u64 val64 = 0, tmp64 = 0; |
| 4581 | XENA_dev_config_t __iomem *bar0 = NULL; |
| 4582 | u16 subid; |
| 4583 | mac_info_t *mac_control; |
| 4584 | struct config_param *config; |
| 4585 | |
| 4586 | |
| 4587 | DBG_PRINT(ERR_DBG, "Loading S2IO driver with %s\n", |
| 4588 | s2io_driver_version); |
| 4589 | |
| 4590 | if ((ret = pci_enable_device(pdev))) { |
| 4591 | DBG_PRINT(ERR_DBG, |
| 4592 | "s2io_init_nic: pci_enable_device failed\n"); |
| 4593 | return ret; |
| 4594 | } |
| 4595 | |
| 4596 | if (!pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) { |
| 4597 | DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n"); |
| 4598 | dma_flag = TRUE; |
| 4599 | |
| 4600 | if (pci_set_consistent_dma_mask |
| 4601 | (pdev, 0xffffffffffffffffULL)) { |
| 4602 | DBG_PRINT(ERR_DBG, |
| 4603 | "Unable to obtain 64bit DMA for \ |
| 4604 | consistent allocations\n"); |
| 4605 | pci_disable_device(pdev); |
| 4606 | return -ENOMEM; |
| 4607 | } |
| 4608 | } else if (!pci_set_dma_mask(pdev, 0xffffffffUL)) { |
| 4609 | DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n"); |
| 4610 | } else { |
| 4611 | pci_disable_device(pdev); |
| 4612 | return -ENOMEM; |
| 4613 | } |
| 4614 | |
| 4615 | if (pci_request_regions(pdev, s2io_driver_name)) { |
| 4616 | DBG_PRINT(ERR_DBG, "Request Regions failed\n"), |
| 4617 | pci_disable_device(pdev); |
| 4618 | return -ENODEV; |
| 4619 | } |
| 4620 | |
| 4621 | dev = alloc_etherdev(sizeof(nic_t)); |
| 4622 | if (dev == NULL) { |
| 4623 | DBG_PRINT(ERR_DBG, "Device allocation failed\n"); |
| 4624 | pci_disable_device(pdev); |
| 4625 | pci_release_regions(pdev); |
| 4626 | return -ENODEV; |
| 4627 | } |
| 4628 | |
| 4629 | pci_set_master(pdev); |
| 4630 | pci_set_drvdata(pdev, dev); |
| 4631 | SET_MODULE_OWNER(dev); |
| 4632 | SET_NETDEV_DEV(dev, &pdev->dev); |
| 4633 | |
| 4634 | /* Private member variable initialized to s2io NIC structure */ |
| 4635 | sp = dev->priv; |
| 4636 | memset(sp, 0, sizeof(nic_t)); |
| 4637 | sp->dev = dev; |
| 4638 | sp->pdev = pdev; |
| 4639 | sp->vendor_id = pdev->vendor; |
| 4640 | sp->device_id = pdev->device; |
| 4641 | sp->high_dma_flag = dma_flag; |
| 4642 | sp->irq = pdev->irq; |
| 4643 | sp->device_enabled_once = FALSE; |
| 4644 | strcpy(sp->name, dev_name); |
| 4645 | |
| 4646 | /* Initialize some PCI/PCI-X fields of the NIC. */ |
| 4647 | s2io_init_pci(sp); |
| 4648 | |
| 4649 | /* |
| 4650 | * Setting the device configuration parameters. |
| 4651 | * Most of these parameters can be specified by the user during |
| 4652 | * module insertion as they are module loadable parameters. If |
| 4653 | * these parameters are not not specified during load time, they |
| 4654 | * are initialized with default values. |
| 4655 | */ |
| 4656 | mac_control = &sp->mac_control; |
| 4657 | config = &sp->config; |
| 4658 | |
| 4659 | /* Tx side parameters. */ |
| 4660 | tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */ |
| 4661 | config->tx_fifo_num = tx_fifo_num; |
| 4662 | for (i = 0; i < MAX_TX_FIFOS; i++) { |
| 4663 | config->tx_cfg[i].fifo_len = tx_fifo_len[i]; |
| 4664 | config->tx_cfg[i].fifo_priority = i; |
| 4665 | } |
| 4666 | |
| 4667 | config->tx_intr_type = TXD_INT_TYPE_UTILZ; |
| 4668 | for (i = 0; i < config->tx_fifo_num; i++) { |
| 4669 | config->tx_cfg[i].f_no_snoop = |
| 4670 | (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); |
| 4671 | if (config->tx_cfg[i].fifo_len < 65) { |
| 4672 | config->tx_intr_type = TXD_INT_TYPE_PER_LIST; |
| 4673 | break; |
| 4674 | } |
| 4675 | } |
| 4676 | config->max_txds = MAX_SKB_FRAGS; |
| 4677 | |
| 4678 | /* Rx side parameters. */ |
| 4679 | rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */ |
| 4680 | config->rx_ring_num = rx_ring_num; |
| 4681 | for (i = 0; i < MAX_RX_RINGS; i++) { |
| 4682 | config->rx_cfg[i].num_rxd = rx_ring_sz[i] * |
| 4683 | (MAX_RXDS_PER_BLOCK + 1); |
| 4684 | config->rx_cfg[i].ring_priority = i; |
| 4685 | } |
| 4686 | |
| 4687 | for (i = 0; i < rx_ring_num; i++) { |
| 4688 | config->rx_cfg[i].ring_org = RING_ORG_BUFF1; |
| 4689 | config->rx_cfg[i].f_no_snoop = |
| 4690 | (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); |
| 4691 | } |
| 4692 | |
| 4693 | /* Setting Mac Control parameters */ |
| 4694 | mac_control->rmac_pause_time = rmac_pause_time; |
| 4695 | mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; |
| 4696 | mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; |
| 4697 | |
| 4698 | |
| 4699 | /* Initialize Ring buffer parameters. */ |
| 4700 | for (i = 0; i < config->rx_ring_num; i++) |
| 4701 | atomic_set(&sp->rx_bufs_left[i], 0); |
| 4702 | |
| 4703 | /* initialize the shared memory used by the NIC and the host */ |
| 4704 | if (init_shared_mem(sp)) { |
| 4705 | DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", |
| 4706 | dev->name); |
| 4707 | ret = -ENOMEM; |
| 4708 | goto mem_alloc_failed; |
| 4709 | } |
| 4710 | |
| 4711 | sp->bar0 = ioremap(pci_resource_start(pdev, 0), |
| 4712 | pci_resource_len(pdev, 0)); |
| 4713 | if (!sp->bar0) { |
| 4714 | DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n", |
| 4715 | dev->name); |
| 4716 | ret = -ENOMEM; |
| 4717 | goto bar0_remap_failed; |
| 4718 | } |
| 4719 | |
| 4720 | sp->bar1 = ioremap(pci_resource_start(pdev, 2), |
| 4721 | pci_resource_len(pdev, 2)); |
| 4722 | if (!sp->bar1) { |
| 4723 | DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n", |
| 4724 | dev->name); |
| 4725 | ret = -ENOMEM; |
| 4726 | goto bar1_remap_failed; |
| 4727 | } |
| 4728 | |
| 4729 | dev->irq = pdev->irq; |
| 4730 | dev->base_addr = (unsigned long) sp->bar0; |
| 4731 | |
| 4732 | /* Initializing the BAR1 address as the start of the FIFO pointer. */ |
| 4733 | for (j = 0; j < MAX_TX_FIFOS; j++) { |
| 4734 | mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *) |
| 4735 | (sp->bar1 + (j * 0x00020000)); |
| 4736 | } |
| 4737 | |
| 4738 | /* Driver entry points */ |
| 4739 | dev->open = &s2io_open; |
| 4740 | dev->stop = &s2io_close; |
| 4741 | dev->hard_start_xmit = &s2io_xmit; |
| 4742 | dev->get_stats = &s2io_get_stats; |
| 4743 | dev->set_multicast_list = &s2io_set_multicast; |
| 4744 | dev->do_ioctl = &s2io_ioctl; |
| 4745 | dev->change_mtu = &s2io_change_mtu; |
| 4746 | SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); |
| 4747 | /* |
| 4748 | * will use eth_mac_addr() for dev->set_mac_address |
| 4749 | * mac address will be set every time dev->open() is called |
| 4750 | */ |
| 4751 | #ifdef CONFIG_S2IO_NAPI |
| 4752 | dev->poll = s2io_poll; |
| 4753 | dev->weight = 90; |
| 4754 | #endif |
| 4755 | |
| 4756 | dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; |
| 4757 | if (sp->high_dma_flag == TRUE) |
| 4758 | dev->features |= NETIF_F_HIGHDMA; |
| 4759 | #ifdef NETIF_F_TSO |
| 4760 | dev->features |= NETIF_F_TSO; |
| 4761 | #endif |
| 4762 | |
| 4763 | dev->tx_timeout = &s2io_tx_watchdog; |
| 4764 | dev->watchdog_timeo = WATCH_DOG_TIMEOUT; |
| 4765 | INIT_WORK(&sp->rst_timer_task, |
| 4766 | (void (*)(void *)) s2io_restart_nic, dev); |
| 4767 | INIT_WORK(&sp->set_link_task, |
| 4768 | (void (*)(void *)) s2io_set_link, sp); |
| 4769 | |
| 4770 | pci_save_state(sp->pdev); |
| 4771 | |
| 4772 | /* Setting swapper control on the NIC, for proper reset operation */ |
| 4773 | if (s2io_set_swapper(sp)) { |
| 4774 | DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n", |
| 4775 | dev->name); |
| 4776 | ret = -EAGAIN; |
| 4777 | goto set_swap_failed; |
| 4778 | } |
| 4779 | |
| 4780 | /* Fix for all "FFs" MAC address problems observed on Alpha platforms */ |
| 4781 | fix_mac_address(sp); |
| 4782 | s2io_reset(sp); |
| 4783 | |
| 4784 | /* |
| 4785 | * Setting swapper control on the NIC, so the MAC address can be read. |
| 4786 | */ |
| 4787 | if (s2io_set_swapper(sp)) { |
| 4788 | DBG_PRINT(ERR_DBG, |
| 4789 | "%s: S2IO: swapper settings are wrong\n", |
| 4790 | dev->name); |
| 4791 | ret = -EAGAIN; |
| 4792 | goto set_swap_failed; |
| 4793 | } |
| 4794 | |
| 4795 | /* |
| 4796 | * MAC address initialization. |
| 4797 | * For now only one mac address will be read and used. |
| 4798 | */ |
| 4799 | bar0 = sp->bar0; |
| 4800 | val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | |
| 4801 | RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET); |
| 4802 | writeq(val64, &bar0->rmac_addr_cmd_mem); |
| 4803 | wait_for_cmd_complete(sp); |
| 4804 | |
| 4805 | tmp64 = readq(&bar0->rmac_addr_data0_mem); |
| 4806 | mac_down = (u32) tmp64; |
| 4807 | mac_up = (u32) (tmp64 >> 32); |
| 4808 | |
| 4809 | memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN)); |
| 4810 | |
| 4811 | sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); |
| 4812 | sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); |
| 4813 | sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); |
| 4814 | sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); |
| 4815 | sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); |
| 4816 | sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); |
| 4817 | |
| 4818 | DBG_PRINT(INIT_DBG, |
| 4819 | "DEFAULT MAC ADDR:0x%02x-%02x-%02x-%02x-%02x-%02x\n", |
| 4820 | sp->def_mac_addr[0].mac_addr[0], |
| 4821 | sp->def_mac_addr[0].mac_addr[1], |
| 4822 | sp->def_mac_addr[0].mac_addr[2], |
| 4823 | sp->def_mac_addr[0].mac_addr[3], |
| 4824 | sp->def_mac_addr[0].mac_addr[4], |
| 4825 | sp->def_mac_addr[0].mac_addr[5]); |
| 4826 | |
| 4827 | /* Set the factory defined MAC address initially */ |
| 4828 | dev->addr_len = ETH_ALEN; |
| 4829 | memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); |
| 4830 | |
| 4831 | /* |
| 4832 | * Initialize the tasklet status and link state flags |
| 4833 | * and the card statte parameter |
| 4834 | */ |
| 4835 | atomic_set(&(sp->card_state), 0); |
| 4836 | sp->tasklet_status = 0; |
| 4837 | sp->link_state = 0; |
| 4838 | |
| 4839 | |
| 4840 | /* Initialize spinlocks */ |
| 4841 | spin_lock_init(&sp->tx_lock); |
| 4842 | #ifndef CONFIG_S2IO_NAPI |
| 4843 | spin_lock_init(&sp->put_lock); |
| 4844 | #endif |
| 4845 | |
| 4846 | /* |
| 4847 | * SXE-002: Configure link and activity LED to init state |
| 4848 | * on driver load. |
| 4849 | */ |
| 4850 | subid = sp->pdev->subsystem_device; |
| 4851 | if ((subid & 0xFF) >= 0x07) { |
| 4852 | val64 = readq(&bar0->gpio_control); |
| 4853 | val64 |= 0x0000800000000000ULL; |
| 4854 | writeq(val64, &bar0->gpio_control); |
| 4855 | val64 = 0x0411040400000000ULL; |
| 4856 | writeq(val64, (void __iomem *) bar0 + 0x2700); |
| 4857 | val64 = readq(&bar0->gpio_control); |
| 4858 | } |
| 4859 | |
| 4860 | sp->rx_csum = 1; /* Rx chksum verify enabled by default */ |
| 4861 | |
| 4862 | if (register_netdev(dev)) { |
| 4863 | DBG_PRINT(ERR_DBG, "Device registration failed\n"); |
| 4864 | ret = -ENODEV; |
| 4865 | goto register_failed; |
| 4866 | } |
| 4867 | |
| 4868 | /* |
| 4869 | * Make Link state as off at this point, when the Link change |
| 4870 | * interrupt comes the state will be automatically changed to |
| 4871 | * the right state. |
| 4872 | */ |
| 4873 | netif_carrier_off(dev); |
| 4874 | sp->last_link_state = LINK_DOWN; |
| 4875 | |
| 4876 | return 0; |
| 4877 | |
| 4878 | register_failed: |
| 4879 | set_swap_failed: |
| 4880 | iounmap(sp->bar1); |
| 4881 | bar1_remap_failed: |
| 4882 | iounmap(sp->bar0); |
| 4883 | bar0_remap_failed: |
| 4884 | mem_alloc_failed: |
| 4885 | free_shared_mem(sp); |
| 4886 | pci_disable_device(pdev); |
| 4887 | pci_release_regions(pdev); |
| 4888 | pci_set_drvdata(pdev, NULL); |
| 4889 | free_netdev(dev); |
| 4890 | |
| 4891 | return ret; |
| 4892 | } |
| 4893 | |
| 4894 | /** |
| 4895 | * s2io_rem_nic - Free the PCI device |
| 4896 | * @pdev: structure containing the PCI related information of the device. |
| 4897 | * Description: This function is called by the Pci subsystem to release a |
| 4898 | * PCI device and free up all resource held up by the device. This could |
| 4899 | * be in response to a Hot plug event or when the driver is to be removed |
| 4900 | * from memory. |
| 4901 | */ |
| 4902 | |
| 4903 | static void __devexit s2io_rem_nic(struct pci_dev *pdev) |
| 4904 | { |
| 4905 | struct net_device *dev = |
| 4906 | (struct net_device *) pci_get_drvdata(pdev); |
| 4907 | nic_t *sp; |
| 4908 | |
| 4909 | if (dev == NULL) { |
| 4910 | DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); |
| 4911 | return; |
| 4912 | } |
| 4913 | |
| 4914 | sp = dev->priv; |
| 4915 | unregister_netdev(dev); |
| 4916 | |
| 4917 | free_shared_mem(sp); |
| 4918 | iounmap(sp->bar0); |
| 4919 | iounmap(sp->bar1); |
| 4920 | pci_disable_device(pdev); |
| 4921 | pci_release_regions(pdev); |
| 4922 | pci_set_drvdata(pdev, NULL); |
| 4923 | |
| 4924 | free_netdev(dev); |
| 4925 | } |
| 4926 | |
| 4927 | /** |
| 4928 | * s2io_starter - Entry point for the driver |
| 4929 | * Description: This function is the entry point for the driver. It verifies |
| 4930 | * the module loadable parameters and initializes PCI configuration space. |
| 4931 | */ |
| 4932 | |
| 4933 | int __init s2io_starter(void) |
| 4934 | { |
| 4935 | return pci_module_init(&s2io_driver); |
| 4936 | } |
| 4937 | |
| 4938 | /** |
| 4939 | * s2io_closer - Cleanup routine for the driver |
| 4940 | * Description: This function is the cleanup routine for the driver. It unregist * ers the driver. |
| 4941 | */ |
| 4942 | |
| 4943 | static void s2io_closer(void) |
| 4944 | { |
| 4945 | pci_unregister_driver(&s2io_driver); |
| 4946 | DBG_PRINT(INIT_DBG, "cleanup done\n"); |
| 4947 | } |
| 4948 | |
| 4949 | module_init(s2io_starter); |
| 4950 | module_exit(s2io_closer); |