blob: 3ffee7b51aed536a583a2393461bf1d63d34e18f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/* $Id: fault.c,v 1.59 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
3 *
4 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
6 */
7
8#include <asm/head.h>
9
10#include <linux/string.h>
11#include <linux/types.h>
12#include <linux/sched.h>
13#include <linux/ptrace.h>
14#include <linux/mman.h>
15#include <linux/signal.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/smp_lock.h>
19#include <linux/init.h>
20#include <linux/interrupt.h>
21
22#include <asm/page.h>
23#include <asm/pgtable.h>
24#include <asm/openprom.h>
25#include <asm/oplib.h>
26#include <asm/uaccess.h>
27#include <asm/asi.h>
28#include <asm/lsu.h>
29#include <asm/sections.h>
30#include <asm/kdebug.h>
31
32#define ELEMENTS(arr) (sizeof (arr)/sizeof (arr[0]))
33
34extern struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS];
35
36/*
37 * To debug kernel during syscall entry.
38 */
39void syscall_trace_entry(struct pt_regs *regs)
40{
41 printk("scall entry: %s[%d]/cpu%d: %d\n", current->comm, current->pid, smp_processor_id(), (int) regs->u_regs[UREG_G1]);
42}
43
44/*
45 * To debug kernel during syscall exit.
46 */
47void syscall_trace_exit(struct pt_regs *regs)
48{
49 printk("scall exit: %s[%d]/cpu%d: %d\n", current->comm, current->pid, smp_processor_id(), (int) regs->u_regs[UREG_G1]);
50}
51
52/*
53 * To debug kernel to catch accesses to certain virtual/physical addresses.
54 * Mode = 0 selects physical watchpoints, mode = 1 selects virtual watchpoints.
55 * flags = VM_READ watches memread accesses, flags = VM_WRITE watches memwrite accesses.
56 * Caller passes in a 64bit aligned addr, with mask set to the bytes that need to be
57 * watched. This is only useful on a single cpu machine for now. After the watchpoint
58 * is detected, the process causing it will be killed, thus preventing an infinite loop.
59 */
60void set_brkpt(unsigned long addr, unsigned char mask, int flags, int mode)
61{
62 unsigned long lsubits;
63
64 __asm__ __volatile__("ldxa [%%g0] %1, %0"
65 : "=r" (lsubits)
66 : "i" (ASI_LSU_CONTROL));
67 lsubits &= ~(LSU_CONTROL_PM | LSU_CONTROL_VM |
68 LSU_CONTROL_PR | LSU_CONTROL_VR |
69 LSU_CONTROL_PW | LSU_CONTROL_VW);
70
71 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
72 "membar #Sync"
73 : /* no outputs */
74 : "r" (addr), "r" (mode ? VIRT_WATCHPOINT : PHYS_WATCHPOINT),
75 "i" (ASI_DMMU));
76
77 lsubits |= ((unsigned long)mask << (mode ? 25 : 33));
78 if (flags & VM_READ)
79 lsubits |= (mode ? LSU_CONTROL_VR : LSU_CONTROL_PR);
80 if (flags & VM_WRITE)
81 lsubits |= (mode ? LSU_CONTROL_VW : LSU_CONTROL_PW);
82 __asm__ __volatile__("stxa %0, [%%g0] %1\n\t"
83 "membar #Sync"
84 : /* no outputs */
85 : "r" (lsubits), "i" (ASI_LSU_CONTROL)
86 : "memory");
87}
88
89/* Nice, simple, prom library does all the sweating for us. ;) */
90unsigned long __init prom_probe_memory (void)
91{
92 register struct linux_mlist_p1275 *mlist;
93 register unsigned long bytes, base_paddr, tally;
94 register int i;
95
96 i = 0;
97 mlist = *prom_meminfo()->p1275_available;
98 bytes = tally = mlist->num_bytes;
99 base_paddr = mlist->start_adr;
100
101 sp_banks[0].base_addr = base_paddr;
102 sp_banks[0].num_bytes = bytes;
103
104 while (mlist->theres_more != (void *) 0) {
105 i++;
106 mlist = mlist->theres_more;
107 bytes = mlist->num_bytes;
108 tally += bytes;
109 if (i >= SPARC_PHYS_BANKS-1) {
110 printk ("The machine has more banks than "
111 "this kernel can support\n"
112 "Increase the SPARC_PHYS_BANKS "
113 "setting (currently %d)\n",
114 SPARC_PHYS_BANKS);
115 i = SPARC_PHYS_BANKS-1;
116 break;
117 }
118
119 sp_banks[i].base_addr = mlist->start_adr;
120 sp_banks[i].num_bytes = mlist->num_bytes;
121 }
122
123 i++;
124 sp_banks[i].base_addr = 0xdeadbeefbeefdeadUL;
125 sp_banks[i].num_bytes = 0;
126
127 /* Now mask all bank sizes on a page boundary, it is all we can
128 * use anyways.
129 */
130 for (i = 0; sp_banks[i].num_bytes != 0; i++)
131 sp_banks[i].num_bytes &= PAGE_MASK;
132
133 return tally;
134}
135
136static void unhandled_fault(unsigned long address, struct task_struct *tsk,
137 struct pt_regs *regs)
138{
139 if ((unsigned long) address < PAGE_SIZE) {
140 printk(KERN_ALERT "Unable to handle kernel NULL "
141 "pointer dereference\n");
142 } else {
143 printk(KERN_ALERT "Unable to handle kernel paging request "
144 "at virtual address %016lx\n", (unsigned long)address);
145 }
146 printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
147 (tsk->mm ?
148 CTX_HWBITS(tsk->mm->context) :
149 CTX_HWBITS(tsk->active_mm->context)));
150 printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
151 (tsk->mm ? (unsigned long) tsk->mm->pgd :
152 (unsigned long) tsk->active_mm->pgd));
153 if (notify_die(DIE_GPF, "general protection fault", regs,
154 0, 0, SIGSEGV) == NOTIFY_STOP)
155 return;
156 die_if_kernel("Oops", regs);
157}
158
159static void bad_kernel_pc(struct pt_regs *regs)
160{
161 unsigned long *ksp;
162
163 printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
164 regs->tpc);
165 __asm__("mov %%sp, %0" : "=r" (ksp));
166 show_stack(current, ksp);
167 unhandled_fault(regs->tpc, current, regs);
168}
169
170/*
171 * We now make sure that mmap_sem is held in all paths that call
172 * this. Additionally, to prevent kswapd from ripping ptes from
173 * under us, raise interrupts around the time that we look at the
174 * pte, kswapd will have to wait to get his smp ipi response from
175 * us. This saves us having to get page_table_lock.
176 */
177static unsigned int get_user_insn(unsigned long tpc)
178{
179 pgd_t *pgdp = pgd_offset(current->mm, tpc);
180 pud_t *pudp;
181 pmd_t *pmdp;
182 pte_t *ptep, pte;
183 unsigned long pa;
184 u32 insn = 0;
185 unsigned long pstate;
186
187 if (pgd_none(*pgdp))
188 goto outret;
189 pudp = pud_offset(pgdp, tpc);
190 if (pud_none(*pudp))
191 goto outret;
192 pmdp = pmd_offset(pudp, tpc);
193 if (pmd_none(*pmdp))
194 goto outret;
195
196 /* This disables preemption for us as well. */
197 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
198 __asm__ __volatile__("wrpr %0, %1, %%pstate"
199 : : "r" (pstate), "i" (PSTATE_IE));
200 ptep = pte_offset_map(pmdp, tpc);
201 pte = *ptep;
202 if (!pte_present(pte))
203 goto out;
204
205 pa = (pte_val(pte) & _PAGE_PADDR);
206 pa += (tpc & ~PAGE_MASK);
207
208 /* Use phys bypass so we don't pollute dtlb/dcache. */
209 __asm__ __volatile__("lduwa [%1] %2, %0"
210 : "=r" (insn)
211 : "r" (pa), "i" (ASI_PHYS_USE_EC));
212
213out:
214 pte_unmap(ptep);
215 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
216outret:
217 return insn;
218}
219
220extern unsigned long compute_effective_address(struct pt_regs *, unsigned int, unsigned int);
221
222static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
223 unsigned int insn, int fault_code)
224{
225 siginfo_t info;
226
227 info.si_code = code;
228 info.si_signo = sig;
229 info.si_errno = 0;
230 if (fault_code & FAULT_CODE_ITLB)
231 info.si_addr = (void __user *) regs->tpc;
232 else
233 info.si_addr = (void __user *)
234 compute_effective_address(regs, insn, 0);
235 info.si_trapno = 0;
236 force_sig_info(sig, &info, current);
237}
238
239extern int handle_ldf_stq(u32, struct pt_regs *);
240extern int handle_ld_nf(u32, struct pt_regs *);
241
242static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
243{
244 if (!insn) {
245 if (!regs->tpc || (regs->tpc & 0x3))
246 return 0;
247 if (regs->tstate & TSTATE_PRIV) {
248 insn = *(unsigned int *) regs->tpc;
249 } else {
250 insn = get_user_insn(regs->tpc);
251 }
252 }
253 return insn;
254}
255
256static void do_kernel_fault(struct pt_regs *regs, int si_code, int fault_code,
257 unsigned int insn, unsigned long address)
258{
259 unsigned long g2;
260 unsigned char asi = ASI_P;
261
262 if ((!insn) && (regs->tstate & TSTATE_PRIV))
263 goto cannot_handle;
264
265 /* If user insn could be read (thus insn is zero), that
266 * is fine. We will just gun down the process with a signal
267 * in that case.
268 */
269
270 if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
271 (insn & 0xc0800000) == 0xc0800000) {
272 if (insn & 0x2000)
273 asi = (regs->tstate >> 24);
274 else
275 asi = (insn >> 5);
276 if ((asi & 0xf2) == 0x82) {
277 if (insn & 0x1000000) {
278 handle_ldf_stq(insn, regs);
279 } else {
280 /* This was a non-faulting load. Just clear the
281 * destination register(s) and continue with the next
282 * instruction. -jj
283 */
284 handle_ld_nf(insn, regs);
285 }
286 return;
287 }
288 }
289
290 g2 = regs->u_regs[UREG_G2];
291
292 /* Is this in ex_table? */
293 if (regs->tstate & TSTATE_PRIV) {
294 unsigned long fixup;
295
296 if (asi == ASI_P && (insn & 0xc0800000) == 0xc0800000) {
297 if (insn & 0x2000)
298 asi = (regs->tstate >> 24);
299 else
300 asi = (insn >> 5);
301 }
302
303 /* Look in asi.h: All _S asis have LS bit set */
304 if ((asi & 0x1) &&
305 (fixup = search_extables_range(regs->tpc, &g2))) {
306 regs->tpc = fixup;
307 regs->tnpc = regs->tpc + 4;
308 regs->u_regs[UREG_G2] = g2;
309 return;
310 }
311 } else {
312 /* The si_code was set to make clear whether
313 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
314 */
315 do_fault_siginfo(si_code, SIGSEGV, regs, insn, fault_code);
316 return;
317 }
318
319cannot_handle:
320 unhandled_fault (address, current, regs);
321}
322
323asmlinkage void do_sparc64_fault(struct pt_regs *regs)
324{
325 struct mm_struct *mm = current->mm;
326 struct vm_area_struct *vma;
327 unsigned int insn = 0;
328 int si_code, fault_code;
329 unsigned long address;
330
331 fault_code = get_thread_fault_code();
332
333 if (notify_die(DIE_PAGE_FAULT, "page_fault", regs,
334 fault_code, 0, SIGSEGV) == NOTIFY_STOP)
335 return;
336
337 si_code = SEGV_MAPERR;
338 address = current_thread_info()->fault_address;
339
340 if ((fault_code & FAULT_CODE_ITLB) &&
341 (fault_code & FAULT_CODE_DTLB))
342 BUG();
343
344 if (regs->tstate & TSTATE_PRIV) {
345 unsigned long tpc = regs->tpc;
346
347 /* Sanity check the PC. */
348 if ((tpc >= KERNBASE && tpc < (unsigned long) _etext) ||
349 (tpc >= MODULES_VADDR && tpc < MODULES_END)) {
350 /* Valid, no problems... */
351 } else {
352 bad_kernel_pc(regs);
353 return;
354 }
355 }
356
357 /*
358 * If we're in an interrupt or have no user
359 * context, we must not take the fault..
360 */
361 if (in_atomic() || !mm)
362 goto intr_or_no_mm;
363
364 if (test_thread_flag(TIF_32BIT)) {
365 if (!(regs->tstate & TSTATE_PRIV))
366 regs->tpc &= 0xffffffff;
367 address &= 0xffffffff;
368 }
369
370 if (!down_read_trylock(&mm->mmap_sem)) {
371 if ((regs->tstate & TSTATE_PRIV) &&
372 !search_exception_tables(regs->tpc)) {
373 insn = get_fault_insn(regs, insn);
374 goto handle_kernel_fault;
375 }
376 down_read(&mm->mmap_sem);
377 }
378
379 vma = find_vma(mm, address);
380 if (!vma)
381 goto bad_area;
382
383 /* Pure DTLB misses do not tell us whether the fault causing
384 * load/store/atomic was a write or not, it only says that there
385 * was no match. So in such a case we (carefully) read the
386 * instruction to try and figure this out. It's an optimization
387 * so it's ok if we can't do this.
388 *
389 * Special hack, window spill/fill knows the exact fault type.
390 */
391 if (((fault_code &
392 (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
393 (vma->vm_flags & VM_WRITE) != 0) {
394 insn = get_fault_insn(regs, 0);
395 if (!insn)
396 goto continue_fault;
397 if ((insn & 0xc0200000) == 0xc0200000 &&
398 (insn & 0x1780000) != 0x1680000) {
399 /* Don't bother updating thread struct value,
400 * because update_mmu_cache only cares which tlb
401 * the access came from.
402 */
403 fault_code |= FAULT_CODE_WRITE;
404 }
405 }
406continue_fault:
407
408 if (vma->vm_start <= address)
409 goto good_area;
410 if (!(vma->vm_flags & VM_GROWSDOWN))
411 goto bad_area;
412 if (!(fault_code & FAULT_CODE_WRITE)) {
413 /* Non-faulting loads shouldn't expand stack. */
414 insn = get_fault_insn(regs, insn);
415 if ((insn & 0xc0800000) == 0xc0800000) {
416 unsigned char asi;
417
418 if (insn & 0x2000)
419 asi = (regs->tstate >> 24);
420 else
421 asi = (insn >> 5);
422 if ((asi & 0xf2) == 0x82)
423 goto bad_area;
424 }
425 }
426 if (expand_stack(vma, address))
427 goto bad_area;
428 /*
429 * Ok, we have a good vm_area for this memory access, so
430 * we can handle it..
431 */
432good_area:
433 si_code = SEGV_ACCERR;
434
435 /* If we took a ITLB miss on a non-executable page, catch
436 * that here.
437 */
438 if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
439 BUG_ON(address != regs->tpc);
440 BUG_ON(regs->tstate & TSTATE_PRIV);
441 goto bad_area;
442 }
443
444 if (fault_code & FAULT_CODE_WRITE) {
445 if (!(vma->vm_flags & VM_WRITE))
446 goto bad_area;
447
448 /* Spitfire has an icache which does not snoop
449 * processor stores. Later processors do...
450 */
451 if (tlb_type == spitfire &&
452 (vma->vm_flags & VM_EXEC) != 0 &&
453 vma->vm_file != NULL)
454 set_thread_fault_code(fault_code |
455 FAULT_CODE_BLKCOMMIT);
456 } else {
457 /* Allow reads even for write-only mappings */
458 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
459 goto bad_area;
460 }
461
462 switch (handle_mm_fault(mm, vma, address, (fault_code & FAULT_CODE_WRITE))) {
463 case VM_FAULT_MINOR:
464 current->min_flt++;
465 break;
466 case VM_FAULT_MAJOR:
467 current->maj_flt++;
468 break;
469 case VM_FAULT_SIGBUS:
470 goto do_sigbus;
471 case VM_FAULT_OOM:
472 goto out_of_memory;
473 default:
474 BUG();
475 }
476
477 up_read(&mm->mmap_sem);
478 goto fault_done;
479
480 /*
481 * Something tried to access memory that isn't in our memory map..
482 * Fix it, but check if it's kernel or user first..
483 */
484bad_area:
485 insn = get_fault_insn(regs, insn);
486 up_read(&mm->mmap_sem);
487
488handle_kernel_fault:
489 do_kernel_fault(regs, si_code, fault_code, insn, address);
490
491 goto fault_done;
492
493/*
494 * We ran out of memory, or some other thing happened to us that made
495 * us unable to handle the page fault gracefully.
496 */
497out_of_memory:
498 insn = get_fault_insn(regs, insn);
499 up_read(&mm->mmap_sem);
500 printk("VM: killing process %s\n", current->comm);
501 if (!(regs->tstate & TSTATE_PRIV))
502 do_exit(SIGKILL);
503 goto handle_kernel_fault;
504
505intr_or_no_mm:
506 insn = get_fault_insn(regs, 0);
507 goto handle_kernel_fault;
508
509do_sigbus:
510 insn = get_fault_insn(regs, insn);
511 up_read(&mm->mmap_sem);
512
513 /*
514 * Send a sigbus, regardless of whether we were in kernel
515 * or user mode.
516 */
517 do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, insn, fault_code);
518
519 /* Kernel mode? Handle exceptions or die */
520 if (regs->tstate & TSTATE_PRIV)
521 goto handle_kernel_fault;
522
523fault_done:
524 /* These values are no longer needed, clear them. */
525 set_thread_fault_code(0);
526 current_thread_info()->fault_address = 0;
527}