Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * arch/ppc/platforms/pmac_nvram.c |
| 3 | * |
| 4 | * Copyright (C) 2002 Benjamin Herrenschmidt (benh@kernel.crashing.org) |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License |
| 8 | * as published by the Free Software Foundation; either version |
| 9 | * 2 of the License, or (at your option) any later version. |
| 10 | * |
| 11 | * Todo: - add support for the OF persistent properties |
| 12 | */ |
| 13 | #include <linux/config.h> |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/stddef.h> |
| 17 | #include <linux/string.h> |
| 18 | #include <linux/init.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/delay.h> |
| 21 | #include <linux/errno.h> |
| 22 | #include <linux/bootmem.h> |
| 23 | #include <linux/completion.h> |
| 24 | #include <linux/spinlock.h> |
| 25 | #include <asm/sections.h> |
| 26 | #include <asm/io.h> |
| 27 | #include <asm/system.h> |
| 28 | #include <asm/prom.h> |
| 29 | #include <asm/machdep.h> |
| 30 | #include <asm/nvram.h> |
| 31 | |
| 32 | #define DEBUG |
| 33 | |
| 34 | #ifdef DEBUG |
| 35 | #define DBG(x...) printk(x) |
| 36 | #else |
| 37 | #define DBG(x...) |
| 38 | #endif |
| 39 | |
| 40 | #define NVRAM_SIZE 0x2000 /* 8kB of non-volatile RAM */ |
| 41 | |
| 42 | #define CORE99_SIGNATURE 0x5a |
| 43 | #define CORE99_ADLER_START 0x14 |
| 44 | |
| 45 | /* On Core99, nvram is either a sharp, a micron or an AMD flash */ |
| 46 | #define SM_FLASH_STATUS_DONE 0x80 |
| 47 | #define SM_FLASH_STATUS_ERR 0x38 |
| 48 | |
| 49 | #define SM_FLASH_CMD_ERASE_CONFIRM 0xd0 |
| 50 | #define SM_FLASH_CMD_ERASE_SETUP 0x20 |
| 51 | #define SM_FLASH_CMD_RESET 0xff |
| 52 | #define SM_FLASH_CMD_WRITE_SETUP 0x40 |
| 53 | #define SM_FLASH_CMD_CLEAR_STATUS 0x50 |
| 54 | #define SM_FLASH_CMD_READ_STATUS 0x70 |
| 55 | |
| 56 | /* CHRP NVRAM header */ |
| 57 | struct chrp_header { |
| 58 | u8 signature; |
| 59 | u8 cksum; |
| 60 | u16 len; |
| 61 | char name[12]; |
| 62 | u8 data[0]; |
| 63 | }; |
| 64 | |
| 65 | struct core99_header { |
| 66 | struct chrp_header hdr; |
| 67 | u32 adler; |
| 68 | u32 generation; |
| 69 | u32 reserved[2]; |
| 70 | }; |
| 71 | |
| 72 | /* |
| 73 | * Read and write the non-volatile RAM on PowerMacs and CHRP machines. |
| 74 | */ |
| 75 | static volatile unsigned char *nvram_data; |
| 76 | static int core99_bank = 0; |
| 77 | // XXX Turn that into a sem |
| 78 | static DEFINE_SPINLOCK(nv_lock); |
| 79 | |
| 80 | extern int system_running; |
| 81 | |
| 82 | static int (*core99_write_bank)(int bank, u8* datas); |
| 83 | static int (*core99_erase_bank)(int bank); |
| 84 | |
| 85 | static char *nvram_image __pmacdata; |
| 86 | |
| 87 | |
| 88 | static ssize_t __pmac core99_nvram_read(char *buf, size_t count, loff_t *index) |
| 89 | { |
| 90 | int i; |
| 91 | |
| 92 | if (nvram_image == NULL) |
| 93 | return -ENODEV; |
| 94 | if (*index > NVRAM_SIZE) |
| 95 | return 0; |
| 96 | |
| 97 | i = *index; |
| 98 | if (i + count > NVRAM_SIZE) |
| 99 | count = NVRAM_SIZE - i; |
| 100 | |
| 101 | memcpy(buf, &nvram_image[i], count); |
| 102 | *index = i + count; |
| 103 | return count; |
| 104 | } |
| 105 | |
| 106 | static ssize_t __pmac core99_nvram_write(char *buf, size_t count, loff_t *index) |
| 107 | { |
| 108 | int i; |
| 109 | |
| 110 | if (nvram_image == NULL) |
| 111 | return -ENODEV; |
| 112 | if (*index > NVRAM_SIZE) |
| 113 | return 0; |
| 114 | |
| 115 | i = *index; |
| 116 | if (i + count > NVRAM_SIZE) |
| 117 | count = NVRAM_SIZE - i; |
| 118 | |
| 119 | memcpy(&nvram_image[i], buf, count); |
| 120 | *index = i + count; |
| 121 | return count; |
| 122 | } |
| 123 | |
| 124 | static ssize_t __pmac core99_nvram_size(void) |
| 125 | { |
| 126 | if (nvram_image == NULL) |
| 127 | return -ENODEV; |
| 128 | return NVRAM_SIZE; |
| 129 | } |
| 130 | |
| 131 | static u8 __pmac chrp_checksum(struct chrp_header* hdr) |
| 132 | { |
| 133 | u8 *ptr; |
| 134 | u16 sum = hdr->signature; |
| 135 | for (ptr = (u8 *)&hdr->len; ptr < hdr->data; ptr++) |
| 136 | sum += *ptr; |
| 137 | while (sum > 0xFF) |
| 138 | sum = (sum & 0xFF) + (sum>>8); |
| 139 | return sum; |
| 140 | } |
| 141 | |
| 142 | static u32 __pmac core99_calc_adler(u8 *buffer) |
| 143 | { |
| 144 | int cnt; |
| 145 | u32 low, high; |
| 146 | |
| 147 | buffer += CORE99_ADLER_START; |
| 148 | low = 1; |
| 149 | high = 0; |
| 150 | for (cnt=0; cnt<(NVRAM_SIZE-CORE99_ADLER_START); cnt++) { |
| 151 | if ((cnt % 5000) == 0) { |
| 152 | high %= 65521UL; |
| 153 | high %= 65521UL; |
| 154 | } |
| 155 | low += buffer[cnt]; |
| 156 | high += low; |
| 157 | } |
| 158 | low %= 65521UL; |
| 159 | high %= 65521UL; |
| 160 | |
| 161 | return (high << 16) | low; |
| 162 | } |
| 163 | |
| 164 | static u32 __pmac core99_check(u8* datas) |
| 165 | { |
| 166 | struct core99_header* hdr99 = (struct core99_header*)datas; |
| 167 | |
| 168 | if (hdr99->hdr.signature != CORE99_SIGNATURE) { |
| 169 | DBG("Invalid signature\n"); |
| 170 | return 0; |
| 171 | } |
| 172 | if (hdr99->hdr.cksum != chrp_checksum(&hdr99->hdr)) { |
| 173 | DBG("Invalid checksum\n"); |
| 174 | return 0; |
| 175 | } |
| 176 | if (hdr99->adler != core99_calc_adler(datas)) { |
| 177 | DBG("Invalid adler\n"); |
| 178 | return 0; |
| 179 | } |
| 180 | return hdr99->generation; |
| 181 | } |
| 182 | |
| 183 | static int __pmac sm_erase_bank(int bank) |
| 184 | { |
| 185 | int stat, i; |
| 186 | unsigned long timeout; |
| 187 | |
| 188 | u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE; |
| 189 | |
| 190 | DBG("nvram: Sharp/Micron Erasing bank %d...\n", bank); |
| 191 | |
| 192 | out_8(base, SM_FLASH_CMD_ERASE_SETUP); |
| 193 | out_8(base, SM_FLASH_CMD_ERASE_CONFIRM); |
| 194 | timeout = 0; |
| 195 | do { |
| 196 | if (++timeout > 1000000) { |
| 197 | printk(KERN_ERR "nvram: Sharp/Miron flash erase timeout !\n"); |
| 198 | break; |
| 199 | } |
| 200 | out_8(base, SM_FLASH_CMD_READ_STATUS); |
| 201 | stat = in_8(base); |
| 202 | } while (!(stat & SM_FLASH_STATUS_DONE)); |
| 203 | |
| 204 | out_8(base, SM_FLASH_CMD_CLEAR_STATUS); |
| 205 | out_8(base, SM_FLASH_CMD_RESET); |
| 206 | |
| 207 | for (i=0; i<NVRAM_SIZE; i++) |
| 208 | if (base[i] != 0xff) { |
| 209 | printk(KERN_ERR "nvram: Sharp/Micron flash erase failed !\n"); |
| 210 | return -ENXIO; |
| 211 | } |
| 212 | return 0; |
| 213 | } |
| 214 | |
| 215 | static int __pmac sm_write_bank(int bank, u8* datas) |
| 216 | { |
| 217 | int i, stat = 0; |
| 218 | unsigned long timeout; |
| 219 | |
| 220 | u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE; |
| 221 | |
| 222 | DBG("nvram: Sharp/Micron Writing bank %d...\n", bank); |
| 223 | |
| 224 | for (i=0; i<NVRAM_SIZE; i++) { |
| 225 | out_8(base+i, SM_FLASH_CMD_WRITE_SETUP); |
| 226 | udelay(1); |
| 227 | out_8(base+i, datas[i]); |
| 228 | timeout = 0; |
| 229 | do { |
| 230 | if (++timeout > 1000000) { |
| 231 | printk(KERN_ERR "nvram: Sharp/Micron flash write timeout !\n"); |
| 232 | break; |
| 233 | } |
| 234 | out_8(base, SM_FLASH_CMD_READ_STATUS); |
| 235 | stat = in_8(base); |
| 236 | } while (!(stat & SM_FLASH_STATUS_DONE)); |
| 237 | if (!(stat & SM_FLASH_STATUS_DONE)) |
| 238 | break; |
| 239 | } |
| 240 | out_8(base, SM_FLASH_CMD_CLEAR_STATUS); |
| 241 | out_8(base, SM_FLASH_CMD_RESET); |
| 242 | for (i=0; i<NVRAM_SIZE; i++) |
| 243 | if (base[i] != datas[i]) { |
| 244 | printk(KERN_ERR "nvram: Sharp/Micron flash write failed !\n"); |
| 245 | return -ENXIO; |
| 246 | } |
| 247 | return 0; |
| 248 | } |
| 249 | |
| 250 | static int __pmac amd_erase_bank(int bank) |
| 251 | { |
| 252 | int i, stat = 0; |
| 253 | unsigned long timeout; |
| 254 | |
| 255 | u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE; |
| 256 | |
| 257 | DBG("nvram: AMD Erasing bank %d...\n", bank); |
| 258 | |
| 259 | /* Unlock 1 */ |
| 260 | out_8(base+0x555, 0xaa); |
| 261 | udelay(1); |
| 262 | /* Unlock 2 */ |
| 263 | out_8(base+0x2aa, 0x55); |
| 264 | udelay(1); |
| 265 | |
| 266 | /* Sector-Erase */ |
| 267 | out_8(base+0x555, 0x80); |
| 268 | udelay(1); |
| 269 | out_8(base+0x555, 0xaa); |
| 270 | udelay(1); |
| 271 | out_8(base+0x2aa, 0x55); |
| 272 | udelay(1); |
| 273 | out_8(base, 0x30); |
| 274 | udelay(1); |
| 275 | |
| 276 | timeout = 0; |
| 277 | do { |
| 278 | if (++timeout > 1000000) { |
| 279 | printk(KERN_ERR "nvram: AMD flash erase timeout !\n"); |
| 280 | break; |
| 281 | } |
| 282 | stat = in_8(base) ^ in_8(base); |
| 283 | } while (stat != 0); |
| 284 | |
| 285 | /* Reset */ |
| 286 | out_8(base, 0xf0); |
| 287 | udelay(1); |
| 288 | |
| 289 | for (i=0; i<NVRAM_SIZE; i++) |
| 290 | if (base[i] != 0xff) { |
| 291 | printk(KERN_ERR "nvram: AMD flash erase failed !\n"); |
| 292 | return -ENXIO; |
| 293 | } |
| 294 | return 0; |
| 295 | } |
| 296 | |
| 297 | static int __pmac amd_write_bank(int bank, u8* datas) |
| 298 | { |
| 299 | int i, stat = 0; |
| 300 | unsigned long timeout; |
| 301 | |
| 302 | u8* base = (u8 *)nvram_data + core99_bank*NVRAM_SIZE; |
| 303 | |
| 304 | DBG("nvram: AMD Writing bank %d...\n", bank); |
| 305 | |
| 306 | for (i=0; i<NVRAM_SIZE; i++) { |
| 307 | /* Unlock 1 */ |
| 308 | out_8(base+0x555, 0xaa); |
| 309 | udelay(1); |
| 310 | /* Unlock 2 */ |
| 311 | out_8(base+0x2aa, 0x55); |
| 312 | udelay(1); |
| 313 | |
| 314 | /* Write single word */ |
| 315 | out_8(base+0x555, 0xa0); |
| 316 | udelay(1); |
| 317 | out_8(base+i, datas[i]); |
| 318 | |
| 319 | timeout = 0; |
| 320 | do { |
| 321 | if (++timeout > 1000000) { |
| 322 | printk(KERN_ERR "nvram: AMD flash write timeout !\n"); |
| 323 | break; |
| 324 | } |
| 325 | stat = in_8(base) ^ in_8(base); |
| 326 | } while (stat != 0); |
| 327 | if (stat != 0) |
| 328 | break; |
| 329 | } |
| 330 | |
| 331 | /* Reset */ |
| 332 | out_8(base, 0xf0); |
| 333 | udelay(1); |
| 334 | |
| 335 | for (i=0; i<NVRAM_SIZE; i++) |
| 336 | if (base[i] != datas[i]) { |
| 337 | printk(KERN_ERR "nvram: AMD flash write failed !\n"); |
| 338 | return -ENXIO; |
| 339 | } |
| 340 | return 0; |
| 341 | } |
| 342 | |
| 343 | |
| 344 | static int __pmac core99_nvram_sync(void) |
| 345 | { |
| 346 | struct core99_header* hdr99; |
| 347 | unsigned long flags; |
| 348 | |
| 349 | spin_lock_irqsave(&nv_lock, flags); |
| 350 | if (!memcmp(nvram_image, (u8*)nvram_data + core99_bank*NVRAM_SIZE, |
| 351 | NVRAM_SIZE)) |
| 352 | goto bail; |
| 353 | |
| 354 | DBG("Updating nvram...\n"); |
| 355 | |
| 356 | hdr99 = (struct core99_header*)nvram_image; |
| 357 | hdr99->generation++; |
| 358 | hdr99->hdr.signature = CORE99_SIGNATURE; |
| 359 | hdr99->hdr.cksum = chrp_checksum(&hdr99->hdr); |
| 360 | hdr99->adler = core99_calc_adler(nvram_image); |
| 361 | core99_bank = core99_bank ? 0 : 1; |
| 362 | if (core99_erase_bank) |
| 363 | if (core99_erase_bank(core99_bank)) { |
| 364 | printk("nvram: Error erasing bank %d\n", core99_bank); |
| 365 | goto bail; |
| 366 | } |
| 367 | if (core99_write_bank) |
| 368 | if (core99_write_bank(core99_bank, nvram_image)) |
| 369 | printk("nvram: Error writing bank %d\n", core99_bank); |
| 370 | bail: |
| 371 | spin_unlock_irqrestore(&nv_lock, flags); |
| 372 | |
| 373 | return 0; |
| 374 | } |
| 375 | |
| 376 | int __init pmac_nvram_init(void) |
| 377 | { |
| 378 | struct device_node *dp; |
| 379 | u32 gen_bank0, gen_bank1; |
| 380 | int i; |
| 381 | |
| 382 | dp = find_devices("nvram"); |
| 383 | if (dp == NULL) { |
| 384 | printk(KERN_ERR "Can't find NVRAM device\n"); |
| 385 | return -ENODEV; |
| 386 | } |
| 387 | if (!device_is_compatible(dp, "nvram,flash")) { |
| 388 | printk(KERN_ERR "Incompatible type of NVRAM\n"); |
| 389 | return -ENXIO; |
| 390 | } |
| 391 | |
| 392 | nvram_image = alloc_bootmem(NVRAM_SIZE); |
| 393 | if (nvram_image == NULL) { |
| 394 | printk(KERN_ERR "nvram: can't allocate ram image\n"); |
| 395 | return -ENOMEM; |
| 396 | } |
| 397 | nvram_data = ioremap(dp->addrs[0].address, NVRAM_SIZE*2); |
| 398 | |
| 399 | DBG("nvram: Checking bank 0...\n"); |
| 400 | |
| 401 | gen_bank0 = core99_check((u8 *)nvram_data); |
| 402 | gen_bank1 = core99_check((u8 *)nvram_data + NVRAM_SIZE); |
| 403 | core99_bank = (gen_bank0 < gen_bank1) ? 1 : 0; |
| 404 | |
| 405 | DBG("nvram: gen0=%d, gen1=%d\n", gen_bank0, gen_bank1); |
| 406 | DBG("nvram: Active bank is: %d\n", core99_bank); |
| 407 | |
| 408 | for (i=0; i<NVRAM_SIZE; i++) |
| 409 | nvram_image[i] = nvram_data[i + core99_bank*NVRAM_SIZE]; |
| 410 | |
| 411 | ppc_md.nvram_read = core99_nvram_read; |
| 412 | ppc_md.nvram_write = core99_nvram_write; |
| 413 | ppc_md.nvram_size = core99_nvram_size; |
| 414 | ppc_md.nvram_sync = core99_nvram_sync; |
| 415 | |
| 416 | /* |
| 417 | * Maybe we could be smarter here though making an exclusive list |
| 418 | * of known flash chips is a bit nasty as older OF didn't provide us |
| 419 | * with a useful "compatible" entry. A solution would be to really |
| 420 | * identify the chip using flash id commands and base ourselves on |
| 421 | * a list of known chips IDs |
| 422 | */ |
| 423 | if (device_is_compatible(dp, "amd-0137")) { |
| 424 | core99_erase_bank = amd_erase_bank; |
| 425 | core99_write_bank = amd_write_bank; |
| 426 | } else { |
| 427 | core99_erase_bank = sm_erase_bank; |
| 428 | core99_write_bank = sm_write_bank; |
| 429 | } |
| 430 | |
| 431 | return 0; |
| 432 | } |
| 433 | |
| 434 | int __pmac pmac_get_partition(int partition) |
| 435 | { |
| 436 | struct nvram_partition *part; |
| 437 | const char *name; |
| 438 | int sig; |
| 439 | |
| 440 | switch(partition) { |
| 441 | case pmac_nvram_OF: |
| 442 | name = "common"; |
| 443 | sig = NVRAM_SIG_SYS; |
| 444 | break; |
| 445 | case pmac_nvram_XPRAM: |
| 446 | name = "APL,MacOS75"; |
| 447 | sig = NVRAM_SIG_OS; |
| 448 | break; |
| 449 | case pmac_nvram_NR: |
| 450 | default: |
| 451 | /* Oldworld stuff */ |
| 452 | return -ENODEV; |
| 453 | } |
| 454 | |
| 455 | part = nvram_find_partition(sig, name); |
| 456 | if (part == NULL) |
| 457 | return 0; |
| 458 | |
| 459 | return part->index; |
| 460 | } |
| 461 | |
| 462 | u8 __pmac pmac_xpram_read(int xpaddr) |
| 463 | { |
| 464 | int offset = pmac_get_partition(pmac_nvram_XPRAM); |
| 465 | loff_t index; |
| 466 | u8 buf; |
| 467 | ssize_t count; |
| 468 | |
| 469 | if (offset < 0 || xpaddr < 0 || xpaddr > 0x100) |
| 470 | return 0xff; |
| 471 | index = offset + xpaddr; |
| 472 | |
| 473 | count = ppc_md.nvram_read(&buf, 1, &index); |
| 474 | if (count != 1) |
| 475 | return 0xff; |
| 476 | return buf; |
| 477 | } |
| 478 | |
| 479 | void __pmac pmac_xpram_write(int xpaddr, u8 data) |
| 480 | { |
| 481 | int offset = pmac_get_partition(pmac_nvram_XPRAM); |
| 482 | loff_t index; |
| 483 | u8 buf; |
| 484 | |
| 485 | if (offset < 0 || xpaddr < 0 || xpaddr > 0x100) |
| 486 | return; |
| 487 | index = offset + xpaddr; |
| 488 | buf = data; |
| 489 | |
| 490 | ppc_md.nvram_write(&buf, 1, &index); |
| 491 | } |
| 492 | |
| 493 | EXPORT_SYMBOL(pmac_get_partition); |
| 494 | EXPORT_SYMBOL(pmac_xpram_read); |
| 495 | EXPORT_SYMBOL(pmac_xpram_write); |