Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * ip27-irq.c: Highlevel interrupt handling for IP27 architecture. |
| 3 | * |
| 4 | * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org) |
| 5 | * Copyright (C) 1999, 2000 Silicon Graphics, Inc. |
| 6 | * Copyright (C) 1999 - 2001 Kanoj Sarcar |
| 7 | */ |
| 8 | #include <linux/config.h> |
| 9 | #include <linux/init.h> |
| 10 | #include <linux/irq.h> |
| 11 | #include <linux/errno.h> |
| 12 | #include <linux/signal.h> |
| 13 | #include <linux/sched.h> |
| 14 | #include <linux/types.h> |
| 15 | #include <linux/interrupt.h> |
| 16 | #include <linux/ioport.h> |
| 17 | #include <linux/irq.h> |
| 18 | #include <linux/timex.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/random.h> |
| 21 | #include <linux/smp_lock.h> |
| 22 | #include <linux/kernel_stat.h> |
| 23 | #include <linux/delay.h> |
| 24 | #include <linux/bitops.h> |
| 25 | |
| 26 | #include <asm/bootinfo.h> |
| 27 | #include <asm/io.h> |
| 28 | #include <asm/mipsregs.h> |
| 29 | #include <asm/system.h> |
| 30 | |
| 31 | #include <asm/ptrace.h> |
| 32 | #include <asm/processor.h> |
| 33 | #include <asm/pci/bridge.h> |
| 34 | #include <asm/sn/addrs.h> |
| 35 | #include <asm/sn/agent.h> |
| 36 | #include <asm/sn/arch.h> |
| 37 | #include <asm/sn/hub.h> |
| 38 | #include <asm/sn/intr.h> |
| 39 | |
| 40 | #undef DEBUG_IRQ |
| 41 | #ifdef DEBUG_IRQ |
| 42 | #define DBG(x...) printk(x) |
| 43 | #else |
| 44 | #define DBG(x...) |
| 45 | #endif |
| 46 | |
| 47 | /* |
| 48 | * Linux has a controller-independent x86 interrupt architecture. |
| 49 | * every controller has a 'controller-template', that is used |
| 50 | * by the main code to do the right thing. Each driver-visible |
| 51 | * interrupt source is transparently wired to the apropriate |
| 52 | * controller. Thus drivers need not be aware of the |
| 53 | * interrupt-controller. |
| 54 | * |
| 55 | * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC, |
| 56 | * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC. |
| 57 | * (IO-APICs assumed to be messaging to Pentium local-APICs) |
| 58 | * |
| 59 | * the code is designed to be easily extended with new/different |
| 60 | * interrupt controllers, without having to do assembly magic. |
| 61 | */ |
| 62 | |
| 63 | extern asmlinkage void ip27_irq(void); |
| 64 | |
| 65 | extern struct bridge_controller *irq_to_bridge[]; |
| 66 | extern int irq_to_slot[]; |
| 67 | |
| 68 | /* |
| 69 | * use these macros to get the encoded nasid and widget id |
| 70 | * from the irq value |
| 71 | */ |
| 72 | #define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)] |
| 73 | #define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i] |
| 74 | |
| 75 | static inline int alloc_level(int cpu, int irq) |
| 76 | { |
| 77 | struct slice_data *si = cpu_data[cpu].data; |
| 78 | int level; /* pre-allocated entries */ |
| 79 | |
| 80 | level = find_first_zero_bit(si->irq_alloc_mask, LEVELS_PER_SLICE); |
| 81 | if (level >= LEVELS_PER_SLICE) |
| 82 | panic("Cpu %d flooded with devices\n", cpu); |
| 83 | |
| 84 | __set_bit(level, si->irq_alloc_mask); |
| 85 | si->level_to_irq[level] = irq; |
| 86 | |
| 87 | return level; |
| 88 | } |
| 89 | |
| 90 | static inline int find_level(cpuid_t *cpunum, int irq) |
| 91 | { |
| 92 | int cpu, i; |
| 93 | |
| 94 | for (cpu = 0; cpu <= NR_CPUS; cpu++) { |
| 95 | struct slice_data *si = cpu_data[cpu].data; |
| 96 | |
| 97 | if (!cpu_online(cpu)) |
| 98 | continue; |
| 99 | |
| 100 | for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++) |
| 101 | if (si->level_to_irq[i] == irq) { |
| 102 | *cpunum = cpu; |
| 103 | |
| 104 | return i; |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | panic("Could not identify cpu/level for irq %d\n", irq); |
| 109 | } |
| 110 | |
| 111 | /* |
| 112 | * Find first bit set |
| 113 | */ |
| 114 | static int ms1bit(unsigned long x) |
| 115 | { |
| 116 | int b = 0, s; |
| 117 | |
| 118 | s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s; |
| 119 | s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s; |
| 120 | s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s; |
| 121 | s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s; |
| 122 | s = 1; if (x >> 1 == 0) s = 0; b += s; |
| 123 | |
| 124 | return b; |
| 125 | } |
| 126 | |
| 127 | /* |
| 128 | * This code is unnecessarily complex, because we do SA_INTERRUPT |
| 129 | * intr enabling. Basically, once we grab the set of intrs we need |
| 130 | * to service, we must mask _all_ these interrupts; firstly, to make |
| 131 | * sure the same intr does not intr again, causing recursion that |
| 132 | * can lead to stack overflow. Secondly, we can not just mask the |
| 133 | * one intr we are do_IRQing, because the non-masked intrs in the |
| 134 | * first set might intr again, causing multiple servicings of the |
| 135 | * same intr. This effect is mostly seen for intercpu intrs. |
| 136 | * Kanoj 05.13.00 |
| 137 | */ |
| 138 | |
| 139 | void ip27_do_irq_mask0(struct pt_regs *regs) |
| 140 | { |
| 141 | int irq, swlevel; |
| 142 | hubreg_t pend0, mask0; |
| 143 | cpuid_t cpu = smp_processor_id(); |
| 144 | int pi_int_mask0 = |
| 145 | (cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B; |
| 146 | |
| 147 | /* copied from Irix intpend0() */ |
| 148 | pend0 = LOCAL_HUB_L(PI_INT_PEND0); |
| 149 | mask0 = LOCAL_HUB_L(pi_int_mask0); |
| 150 | |
| 151 | pend0 &= mask0; /* Pick intrs we should look at */ |
| 152 | if (!pend0) |
| 153 | return; |
| 154 | |
| 155 | swlevel = ms1bit(pend0); |
| 156 | #ifdef CONFIG_SMP |
| 157 | if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) { |
| 158 | LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ); |
| 159 | } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) { |
| 160 | LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ); |
| 161 | } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) { |
| 162 | LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ); |
| 163 | smp_call_function_interrupt(); |
| 164 | } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) { |
| 165 | LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ); |
| 166 | smp_call_function_interrupt(); |
| 167 | } else |
| 168 | #endif |
| 169 | { |
| 170 | /* "map" swlevel to irq */ |
| 171 | struct slice_data *si = cpu_data[cpu].data; |
| 172 | |
| 173 | irq = si->level_to_irq[swlevel]; |
| 174 | do_IRQ(irq, regs); |
| 175 | } |
| 176 | |
| 177 | LOCAL_HUB_L(PI_INT_PEND0); |
| 178 | } |
| 179 | |
| 180 | void ip27_do_irq_mask1(struct pt_regs *regs) |
| 181 | { |
| 182 | int irq, swlevel; |
| 183 | hubreg_t pend1, mask1; |
| 184 | cpuid_t cpu = smp_processor_id(); |
| 185 | int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B; |
| 186 | struct slice_data *si = cpu_data[cpu].data; |
| 187 | |
| 188 | /* copied from Irix intpend0() */ |
| 189 | pend1 = LOCAL_HUB_L(PI_INT_PEND1); |
| 190 | mask1 = LOCAL_HUB_L(pi_int_mask1); |
| 191 | |
| 192 | pend1 &= mask1; /* Pick intrs we should look at */ |
| 193 | if (!pend1) |
| 194 | return; |
| 195 | |
| 196 | swlevel = ms1bit(pend1); |
| 197 | /* "map" swlevel to irq */ |
| 198 | irq = si->level_to_irq[swlevel]; |
| 199 | LOCAL_HUB_CLR_INTR(swlevel); |
| 200 | do_IRQ(irq, regs); |
| 201 | |
| 202 | LOCAL_HUB_L(PI_INT_PEND1); |
| 203 | } |
| 204 | |
| 205 | void ip27_prof_timer(struct pt_regs *regs) |
| 206 | { |
| 207 | panic("CPU %d got a profiling interrupt", smp_processor_id()); |
| 208 | } |
| 209 | |
| 210 | void ip27_hub_error(struct pt_regs *regs) |
| 211 | { |
| 212 | panic("CPU %d got a hub error interrupt", smp_processor_id()); |
| 213 | } |
| 214 | |
| 215 | static int intr_connect_level(int cpu, int bit) |
| 216 | { |
| 217 | nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu)); |
| 218 | struct slice_data *si = cpu_data[cpu].data; |
| 219 | |
| 220 | __set_bit(bit, si->irq_enable_mask); |
| 221 | |
| 222 | if (!cputoslice(cpu)) { |
| 223 | REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]); |
| 224 | REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]); |
| 225 | } else { |
| 226 | REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]); |
| 227 | REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]); |
| 228 | } |
| 229 | |
| 230 | return 0; |
| 231 | } |
| 232 | |
| 233 | static int intr_disconnect_level(int cpu, int bit) |
| 234 | { |
| 235 | nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu)); |
| 236 | struct slice_data *si = cpu_data[cpu].data; |
| 237 | |
| 238 | __clear_bit(bit, si->irq_enable_mask); |
| 239 | |
| 240 | if (!cputoslice(cpu)) { |
| 241 | REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]); |
| 242 | REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]); |
| 243 | } else { |
| 244 | REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]); |
| 245 | REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]); |
| 246 | } |
| 247 | |
| 248 | return 0; |
| 249 | } |
| 250 | |
| 251 | /* Startup one of the (PCI ...) IRQs routes over a bridge. */ |
| 252 | static unsigned int startup_bridge_irq(unsigned int irq) |
| 253 | { |
| 254 | struct bridge_controller *bc; |
| 255 | bridgereg_t device; |
| 256 | bridge_t *bridge; |
| 257 | int pin, swlevel; |
| 258 | cpuid_t cpu; |
| 259 | |
| 260 | pin = SLOT_FROM_PCI_IRQ(irq); |
| 261 | bc = IRQ_TO_BRIDGE(irq); |
| 262 | bridge = bc->base; |
| 263 | |
| 264 | DBG("bridge_startup(): irq= 0x%x pin=%d\n", irq, pin); |
| 265 | /* |
| 266 | * "map" irq to a swlevel greater than 6 since the first 6 bits |
| 267 | * of INT_PEND0 are taken |
| 268 | */ |
| 269 | swlevel = find_level(&cpu, irq); |
| 270 | bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8)); |
| 271 | bridge->b_int_enable |= (1 << pin); |
| 272 | bridge->b_int_enable |= 0x7ffffe00; /* more stuff in int_enable */ |
| 273 | |
| 274 | /* |
| 275 | * Enable sending of an interrupt clear packt to the hub on a high to |
| 276 | * low transition of the interrupt pin. |
| 277 | * |
| 278 | * IRIX sets additional bits in the address which are documented as |
| 279 | * reserved in the bridge docs. |
| 280 | */ |
| 281 | bridge->b_int_mode |= (1UL << pin); |
| 282 | |
| 283 | /* |
| 284 | * We assume the bridge to have a 1:1 mapping between devices |
| 285 | * (slots) and intr pins. |
| 286 | */ |
| 287 | device = bridge->b_int_device; |
| 288 | device &= ~(7 << (pin*3)); |
| 289 | device |= (pin << (pin*3)); |
| 290 | bridge->b_int_device = device; |
| 291 | |
| 292 | bridge->b_wid_tflush; |
| 293 | |
| 294 | return 0; /* Never anything pending. */ |
| 295 | } |
| 296 | |
| 297 | /* Shutdown one of the (PCI ...) IRQs routes over a bridge. */ |
| 298 | static void shutdown_bridge_irq(unsigned int irq) |
| 299 | { |
| 300 | struct bridge_controller *bc = IRQ_TO_BRIDGE(irq); |
| 301 | bridge_t *bridge = bc->base; |
| 302 | struct slice_data *si = cpu_data[bc->irq_cpu].data; |
| 303 | int pin, swlevel; |
| 304 | cpuid_t cpu; |
| 305 | |
| 306 | DBG("bridge_shutdown: irq 0x%x\n", irq); |
| 307 | pin = SLOT_FROM_PCI_IRQ(irq); |
| 308 | |
| 309 | /* |
| 310 | * map irq to a swlevel greater than 6 since the first 6 bits |
| 311 | * of INT_PEND0 are taken |
| 312 | */ |
| 313 | swlevel = find_level(&cpu, irq); |
| 314 | intr_disconnect_level(cpu, swlevel); |
| 315 | |
| 316 | __clear_bit(swlevel, si->irq_alloc_mask); |
| 317 | si->level_to_irq[swlevel] = -1; |
| 318 | |
| 319 | bridge->b_int_enable &= ~(1 << pin); |
| 320 | bridge->b_wid_tflush; |
| 321 | } |
| 322 | |
| 323 | static inline void enable_bridge_irq(unsigned int irq) |
| 324 | { |
| 325 | cpuid_t cpu; |
| 326 | int swlevel; |
| 327 | |
| 328 | swlevel = find_level(&cpu, irq); /* Criminal offence */ |
| 329 | intr_connect_level(cpu, swlevel); |
| 330 | } |
| 331 | |
| 332 | static inline void disable_bridge_irq(unsigned int irq) |
| 333 | { |
| 334 | cpuid_t cpu; |
| 335 | int swlevel; |
| 336 | |
| 337 | swlevel = find_level(&cpu, irq); /* Criminal offence */ |
| 338 | intr_disconnect_level(cpu, swlevel); |
| 339 | } |
| 340 | |
| 341 | static void mask_and_ack_bridge_irq(unsigned int irq) |
| 342 | { |
| 343 | disable_bridge_irq(irq); |
| 344 | } |
| 345 | |
| 346 | static void end_bridge_irq(unsigned int irq) |
| 347 | { |
| 348 | if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)) && |
| 349 | irq_desc[irq].action) |
| 350 | enable_bridge_irq(irq); |
| 351 | } |
| 352 | |
| 353 | static struct hw_interrupt_type bridge_irq_type = { |
| 354 | .typename = "bridge", |
| 355 | .startup = startup_bridge_irq, |
| 356 | .shutdown = shutdown_bridge_irq, |
| 357 | .enable = enable_bridge_irq, |
| 358 | .disable = disable_bridge_irq, |
| 359 | .ack = mask_and_ack_bridge_irq, |
| 360 | .end = end_bridge_irq, |
| 361 | }; |
| 362 | |
| 363 | static unsigned long irq_map[NR_IRQS / BITS_PER_LONG]; |
| 364 | |
| 365 | static int allocate_irqno(void) |
| 366 | { |
| 367 | int irq; |
| 368 | |
| 369 | again: |
| 370 | irq = find_first_zero_bit(irq_map, NR_IRQS); |
| 371 | |
| 372 | if (irq >= NR_IRQS) |
| 373 | return -ENOSPC; |
| 374 | |
| 375 | if (test_and_set_bit(irq, irq_map)) |
| 376 | goto again; |
| 377 | |
| 378 | return irq; |
| 379 | } |
| 380 | |
| 381 | void free_irqno(unsigned int irq) |
| 382 | { |
| 383 | clear_bit(irq, irq_map); |
| 384 | } |
| 385 | |
| 386 | void __devinit register_bridge_irq(unsigned int irq) |
| 387 | { |
| 388 | irq_desc[irq].status = IRQ_DISABLED; |
| 389 | irq_desc[irq].action = 0; |
| 390 | irq_desc[irq].depth = 1; |
| 391 | irq_desc[irq].handler = &bridge_irq_type; |
| 392 | } |
| 393 | |
| 394 | int __devinit request_bridge_irq(struct bridge_controller *bc) |
| 395 | { |
| 396 | int irq = allocate_irqno(); |
| 397 | int swlevel, cpu; |
| 398 | nasid_t nasid; |
| 399 | |
| 400 | if (irq < 0) |
| 401 | return irq; |
| 402 | |
| 403 | /* |
| 404 | * "map" irq to a swlevel greater than 6 since the first 6 bits |
| 405 | * of INT_PEND0 are taken |
| 406 | */ |
| 407 | cpu = bc->irq_cpu; |
| 408 | swlevel = alloc_level(cpu, irq); |
| 409 | if (unlikely(swlevel < 0)) { |
| 410 | free_irqno(irq); |
| 411 | |
| 412 | return -EAGAIN; |
| 413 | } |
| 414 | |
| 415 | /* Make sure it's not already pending when we connect it. */ |
| 416 | nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu)); |
| 417 | REMOTE_HUB_CLR_INTR(nasid, swlevel); |
| 418 | |
| 419 | intr_connect_level(cpu, swlevel); |
| 420 | |
| 421 | register_bridge_irq(irq); |
| 422 | |
| 423 | return irq; |
| 424 | } |
| 425 | |
| 426 | void __init arch_init_irq(void) |
| 427 | { |
| 428 | set_except_vector(0, ip27_irq); |
| 429 | } |
| 430 | |
| 431 | void install_ipi(void) |
| 432 | { |
| 433 | int slice = LOCAL_HUB_L(PI_CPU_NUM); |
| 434 | int cpu = smp_processor_id(); |
| 435 | struct slice_data *si = cpu_data[cpu].data; |
| 436 | hubreg_t mask, set; |
| 437 | |
| 438 | if (slice == 0) { |
| 439 | LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ); |
| 440 | LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ); |
| 441 | mask = LOCAL_HUB_L(PI_INT_MASK0_A); /* Slice A */ |
| 442 | set = (1UL << CPU_RESCHED_A_IRQ) | (1UL << CPU_CALL_A_IRQ); |
| 443 | mask |= set; |
| 444 | si->irq_enable_mask[0] |= set; |
| 445 | si->irq_alloc_mask[0] |= set; |
| 446 | LOCAL_HUB_S(PI_INT_MASK0_A, mask); |
| 447 | } else { |
| 448 | LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ); |
| 449 | LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ); |
| 450 | mask = LOCAL_HUB_L(PI_INT_MASK0_B); /* Slice B */ |
| 451 | set = (1UL << CPU_RESCHED_B_IRQ) | (1UL << CPU_CALL_B_IRQ); |
| 452 | mask |= set; |
| 453 | si->irq_enable_mask[1] |= set; |
| 454 | si->irq_alloc_mask[1] |= set; |
| 455 | LOCAL_HUB_S(PI_INT_MASK0_B, mask); |
| 456 | } |
| 457 | } |