Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * linux/arch/i386/traps.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 5 | * |
| 6 | * Pentium III FXSR, SSE support |
| 7 | * Gareth Hughes <gareth@valinux.com>, May 2000 |
| 8 | */ |
| 9 | |
| 10 | /* |
| 11 | * 'Traps.c' handles hardware traps and faults after we have saved some |
| 12 | * state in 'asm.s'. |
| 13 | */ |
| 14 | #include <linux/config.h> |
| 15 | #include <linux/sched.h> |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/string.h> |
| 18 | #include <linux/errno.h> |
| 19 | #include <linux/timer.h> |
| 20 | #include <linux/mm.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/delay.h> |
| 23 | #include <linux/spinlock.h> |
| 24 | #include <linux/interrupt.h> |
| 25 | #include <linux/highmem.h> |
| 26 | #include <linux/kallsyms.h> |
| 27 | #include <linux/ptrace.h> |
| 28 | #include <linux/utsname.h> |
| 29 | #include <linux/kprobes.h> |
| 30 | |
| 31 | #ifdef CONFIG_EISA |
| 32 | #include <linux/ioport.h> |
| 33 | #include <linux/eisa.h> |
| 34 | #endif |
| 35 | |
| 36 | #ifdef CONFIG_MCA |
| 37 | #include <linux/mca.h> |
| 38 | #endif |
| 39 | |
| 40 | #include <asm/processor.h> |
| 41 | #include <asm/system.h> |
| 42 | #include <asm/uaccess.h> |
| 43 | #include <asm/io.h> |
| 44 | #include <asm/atomic.h> |
| 45 | #include <asm/debugreg.h> |
| 46 | #include <asm/desc.h> |
| 47 | #include <asm/i387.h> |
| 48 | #include <asm/nmi.h> |
| 49 | |
| 50 | #include <asm/smp.h> |
| 51 | #include <asm/arch_hooks.h> |
| 52 | #include <asm/kdebug.h> |
| 53 | |
| 54 | #include <linux/irq.h> |
| 55 | #include <linux/module.h> |
| 56 | |
| 57 | #include "mach_traps.h" |
| 58 | |
| 59 | asmlinkage int system_call(void); |
| 60 | |
| 61 | struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, |
| 62 | { 0, 0 }, { 0, 0 } }; |
| 63 | |
| 64 | /* Do we ignore FPU interrupts ? */ |
| 65 | char ignore_fpu_irq = 0; |
| 66 | |
| 67 | /* |
| 68 | * The IDT has to be page-aligned to simplify the Pentium |
| 69 | * F0 0F bug workaround.. We have a special link segment |
| 70 | * for this. |
| 71 | */ |
| 72 | struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, }; |
| 73 | |
| 74 | asmlinkage void divide_error(void); |
| 75 | asmlinkage void debug(void); |
| 76 | asmlinkage void nmi(void); |
| 77 | asmlinkage void int3(void); |
| 78 | asmlinkage void overflow(void); |
| 79 | asmlinkage void bounds(void); |
| 80 | asmlinkage void invalid_op(void); |
| 81 | asmlinkage void device_not_available(void); |
| 82 | asmlinkage void coprocessor_segment_overrun(void); |
| 83 | asmlinkage void invalid_TSS(void); |
| 84 | asmlinkage void segment_not_present(void); |
| 85 | asmlinkage void stack_segment(void); |
| 86 | asmlinkage void general_protection(void); |
| 87 | asmlinkage void page_fault(void); |
| 88 | asmlinkage void coprocessor_error(void); |
| 89 | asmlinkage void simd_coprocessor_error(void); |
| 90 | asmlinkage void alignment_check(void); |
| 91 | asmlinkage void spurious_interrupt_bug(void); |
| 92 | asmlinkage void machine_check(void); |
| 93 | |
| 94 | static int kstack_depth_to_print = 24; |
| 95 | struct notifier_block *i386die_chain; |
| 96 | static DEFINE_SPINLOCK(die_notifier_lock); |
| 97 | |
| 98 | int register_die_notifier(struct notifier_block *nb) |
| 99 | { |
| 100 | int err = 0; |
| 101 | unsigned long flags; |
| 102 | spin_lock_irqsave(&die_notifier_lock, flags); |
| 103 | err = notifier_chain_register(&i386die_chain, nb); |
| 104 | spin_unlock_irqrestore(&die_notifier_lock, flags); |
| 105 | return err; |
| 106 | } |
| 107 | |
| 108 | static inline int valid_stack_ptr(struct thread_info *tinfo, void *p) |
| 109 | { |
| 110 | return p > (void *)tinfo && |
| 111 | p < (void *)tinfo + THREAD_SIZE - 3; |
| 112 | } |
| 113 | |
| 114 | static inline unsigned long print_context_stack(struct thread_info *tinfo, |
| 115 | unsigned long *stack, unsigned long ebp) |
| 116 | { |
| 117 | unsigned long addr; |
| 118 | |
| 119 | #ifdef CONFIG_FRAME_POINTER |
| 120 | while (valid_stack_ptr(tinfo, (void *)ebp)) { |
| 121 | addr = *(unsigned long *)(ebp + 4); |
| 122 | printk(" [<%08lx>] ", addr); |
| 123 | print_symbol("%s", addr); |
| 124 | printk("\n"); |
| 125 | ebp = *(unsigned long *)ebp; |
| 126 | } |
| 127 | #else |
| 128 | while (valid_stack_ptr(tinfo, stack)) { |
| 129 | addr = *stack++; |
| 130 | if (__kernel_text_address(addr)) { |
| 131 | printk(" [<%08lx>]", addr); |
| 132 | print_symbol(" %s", addr); |
| 133 | printk("\n"); |
| 134 | } |
| 135 | } |
| 136 | #endif |
| 137 | return ebp; |
| 138 | } |
| 139 | |
| 140 | void show_trace(struct task_struct *task, unsigned long * stack) |
| 141 | { |
| 142 | unsigned long ebp; |
| 143 | |
| 144 | if (!task) |
| 145 | task = current; |
| 146 | |
| 147 | if (task == current) { |
| 148 | /* Grab ebp right from our regs */ |
| 149 | asm ("movl %%ebp, %0" : "=r" (ebp) : ); |
| 150 | } else { |
| 151 | /* ebp is the last reg pushed by switch_to */ |
| 152 | ebp = *(unsigned long *) task->thread.esp; |
| 153 | } |
| 154 | |
| 155 | while (1) { |
| 156 | struct thread_info *context; |
| 157 | context = (struct thread_info *) |
| 158 | ((unsigned long)stack & (~(THREAD_SIZE - 1))); |
| 159 | ebp = print_context_stack(context, stack, ebp); |
| 160 | stack = (unsigned long*)context->previous_esp; |
| 161 | if (!stack) |
| 162 | break; |
| 163 | printk(" =======================\n"); |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | void show_stack(struct task_struct *task, unsigned long *esp) |
| 168 | { |
| 169 | unsigned long *stack; |
| 170 | int i; |
| 171 | |
| 172 | if (esp == NULL) { |
| 173 | if (task) |
| 174 | esp = (unsigned long*)task->thread.esp; |
| 175 | else |
| 176 | esp = (unsigned long *)&esp; |
| 177 | } |
| 178 | |
| 179 | stack = esp; |
| 180 | for(i = 0; i < kstack_depth_to_print; i++) { |
| 181 | if (kstack_end(stack)) |
| 182 | break; |
| 183 | if (i && ((i % 8) == 0)) |
| 184 | printk("\n "); |
| 185 | printk("%08lx ", *stack++); |
| 186 | } |
| 187 | printk("\nCall Trace:\n"); |
| 188 | show_trace(task, esp); |
| 189 | } |
| 190 | |
| 191 | /* |
| 192 | * The architecture-independent dump_stack generator |
| 193 | */ |
| 194 | void dump_stack(void) |
| 195 | { |
| 196 | unsigned long stack; |
| 197 | |
| 198 | show_trace(current, &stack); |
| 199 | } |
| 200 | |
| 201 | EXPORT_SYMBOL(dump_stack); |
| 202 | |
| 203 | void show_registers(struct pt_regs *regs) |
| 204 | { |
| 205 | int i; |
| 206 | int in_kernel = 1; |
| 207 | unsigned long esp; |
| 208 | unsigned short ss; |
| 209 | |
| 210 | esp = (unsigned long) (®s->esp); |
| 211 | ss = __KERNEL_DS; |
| 212 | if (regs->xcs & 3) { |
| 213 | in_kernel = 0; |
| 214 | esp = regs->esp; |
| 215 | ss = regs->xss & 0xffff; |
| 216 | } |
| 217 | print_modules(); |
| 218 | printk("CPU: %d\nEIP: %04x:[<%08lx>] %s VLI\nEFLAGS: %08lx" |
| 219 | " (%s) \n", |
| 220 | smp_processor_id(), 0xffff & regs->xcs, regs->eip, |
| 221 | print_tainted(), regs->eflags, system_utsname.release); |
| 222 | print_symbol("EIP is at %s\n", regs->eip); |
| 223 | printk("eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n", |
| 224 | regs->eax, regs->ebx, regs->ecx, regs->edx); |
| 225 | printk("esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n", |
| 226 | regs->esi, regs->edi, regs->ebp, esp); |
| 227 | printk("ds: %04x es: %04x ss: %04x\n", |
| 228 | regs->xds & 0xffff, regs->xes & 0xffff, ss); |
| 229 | printk("Process %s (pid: %d, threadinfo=%p task=%p)", |
| 230 | current->comm, current->pid, current_thread_info(), current); |
| 231 | /* |
| 232 | * When in-kernel, we also print out the stack and code at the |
| 233 | * time of the fault.. |
| 234 | */ |
| 235 | if (in_kernel) { |
| 236 | u8 *eip; |
| 237 | |
| 238 | printk("\nStack: "); |
| 239 | show_stack(NULL, (unsigned long*)esp); |
| 240 | |
| 241 | printk("Code: "); |
| 242 | |
| 243 | eip = (u8 *)regs->eip - 43; |
| 244 | for (i = 0; i < 64; i++, eip++) { |
| 245 | unsigned char c; |
| 246 | |
| 247 | if (eip < (u8 *)PAGE_OFFSET || __get_user(c, eip)) { |
| 248 | printk(" Bad EIP value."); |
| 249 | break; |
| 250 | } |
| 251 | if (eip == (u8 *)regs->eip) |
| 252 | printk("<%02x> ", c); |
| 253 | else |
| 254 | printk("%02x ", c); |
| 255 | } |
| 256 | } |
| 257 | printk("\n"); |
| 258 | } |
| 259 | |
| 260 | static void handle_BUG(struct pt_regs *regs) |
| 261 | { |
| 262 | unsigned short ud2; |
| 263 | unsigned short line; |
| 264 | char *file; |
| 265 | char c; |
| 266 | unsigned long eip; |
| 267 | |
| 268 | if (regs->xcs & 3) |
| 269 | goto no_bug; /* Not in kernel */ |
| 270 | |
| 271 | eip = regs->eip; |
| 272 | |
| 273 | if (eip < PAGE_OFFSET) |
| 274 | goto no_bug; |
| 275 | if (__get_user(ud2, (unsigned short *)eip)) |
| 276 | goto no_bug; |
| 277 | if (ud2 != 0x0b0f) |
| 278 | goto no_bug; |
| 279 | if (__get_user(line, (unsigned short *)(eip + 2))) |
| 280 | goto bug; |
| 281 | if (__get_user(file, (char **)(eip + 4)) || |
| 282 | (unsigned long)file < PAGE_OFFSET || __get_user(c, file)) |
| 283 | file = "<bad filename>"; |
| 284 | |
| 285 | printk("------------[ cut here ]------------\n"); |
| 286 | printk(KERN_ALERT "kernel BUG at %s:%d!\n", file, line); |
| 287 | |
| 288 | no_bug: |
| 289 | return; |
| 290 | |
| 291 | /* Here we know it was a BUG but file-n-line is unavailable */ |
| 292 | bug: |
| 293 | printk("Kernel BUG\n"); |
| 294 | } |
| 295 | |
| 296 | void die(const char * str, struct pt_regs * regs, long err) |
| 297 | { |
| 298 | static struct { |
| 299 | spinlock_t lock; |
| 300 | u32 lock_owner; |
| 301 | int lock_owner_depth; |
| 302 | } die = { |
| 303 | .lock = SPIN_LOCK_UNLOCKED, |
| 304 | .lock_owner = -1, |
| 305 | .lock_owner_depth = 0 |
| 306 | }; |
| 307 | static int die_counter; |
| 308 | |
| 309 | if (die.lock_owner != _smp_processor_id()) { |
| 310 | console_verbose(); |
| 311 | spin_lock_irq(&die.lock); |
| 312 | die.lock_owner = smp_processor_id(); |
| 313 | die.lock_owner_depth = 0; |
| 314 | bust_spinlocks(1); |
| 315 | } |
| 316 | |
| 317 | if (++die.lock_owner_depth < 3) { |
| 318 | int nl = 0; |
| 319 | handle_BUG(regs); |
| 320 | printk(KERN_ALERT "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter); |
| 321 | #ifdef CONFIG_PREEMPT |
| 322 | printk("PREEMPT "); |
| 323 | nl = 1; |
| 324 | #endif |
| 325 | #ifdef CONFIG_SMP |
| 326 | printk("SMP "); |
| 327 | nl = 1; |
| 328 | #endif |
| 329 | #ifdef CONFIG_DEBUG_PAGEALLOC |
| 330 | printk("DEBUG_PAGEALLOC"); |
| 331 | nl = 1; |
| 332 | #endif |
| 333 | if (nl) |
| 334 | printk("\n"); |
| 335 | notify_die(DIE_OOPS, (char *)str, regs, err, 255, SIGSEGV); |
| 336 | show_registers(regs); |
| 337 | } else |
| 338 | printk(KERN_ERR "Recursive die() failure, output suppressed\n"); |
| 339 | |
| 340 | bust_spinlocks(0); |
| 341 | die.lock_owner = -1; |
| 342 | spin_unlock_irq(&die.lock); |
| 343 | if (in_interrupt()) |
| 344 | panic("Fatal exception in interrupt"); |
| 345 | |
| 346 | if (panic_on_oops) { |
| 347 | printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n"); |
| 348 | ssleep(5); |
| 349 | panic("Fatal exception"); |
| 350 | } |
| 351 | do_exit(SIGSEGV); |
| 352 | } |
| 353 | |
| 354 | static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err) |
| 355 | { |
| 356 | if (!(regs->eflags & VM_MASK) && !(3 & regs->xcs)) |
| 357 | die(str, regs, err); |
| 358 | } |
| 359 | |
| 360 | static void do_trap(int trapnr, int signr, char *str, int vm86, |
| 361 | struct pt_regs * regs, long error_code, siginfo_t *info) |
| 362 | { |
| 363 | if (regs->eflags & VM_MASK) { |
| 364 | if (vm86) |
| 365 | goto vm86_trap; |
| 366 | goto trap_signal; |
| 367 | } |
| 368 | |
| 369 | if (!(regs->xcs & 3)) |
| 370 | goto kernel_trap; |
| 371 | |
| 372 | trap_signal: { |
| 373 | struct task_struct *tsk = current; |
| 374 | tsk->thread.error_code = error_code; |
| 375 | tsk->thread.trap_no = trapnr; |
| 376 | if (info) |
| 377 | force_sig_info(signr, info, tsk); |
| 378 | else |
| 379 | force_sig(signr, tsk); |
| 380 | return; |
| 381 | } |
| 382 | |
| 383 | kernel_trap: { |
| 384 | if (!fixup_exception(regs)) |
| 385 | die(str, regs, error_code); |
| 386 | return; |
| 387 | } |
| 388 | |
| 389 | vm86_trap: { |
| 390 | int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr); |
| 391 | if (ret) goto trap_signal; |
| 392 | return; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | #define DO_ERROR(trapnr, signr, str, name) \ |
| 397 | fastcall void do_##name(struct pt_regs * regs, long error_code) \ |
| 398 | { \ |
| 399 | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ |
| 400 | == NOTIFY_STOP) \ |
| 401 | return; \ |
| 402 | do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \ |
| 403 | } |
| 404 | |
| 405 | #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ |
| 406 | fastcall void do_##name(struct pt_regs * regs, long error_code) \ |
| 407 | { \ |
| 408 | siginfo_t info; \ |
| 409 | info.si_signo = signr; \ |
| 410 | info.si_errno = 0; \ |
| 411 | info.si_code = sicode; \ |
| 412 | info.si_addr = (void __user *)siaddr; \ |
| 413 | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ |
| 414 | == NOTIFY_STOP) \ |
| 415 | return; \ |
| 416 | do_trap(trapnr, signr, str, 0, regs, error_code, &info); \ |
| 417 | } |
| 418 | |
| 419 | #define DO_VM86_ERROR(trapnr, signr, str, name) \ |
| 420 | fastcall void do_##name(struct pt_regs * regs, long error_code) \ |
| 421 | { \ |
| 422 | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ |
| 423 | == NOTIFY_STOP) \ |
| 424 | return; \ |
| 425 | do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \ |
| 426 | } |
| 427 | |
| 428 | #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \ |
| 429 | fastcall void do_##name(struct pt_regs * regs, long error_code) \ |
| 430 | { \ |
| 431 | siginfo_t info; \ |
| 432 | info.si_signo = signr; \ |
| 433 | info.si_errno = 0; \ |
| 434 | info.si_code = sicode; \ |
| 435 | info.si_addr = (void __user *)siaddr; \ |
| 436 | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \ |
| 437 | == NOTIFY_STOP) \ |
| 438 | return; \ |
| 439 | do_trap(trapnr, signr, str, 1, regs, error_code, &info); \ |
| 440 | } |
| 441 | |
| 442 | DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip) |
| 443 | #ifndef CONFIG_KPROBES |
| 444 | DO_VM86_ERROR( 3, SIGTRAP, "int3", int3) |
| 445 | #endif |
| 446 | DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow) |
| 447 | DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds) |
| 448 | DO_ERROR_INFO( 6, SIGILL, "invalid operand", invalid_op, ILL_ILLOPN, regs->eip) |
| 449 | DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun) |
| 450 | DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) |
| 451 | DO_ERROR(11, SIGBUS, "segment not present", segment_not_present) |
| 452 | DO_ERROR(12, SIGBUS, "stack segment", stack_segment) |
| 453 | DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0) |
| 454 | |
| 455 | fastcall void do_general_protection(struct pt_regs * regs, long error_code) |
| 456 | { |
| 457 | int cpu = get_cpu(); |
| 458 | struct tss_struct *tss = &per_cpu(init_tss, cpu); |
| 459 | struct thread_struct *thread = ¤t->thread; |
| 460 | |
| 461 | /* |
| 462 | * Perform the lazy TSS's I/O bitmap copy. If the TSS has an |
| 463 | * invalid offset set (the LAZY one) and the faulting thread has |
| 464 | * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS |
| 465 | * and we set the offset field correctly. Then we let the CPU to |
| 466 | * restart the faulting instruction. |
| 467 | */ |
| 468 | if (tss->io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY && |
| 469 | thread->io_bitmap_ptr) { |
| 470 | memcpy(tss->io_bitmap, thread->io_bitmap_ptr, |
| 471 | thread->io_bitmap_max); |
| 472 | /* |
| 473 | * If the previously set map was extending to higher ports |
| 474 | * than the current one, pad extra space with 0xff (no access). |
| 475 | */ |
| 476 | if (thread->io_bitmap_max < tss->io_bitmap_max) |
| 477 | memset((char *) tss->io_bitmap + |
| 478 | thread->io_bitmap_max, 0xff, |
| 479 | tss->io_bitmap_max - thread->io_bitmap_max); |
| 480 | tss->io_bitmap_max = thread->io_bitmap_max; |
| 481 | tss->io_bitmap_base = IO_BITMAP_OFFSET; |
| 482 | put_cpu(); |
| 483 | return; |
| 484 | } |
| 485 | put_cpu(); |
| 486 | |
| 487 | if (regs->eflags & VM_MASK) |
| 488 | goto gp_in_vm86; |
| 489 | |
| 490 | if (!(regs->xcs & 3)) |
| 491 | goto gp_in_kernel; |
| 492 | |
| 493 | current->thread.error_code = error_code; |
| 494 | current->thread.trap_no = 13; |
| 495 | force_sig(SIGSEGV, current); |
| 496 | return; |
| 497 | |
| 498 | gp_in_vm86: |
| 499 | local_irq_enable(); |
| 500 | handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); |
| 501 | return; |
| 502 | |
| 503 | gp_in_kernel: |
| 504 | if (!fixup_exception(regs)) { |
| 505 | if (notify_die(DIE_GPF, "general protection fault", regs, |
| 506 | error_code, 13, SIGSEGV) == NOTIFY_STOP) |
| 507 | return; |
| 508 | die("general protection fault", regs, error_code); |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | static void mem_parity_error(unsigned char reason, struct pt_regs * regs) |
| 513 | { |
| 514 | printk("Uhhuh. NMI received. Dazed and confused, but trying to continue\n"); |
| 515 | printk("You probably have a hardware problem with your RAM chips\n"); |
| 516 | |
| 517 | /* Clear and disable the memory parity error line. */ |
| 518 | clear_mem_error(reason); |
| 519 | } |
| 520 | |
| 521 | static void io_check_error(unsigned char reason, struct pt_regs * regs) |
| 522 | { |
| 523 | unsigned long i; |
| 524 | |
| 525 | printk("NMI: IOCK error (debug interrupt?)\n"); |
| 526 | show_registers(regs); |
| 527 | |
| 528 | /* Re-enable the IOCK line, wait for a few seconds */ |
| 529 | reason = (reason & 0xf) | 8; |
| 530 | outb(reason, 0x61); |
| 531 | i = 2000; |
| 532 | while (--i) udelay(1000); |
| 533 | reason &= ~8; |
| 534 | outb(reason, 0x61); |
| 535 | } |
| 536 | |
| 537 | static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs) |
| 538 | { |
| 539 | #ifdef CONFIG_MCA |
| 540 | /* Might actually be able to figure out what the guilty party |
| 541 | * is. */ |
| 542 | if( MCA_bus ) { |
| 543 | mca_handle_nmi(); |
| 544 | return; |
| 545 | } |
| 546 | #endif |
| 547 | printk("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", |
| 548 | reason, smp_processor_id()); |
| 549 | printk("Dazed and confused, but trying to continue\n"); |
| 550 | printk("Do you have a strange power saving mode enabled?\n"); |
| 551 | } |
| 552 | |
| 553 | static DEFINE_SPINLOCK(nmi_print_lock); |
| 554 | |
| 555 | void die_nmi (struct pt_regs *regs, const char *msg) |
| 556 | { |
| 557 | spin_lock(&nmi_print_lock); |
| 558 | /* |
| 559 | * We are in trouble anyway, lets at least try |
| 560 | * to get a message out. |
| 561 | */ |
| 562 | bust_spinlocks(1); |
| 563 | printk(msg); |
| 564 | printk(" on CPU%d, eip %08lx, registers:\n", |
| 565 | smp_processor_id(), regs->eip); |
| 566 | show_registers(regs); |
| 567 | printk("console shuts up ...\n"); |
| 568 | console_silent(); |
| 569 | spin_unlock(&nmi_print_lock); |
| 570 | bust_spinlocks(0); |
| 571 | do_exit(SIGSEGV); |
| 572 | } |
| 573 | |
| 574 | static void default_do_nmi(struct pt_regs * regs) |
| 575 | { |
| 576 | unsigned char reason = 0; |
| 577 | |
| 578 | /* Only the BSP gets external NMIs from the system. */ |
| 579 | if (!smp_processor_id()) |
| 580 | reason = get_nmi_reason(); |
| 581 | |
| 582 | if (!(reason & 0xc0)) { |
| 583 | if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 0, SIGINT) |
| 584 | == NOTIFY_STOP) |
| 585 | return; |
| 586 | #ifdef CONFIG_X86_LOCAL_APIC |
| 587 | /* |
| 588 | * Ok, so this is none of the documented NMI sources, |
| 589 | * so it must be the NMI watchdog. |
| 590 | */ |
| 591 | if (nmi_watchdog) { |
| 592 | nmi_watchdog_tick(regs); |
| 593 | return; |
| 594 | } |
| 595 | #endif |
| 596 | unknown_nmi_error(reason, regs); |
| 597 | return; |
| 598 | } |
| 599 | if (notify_die(DIE_NMI, "nmi", regs, reason, 0, SIGINT) == NOTIFY_STOP) |
| 600 | return; |
| 601 | if (reason & 0x80) |
| 602 | mem_parity_error(reason, regs); |
| 603 | if (reason & 0x40) |
| 604 | io_check_error(reason, regs); |
| 605 | /* |
| 606 | * Reassert NMI in case it became active meanwhile |
| 607 | * as it's edge-triggered. |
| 608 | */ |
| 609 | reassert_nmi(); |
| 610 | } |
| 611 | |
| 612 | static int dummy_nmi_callback(struct pt_regs * regs, int cpu) |
| 613 | { |
| 614 | return 0; |
| 615 | } |
| 616 | |
| 617 | static nmi_callback_t nmi_callback = dummy_nmi_callback; |
| 618 | |
| 619 | fastcall void do_nmi(struct pt_regs * regs, long error_code) |
| 620 | { |
| 621 | int cpu; |
| 622 | |
| 623 | nmi_enter(); |
| 624 | |
| 625 | cpu = smp_processor_id(); |
| 626 | ++nmi_count(cpu); |
| 627 | |
| 628 | if (!nmi_callback(regs, cpu)) |
| 629 | default_do_nmi(regs); |
| 630 | |
| 631 | nmi_exit(); |
| 632 | } |
| 633 | |
| 634 | void set_nmi_callback(nmi_callback_t callback) |
| 635 | { |
| 636 | nmi_callback = callback; |
| 637 | } |
| 638 | |
| 639 | void unset_nmi_callback(void) |
| 640 | { |
| 641 | nmi_callback = dummy_nmi_callback; |
| 642 | } |
| 643 | |
| 644 | #ifdef CONFIG_KPROBES |
| 645 | fastcall int do_int3(struct pt_regs *regs, long error_code) |
| 646 | { |
| 647 | if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) |
| 648 | == NOTIFY_STOP) |
| 649 | return 1; |
| 650 | /* This is an interrupt gate, because kprobes wants interrupts |
| 651 | disabled. Normal trap handlers don't. */ |
| 652 | restore_interrupts(regs); |
| 653 | do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL); |
| 654 | return 0; |
| 655 | } |
| 656 | #endif |
| 657 | |
| 658 | /* |
| 659 | * Our handling of the processor debug registers is non-trivial. |
| 660 | * We do not clear them on entry and exit from the kernel. Therefore |
| 661 | * it is possible to get a watchpoint trap here from inside the kernel. |
| 662 | * However, the code in ./ptrace.c has ensured that the user can |
| 663 | * only set watchpoints on userspace addresses. Therefore the in-kernel |
| 664 | * watchpoint trap can only occur in code which is reading/writing |
| 665 | * from user space. Such code must not hold kernel locks (since it |
| 666 | * can equally take a page fault), therefore it is safe to call |
| 667 | * force_sig_info even though that claims and releases locks. |
| 668 | * |
| 669 | * Code in ./signal.c ensures that the debug control register |
| 670 | * is restored before we deliver any signal, and therefore that |
| 671 | * user code runs with the correct debug control register even though |
| 672 | * we clear it here. |
| 673 | * |
| 674 | * Being careful here means that we don't have to be as careful in a |
| 675 | * lot of more complicated places (task switching can be a bit lazy |
| 676 | * about restoring all the debug state, and ptrace doesn't have to |
| 677 | * find every occurrence of the TF bit that could be saved away even |
| 678 | * by user code) |
| 679 | */ |
| 680 | fastcall void do_debug(struct pt_regs * regs, long error_code) |
| 681 | { |
| 682 | unsigned int condition; |
| 683 | struct task_struct *tsk = current; |
| 684 | |
| 685 | __asm__ __volatile__("movl %%db6,%0" : "=r" (condition)); |
| 686 | |
| 687 | if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code, |
| 688 | SIGTRAP) == NOTIFY_STOP) |
| 689 | return; |
| 690 | /* It's safe to allow irq's after DR6 has been saved */ |
| 691 | if (regs->eflags & X86_EFLAGS_IF) |
| 692 | local_irq_enable(); |
| 693 | |
| 694 | /* Mask out spurious debug traps due to lazy DR7 setting */ |
| 695 | if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) { |
| 696 | if (!tsk->thread.debugreg[7]) |
| 697 | goto clear_dr7; |
| 698 | } |
| 699 | |
| 700 | if (regs->eflags & VM_MASK) |
| 701 | goto debug_vm86; |
| 702 | |
| 703 | /* Save debug status register where ptrace can see it */ |
| 704 | tsk->thread.debugreg[6] = condition; |
| 705 | |
| 706 | /* |
| 707 | * Single-stepping through TF: make sure we ignore any events in |
| 708 | * kernel space (but re-enable TF when returning to user mode). |
| 709 | */ |
| 710 | if (condition & DR_STEP) { |
| 711 | /* |
| 712 | * We already checked v86 mode above, so we can |
| 713 | * check for kernel mode by just checking the CPL |
| 714 | * of CS. |
| 715 | */ |
| 716 | if ((regs->xcs & 3) == 0) |
| 717 | goto clear_TF_reenable; |
| 718 | } |
| 719 | |
| 720 | /* Ok, finally something we can handle */ |
| 721 | send_sigtrap(tsk, regs, error_code); |
| 722 | |
| 723 | /* Disable additional traps. They'll be re-enabled when |
| 724 | * the signal is delivered. |
| 725 | */ |
| 726 | clear_dr7: |
| 727 | __asm__("movl %0,%%db7" |
| 728 | : /* no output */ |
| 729 | : "r" (0)); |
| 730 | return; |
| 731 | |
| 732 | debug_vm86: |
| 733 | handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1); |
| 734 | return; |
| 735 | |
| 736 | clear_TF_reenable: |
| 737 | set_tsk_thread_flag(tsk, TIF_SINGLESTEP); |
| 738 | regs->eflags &= ~TF_MASK; |
| 739 | return; |
| 740 | } |
| 741 | |
| 742 | /* |
| 743 | * Note that we play around with the 'TS' bit in an attempt to get |
| 744 | * the correct behaviour even in the presence of the asynchronous |
| 745 | * IRQ13 behaviour |
| 746 | */ |
| 747 | void math_error(void __user *eip) |
| 748 | { |
| 749 | struct task_struct * task; |
| 750 | siginfo_t info; |
| 751 | unsigned short cwd, swd; |
| 752 | |
| 753 | /* |
| 754 | * Save the info for the exception handler and clear the error. |
| 755 | */ |
| 756 | task = current; |
| 757 | save_init_fpu(task); |
| 758 | task->thread.trap_no = 16; |
| 759 | task->thread.error_code = 0; |
| 760 | info.si_signo = SIGFPE; |
| 761 | info.si_errno = 0; |
| 762 | info.si_code = __SI_FAULT; |
| 763 | info.si_addr = eip; |
| 764 | /* |
| 765 | * (~cwd & swd) will mask out exceptions that are not set to unmasked |
| 766 | * status. 0x3f is the exception bits in these regs, 0x200 is the |
| 767 | * C1 reg you need in case of a stack fault, 0x040 is the stack |
| 768 | * fault bit. We should only be taking one exception at a time, |
| 769 | * so if this combination doesn't produce any single exception, |
| 770 | * then we have a bad program that isn't syncronizing its FPU usage |
| 771 | * and it will suffer the consequences since we won't be able to |
| 772 | * fully reproduce the context of the exception |
| 773 | */ |
| 774 | cwd = get_fpu_cwd(task); |
| 775 | swd = get_fpu_swd(task); |
| 776 | switch (((~cwd) & swd & 0x3f) | (swd & 0x240)) { |
| 777 | case 0x000: |
| 778 | default: |
| 779 | break; |
| 780 | case 0x001: /* Invalid Op */ |
| 781 | case 0x041: /* Stack Fault */ |
| 782 | case 0x241: /* Stack Fault | Direction */ |
| 783 | info.si_code = FPE_FLTINV; |
| 784 | /* Should we clear the SF or let user space do it ???? */ |
| 785 | break; |
| 786 | case 0x002: /* Denormalize */ |
| 787 | case 0x010: /* Underflow */ |
| 788 | info.si_code = FPE_FLTUND; |
| 789 | break; |
| 790 | case 0x004: /* Zero Divide */ |
| 791 | info.si_code = FPE_FLTDIV; |
| 792 | break; |
| 793 | case 0x008: /* Overflow */ |
| 794 | info.si_code = FPE_FLTOVF; |
| 795 | break; |
| 796 | case 0x020: /* Precision */ |
| 797 | info.si_code = FPE_FLTRES; |
| 798 | break; |
| 799 | } |
| 800 | force_sig_info(SIGFPE, &info, task); |
| 801 | } |
| 802 | |
| 803 | fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code) |
| 804 | { |
| 805 | ignore_fpu_irq = 1; |
| 806 | math_error((void __user *)regs->eip); |
| 807 | } |
| 808 | |
| 809 | static void simd_math_error(void __user *eip) |
| 810 | { |
| 811 | struct task_struct * task; |
| 812 | siginfo_t info; |
| 813 | unsigned short mxcsr; |
| 814 | |
| 815 | /* |
| 816 | * Save the info for the exception handler and clear the error. |
| 817 | */ |
| 818 | task = current; |
| 819 | save_init_fpu(task); |
| 820 | task->thread.trap_no = 19; |
| 821 | task->thread.error_code = 0; |
| 822 | info.si_signo = SIGFPE; |
| 823 | info.si_errno = 0; |
| 824 | info.si_code = __SI_FAULT; |
| 825 | info.si_addr = eip; |
| 826 | /* |
| 827 | * The SIMD FPU exceptions are handled a little differently, as there |
| 828 | * is only a single status/control register. Thus, to determine which |
| 829 | * unmasked exception was caught we must mask the exception mask bits |
| 830 | * at 0x1f80, and then use these to mask the exception bits at 0x3f. |
| 831 | */ |
| 832 | mxcsr = get_fpu_mxcsr(task); |
| 833 | switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) { |
| 834 | case 0x000: |
| 835 | default: |
| 836 | break; |
| 837 | case 0x001: /* Invalid Op */ |
| 838 | info.si_code = FPE_FLTINV; |
| 839 | break; |
| 840 | case 0x002: /* Denormalize */ |
| 841 | case 0x010: /* Underflow */ |
| 842 | info.si_code = FPE_FLTUND; |
| 843 | break; |
| 844 | case 0x004: /* Zero Divide */ |
| 845 | info.si_code = FPE_FLTDIV; |
| 846 | break; |
| 847 | case 0x008: /* Overflow */ |
| 848 | info.si_code = FPE_FLTOVF; |
| 849 | break; |
| 850 | case 0x020: /* Precision */ |
| 851 | info.si_code = FPE_FLTRES; |
| 852 | break; |
| 853 | } |
| 854 | force_sig_info(SIGFPE, &info, task); |
| 855 | } |
| 856 | |
| 857 | fastcall void do_simd_coprocessor_error(struct pt_regs * regs, |
| 858 | long error_code) |
| 859 | { |
| 860 | if (cpu_has_xmm) { |
| 861 | /* Handle SIMD FPU exceptions on PIII+ processors. */ |
| 862 | ignore_fpu_irq = 1; |
| 863 | simd_math_error((void __user *)regs->eip); |
| 864 | } else { |
| 865 | /* |
| 866 | * Handle strange cache flush from user space exception |
| 867 | * in all other cases. This is undocumented behaviour. |
| 868 | */ |
| 869 | if (regs->eflags & VM_MASK) { |
| 870 | handle_vm86_fault((struct kernel_vm86_regs *)regs, |
| 871 | error_code); |
| 872 | return; |
| 873 | } |
| 874 | die_if_kernel("cache flush denied", regs, error_code); |
| 875 | current->thread.trap_no = 19; |
| 876 | current->thread.error_code = error_code; |
| 877 | force_sig(SIGSEGV, current); |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | fastcall void do_spurious_interrupt_bug(struct pt_regs * regs, |
| 882 | long error_code) |
| 883 | { |
| 884 | #if 0 |
| 885 | /* No need to warn about this any longer. */ |
| 886 | printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n"); |
| 887 | #endif |
| 888 | } |
| 889 | |
| 890 | fastcall void setup_x86_bogus_stack(unsigned char * stk) |
| 891 | { |
| 892 | unsigned long *switch16_ptr, *switch32_ptr; |
| 893 | struct pt_regs *regs; |
| 894 | unsigned long stack_top, stack_bot; |
| 895 | unsigned short iret_frame16_off; |
| 896 | int cpu = smp_processor_id(); |
| 897 | /* reserve the space on 32bit stack for the magic switch16 pointer */ |
| 898 | memmove(stk, stk + 8, sizeof(struct pt_regs)); |
| 899 | switch16_ptr = (unsigned long *)(stk + sizeof(struct pt_regs)); |
| 900 | regs = (struct pt_regs *)stk; |
| 901 | /* now the switch32 on 16bit stack */ |
| 902 | stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu); |
| 903 | stack_top = stack_bot + CPU_16BIT_STACK_SIZE; |
| 904 | switch32_ptr = (unsigned long *)(stack_top - 8); |
| 905 | iret_frame16_off = CPU_16BIT_STACK_SIZE - 8 - 20; |
| 906 | /* copy iret frame on 16bit stack */ |
| 907 | memcpy((void *)(stack_bot + iret_frame16_off), ®s->eip, 20); |
| 908 | /* fill in the switch pointers */ |
| 909 | switch16_ptr[0] = (regs->esp & 0xffff0000) | iret_frame16_off; |
| 910 | switch16_ptr[1] = __ESPFIX_SS; |
| 911 | switch32_ptr[0] = (unsigned long)stk + sizeof(struct pt_regs) + |
| 912 | 8 - CPU_16BIT_STACK_SIZE; |
| 913 | switch32_ptr[1] = __KERNEL_DS; |
| 914 | } |
| 915 | |
| 916 | fastcall unsigned char * fixup_x86_bogus_stack(unsigned short sp) |
| 917 | { |
| 918 | unsigned long *switch32_ptr; |
| 919 | unsigned char *stack16, *stack32; |
| 920 | unsigned long stack_top, stack_bot; |
| 921 | int len; |
| 922 | int cpu = smp_processor_id(); |
| 923 | stack_bot = (unsigned long)&per_cpu(cpu_16bit_stack, cpu); |
| 924 | stack_top = stack_bot + CPU_16BIT_STACK_SIZE; |
| 925 | switch32_ptr = (unsigned long *)(stack_top - 8); |
| 926 | /* copy the data from 16bit stack to 32bit stack */ |
| 927 | len = CPU_16BIT_STACK_SIZE - 8 - sp; |
| 928 | stack16 = (unsigned char *)(stack_bot + sp); |
| 929 | stack32 = (unsigned char *) |
| 930 | (switch32_ptr[0] + CPU_16BIT_STACK_SIZE - 8 - len); |
| 931 | memcpy(stack32, stack16, len); |
| 932 | return stack32; |
| 933 | } |
| 934 | |
| 935 | /* |
| 936 | * 'math_state_restore()' saves the current math information in the |
| 937 | * old math state array, and gets the new ones from the current task |
| 938 | * |
| 939 | * Careful.. There are problems with IBM-designed IRQ13 behaviour. |
| 940 | * Don't touch unless you *really* know how it works. |
| 941 | * |
| 942 | * Must be called with kernel preemption disabled (in this case, |
| 943 | * local interrupts are disabled at the call-site in entry.S). |
| 944 | */ |
| 945 | asmlinkage void math_state_restore(struct pt_regs regs) |
| 946 | { |
| 947 | struct thread_info *thread = current_thread_info(); |
| 948 | struct task_struct *tsk = thread->task; |
| 949 | |
| 950 | clts(); /* Allow maths ops (or we recurse) */ |
| 951 | if (!tsk_used_math(tsk)) |
| 952 | init_fpu(tsk); |
| 953 | restore_fpu(tsk); |
| 954 | thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */ |
| 955 | } |
| 956 | |
| 957 | #ifndef CONFIG_MATH_EMULATION |
| 958 | |
| 959 | asmlinkage void math_emulate(long arg) |
| 960 | { |
| 961 | printk("math-emulation not enabled and no coprocessor found.\n"); |
| 962 | printk("killing %s.\n",current->comm); |
| 963 | force_sig(SIGFPE,current); |
| 964 | schedule(); |
| 965 | } |
| 966 | |
| 967 | #endif /* CONFIG_MATH_EMULATION */ |
| 968 | |
| 969 | #ifdef CONFIG_X86_F00F_BUG |
| 970 | void __init trap_init_f00f_bug(void) |
| 971 | { |
| 972 | __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO); |
| 973 | |
| 974 | /* |
| 975 | * Update the IDT descriptor and reload the IDT so that |
| 976 | * it uses the read-only mapped virtual address. |
| 977 | */ |
| 978 | idt_descr.address = fix_to_virt(FIX_F00F_IDT); |
| 979 | __asm__ __volatile__("lidt %0" : : "m" (idt_descr)); |
| 980 | } |
| 981 | #endif |
| 982 | |
| 983 | #define _set_gate(gate_addr,type,dpl,addr,seg) \ |
| 984 | do { \ |
| 985 | int __d0, __d1; \ |
| 986 | __asm__ __volatile__ ("movw %%dx,%%ax\n\t" \ |
| 987 | "movw %4,%%dx\n\t" \ |
| 988 | "movl %%eax,%0\n\t" \ |
| 989 | "movl %%edx,%1" \ |
| 990 | :"=m" (*((long *) (gate_addr))), \ |
| 991 | "=m" (*(1+(long *) (gate_addr))), "=&a" (__d0), "=&d" (__d1) \ |
| 992 | :"i" ((short) (0x8000+(dpl<<13)+(type<<8))), \ |
| 993 | "3" ((char *) (addr)),"2" ((seg) << 16)); \ |
| 994 | } while (0) |
| 995 | |
| 996 | |
| 997 | /* |
| 998 | * This needs to use 'idt_table' rather than 'idt', and |
| 999 | * thus use the _nonmapped_ version of the IDT, as the |
| 1000 | * Pentium F0 0F bugfix can have resulted in the mapped |
| 1001 | * IDT being write-protected. |
| 1002 | */ |
| 1003 | void set_intr_gate(unsigned int n, void *addr) |
| 1004 | { |
| 1005 | _set_gate(idt_table+n,14,0,addr,__KERNEL_CS); |
| 1006 | } |
| 1007 | |
| 1008 | /* |
| 1009 | * This routine sets up an interrupt gate at directory privilege level 3. |
| 1010 | */ |
| 1011 | static inline void set_system_intr_gate(unsigned int n, void *addr) |
| 1012 | { |
| 1013 | _set_gate(idt_table+n, 14, 3, addr, __KERNEL_CS); |
| 1014 | } |
| 1015 | |
| 1016 | static void __init set_trap_gate(unsigned int n, void *addr) |
| 1017 | { |
| 1018 | _set_gate(idt_table+n,15,0,addr,__KERNEL_CS); |
| 1019 | } |
| 1020 | |
| 1021 | static void __init set_system_gate(unsigned int n, void *addr) |
| 1022 | { |
| 1023 | _set_gate(idt_table+n,15,3,addr,__KERNEL_CS); |
| 1024 | } |
| 1025 | |
| 1026 | static void __init set_task_gate(unsigned int n, unsigned int gdt_entry) |
| 1027 | { |
| 1028 | _set_gate(idt_table+n,5,0,0,(gdt_entry<<3)); |
| 1029 | } |
| 1030 | |
| 1031 | |
| 1032 | void __init trap_init(void) |
| 1033 | { |
| 1034 | #ifdef CONFIG_EISA |
| 1035 | void __iomem *p = ioremap(0x0FFFD9, 4); |
| 1036 | if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) { |
| 1037 | EISA_bus = 1; |
| 1038 | } |
| 1039 | iounmap(p); |
| 1040 | #endif |
| 1041 | |
| 1042 | #ifdef CONFIG_X86_LOCAL_APIC |
| 1043 | init_apic_mappings(); |
| 1044 | #endif |
| 1045 | |
| 1046 | set_trap_gate(0,÷_error); |
| 1047 | set_intr_gate(1,&debug); |
| 1048 | set_intr_gate(2,&nmi); |
| 1049 | set_system_intr_gate(3, &int3); /* int3-5 can be called from all */ |
| 1050 | set_system_gate(4,&overflow); |
| 1051 | set_system_gate(5,&bounds); |
| 1052 | set_trap_gate(6,&invalid_op); |
| 1053 | set_trap_gate(7,&device_not_available); |
| 1054 | set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS); |
| 1055 | set_trap_gate(9,&coprocessor_segment_overrun); |
| 1056 | set_trap_gate(10,&invalid_TSS); |
| 1057 | set_trap_gate(11,&segment_not_present); |
| 1058 | set_trap_gate(12,&stack_segment); |
| 1059 | set_trap_gate(13,&general_protection); |
| 1060 | set_intr_gate(14,&page_fault); |
| 1061 | set_trap_gate(15,&spurious_interrupt_bug); |
| 1062 | set_trap_gate(16,&coprocessor_error); |
| 1063 | set_trap_gate(17,&alignment_check); |
| 1064 | #ifdef CONFIG_X86_MCE |
| 1065 | set_trap_gate(18,&machine_check); |
| 1066 | #endif |
| 1067 | set_trap_gate(19,&simd_coprocessor_error); |
| 1068 | |
| 1069 | set_system_gate(SYSCALL_VECTOR,&system_call); |
| 1070 | |
| 1071 | /* |
| 1072 | * Should be a barrier for any external CPU state. |
| 1073 | */ |
| 1074 | cpu_init(); |
| 1075 | |
| 1076 | trap_init_hook(); |
| 1077 | } |
| 1078 | |
| 1079 | static int __init kstack_setup(char *s) |
| 1080 | { |
| 1081 | kstack_depth_to_print = simple_strtoul(s, NULL, 0); |
| 1082 | return 0; |
| 1083 | } |
| 1084 | __setup("kstack=", kstack_setup); |