Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $) |
| 3 | * |
| 4 | * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> |
| 5 | * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
| 6 | * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de> |
| 7 | * |
| 8 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of the GNU General Public License as published by |
| 12 | * the Free Software Foundation; either version 2 of the License, or (at |
| 13 | * your option) any later version. |
| 14 | * |
| 15 | * This program is distributed in the hope that it will be useful, but |
| 16 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 18 | * General Public License for more details. |
| 19 | * |
| 20 | * You should have received a copy of the GNU General Public License along |
| 21 | * with this program; if not, write to the Free Software Foundation, Inc., |
| 22 | * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. |
| 23 | * |
| 24 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 25 | */ |
| 26 | |
| 27 | #include <linux/config.h> |
| 28 | #include <linux/kernel.h> |
| 29 | #include <linux/module.h> |
| 30 | #include <linux/init.h> |
| 31 | #include <linux/cpufreq.h> |
| 32 | #include <linux/proc_fs.h> |
| 33 | #include <linux/seq_file.h> |
| 34 | #include <asm/io.h> |
| 35 | #include <asm/delay.h> |
| 36 | #include <asm/uaccess.h> |
| 37 | |
| 38 | #include <linux/acpi.h> |
| 39 | #include <acpi/processor.h> |
| 40 | |
| 41 | #include "speedstep-est-common.h" |
| 42 | |
| 43 | #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg) |
| 44 | |
| 45 | MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski"); |
| 46 | MODULE_DESCRIPTION("ACPI Processor P-States Driver"); |
| 47 | MODULE_LICENSE("GPL"); |
| 48 | |
| 49 | |
| 50 | struct cpufreq_acpi_io { |
| 51 | struct acpi_processor_performance acpi_data; |
| 52 | struct cpufreq_frequency_table *freq_table; |
| 53 | unsigned int resume; |
| 54 | }; |
| 55 | |
| 56 | static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; |
| 57 | |
| 58 | static struct cpufreq_driver acpi_cpufreq_driver; |
| 59 | |
| 60 | static int |
| 61 | acpi_processor_write_port( |
| 62 | u16 port, |
| 63 | u8 bit_width, |
| 64 | u32 value) |
| 65 | { |
| 66 | if (bit_width <= 8) { |
| 67 | outb(value, port); |
| 68 | } else if (bit_width <= 16) { |
| 69 | outw(value, port); |
| 70 | } else if (bit_width <= 32) { |
| 71 | outl(value, port); |
| 72 | } else { |
| 73 | return -ENODEV; |
| 74 | } |
| 75 | return 0; |
| 76 | } |
| 77 | |
| 78 | static int |
| 79 | acpi_processor_read_port( |
| 80 | u16 port, |
| 81 | u8 bit_width, |
| 82 | u32 *ret) |
| 83 | { |
| 84 | *ret = 0; |
| 85 | if (bit_width <= 8) { |
| 86 | *ret = inb(port); |
| 87 | } else if (bit_width <= 16) { |
| 88 | *ret = inw(port); |
| 89 | } else if (bit_width <= 32) { |
| 90 | *ret = inl(port); |
| 91 | } else { |
| 92 | return -ENODEV; |
| 93 | } |
| 94 | return 0; |
| 95 | } |
| 96 | |
| 97 | static int |
| 98 | acpi_processor_set_performance ( |
| 99 | struct cpufreq_acpi_io *data, |
| 100 | unsigned int cpu, |
| 101 | int state) |
| 102 | { |
| 103 | u16 port = 0; |
| 104 | u8 bit_width = 0; |
| 105 | int ret = 0; |
| 106 | u32 value = 0; |
| 107 | int i = 0; |
| 108 | struct cpufreq_freqs cpufreq_freqs; |
| 109 | cpumask_t saved_mask; |
| 110 | int retval; |
| 111 | |
| 112 | dprintk("acpi_processor_set_performance\n"); |
| 113 | |
| 114 | /* |
| 115 | * TBD: Use something other than set_cpus_allowed. |
| 116 | * As set_cpus_allowed is a bit racy, |
| 117 | * with any other set_cpus_allowed for this process. |
| 118 | */ |
| 119 | saved_mask = current->cpus_allowed; |
| 120 | set_cpus_allowed(current, cpumask_of_cpu(cpu)); |
| 121 | if (smp_processor_id() != cpu) { |
| 122 | return (-EAGAIN); |
| 123 | } |
| 124 | |
| 125 | if (state == data->acpi_data.state) { |
| 126 | if (unlikely(data->resume)) { |
| 127 | dprintk("Called after resume, resetting to P%d\n", state); |
| 128 | data->resume = 0; |
| 129 | } else { |
| 130 | dprintk("Already at target state (P%d)\n", state); |
| 131 | retval = 0; |
| 132 | goto migrate_end; |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | dprintk("Transitioning from P%d to P%d\n", |
| 137 | data->acpi_data.state, state); |
| 138 | |
| 139 | /* cpufreq frequency struct */ |
| 140 | cpufreq_freqs.cpu = cpu; |
| 141 | cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency; |
| 142 | cpufreq_freqs.new = data->freq_table[state].frequency; |
| 143 | |
| 144 | /* notify cpufreq */ |
| 145 | cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); |
| 146 | |
| 147 | /* |
| 148 | * First we write the target state's 'control' value to the |
| 149 | * control_register. |
| 150 | */ |
| 151 | |
| 152 | port = data->acpi_data.control_register.address; |
| 153 | bit_width = data->acpi_data.control_register.bit_width; |
| 154 | value = (u32) data->acpi_data.states[state].control; |
| 155 | |
| 156 | dprintk("Writing 0x%08x to port 0x%04x\n", value, port); |
| 157 | |
| 158 | ret = acpi_processor_write_port(port, bit_width, value); |
| 159 | if (ret) { |
| 160 | dprintk("Invalid port width 0x%04x\n", bit_width); |
| 161 | retval = ret; |
| 162 | goto migrate_end; |
| 163 | } |
| 164 | |
| 165 | /* |
| 166 | * Then we read the 'status_register' and compare the value with the |
| 167 | * target state's 'status' to make sure the transition was successful. |
| 168 | * Note that we'll poll for up to 1ms (100 cycles of 10us) before |
| 169 | * giving up. |
| 170 | */ |
| 171 | |
| 172 | port = data->acpi_data.status_register.address; |
| 173 | bit_width = data->acpi_data.status_register.bit_width; |
| 174 | |
| 175 | dprintk("Looking for 0x%08x from port 0x%04x\n", |
| 176 | (u32) data->acpi_data.states[state].status, port); |
| 177 | |
| 178 | for (i=0; i<100; i++) { |
| 179 | ret = acpi_processor_read_port(port, bit_width, &value); |
| 180 | if (ret) { |
| 181 | dprintk("Invalid port width 0x%04x\n", bit_width); |
| 182 | retval = ret; |
| 183 | goto migrate_end; |
| 184 | } |
| 185 | if (value == (u32) data->acpi_data.states[state].status) |
| 186 | break; |
| 187 | udelay(10); |
| 188 | } |
| 189 | |
| 190 | /* notify cpufreq */ |
| 191 | cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); |
| 192 | |
| 193 | if (value != (u32) data->acpi_data.states[state].status) { |
| 194 | unsigned int tmp = cpufreq_freqs.new; |
| 195 | cpufreq_freqs.new = cpufreq_freqs.old; |
| 196 | cpufreq_freqs.old = tmp; |
| 197 | cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); |
| 198 | cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); |
| 199 | printk(KERN_WARNING "acpi-cpufreq: Transition failed\n"); |
| 200 | retval = -ENODEV; |
| 201 | goto migrate_end; |
| 202 | } |
| 203 | |
| 204 | dprintk("Transition successful after %d microseconds\n", i * 10); |
| 205 | |
| 206 | data->acpi_data.state = state; |
| 207 | |
| 208 | retval = 0; |
| 209 | migrate_end: |
| 210 | set_cpus_allowed(current, saved_mask); |
| 211 | return (retval); |
| 212 | } |
| 213 | |
| 214 | |
| 215 | static int |
| 216 | acpi_cpufreq_target ( |
| 217 | struct cpufreq_policy *policy, |
| 218 | unsigned int target_freq, |
| 219 | unsigned int relation) |
| 220 | { |
| 221 | struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; |
| 222 | unsigned int next_state = 0; |
| 223 | unsigned int result = 0; |
| 224 | |
| 225 | dprintk("acpi_cpufreq_setpolicy\n"); |
| 226 | |
| 227 | result = cpufreq_frequency_table_target(policy, |
| 228 | data->freq_table, |
| 229 | target_freq, |
| 230 | relation, |
| 231 | &next_state); |
| 232 | if (result) |
| 233 | return (result); |
| 234 | |
| 235 | result = acpi_processor_set_performance (data, policy->cpu, next_state); |
| 236 | |
| 237 | return (result); |
| 238 | } |
| 239 | |
| 240 | |
| 241 | static int |
| 242 | acpi_cpufreq_verify ( |
| 243 | struct cpufreq_policy *policy) |
| 244 | { |
| 245 | unsigned int result = 0; |
| 246 | struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; |
| 247 | |
| 248 | dprintk("acpi_cpufreq_verify\n"); |
| 249 | |
| 250 | result = cpufreq_frequency_table_verify(policy, |
| 251 | data->freq_table); |
| 252 | |
| 253 | return (result); |
| 254 | } |
| 255 | |
| 256 | |
| 257 | static unsigned long |
| 258 | acpi_cpufreq_guess_freq ( |
| 259 | struct cpufreq_acpi_io *data, |
| 260 | unsigned int cpu) |
| 261 | { |
| 262 | if (cpu_khz) { |
| 263 | /* search the closest match to cpu_khz */ |
| 264 | unsigned int i; |
| 265 | unsigned long freq; |
| 266 | unsigned long freqn = data->acpi_data.states[0].core_frequency * 1000; |
| 267 | |
| 268 | for (i=0; i < (data->acpi_data.state_count - 1); i++) { |
| 269 | freq = freqn; |
| 270 | freqn = data->acpi_data.states[i+1].core_frequency * 1000; |
| 271 | if ((2 * cpu_khz) > (freqn + freq)) { |
| 272 | data->acpi_data.state = i; |
| 273 | return (freq); |
| 274 | } |
| 275 | } |
| 276 | data->acpi_data.state = data->acpi_data.state_count - 1; |
| 277 | return (freqn); |
| 278 | } else |
| 279 | /* assume CPU is at P0... */ |
| 280 | data->acpi_data.state = 0; |
| 281 | return data->acpi_data.states[0].core_frequency * 1000; |
| 282 | |
| 283 | } |
| 284 | |
| 285 | |
| 286 | /* |
| 287 | * acpi_processor_cpu_init_pdc_est - let BIOS know about the SMP capabilities |
| 288 | * of this driver |
| 289 | * @perf: processor-specific acpi_io_data struct |
| 290 | * @cpu: CPU being initialized |
| 291 | * |
| 292 | * To avoid issues with legacy OSes, some BIOSes require to be informed of |
| 293 | * the SMP capabilities of OS P-state driver. Here we set the bits in _PDC |
| 294 | * accordingly, for Enhanced Speedstep. Actual call to _PDC is done in |
| 295 | * driver/acpi/processor.c |
| 296 | */ |
| 297 | static void |
| 298 | acpi_processor_cpu_init_pdc_est( |
| 299 | struct acpi_processor_performance *perf, |
| 300 | unsigned int cpu, |
| 301 | struct acpi_object_list *obj_list |
| 302 | ) |
| 303 | { |
| 304 | union acpi_object *obj; |
| 305 | u32 *buf; |
| 306 | struct cpuinfo_x86 *c = cpu_data + cpu; |
| 307 | dprintk("acpi_processor_cpu_init_pdc_est\n"); |
| 308 | |
| 309 | if (!cpu_has(c, X86_FEATURE_EST)) |
| 310 | return; |
| 311 | |
| 312 | /* Initialize pdc. It will be used later. */ |
| 313 | if (!obj_list) |
| 314 | return; |
| 315 | |
| 316 | if (!(obj_list->count && obj_list->pointer)) |
| 317 | return; |
| 318 | |
| 319 | obj = obj_list->pointer; |
| 320 | if ((obj->buffer.length == 12) && obj->buffer.pointer) { |
| 321 | buf = (u32 *)obj->buffer.pointer; |
| 322 | buf[0] = ACPI_PDC_REVISION_ID; |
| 323 | buf[1] = 1; |
| 324 | buf[2] = ACPI_PDC_EST_CAPABILITY_SMP; |
| 325 | perf->pdc = obj_list; |
| 326 | } |
| 327 | return; |
| 328 | } |
| 329 | |
| 330 | |
| 331 | /* CPU specific PDC initialization */ |
| 332 | static void |
| 333 | acpi_processor_cpu_init_pdc( |
| 334 | struct acpi_processor_performance *perf, |
| 335 | unsigned int cpu, |
| 336 | struct acpi_object_list *obj_list |
| 337 | ) |
| 338 | { |
| 339 | struct cpuinfo_x86 *c = cpu_data + cpu; |
| 340 | dprintk("acpi_processor_cpu_init_pdc\n"); |
| 341 | perf->pdc = NULL; |
| 342 | if (cpu_has(c, X86_FEATURE_EST)) |
| 343 | acpi_processor_cpu_init_pdc_est(perf, cpu, obj_list); |
| 344 | return; |
| 345 | } |
| 346 | |
| 347 | |
| 348 | static int |
| 349 | acpi_cpufreq_cpu_init ( |
| 350 | struct cpufreq_policy *policy) |
| 351 | { |
| 352 | unsigned int i; |
| 353 | unsigned int cpu = policy->cpu; |
| 354 | struct cpufreq_acpi_io *data; |
| 355 | unsigned int result = 0; |
| 356 | |
| 357 | union acpi_object arg0 = {ACPI_TYPE_BUFFER}; |
| 358 | u32 arg0_buf[3]; |
| 359 | struct acpi_object_list arg_list = {1, &arg0}; |
| 360 | |
| 361 | dprintk("acpi_cpufreq_cpu_init\n"); |
| 362 | /* setup arg_list for _PDC settings */ |
| 363 | arg0.buffer.length = 12; |
| 364 | arg0.buffer.pointer = (u8 *) arg0_buf; |
| 365 | |
| 366 | data = kmalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL); |
| 367 | if (!data) |
| 368 | return (-ENOMEM); |
| 369 | memset(data, 0, sizeof(struct cpufreq_acpi_io)); |
| 370 | |
| 371 | acpi_io_data[cpu] = data; |
| 372 | |
| 373 | acpi_processor_cpu_init_pdc(&data->acpi_data, cpu, &arg_list); |
| 374 | result = acpi_processor_register_performance(&data->acpi_data, cpu); |
| 375 | data->acpi_data.pdc = NULL; |
| 376 | |
| 377 | if (result) |
| 378 | goto err_free; |
| 379 | |
| 380 | if (is_const_loops_cpu(cpu)) { |
| 381 | acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS; |
| 382 | } |
| 383 | |
| 384 | /* capability check */ |
| 385 | if (data->acpi_data.state_count <= 1) { |
| 386 | dprintk("No P-States\n"); |
| 387 | result = -ENODEV; |
| 388 | goto err_unreg; |
| 389 | } |
| 390 | if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) || |
| 391 | (data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) { |
| 392 | dprintk("Unsupported address space [%d, %d]\n", |
| 393 | (u32) (data->acpi_data.control_register.space_id), |
| 394 | (u32) (data->acpi_data.status_register.space_id)); |
| 395 | result = -ENODEV; |
| 396 | goto err_unreg; |
| 397 | } |
| 398 | |
| 399 | /* alloc freq_table */ |
| 400 | data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (data->acpi_data.state_count + 1), GFP_KERNEL); |
| 401 | if (!data->freq_table) { |
| 402 | result = -ENOMEM; |
| 403 | goto err_unreg; |
| 404 | } |
| 405 | |
| 406 | /* detect transition latency */ |
| 407 | policy->cpuinfo.transition_latency = 0; |
| 408 | for (i=0; i<data->acpi_data.state_count; i++) { |
| 409 | if ((data->acpi_data.states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency) |
| 410 | policy->cpuinfo.transition_latency = data->acpi_data.states[i].transition_latency * 1000; |
| 411 | } |
| 412 | policy->governor = CPUFREQ_DEFAULT_GOVERNOR; |
| 413 | |
| 414 | /* The current speed is unknown and not detectable by ACPI... */ |
| 415 | policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu); |
| 416 | |
| 417 | /* table init */ |
| 418 | for (i=0; i<=data->acpi_data.state_count; i++) |
| 419 | { |
| 420 | data->freq_table[i].index = i; |
| 421 | if (i<data->acpi_data.state_count) |
| 422 | data->freq_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000; |
| 423 | else |
| 424 | data->freq_table[i].frequency = CPUFREQ_TABLE_END; |
| 425 | } |
| 426 | |
| 427 | result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); |
| 428 | if (result) { |
| 429 | goto err_freqfree; |
| 430 | } |
| 431 | |
| 432 | /* notify BIOS that we exist */ |
| 433 | acpi_processor_notify_smm(THIS_MODULE); |
| 434 | |
| 435 | printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n", |
| 436 | cpu); |
| 437 | for (i = 0; i < data->acpi_data.state_count; i++) |
| 438 | dprintk(" %cP%d: %d MHz, %d mW, %d uS\n", |
| 439 | (i == data->acpi_data.state?'*':' '), i, |
| 440 | (u32) data->acpi_data.states[i].core_frequency, |
| 441 | (u32) data->acpi_data.states[i].power, |
| 442 | (u32) data->acpi_data.states[i].transition_latency); |
| 443 | |
| 444 | cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); |
| 445 | return (result); |
| 446 | |
| 447 | err_freqfree: |
| 448 | kfree(data->freq_table); |
| 449 | err_unreg: |
| 450 | acpi_processor_unregister_performance(&data->acpi_data, cpu); |
| 451 | err_free: |
| 452 | kfree(data); |
| 453 | acpi_io_data[cpu] = NULL; |
| 454 | |
| 455 | return (result); |
| 456 | } |
| 457 | |
| 458 | |
| 459 | static int |
| 460 | acpi_cpufreq_cpu_exit ( |
| 461 | struct cpufreq_policy *policy) |
| 462 | { |
| 463 | struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; |
| 464 | |
| 465 | |
| 466 | dprintk("acpi_cpufreq_cpu_exit\n"); |
| 467 | |
| 468 | if (data) { |
| 469 | cpufreq_frequency_table_put_attr(policy->cpu); |
| 470 | acpi_io_data[policy->cpu] = NULL; |
| 471 | acpi_processor_unregister_performance(&data->acpi_data, policy->cpu); |
| 472 | kfree(data); |
| 473 | } |
| 474 | |
| 475 | return (0); |
| 476 | } |
| 477 | |
| 478 | static int |
| 479 | acpi_cpufreq_resume ( |
| 480 | struct cpufreq_policy *policy) |
| 481 | { |
| 482 | struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; |
| 483 | |
| 484 | |
| 485 | dprintk("acpi_cpufreq_resume\n"); |
| 486 | |
| 487 | data->resume = 1; |
| 488 | |
| 489 | return (0); |
| 490 | } |
| 491 | |
| 492 | |
| 493 | static struct freq_attr* acpi_cpufreq_attr[] = { |
| 494 | &cpufreq_freq_attr_scaling_available_freqs, |
| 495 | NULL, |
| 496 | }; |
| 497 | |
| 498 | static struct cpufreq_driver acpi_cpufreq_driver = { |
| 499 | .verify = acpi_cpufreq_verify, |
| 500 | .target = acpi_cpufreq_target, |
| 501 | .init = acpi_cpufreq_cpu_init, |
| 502 | .exit = acpi_cpufreq_cpu_exit, |
| 503 | .resume = acpi_cpufreq_resume, |
| 504 | .name = "acpi-cpufreq", |
| 505 | .owner = THIS_MODULE, |
| 506 | .attr = acpi_cpufreq_attr, |
| 507 | }; |
| 508 | |
| 509 | |
| 510 | static int __init |
| 511 | acpi_cpufreq_init (void) |
| 512 | { |
| 513 | int result = 0; |
| 514 | |
| 515 | dprintk("acpi_cpufreq_init\n"); |
| 516 | |
| 517 | result = cpufreq_register_driver(&acpi_cpufreq_driver); |
| 518 | |
| 519 | return (result); |
| 520 | } |
| 521 | |
| 522 | |
| 523 | static void __exit |
| 524 | acpi_cpufreq_exit (void) |
| 525 | { |
| 526 | dprintk("acpi_cpufreq_exit\n"); |
| 527 | |
| 528 | cpufreq_unregister_driver(&acpi_cpufreq_driver); |
| 529 | |
| 530 | return; |
| 531 | } |
| 532 | |
| 533 | |
| 534 | late_initcall(acpi_cpufreq_init); |
| 535 | module_exit(acpi_cpufreq_exit); |
| 536 | |
| 537 | MODULE_ALIAS("acpi"); |