Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * linux/arch/arm/mm/mm-armv.c |
| 3 | * |
| 4 | * Copyright (C) 1998-2002 Russell King |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License version 2 as |
| 8 | * published by the Free Software Foundation. |
| 9 | * |
| 10 | * Page table sludge for ARM v3 and v4 processor architectures. |
| 11 | */ |
| 12 | #include <linux/config.h> |
| 13 | #include <linux/module.h> |
| 14 | #include <linux/mm.h> |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/bootmem.h> |
| 17 | #include <linux/highmem.h> |
| 18 | #include <linux/nodemask.h> |
| 19 | |
| 20 | #include <asm/pgalloc.h> |
| 21 | #include <asm/page.h> |
| 22 | #include <asm/io.h> |
| 23 | #include <asm/setup.h> |
| 24 | #include <asm/tlbflush.h> |
| 25 | |
| 26 | #include <asm/mach/map.h> |
| 27 | |
| 28 | #define CPOLICY_UNCACHED 0 |
| 29 | #define CPOLICY_BUFFERED 1 |
| 30 | #define CPOLICY_WRITETHROUGH 2 |
| 31 | #define CPOLICY_WRITEBACK 3 |
| 32 | #define CPOLICY_WRITEALLOC 4 |
| 33 | |
| 34 | static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; |
| 35 | static unsigned int ecc_mask __initdata = 0; |
| 36 | pgprot_t pgprot_kernel; |
| 37 | |
| 38 | EXPORT_SYMBOL(pgprot_kernel); |
| 39 | |
| 40 | struct cachepolicy { |
| 41 | const char policy[16]; |
| 42 | unsigned int cr_mask; |
| 43 | unsigned int pmd; |
| 44 | unsigned int pte; |
| 45 | }; |
| 46 | |
| 47 | static struct cachepolicy cache_policies[] __initdata = { |
| 48 | { |
| 49 | .policy = "uncached", |
| 50 | .cr_mask = CR_W|CR_C, |
| 51 | .pmd = PMD_SECT_UNCACHED, |
| 52 | .pte = 0, |
| 53 | }, { |
| 54 | .policy = "buffered", |
| 55 | .cr_mask = CR_C, |
| 56 | .pmd = PMD_SECT_BUFFERED, |
| 57 | .pte = PTE_BUFFERABLE, |
| 58 | }, { |
| 59 | .policy = "writethrough", |
| 60 | .cr_mask = 0, |
| 61 | .pmd = PMD_SECT_WT, |
| 62 | .pte = PTE_CACHEABLE, |
| 63 | }, { |
| 64 | .policy = "writeback", |
| 65 | .cr_mask = 0, |
| 66 | .pmd = PMD_SECT_WB, |
| 67 | .pte = PTE_BUFFERABLE|PTE_CACHEABLE, |
| 68 | }, { |
| 69 | .policy = "writealloc", |
| 70 | .cr_mask = 0, |
| 71 | .pmd = PMD_SECT_WBWA, |
| 72 | .pte = PTE_BUFFERABLE|PTE_CACHEABLE, |
| 73 | } |
| 74 | }; |
| 75 | |
| 76 | /* |
| 77 | * These are useful for identifing cache coherency |
| 78 | * problems by allowing the cache or the cache and |
| 79 | * writebuffer to be turned off. (Note: the write |
| 80 | * buffer should not be on and the cache off). |
| 81 | */ |
| 82 | static void __init early_cachepolicy(char **p) |
| 83 | { |
| 84 | int i; |
| 85 | |
| 86 | for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { |
| 87 | int len = strlen(cache_policies[i].policy); |
| 88 | |
| 89 | if (memcmp(*p, cache_policies[i].policy, len) == 0) { |
| 90 | cachepolicy = i; |
| 91 | cr_alignment &= ~cache_policies[i].cr_mask; |
| 92 | cr_no_alignment &= ~cache_policies[i].cr_mask; |
| 93 | *p += len; |
| 94 | break; |
| 95 | } |
| 96 | } |
| 97 | if (i == ARRAY_SIZE(cache_policies)) |
| 98 | printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); |
| 99 | flush_cache_all(); |
| 100 | set_cr(cr_alignment); |
| 101 | } |
| 102 | |
| 103 | static void __init early_nocache(char **__unused) |
| 104 | { |
| 105 | char *p = "buffered"; |
| 106 | printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); |
| 107 | early_cachepolicy(&p); |
| 108 | } |
| 109 | |
| 110 | static void __init early_nowrite(char **__unused) |
| 111 | { |
| 112 | char *p = "uncached"; |
| 113 | printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); |
| 114 | early_cachepolicy(&p); |
| 115 | } |
| 116 | |
| 117 | static void __init early_ecc(char **p) |
| 118 | { |
| 119 | if (memcmp(*p, "on", 2) == 0) { |
| 120 | ecc_mask = PMD_PROTECTION; |
| 121 | *p += 2; |
| 122 | } else if (memcmp(*p, "off", 3) == 0) { |
| 123 | ecc_mask = 0; |
| 124 | *p += 3; |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | __early_param("nocache", early_nocache); |
| 129 | __early_param("nowb", early_nowrite); |
| 130 | __early_param("cachepolicy=", early_cachepolicy); |
| 131 | __early_param("ecc=", early_ecc); |
| 132 | |
| 133 | static int __init noalign_setup(char *__unused) |
| 134 | { |
| 135 | cr_alignment &= ~CR_A; |
| 136 | cr_no_alignment &= ~CR_A; |
| 137 | set_cr(cr_alignment); |
| 138 | return 1; |
| 139 | } |
| 140 | |
| 141 | __setup("noalign", noalign_setup); |
| 142 | |
| 143 | #define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD) |
| 144 | |
| 145 | /* |
| 146 | * need to get a 16k page for level 1 |
| 147 | */ |
| 148 | pgd_t *get_pgd_slow(struct mm_struct *mm) |
| 149 | { |
| 150 | pgd_t *new_pgd, *init_pgd; |
| 151 | pmd_t *new_pmd, *init_pmd; |
| 152 | pte_t *new_pte, *init_pte; |
| 153 | |
| 154 | new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2); |
| 155 | if (!new_pgd) |
| 156 | goto no_pgd; |
| 157 | |
| 158 | memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t)); |
| 159 | |
| 160 | init_pgd = pgd_offset_k(0); |
| 161 | |
| 162 | if (!vectors_high()) { |
| 163 | /* |
| 164 | * This lock is here just to satisfy pmd_alloc and pte_lock |
| 165 | */ |
| 166 | spin_lock(&mm->page_table_lock); |
| 167 | |
| 168 | /* |
| 169 | * On ARM, first page must always be allocated since it |
| 170 | * contains the machine vectors. |
| 171 | */ |
| 172 | new_pmd = pmd_alloc(mm, new_pgd, 0); |
| 173 | if (!new_pmd) |
| 174 | goto no_pmd; |
| 175 | |
| 176 | new_pte = pte_alloc_map(mm, new_pmd, 0); |
| 177 | if (!new_pte) |
| 178 | goto no_pte; |
| 179 | |
| 180 | init_pmd = pmd_offset(init_pgd, 0); |
| 181 | init_pte = pte_offset_map_nested(init_pmd, 0); |
| 182 | set_pte(new_pte, *init_pte); |
| 183 | pte_unmap_nested(init_pte); |
| 184 | pte_unmap(new_pte); |
| 185 | |
| 186 | spin_unlock(&mm->page_table_lock); |
| 187 | } |
| 188 | |
| 189 | /* |
| 190 | * Copy over the kernel and IO PGD entries |
| 191 | */ |
| 192 | memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR, |
| 193 | (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t)); |
| 194 | |
| 195 | clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t)); |
| 196 | |
| 197 | return new_pgd; |
| 198 | |
| 199 | no_pte: |
| 200 | spin_unlock(&mm->page_table_lock); |
| 201 | pmd_free(new_pmd); |
| 202 | free_pages((unsigned long)new_pgd, 2); |
| 203 | return NULL; |
| 204 | |
| 205 | no_pmd: |
| 206 | spin_unlock(&mm->page_table_lock); |
| 207 | free_pages((unsigned long)new_pgd, 2); |
| 208 | return NULL; |
| 209 | |
| 210 | no_pgd: |
| 211 | return NULL; |
| 212 | } |
| 213 | |
| 214 | void free_pgd_slow(pgd_t *pgd) |
| 215 | { |
| 216 | pmd_t *pmd; |
| 217 | struct page *pte; |
| 218 | |
| 219 | if (!pgd) |
| 220 | return; |
| 221 | |
| 222 | /* pgd is always present and good */ |
| 223 | pmd = (pmd_t *)pgd; |
| 224 | if (pmd_none(*pmd)) |
| 225 | goto free; |
| 226 | if (pmd_bad(*pmd)) { |
| 227 | pmd_ERROR(*pmd); |
| 228 | pmd_clear(pmd); |
| 229 | goto free; |
| 230 | } |
| 231 | |
| 232 | pte = pmd_page(*pmd); |
| 233 | pmd_clear(pmd); |
| 234 | dec_page_state(nr_page_table_pages); |
| 235 | pte_free(pte); |
| 236 | pmd_free(pmd); |
| 237 | free: |
| 238 | free_pages((unsigned long) pgd, 2); |
| 239 | } |
| 240 | |
| 241 | /* |
| 242 | * Create a SECTION PGD between VIRT and PHYS in domain |
| 243 | * DOMAIN with protection PROT. This operates on half- |
| 244 | * pgdir entry increments. |
| 245 | */ |
| 246 | static inline void |
| 247 | alloc_init_section(unsigned long virt, unsigned long phys, int prot) |
| 248 | { |
| 249 | pmd_t *pmdp; |
| 250 | |
| 251 | pmdp = pmd_offset(pgd_offset_k(virt), virt); |
| 252 | if (virt & (1 << 20)) |
| 253 | pmdp++; |
| 254 | |
| 255 | *pmdp = __pmd(phys | prot); |
| 256 | flush_pmd_entry(pmdp); |
| 257 | } |
| 258 | |
| 259 | /* |
| 260 | * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT |
| 261 | */ |
| 262 | static inline void |
| 263 | alloc_init_supersection(unsigned long virt, unsigned long phys, int prot) |
| 264 | { |
| 265 | int i; |
| 266 | |
| 267 | for (i = 0; i < 16; i += 1) { |
| 268 | alloc_init_section(virt, phys & SUPERSECTION_MASK, |
| 269 | prot | PMD_SECT_SUPER); |
| 270 | |
| 271 | virt += (PGDIR_SIZE / 2); |
| 272 | phys += (PGDIR_SIZE / 2); |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | * Add a PAGE mapping between VIRT and PHYS in domain |
| 278 | * DOMAIN with protection PROT. Note that due to the |
| 279 | * way we map the PTEs, we must allocate two PTE_SIZE'd |
| 280 | * blocks - one for the Linux pte table, and one for |
| 281 | * the hardware pte table. |
| 282 | */ |
| 283 | static inline void |
| 284 | alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot) |
| 285 | { |
| 286 | pmd_t *pmdp; |
| 287 | pte_t *ptep; |
| 288 | |
| 289 | pmdp = pmd_offset(pgd_offset_k(virt), virt); |
| 290 | |
| 291 | if (pmd_none(*pmdp)) { |
| 292 | unsigned long pmdval; |
| 293 | ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * |
| 294 | sizeof(pte_t)); |
| 295 | |
| 296 | pmdval = __pa(ptep) | prot_l1; |
| 297 | pmdp[0] = __pmd(pmdval); |
| 298 | pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t)); |
| 299 | flush_pmd_entry(pmdp); |
| 300 | } |
| 301 | ptep = pte_offset_kernel(pmdp, virt); |
| 302 | |
| 303 | set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); |
| 304 | } |
| 305 | |
| 306 | /* |
| 307 | * Clear any PGD mapping. On a two-level page table system, |
| 308 | * the clearance is done by the middle-level functions (pmd) |
| 309 | * rather than the top-level (pgd) functions. |
| 310 | */ |
| 311 | static inline void clear_mapping(unsigned long virt) |
| 312 | { |
| 313 | pmd_clear(pmd_offset(pgd_offset_k(virt), virt)); |
| 314 | } |
| 315 | |
| 316 | struct mem_types { |
| 317 | unsigned int prot_pte; |
| 318 | unsigned int prot_l1; |
| 319 | unsigned int prot_sect; |
| 320 | unsigned int domain; |
| 321 | }; |
| 322 | |
| 323 | static struct mem_types mem_types[] __initdata = { |
| 324 | [MT_DEVICE] = { |
| 325 | .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| 326 | L_PTE_WRITE, |
| 327 | .prot_l1 = PMD_TYPE_TABLE, |
| 328 | .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED | |
| 329 | PMD_SECT_AP_WRITE, |
| 330 | .domain = DOMAIN_IO, |
| 331 | }, |
| 332 | [MT_CACHECLEAN] = { |
| 333 | .prot_sect = PMD_TYPE_SECT, |
| 334 | .domain = DOMAIN_KERNEL, |
| 335 | }, |
| 336 | [MT_MINICLEAN] = { |
| 337 | .prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE, |
| 338 | .domain = DOMAIN_KERNEL, |
| 339 | }, |
| 340 | [MT_LOW_VECTORS] = { |
| 341 | .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| 342 | L_PTE_EXEC, |
| 343 | .prot_l1 = PMD_TYPE_TABLE, |
| 344 | .domain = DOMAIN_USER, |
| 345 | }, |
| 346 | [MT_HIGH_VECTORS] = { |
| 347 | .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| 348 | L_PTE_USER | L_PTE_EXEC, |
| 349 | .prot_l1 = PMD_TYPE_TABLE, |
| 350 | .domain = DOMAIN_USER, |
| 351 | }, |
| 352 | [MT_MEMORY] = { |
| 353 | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, |
| 354 | .domain = DOMAIN_KERNEL, |
| 355 | }, |
| 356 | [MT_ROM] = { |
| 357 | .prot_sect = PMD_TYPE_SECT, |
| 358 | .domain = DOMAIN_KERNEL, |
| 359 | }, |
| 360 | [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */ |
| 361 | .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | |
| 362 | L_PTE_WRITE, |
| 363 | .prot_l1 = PMD_TYPE_TABLE, |
| 364 | .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED | |
| 365 | PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE | |
| 366 | PMD_SECT_TEX(1), |
| 367 | .domain = DOMAIN_IO, |
| 368 | } |
| 369 | }; |
| 370 | |
| 371 | /* |
| 372 | * Adjust the PMD section entries according to the CPU in use. |
| 373 | */ |
| 374 | static void __init build_mem_type_table(void) |
| 375 | { |
| 376 | struct cachepolicy *cp; |
| 377 | unsigned int cr = get_cr(); |
| 378 | int cpu_arch = cpu_architecture(); |
| 379 | int i; |
| 380 | |
| 381 | #if defined(CONFIG_CPU_DCACHE_DISABLE) |
| 382 | if (cachepolicy > CPOLICY_BUFFERED) |
| 383 | cachepolicy = CPOLICY_BUFFERED; |
| 384 | #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) |
| 385 | if (cachepolicy > CPOLICY_WRITETHROUGH) |
| 386 | cachepolicy = CPOLICY_WRITETHROUGH; |
| 387 | #endif |
| 388 | if (cpu_arch < CPU_ARCH_ARMv5) { |
| 389 | if (cachepolicy >= CPOLICY_WRITEALLOC) |
| 390 | cachepolicy = CPOLICY_WRITEBACK; |
| 391 | ecc_mask = 0; |
| 392 | } |
| 393 | |
| 394 | if (cpu_arch <= CPU_ARCH_ARMv5) { |
| 395 | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { |
| 396 | if (mem_types[i].prot_l1) |
| 397 | mem_types[i].prot_l1 |= PMD_BIT4; |
| 398 | if (mem_types[i].prot_sect) |
| 399 | mem_types[i].prot_sect |= PMD_BIT4; |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | /* |
| 404 | * ARMv6 and above have extended page tables. |
| 405 | */ |
| 406 | if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { |
| 407 | /* |
| 408 | * bit 4 becomes XN which we must clear for the |
| 409 | * kernel memory mapping. |
| 410 | */ |
| 411 | mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4; |
| 412 | mem_types[MT_ROM].prot_sect &= ~PMD_BIT4; |
| 413 | /* |
| 414 | * Mark cache clean areas read only from SVC mode |
| 415 | * and no access from userspace. |
| 416 | */ |
| 417 | mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| 418 | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; |
| 419 | } |
| 420 | |
| 421 | cp = &cache_policies[cachepolicy]; |
| 422 | |
| 423 | if (cpu_arch >= CPU_ARCH_ARMv5) { |
| 424 | mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE; |
| 425 | mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE; |
| 426 | } else { |
| 427 | mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte; |
| 428 | mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte; |
| 429 | mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1); |
| 430 | } |
| 431 | |
| 432 | mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; |
| 433 | mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; |
| 434 | mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd; |
| 435 | mem_types[MT_ROM].prot_sect |= cp->pmd; |
| 436 | |
| 437 | for (i = 0; i < 16; i++) { |
| 438 | unsigned long v = pgprot_val(protection_map[i]); |
| 439 | v &= (~(PTE_BUFFERABLE|PTE_CACHEABLE)) | cp->pte; |
| 440 | protection_map[i] = __pgprot(v); |
| 441 | } |
| 442 | |
| 443 | pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | |
| 444 | L_PTE_DIRTY | L_PTE_WRITE | |
| 445 | L_PTE_EXEC | cp->pte); |
| 446 | |
| 447 | switch (cp->pmd) { |
| 448 | case PMD_SECT_WT: |
| 449 | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; |
| 450 | break; |
| 451 | case PMD_SECT_WB: |
| 452 | case PMD_SECT_WBWA: |
| 453 | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; |
| 454 | break; |
| 455 | } |
| 456 | printk("Memory policy: ECC %sabled, Data cache %s\n", |
| 457 | ecc_mask ? "en" : "dis", cp->policy); |
| 458 | } |
| 459 | |
| 460 | #define vectors_base() (vectors_high() ? 0xffff0000 : 0) |
| 461 | |
| 462 | /* |
| 463 | * Create the page directory entries and any necessary |
| 464 | * page tables for the mapping specified by `md'. We |
| 465 | * are able to cope here with varying sizes and address |
| 466 | * offsets, and we take full advantage of sections and |
| 467 | * supersections. |
| 468 | */ |
| 469 | static void __init create_mapping(struct map_desc *md) |
| 470 | { |
| 471 | unsigned long virt, length; |
| 472 | int prot_sect, prot_l1, domain; |
| 473 | pgprot_t prot_pte; |
| 474 | long off; |
| 475 | |
| 476 | if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { |
| 477 | printk(KERN_WARNING "BUG: not creating mapping for " |
| 478 | "0x%08lx at 0x%08lx in user region\n", |
| 479 | md->physical, md->virtual); |
| 480 | return; |
| 481 | } |
| 482 | |
| 483 | if ((md->type == MT_DEVICE || md->type == MT_ROM) && |
| 484 | md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { |
| 485 | printk(KERN_WARNING "BUG: mapping for 0x%08lx at 0x%08lx " |
| 486 | "overlaps vmalloc space\n", |
| 487 | md->physical, md->virtual); |
| 488 | } |
| 489 | |
| 490 | domain = mem_types[md->type].domain; |
| 491 | prot_pte = __pgprot(mem_types[md->type].prot_pte); |
| 492 | prot_l1 = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain); |
| 493 | prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain); |
| 494 | |
| 495 | virt = md->virtual; |
| 496 | off = md->physical - virt; |
| 497 | length = md->length; |
| 498 | |
| 499 | if (mem_types[md->type].prot_l1 == 0 && |
| 500 | (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) { |
| 501 | printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " |
| 502 | "be mapped using pages, ignoring.\n", |
| 503 | md->physical, md->virtual); |
| 504 | return; |
| 505 | } |
| 506 | |
| 507 | while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) { |
| 508 | alloc_init_page(virt, virt + off, prot_l1, prot_pte); |
| 509 | |
| 510 | virt += PAGE_SIZE; |
| 511 | length -= PAGE_SIZE; |
| 512 | } |
| 513 | |
| 514 | /* N.B. ARMv6 supersections are only defined to work with domain 0. |
| 515 | * Since domain assignments can in fact be arbitrary, the |
| 516 | * 'domain == 0' check below is required to insure that ARMv6 |
| 517 | * supersections are only allocated for domain 0 regardless |
| 518 | * of the actual domain assignments in use. |
| 519 | */ |
| 520 | if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) { |
| 521 | /* Align to supersection boundary */ |
| 522 | while ((virt & ~SUPERSECTION_MASK || (virt + off) & |
| 523 | ~SUPERSECTION_MASK) && length >= (PGDIR_SIZE / 2)) { |
| 524 | alloc_init_section(virt, virt + off, prot_sect); |
| 525 | |
| 526 | virt += (PGDIR_SIZE / 2); |
| 527 | length -= (PGDIR_SIZE / 2); |
| 528 | } |
| 529 | |
| 530 | while (length >= SUPERSECTION_SIZE) { |
| 531 | alloc_init_supersection(virt, virt + off, prot_sect); |
| 532 | |
| 533 | virt += SUPERSECTION_SIZE; |
| 534 | length -= SUPERSECTION_SIZE; |
| 535 | } |
| 536 | } |
| 537 | |
| 538 | /* |
| 539 | * A section mapping covers half a "pgdir" entry. |
| 540 | */ |
| 541 | while (length >= (PGDIR_SIZE / 2)) { |
| 542 | alloc_init_section(virt, virt + off, prot_sect); |
| 543 | |
| 544 | virt += (PGDIR_SIZE / 2); |
| 545 | length -= (PGDIR_SIZE / 2); |
| 546 | } |
| 547 | |
| 548 | while (length >= PAGE_SIZE) { |
| 549 | alloc_init_page(virt, virt + off, prot_l1, prot_pte); |
| 550 | |
| 551 | virt += PAGE_SIZE; |
| 552 | length -= PAGE_SIZE; |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | /* |
| 557 | * In order to soft-boot, we need to insert a 1:1 mapping in place of |
| 558 | * the user-mode pages. This will then ensure that we have predictable |
| 559 | * results when turning the mmu off |
| 560 | */ |
| 561 | void setup_mm_for_reboot(char mode) |
| 562 | { |
| 563 | unsigned long pmdval; |
| 564 | pgd_t *pgd; |
| 565 | pmd_t *pmd; |
| 566 | int i; |
| 567 | int cpu_arch = cpu_architecture(); |
| 568 | |
| 569 | if (current->mm && current->mm->pgd) |
| 570 | pgd = current->mm->pgd; |
| 571 | else |
| 572 | pgd = init_mm.pgd; |
| 573 | |
| 574 | for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) { |
| 575 | pmdval = (i << PGDIR_SHIFT) | |
| 576 | PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | |
| 577 | PMD_TYPE_SECT; |
| 578 | if (cpu_arch <= CPU_ARCH_ARMv5) |
| 579 | pmdval |= PMD_BIT4; |
| 580 | pmd = pmd_offset(pgd + i, i << PGDIR_SHIFT); |
| 581 | pmd[0] = __pmd(pmdval); |
| 582 | pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1))); |
| 583 | flush_pmd_entry(pmd); |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | extern void _stext, _etext; |
| 588 | |
| 589 | /* |
| 590 | * Setup initial mappings. We use the page we allocated for zero page to hold |
| 591 | * the mappings, which will get overwritten by the vectors in traps_init(). |
| 592 | * The mappings must be in virtual address order. |
| 593 | */ |
| 594 | void __init memtable_init(struct meminfo *mi) |
| 595 | { |
| 596 | struct map_desc *init_maps, *p, *q; |
| 597 | unsigned long address = 0; |
| 598 | int i; |
| 599 | |
| 600 | build_mem_type_table(); |
| 601 | |
| 602 | init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE); |
| 603 | |
| 604 | #ifdef CONFIG_XIP_KERNEL |
| 605 | p->physical = CONFIG_XIP_PHYS_ADDR & PMD_MASK; |
| 606 | p->virtual = (unsigned long)&_stext & PMD_MASK; |
| 607 | p->length = ((unsigned long)&_etext - p->virtual + ~PMD_MASK) & PMD_MASK; |
| 608 | p->type = MT_ROM; |
| 609 | p ++; |
| 610 | #endif |
| 611 | |
| 612 | for (i = 0; i < mi->nr_banks; i++) { |
| 613 | if (mi->bank[i].size == 0) |
| 614 | continue; |
| 615 | |
| 616 | p->physical = mi->bank[i].start; |
| 617 | p->virtual = __phys_to_virt(p->physical); |
| 618 | p->length = mi->bank[i].size; |
| 619 | p->type = MT_MEMORY; |
| 620 | p ++; |
| 621 | } |
| 622 | |
| 623 | #ifdef FLUSH_BASE |
| 624 | p->physical = FLUSH_BASE_PHYS; |
| 625 | p->virtual = FLUSH_BASE; |
| 626 | p->length = PGDIR_SIZE; |
| 627 | p->type = MT_CACHECLEAN; |
| 628 | p ++; |
| 629 | #endif |
| 630 | |
| 631 | #ifdef FLUSH_BASE_MINICACHE |
| 632 | p->physical = FLUSH_BASE_PHYS + PGDIR_SIZE; |
| 633 | p->virtual = FLUSH_BASE_MINICACHE; |
| 634 | p->length = PGDIR_SIZE; |
| 635 | p->type = MT_MINICLEAN; |
| 636 | p ++; |
| 637 | #endif |
| 638 | |
| 639 | /* |
| 640 | * Go through the initial mappings, but clear out any |
| 641 | * pgdir entries that are not in the description. |
| 642 | */ |
| 643 | q = init_maps; |
| 644 | do { |
| 645 | if (address < q->virtual || q == p) { |
| 646 | clear_mapping(address); |
| 647 | address += PGDIR_SIZE; |
| 648 | } else { |
| 649 | create_mapping(q); |
| 650 | |
| 651 | address = q->virtual + q->length; |
| 652 | address = (address + PGDIR_SIZE - 1) & PGDIR_MASK; |
| 653 | |
| 654 | q ++; |
| 655 | } |
| 656 | } while (address != 0); |
| 657 | |
| 658 | /* |
| 659 | * Create a mapping for the machine vectors at the high-vectors |
| 660 | * location (0xffff0000). If we aren't using high-vectors, also |
| 661 | * create a mapping at the low-vectors virtual address. |
| 662 | */ |
| 663 | init_maps->physical = virt_to_phys(init_maps); |
| 664 | init_maps->virtual = 0xffff0000; |
| 665 | init_maps->length = PAGE_SIZE; |
| 666 | init_maps->type = MT_HIGH_VECTORS; |
| 667 | create_mapping(init_maps); |
| 668 | |
| 669 | if (!vectors_high()) { |
| 670 | init_maps->virtual = 0; |
| 671 | init_maps->type = MT_LOW_VECTORS; |
| 672 | create_mapping(init_maps); |
| 673 | } |
| 674 | |
| 675 | flush_cache_all(); |
| 676 | flush_tlb_all(); |
| 677 | } |
| 678 | |
| 679 | /* |
| 680 | * Create the architecture specific mappings |
| 681 | */ |
| 682 | void __init iotable_init(struct map_desc *io_desc, int nr) |
| 683 | { |
| 684 | int i; |
| 685 | |
| 686 | for (i = 0; i < nr; i++) |
| 687 | create_mapping(io_desc + i); |
| 688 | } |
| 689 | |
| 690 | static inline void |
| 691 | free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn) |
| 692 | { |
| 693 | struct page *start_pg, *end_pg; |
| 694 | unsigned long pg, pgend; |
| 695 | |
| 696 | /* |
| 697 | * Convert start_pfn/end_pfn to a struct page pointer. |
| 698 | */ |
| 699 | start_pg = pfn_to_page(start_pfn); |
| 700 | end_pg = pfn_to_page(end_pfn); |
| 701 | |
| 702 | /* |
| 703 | * Convert to physical addresses, and |
| 704 | * round start upwards and end downwards. |
| 705 | */ |
| 706 | pg = PAGE_ALIGN(__pa(start_pg)); |
| 707 | pgend = __pa(end_pg) & PAGE_MASK; |
| 708 | |
| 709 | /* |
| 710 | * If there are free pages between these, |
| 711 | * free the section of the memmap array. |
| 712 | */ |
| 713 | if (pg < pgend) |
| 714 | free_bootmem_node(NODE_DATA(node), pg, pgend - pg); |
| 715 | } |
| 716 | |
| 717 | static inline void free_unused_memmap_node(int node, struct meminfo *mi) |
| 718 | { |
| 719 | unsigned long bank_start, prev_bank_end = 0; |
| 720 | unsigned int i; |
| 721 | |
| 722 | /* |
| 723 | * [FIXME] This relies on each bank being in address order. This |
| 724 | * may not be the case, especially if the user has provided the |
| 725 | * information on the command line. |
| 726 | */ |
| 727 | for (i = 0; i < mi->nr_banks; i++) { |
| 728 | if (mi->bank[i].size == 0 || mi->bank[i].node != node) |
| 729 | continue; |
| 730 | |
| 731 | bank_start = mi->bank[i].start >> PAGE_SHIFT; |
| 732 | if (bank_start < prev_bank_end) { |
| 733 | printk(KERN_ERR "MEM: unordered memory banks. " |
| 734 | "Not freeing memmap.\n"); |
| 735 | break; |
| 736 | } |
| 737 | |
| 738 | /* |
| 739 | * If we had a previous bank, and there is a space |
| 740 | * between the current bank and the previous, free it. |
| 741 | */ |
| 742 | if (prev_bank_end && prev_bank_end != bank_start) |
| 743 | free_memmap(node, prev_bank_end, bank_start); |
| 744 | |
| 745 | prev_bank_end = PAGE_ALIGN(mi->bank[i].start + |
| 746 | mi->bank[i].size) >> PAGE_SHIFT; |
| 747 | } |
| 748 | } |
| 749 | |
| 750 | /* |
| 751 | * The mem_map array can get very big. Free |
| 752 | * the unused area of the memory map. |
| 753 | */ |
| 754 | void __init create_memmap_holes(struct meminfo *mi) |
| 755 | { |
| 756 | int node; |
| 757 | |
| 758 | for_each_online_node(node) |
| 759 | free_unused_memmap_node(node, mi); |
| 760 | } |