Jamie Iles | 1b8873a | 2010-02-02 20:25:44 +0100 | [diff] [blame^] | 1 | #undef DEBUG |
| 2 | |
| 3 | /* |
| 4 | * ARM performance counter support. |
| 5 | * |
| 6 | * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles |
| 7 | * |
| 8 | * This code is based on the sparc64 perf event code, which is in turn based |
| 9 | * on the x86 code. Callchain code is based on the ARM OProfile backtrace |
| 10 | * code. |
| 11 | */ |
| 12 | #define pr_fmt(fmt) "hw perfevents: " fmt |
| 13 | |
| 14 | #include <linux/interrupt.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/perf_event.h> |
| 17 | #include <linux/spinlock.h> |
| 18 | #include <linux/uaccess.h> |
| 19 | |
| 20 | #include <asm/cputype.h> |
| 21 | #include <asm/irq.h> |
| 22 | #include <asm/irq_regs.h> |
| 23 | #include <asm/pmu.h> |
| 24 | #include <asm/stacktrace.h> |
| 25 | |
| 26 | static const struct pmu_irqs *pmu_irqs; |
| 27 | |
| 28 | /* |
| 29 | * Hardware lock to serialize accesses to PMU registers. Needed for the |
| 30 | * read/modify/write sequences. |
| 31 | */ |
| 32 | DEFINE_SPINLOCK(pmu_lock); |
| 33 | |
| 34 | /* |
| 35 | * ARMv6 supports a maximum of 3 events, starting from index 1. If we add |
| 36 | * another platform that supports more, we need to increase this to be the |
| 37 | * largest of all platforms. |
| 38 | */ |
| 39 | #define ARMPMU_MAX_HWEVENTS 4 |
| 40 | |
| 41 | /* The events for a given CPU. */ |
| 42 | struct cpu_hw_events { |
| 43 | /* |
| 44 | * The events that are active on the CPU for the given index. Index 0 |
| 45 | * is reserved. |
| 46 | */ |
| 47 | struct perf_event *events[ARMPMU_MAX_HWEVENTS]; |
| 48 | |
| 49 | /* |
| 50 | * A 1 bit for an index indicates that the counter is being used for |
| 51 | * an event. A 0 means that the counter can be used. |
| 52 | */ |
| 53 | unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)]; |
| 54 | |
| 55 | /* |
| 56 | * A 1 bit for an index indicates that the counter is actively being |
| 57 | * used. |
| 58 | */ |
| 59 | unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)]; |
| 60 | }; |
| 61 | DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); |
| 62 | |
| 63 | struct arm_pmu { |
| 64 | const char *name; |
| 65 | irqreturn_t (*handle_irq)(int irq_num, void *dev); |
| 66 | void (*enable)(struct hw_perf_event *evt, int idx); |
| 67 | void (*disable)(struct hw_perf_event *evt, int idx); |
| 68 | int (*event_map)(int evt); |
| 69 | u64 (*raw_event)(u64); |
| 70 | int (*get_event_idx)(struct cpu_hw_events *cpuc, |
| 71 | struct hw_perf_event *hwc); |
| 72 | u32 (*read_counter)(int idx); |
| 73 | void (*write_counter)(int idx, u32 val); |
| 74 | void (*start)(void); |
| 75 | void (*stop)(void); |
| 76 | int num_events; |
| 77 | u64 max_period; |
| 78 | }; |
| 79 | |
| 80 | /* Set at runtime when we know what CPU type we are. */ |
| 81 | static const struct arm_pmu *armpmu; |
| 82 | |
| 83 | #define HW_OP_UNSUPPORTED 0xFFFF |
| 84 | |
| 85 | #define C(_x) \ |
| 86 | PERF_COUNT_HW_CACHE_##_x |
| 87 | |
| 88 | #define CACHE_OP_UNSUPPORTED 0xFFFF |
| 89 | |
| 90 | static unsigned armpmu_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] |
| 91 | [PERF_COUNT_HW_CACHE_OP_MAX] |
| 92 | [PERF_COUNT_HW_CACHE_RESULT_MAX]; |
| 93 | |
| 94 | static int |
| 95 | armpmu_map_cache_event(u64 config) |
| 96 | { |
| 97 | unsigned int cache_type, cache_op, cache_result, ret; |
| 98 | |
| 99 | cache_type = (config >> 0) & 0xff; |
| 100 | if (cache_type >= PERF_COUNT_HW_CACHE_MAX) |
| 101 | return -EINVAL; |
| 102 | |
| 103 | cache_op = (config >> 8) & 0xff; |
| 104 | if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) |
| 105 | return -EINVAL; |
| 106 | |
| 107 | cache_result = (config >> 16) & 0xff; |
| 108 | if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| 109 | return -EINVAL; |
| 110 | |
| 111 | ret = (int)armpmu_perf_cache_map[cache_type][cache_op][cache_result]; |
| 112 | |
| 113 | if (ret == CACHE_OP_UNSUPPORTED) |
| 114 | return -ENOENT; |
| 115 | |
| 116 | return ret; |
| 117 | } |
| 118 | |
| 119 | static int |
| 120 | armpmu_event_set_period(struct perf_event *event, |
| 121 | struct hw_perf_event *hwc, |
| 122 | int idx) |
| 123 | { |
| 124 | s64 left = atomic64_read(&hwc->period_left); |
| 125 | s64 period = hwc->sample_period; |
| 126 | int ret = 0; |
| 127 | |
| 128 | if (unlikely(left <= -period)) { |
| 129 | left = period; |
| 130 | atomic64_set(&hwc->period_left, left); |
| 131 | hwc->last_period = period; |
| 132 | ret = 1; |
| 133 | } |
| 134 | |
| 135 | if (unlikely(left <= 0)) { |
| 136 | left += period; |
| 137 | atomic64_set(&hwc->period_left, left); |
| 138 | hwc->last_period = period; |
| 139 | ret = 1; |
| 140 | } |
| 141 | |
| 142 | if (left > (s64)armpmu->max_period) |
| 143 | left = armpmu->max_period; |
| 144 | |
| 145 | atomic64_set(&hwc->prev_count, (u64)-left); |
| 146 | |
| 147 | armpmu->write_counter(idx, (u64)(-left) & 0xffffffff); |
| 148 | |
| 149 | perf_event_update_userpage(event); |
| 150 | |
| 151 | return ret; |
| 152 | } |
| 153 | |
| 154 | static u64 |
| 155 | armpmu_event_update(struct perf_event *event, |
| 156 | struct hw_perf_event *hwc, |
| 157 | int idx) |
| 158 | { |
| 159 | int shift = 64 - 32; |
| 160 | s64 prev_raw_count, new_raw_count; |
| 161 | s64 delta; |
| 162 | |
| 163 | again: |
| 164 | prev_raw_count = atomic64_read(&hwc->prev_count); |
| 165 | new_raw_count = armpmu->read_counter(idx); |
| 166 | |
| 167 | if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| 168 | new_raw_count) != prev_raw_count) |
| 169 | goto again; |
| 170 | |
| 171 | delta = (new_raw_count << shift) - (prev_raw_count << shift); |
| 172 | delta >>= shift; |
| 173 | |
| 174 | atomic64_add(delta, &event->count); |
| 175 | atomic64_sub(delta, &hwc->period_left); |
| 176 | |
| 177 | return new_raw_count; |
| 178 | } |
| 179 | |
| 180 | static void |
| 181 | armpmu_disable(struct perf_event *event) |
| 182 | { |
| 183 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| 184 | struct hw_perf_event *hwc = &event->hw; |
| 185 | int idx = hwc->idx; |
| 186 | |
| 187 | WARN_ON(idx < 0); |
| 188 | |
| 189 | clear_bit(idx, cpuc->active_mask); |
| 190 | armpmu->disable(hwc, idx); |
| 191 | |
| 192 | barrier(); |
| 193 | |
| 194 | armpmu_event_update(event, hwc, idx); |
| 195 | cpuc->events[idx] = NULL; |
| 196 | clear_bit(idx, cpuc->used_mask); |
| 197 | |
| 198 | perf_event_update_userpage(event); |
| 199 | } |
| 200 | |
| 201 | static void |
| 202 | armpmu_read(struct perf_event *event) |
| 203 | { |
| 204 | struct hw_perf_event *hwc = &event->hw; |
| 205 | |
| 206 | /* Don't read disabled counters! */ |
| 207 | if (hwc->idx < 0) |
| 208 | return; |
| 209 | |
| 210 | armpmu_event_update(event, hwc, hwc->idx); |
| 211 | } |
| 212 | |
| 213 | static void |
| 214 | armpmu_unthrottle(struct perf_event *event) |
| 215 | { |
| 216 | struct hw_perf_event *hwc = &event->hw; |
| 217 | |
| 218 | /* |
| 219 | * Set the period again. Some counters can't be stopped, so when we |
| 220 | * were throttled we simply disabled the IRQ source and the counter |
| 221 | * may have been left counting. If we don't do this step then we may |
| 222 | * get an interrupt too soon or *way* too late if the overflow has |
| 223 | * happened since disabling. |
| 224 | */ |
| 225 | armpmu_event_set_period(event, hwc, hwc->idx); |
| 226 | armpmu->enable(hwc, hwc->idx); |
| 227 | } |
| 228 | |
| 229 | static int |
| 230 | armpmu_enable(struct perf_event *event) |
| 231 | { |
| 232 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| 233 | struct hw_perf_event *hwc = &event->hw; |
| 234 | int idx; |
| 235 | int err = 0; |
| 236 | |
| 237 | /* If we don't have a space for the counter then finish early. */ |
| 238 | idx = armpmu->get_event_idx(cpuc, hwc); |
| 239 | if (idx < 0) { |
| 240 | err = idx; |
| 241 | goto out; |
| 242 | } |
| 243 | |
| 244 | /* |
| 245 | * If there is an event in the counter we are going to use then make |
| 246 | * sure it is disabled. |
| 247 | */ |
| 248 | event->hw.idx = idx; |
| 249 | armpmu->disable(hwc, idx); |
| 250 | cpuc->events[idx] = event; |
| 251 | set_bit(idx, cpuc->active_mask); |
| 252 | |
| 253 | /* Set the period for the event. */ |
| 254 | armpmu_event_set_period(event, hwc, idx); |
| 255 | |
| 256 | /* Enable the event. */ |
| 257 | armpmu->enable(hwc, idx); |
| 258 | |
| 259 | /* Propagate our changes to the userspace mapping. */ |
| 260 | perf_event_update_userpage(event); |
| 261 | |
| 262 | out: |
| 263 | return err; |
| 264 | } |
| 265 | |
| 266 | static struct pmu pmu = { |
| 267 | .enable = armpmu_enable, |
| 268 | .disable = armpmu_disable, |
| 269 | .unthrottle = armpmu_unthrottle, |
| 270 | .read = armpmu_read, |
| 271 | }; |
| 272 | |
| 273 | static int |
| 274 | validate_event(struct cpu_hw_events *cpuc, |
| 275 | struct perf_event *event) |
| 276 | { |
| 277 | struct hw_perf_event fake_event = event->hw; |
| 278 | |
| 279 | if (event->pmu && event->pmu != &pmu) |
| 280 | return 0; |
| 281 | |
| 282 | return armpmu->get_event_idx(cpuc, &fake_event) >= 0; |
| 283 | } |
| 284 | |
| 285 | static int |
| 286 | validate_group(struct perf_event *event) |
| 287 | { |
| 288 | struct perf_event *sibling, *leader = event->group_leader; |
| 289 | struct cpu_hw_events fake_pmu; |
| 290 | |
| 291 | memset(&fake_pmu, 0, sizeof(fake_pmu)); |
| 292 | |
| 293 | if (!validate_event(&fake_pmu, leader)) |
| 294 | return -ENOSPC; |
| 295 | |
| 296 | list_for_each_entry(sibling, &leader->sibling_list, group_entry) { |
| 297 | if (!validate_event(&fake_pmu, sibling)) |
| 298 | return -ENOSPC; |
| 299 | } |
| 300 | |
| 301 | if (!validate_event(&fake_pmu, event)) |
| 302 | return -ENOSPC; |
| 303 | |
| 304 | return 0; |
| 305 | } |
| 306 | |
| 307 | static int |
| 308 | armpmu_reserve_hardware(void) |
| 309 | { |
| 310 | int i; |
| 311 | int err; |
| 312 | |
| 313 | pmu_irqs = reserve_pmu(); |
| 314 | if (IS_ERR(pmu_irqs)) { |
| 315 | pr_warning("unable to reserve pmu\n"); |
| 316 | return PTR_ERR(pmu_irqs); |
| 317 | } |
| 318 | |
| 319 | init_pmu(); |
| 320 | |
| 321 | if (pmu_irqs->num_irqs < 1) { |
| 322 | pr_err("no irqs for PMUs defined\n"); |
| 323 | return -ENODEV; |
| 324 | } |
| 325 | |
| 326 | for (i = 0; i < pmu_irqs->num_irqs; ++i) { |
| 327 | err = request_irq(pmu_irqs->irqs[i], armpmu->handle_irq, |
| 328 | IRQF_DISABLED, "armpmu", NULL); |
| 329 | if (err) { |
| 330 | pr_warning("unable to request IRQ%d for ARM " |
| 331 | "perf counters\n", pmu_irqs->irqs[i]); |
| 332 | break; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | if (err) { |
| 337 | for (i = i - 1; i >= 0; --i) |
| 338 | free_irq(pmu_irqs->irqs[i], NULL); |
| 339 | release_pmu(pmu_irqs); |
| 340 | pmu_irqs = NULL; |
| 341 | } |
| 342 | |
| 343 | return err; |
| 344 | } |
| 345 | |
| 346 | static void |
| 347 | armpmu_release_hardware(void) |
| 348 | { |
| 349 | int i; |
| 350 | |
| 351 | for (i = pmu_irqs->num_irqs - 1; i >= 0; --i) |
| 352 | free_irq(pmu_irqs->irqs[i], NULL); |
| 353 | armpmu->stop(); |
| 354 | |
| 355 | release_pmu(pmu_irqs); |
| 356 | pmu_irqs = NULL; |
| 357 | } |
| 358 | |
| 359 | static atomic_t active_events = ATOMIC_INIT(0); |
| 360 | static DEFINE_MUTEX(pmu_reserve_mutex); |
| 361 | |
| 362 | static void |
| 363 | hw_perf_event_destroy(struct perf_event *event) |
| 364 | { |
| 365 | if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) { |
| 366 | armpmu_release_hardware(); |
| 367 | mutex_unlock(&pmu_reserve_mutex); |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | static int |
| 372 | __hw_perf_event_init(struct perf_event *event) |
| 373 | { |
| 374 | struct hw_perf_event *hwc = &event->hw; |
| 375 | int mapping, err; |
| 376 | |
| 377 | /* Decode the generic type into an ARM event identifier. */ |
| 378 | if (PERF_TYPE_HARDWARE == event->attr.type) { |
| 379 | mapping = armpmu->event_map(event->attr.config); |
| 380 | } else if (PERF_TYPE_HW_CACHE == event->attr.type) { |
| 381 | mapping = armpmu_map_cache_event(event->attr.config); |
| 382 | } else if (PERF_TYPE_RAW == event->attr.type) { |
| 383 | mapping = armpmu->raw_event(event->attr.config); |
| 384 | } else { |
| 385 | pr_debug("event type %x not supported\n", event->attr.type); |
| 386 | return -EOPNOTSUPP; |
| 387 | } |
| 388 | |
| 389 | if (mapping < 0) { |
| 390 | pr_debug("event %x:%llx not supported\n", event->attr.type, |
| 391 | event->attr.config); |
| 392 | return mapping; |
| 393 | } |
| 394 | |
| 395 | /* |
| 396 | * Check whether we need to exclude the counter from certain modes. |
| 397 | * The ARM performance counters are on all of the time so if someone |
| 398 | * has asked us for some excludes then we have to fail. |
| 399 | */ |
| 400 | if (event->attr.exclude_kernel || event->attr.exclude_user || |
| 401 | event->attr.exclude_hv || event->attr.exclude_idle) { |
| 402 | pr_debug("ARM performance counters do not support " |
| 403 | "mode exclusion\n"); |
| 404 | return -EPERM; |
| 405 | } |
| 406 | |
| 407 | /* |
| 408 | * We don't assign an index until we actually place the event onto |
| 409 | * hardware. Use -1 to signify that we haven't decided where to put it |
| 410 | * yet. For SMP systems, each core has it's own PMU so we can't do any |
| 411 | * clever allocation or constraints checking at this point. |
| 412 | */ |
| 413 | hwc->idx = -1; |
| 414 | |
| 415 | /* |
| 416 | * Store the event encoding into the config_base field. config and |
| 417 | * event_base are unused as the only 2 things we need to know are |
| 418 | * the event mapping and the counter to use. The counter to use is |
| 419 | * also the indx and the config_base is the event type. |
| 420 | */ |
| 421 | hwc->config_base = (unsigned long)mapping; |
| 422 | hwc->config = 0; |
| 423 | hwc->event_base = 0; |
| 424 | |
| 425 | if (!hwc->sample_period) { |
| 426 | hwc->sample_period = armpmu->max_period; |
| 427 | hwc->last_period = hwc->sample_period; |
| 428 | atomic64_set(&hwc->period_left, hwc->sample_period); |
| 429 | } |
| 430 | |
| 431 | err = 0; |
| 432 | if (event->group_leader != event) { |
| 433 | err = validate_group(event); |
| 434 | if (err) |
| 435 | return -EINVAL; |
| 436 | } |
| 437 | |
| 438 | return err; |
| 439 | } |
| 440 | |
| 441 | const struct pmu * |
| 442 | hw_perf_event_init(struct perf_event *event) |
| 443 | { |
| 444 | int err = 0; |
| 445 | |
| 446 | if (!armpmu) |
| 447 | return ERR_PTR(-ENODEV); |
| 448 | |
| 449 | event->destroy = hw_perf_event_destroy; |
| 450 | |
| 451 | if (!atomic_inc_not_zero(&active_events)) { |
| 452 | if (atomic_read(&active_events) > perf_max_events) { |
| 453 | atomic_dec(&active_events); |
| 454 | return ERR_PTR(-ENOSPC); |
| 455 | } |
| 456 | |
| 457 | mutex_lock(&pmu_reserve_mutex); |
| 458 | if (atomic_read(&active_events) == 0) { |
| 459 | err = armpmu_reserve_hardware(); |
| 460 | } |
| 461 | |
| 462 | if (!err) |
| 463 | atomic_inc(&active_events); |
| 464 | mutex_unlock(&pmu_reserve_mutex); |
| 465 | } |
| 466 | |
| 467 | if (err) |
| 468 | return ERR_PTR(err); |
| 469 | |
| 470 | err = __hw_perf_event_init(event); |
| 471 | if (err) |
| 472 | hw_perf_event_destroy(event); |
| 473 | |
| 474 | return err ? ERR_PTR(err) : &pmu; |
| 475 | } |
| 476 | |
| 477 | void |
| 478 | hw_perf_enable(void) |
| 479 | { |
| 480 | /* Enable all of the perf events on hardware. */ |
| 481 | int idx; |
| 482 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| 483 | |
| 484 | if (!armpmu) |
| 485 | return; |
| 486 | |
| 487 | for (idx = 0; idx <= armpmu->num_events; ++idx) { |
| 488 | struct perf_event *event = cpuc->events[idx]; |
| 489 | |
| 490 | if (!event) |
| 491 | continue; |
| 492 | |
| 493 | armpmu->enable(&event->hw, idx); |
| 494 | } |
| 495 | |
| 496 | armpmu->start(); |
| 497 | } |
| 498 | |
| 499 | void |
| 500 | hw_perf_disable(void) |
| 501 | { |
| 502 | if (armpmu) |
| 503 | armpmu->stop(); |
| 504 | } |
| 505 | |
| 506 | /* |
| 507 | * ARMv6 Performance counter handling code. |
| 508 | * |
| 509 | * ARMv6 has 2 configurable performance counters and a single cycle counter. |
| 510 | * They all share a single reset bit but can be written to zero so we can use |
| 511 | * that for a reset. |
| 512 | * |
| 513 | * The counters can't be individually enabled or disabled so when we remove |
| 514 | * one event and replace it with another we could get spurious counts from the |
| 515 | * wrong event. However, we can take advantage of the fact that the |
| 516 | * performance counters can export events to the event bus, and the event bus |
| 517 | * itself can be monitored. This requires that we *don't* export the events to |
| 518 | * the event bus. The procedure for disabling a configurable counter is: |
| 519 | * - change the counter to count the ETMEXTOUT[0] signal (0x20). This |
| 520 | * effectively stops the counter from counting. |
| 521 | * - disable the counter's interrupt generation (each counter has it's |
| 522 | * own interrupt enable bit). |
| 523 | * Once stopped, the counter value can be written as 0 to reset. |
| 524 | * |
| 525 | * To enable a counter: |
| 526 | * - enable the counter's interrupt generation. |
| 527 | * - set the new event type. |
| 528 | * |
| 529 | * Note: the dedicated cycle counter only counts cycles and can't be |
| 530 | * enabled/disabled independently of the others. When we want to disable the |
| 531 | * cycle counter, we have to just disable the interrupt reporting and start |
| 532 | * ignoring that counter. When re-enabling, we have to reset the value and |
| 533 | * enable the interrupt. |
| 534 | */ |
| 535 | |
| 536 | enum armv6_perf_types { |
| 537 | ARMV6_PERFCTR_ICACHE_MISS = 0x0, |
| 538 | ARMV6_PERFCTR_IBUF_STALL = 0x1, |
| 539 | ARMV6_PERFCTR_DDEP_STALL = 0x2, |
| 540 | ARMV6_PERFCTR_ITLB_MISS = 0x3, |
| 541 | ARMV6_PERFCTR_DTLB_MISS = 0x4, |
| 542 | ARMV6_PERFCTR_BR_EXEC = 0x5, |
| 543 | ARMV6_PERFCTR_BR_MISPREDICT = 0x6, |
| 544 | ARMV6_PERFCTR_INSTR_EXEC = 0x7, |
| 545 | ARMV6_PERFCTR_DCACHE_HIT = 0x9, |
| 546 | ARMV6_PERFCTR_DCACHE_ACCESS = 0xA, |
| 547 | ARMV6_PERFCTR_DCACHE_MISS = 0xB, |
| 548 | ARMV6_PERFCTR_DCACHE_WBACK = 0xC, |
| 549 | ARMV6_PERFCTR_SW_PC_CHANGE = 0xD, |
| 550 | ARMV6_PERFCTR_MAIN_TLB_MISS = 0xF, |
| 551 | ARMV6_PERFCTR_EXPL_D_ACCESS = 0x10, |
| 552 | ARMV6_PERFCTR_LSU_FULL_STALL = 0x11, |
| 553 | ARMV6_PERFCTR_WBUF_DRAINED = 0x12, |
| 554 | ARMV6_PERFCTR_CPU_CYCLES = 0xFF, |
| 555 | ARMV6_PERFCTR_NOP = 0x20, |
| 556 | }; |
| 557 | |
| 558 | enum armv6_counters { |
| 559 | ARMV6_CYCLE_COUNTER = 1, |
| 560 | ARMV6_COUNTER0, |
| 561 | ARMV6_COUNTER1, |
| 562 | }; |
| 563 | |
| 564 | /* |
| 565 | * The hardware events that we support. We do support cache operations but |
| 566 | * we have harvard caches and no way to combine instruction and data |
| 567 | * accesses/misses in hardware. |
| 568 | */ |
| 569 | static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = { |
| 570 | [PERF_COUNT_HW_CPU_CYCLES] = ARMV6_PERFCTR_CPU_CYCLES, |
| 571 | [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6_PERFCTR_INSTR_EXEC, |
| 572 | [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED, |
| 573 | [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED, |
| 574 | [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC, |
| 575 | [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6_PERFCTR_BR_MISPREDICT, |
| 576 | [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED, |
| 577 | }; |
| 578 | |
| 579 | static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] |
| 580 | [PERF_COUNT_HW_CACHE_OP_MAX] |
| 581 | [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| 582 | [C(L1D)] = { |
| 583 | /* |
| 584 | * The performance counters don't differentiate between read |
| 585 | * and write accesses/misses so this isn't strictly correct, |
| 586 | * but it's the best we can do. Writes and reads get |
| 587 | * combined. |
| 588 | */ |
| 589 | [C(OP_READ)] = { |
| 590 | [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS, |
| 591 | [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS, |
| 592 | }, |
| 593 | [C(OP_WRITE)] = { |
| 594 | [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS, |
| 595 | [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS, |
| 596 | }, |
| 597 | [C(OP_PREFETCH)] = { |
| 598 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 599 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 600 | }, |
| 601 | }, |
| 602 | [C(L1I)] = { |
| 603 | [C(OP_READ)] = { |
| 604 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 605 | [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS, |
| 606 | }, |
| 607 | [C(OP_WRITE)] = { |
| 608 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 609 | [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS, |
| 610 | }, |
| 611 | [C(OP_PREFETCH)] = { |
| 612 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 613 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 614 | }, |
| 615 | }, |
| 616 | [C(LL)] = { |
| 617 | [C(OP_READ)] = { |
| 618 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 619 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 620 | }, |
| 621 | [C(OP_WRITE)] = { |
| 622 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 623 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 624 | }, |
| 625 | [C(OP_PREFETCH)] = { |
| 626 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 627 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 628 | }, |
| 629 | }, |
| 630 | [C(DTLB)] = { |
| 631 | /* |
| 632 | * The ARM performance counters can count micro DTLB misses, |
| 633 | * micro ITLB misses and main TLB misses. There isn't an event |
| 634 | * for TLB misses, so use the micro misses here and if users |
| 635 | * want the main TLB misses they can use a raw counter. |
| 636 | */ |
| 637 | [C(OP_READ)] = { |
| 638 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 639 | [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS, |
| 640 | }, |
| 641 | [C(OP_WRITE)] = { |
| 642 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 643 | [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS, |
| 644 | }, |
| 645 | [C(OP_PREFETCH)] = { |
| 646 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 647 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 648 | }, |
| 649 | }, |
| 650 | [C(ITLB)] = { |
| 651 | [C(OP_READ)] = { |
| 652 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 653 | [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS, |
| 654 | }, |
| 655 | [C(OP_WRITE)] = { |
| 656 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 657 | [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS, |
| 658 | }, |
| 659 | [C(OP_PREFETCH)] = { |
| 660 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 661 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 662 | }, |
| 663 | }, |
| 664 | [C(BPU)] = { |
| 665 | [C(OP_READ)] = { |
| 666 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 667 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 668 | }, |
| 669 | [C(OP_WRITE)] = { |
| 670 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 671 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 672 | }, |
| 673 | [C(OP_PREFETCH)] = { |
| 674 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 675 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 676 | }, |
| 677 | }, |
| 678 | }; |
| 679 | |
| 680 | enum armv6mpcore_perf_types { |
| 681 | ARMV6MPCORE_PERFCTR_ICACHE_MISS = 0x0, |
| 682 | ARMV6MPCORE_PERFCTR_IBUF_STALL = 0x1, |
| 683 | ARMV6MPCORE_PERFCTR_DDEP_STALL = 0x2, |
| 684 | ARMV6MPCORE_PERFCTR_ITLB_MISS = 0x3, |
| 685 | ARMV6MPCORE_PERFCTR_DTLB_MISS = 0x4, |
| 686 | ARMV6MPCORE_PERFCTR_BR_EXEC = 0x5, |
| 687 | ARMV6MPCORE_PERFCTR_BR_NOTPREDICT = 0x6, |
| 688 | ARMV6MPCORE_PERFCTR_BR_MISPREDICT = 0x7, |
| 689 | ARMV6MPCORE_PERFCTR_INSTR_EXEC = 0x8, |
| 690 | ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA, |
| 691 | ARMV6MPCORE_PERFCTR_DCACHE_RDMISS = 0xB, |
| 692 | ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC, |
| 693 | ARMV6MPCORE_PERFCTR_DCACHE_WRMISS = 0xD, |
| 694 | ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE, |
| 695 | ARMV6MPCORE_PERFCTR_SW_PC_CHANGE = 0xF, |
| 696 | ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS = 0x10, |
| 697 | ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11, |
| 698 | ARMV6MPCORE_PERFCTR_LSU_FULL_STALL = 0x12, |
| 699 | ARMV6MPCORE_PERFCTR_WBUF_DRAINED = 0x13, |
| 700 | ARMV6MPCORE_PERFCTR_CPU_CYCLES = 0xFF, |
| 701 | }; |
| 702 | |
| 703 | /* |
| 704 | * The hardware events that we support. We do support cache operations but |
| 705 | * we have harvard caches and no way to combine instruction and data |
| 706 | * accesses/misses in hardware. |
| 707 | */ |
| 708 | static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = { |
| 709 | [PERF_COUNT_HW_CPU_CYCLES] = ARMV6MPCORE_PERFCTR_CPU_CYCLES, |
| 710 | [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_INSTR_EXEC, |
| 711 | [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED, |
| 712 | [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED, |
| 713 | [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_BR_EXEC, |
| 714 | [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT, |
| 715 | [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED, |
| 716 | }; |
| 717 | |
| 718 | static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX] |
| 719 | [PERF_COUNT_HW_CACHE_OP_MAX] |
| 720 | [PERF_COUNT_HW_CACHE_RESULT_MAX] = { |
| 721 | [C(L1D)] = { |
| 722 | [C(OP_READ)] = { |
| 723 | [C(RESULT_ACCESS)] = |
| 724 | ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS, |
| 725 | [C(RESULT_MISS)] = |
| 726 | ARMV6MPCORE_PERFCTR_DCACHE_RDMISS, |
| 727 | }, |
| 728 | [C(OP_WRITE)] = { |
| 729 | [C(RESULT_ACCESS)] = |
| 730 | ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS, |
| 731 | [C(RESULT_MISS)] = |
| 732 | ARMV6MPCORE_PERFCTR_DCACHE_WRMISS, |
| 733 | }, |
| 734 | [C(OP_PREFETCH)] = { |
| 735 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 736 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 737 | }, |
| 738 | }, |
| 739 | [C(L1I)] = { |
| 740 | [C(OP_READ)] = { |
| 741 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 742 | [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS, |
| 743 | }, |
| 744 | [C(OP_WRITE)] = { |
| 745 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 746 | [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS, |
| 747 | }, |
| 748 | [C(OP_PREFETCH)] = { |
| 749 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 750 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 751 | }, |
| 752 | }, |
| 753 | [C(LL)] = { |
| 754 | [C(OP_READ)] = { |
| 755 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 756 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 757 | }, |
| 758 | [C(OP_WRITE)] = { |
| 759 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 760 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 761 | }, |
| 762 | [C(OP_PREFETCH)] = { |
| 763 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 764 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 765 | }, |
| 766 | }, |
| 767 | [C(DTLB)] = { |
| 768 | /* |
| 769 | * The ARM performance counters can count micro DTLB misses, |
| 770 | * micro ITLB misses and main TLB misses. There isn't an event |
| 771 | * for TLB misses, so use the micro misses here and if users |
| 772 | * want the main TLB misses they can use a raw counter. |
| 773 | */ |
| 774 | [C(OP_READ)] = { |
| 775 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 776 | [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS, |
| 777 | }, |
| 778 | [C(OP_WRITE)] = { |
| 779 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 780 | [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS, |
| 781 | }, |
| 782 | [C(OP_PREFETCH)] = { |
| 783 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 784 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 785 | }, |
| 786 | }, |
| 787 | [C(ITLB)] = { |
| 788 | [C(OP_READ)] = { |
| 789 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 790 | [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS, |
| 791 | }, |
| 792 | [C(OP_WRITE)] = { |
| 793 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 794 | [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS, |
| 795 | }, |
| 796 | [C(OP_PREFETCH)] = { |
| 797 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 798 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 799 | }, |
| 800 | }, |
| 801 | [C(BPU)] = { |
| 802 | [C(OP_READ)] = { |
| 803 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 804 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 805 | }, |
| 806 | [C(OP_WRITE)] = { |
| 807 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 808 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 809 | }, |
| 810 | [C(OP_PREFETCH)] = { |
| 811 | [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, |
| 812 | [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, |
| 813 | }, |
| 814 | }, |
| 815 | }; |
| 816 | |
| 817 | static inline unsigned long |
| 818 | armv6_pmcr_read(void) |
| 819 | { |
| 820 | u32 val; |
| 821 | asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val)); |
| 822 | return val; |
| 823 | } |
| 824 | |
| 825 | static inline void |
| 826 | armv6_pmcr_write(unsigned long val) |
| 827 | { |
| 828 | asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val)); |
| 829 | } |
| 830 | |
| 831 | #define ARMV6_PMCR_ENABLE (1 << 0) |
| 832 | #define ARMV6_PMCR_CTR01_RESET (1 << 1) |
| 833 | #define ARMV6_PMCR_CCOUNT_RESET (1 << 2) |
| 834 | #define ARMV6_PMCR_CCOUNT_DIV (1 << 3) |
| 835 | #define ARMV6_PMCR_COUNT0_IEN (1 << 4) |
| 836 | #define ARMV6_PMCR_COUNT1_IEN (1 << 5) |
| 837 | #define ARMV6_PMCR_CCOUNT_IEN (1 << 6) |
| 838 | #define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8) |
| 839 | #define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9) |
| 840 | #define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10) |
| 841 | #define ARMV6_PMCR_EVT_COUNT0_SHIFT 20 |
| 842 | #define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
| 843 | #define ARMV6_PMCR_EVT_COUNT1_SHIFT 12 |
| 844 | #define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
| 845 | |
| 846 | #define ARMV6_PMCR_OVERFLOWED_MASK \ |
| 847 | (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \ |
| 848 | ARMV6_PMCR_CCOUNT_OVERFLOW) |
| 849 | |
| 850 | static inline int |
| 851 | armv6_pmcr_has_overflowed(unsigned long pmcr) |
| 852 | { |
| 853 | return (pmcr & ARMV6_PMCR_OVERFLOWED_MASK); |
| 854 | } |
| 855 | |
| 856 | static inline int |
| 857 | armv6_pmcr_counter_has_overflowed(unsigned long pmcr, |
| 858 | enum armv6_counters counter) |
| 859 | { |
| 860 | int ret = 0; |
| 861 | |
| 862 | if (ARMV6_CYCLE_COUNTER == counter) |
| 863 | ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW; |
| 864 | else if (ARMV6_COUNTER0 == counter) |
| 865 | ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW; |
| 866 | else if (ARMV6_COUNTER1 == counter) |
| 867 | ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW; |
| 868 | else |
| 869 | WARN_ONCE(1, "invalid counter number (%d)\n", counter); |
| 870 | |
| 871 | return ret; |
| 872 | } |
| 873 | |
| 874 | static inline u32 |
| 875 | armv6pmu_read_counter(int counter) |
| 876 | { |
| 877 | unsigned long value = 0; |
| 878 | |
| 879 | if (ARMV6_CYCLE_COUNTER == counter) |
| 880 | asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value)); |
| 881 | else if (ARMV6_COUNTER0 == counter) |
| 882 | asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value)); |
| 883 | else if (ARMV6_COUNTER1 == counter) |
| 884 | asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value)); |
| 885 | else |
| 886 | WARN_ONCE(1, "invalid counter number (%d)\n", counter); |
| 887 | |
| 888 | return value; |
| 889 | } |
| 890 | |
| 891 | static inline void |
| 892 | armv6pmu_write_counter(int counter, |
| 893 | u32 value) |
| 894 | { |
| 895 | if (ARMV6_CYCLE_COUNTER == counter) |
| 896 | asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value)); |
| 897 | else if (ARMV6_COUNTER0 == counter) |
| 898 | asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value)); |
| 899 | else if (ARMV6_COUNTER1 == counter) |
| 900 | asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value)); |
| 901 | else |
| 902 | WARN_ONCE(1, "invalid counter number (%d)\n", counter); |
| 903 | } |
| 904 | |
| 905 | void |
| 906 | armv6pmu_enable_event(struct hw_perf_event *hwc, |
| 907 | int idx) |
| 908 | { |
| 909 | unsigned long val, mask, evt, flags; |
| 910 | |
| 911 | if (ARMV6_CYCLE_COUNTER == idx) { |
| 912 | mask = 0; |
| 913 | evt = ARMV6_PMCR_CCOUNT_IEN; |
| 914 | } else if (ARMV6_COUNTER0 == idx) { |
| 915 | mask = ARMV6_PMCR_EVT_COUNT0_MASK; |
| 916 | evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) | |
| 917 | ARMV6_PMCR_COUNT0_IEN; |
| 918 | } else if (ARMV6_COUNTER1 == idx) { |
| 919 | mask = ARMV6_PMCR_EVT_COUNT1_MASK; |
| 920 | evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) | |
| 921 | ARMV6_PMCR_COUNT1_IEN; |
| 922 | } else { |
| 923 | WARN_ONCE(1, "invalid counter number (%d)\n", idx); |
| 924 | return; |
| 925 | } |
| 926 | |
| 927 | /* |
| 928 | * Mask out the current event and set the counter to count the event |
| 929 | * that we're interested in. |
| 930 | */ |
| 931 | spin_lock_irqsave(&pmu_lock, flags); |
| 932 | val = armv6_pmcr_read(); |
| 933 | val &= ~mask; |
| 934 | val |= evt; |
| 935 | armv6_pmcr_write(val); |
| 936 | spin_unlock_irqrestore(&pmu_lock, flags); |
| 937 | } |
| 938 | |
| 939 | static irqreturn_t |
| 940 | armv6pmu_handle_irq(int irq_num, |
| 941 | void *dev) |
| 942 | { |
| 943 | unsigned long pmcr = armv6_pmcr_read(); |
| 944 | struct perf_sample_data data; |
| 945 | struct cpu_hw_events *cpuc; |
| 946 | struct pt_regs *regs; |
| 947 | int idx; |
| 948 | |
| 949 | if (!armv6_pmcr_has_overflowed(pmcr)) |
| 950 | return IRQ_NONE; |
| 951 | |
| 952 | regs = get_irq_regs(); |
| 953 | |
| 954 | /* |
| 955 | * The interrupts are cleared by writing the overflow flags back to |
| 956 | * the control register. All of the other bits don't have any effect |
| 957 | * if they are rewritten, so write the whole value back. |
| 958 | */ |
| 959 | armv6_pmcr_write(pmcr); |
| 960 | |
| 961 | data.addr = 0; |
| 962 | |
| 963 | cpuc = &__get_cpu_var(cpu_hw_events); |
| 964 | for (idx = 0; idx <= armpmu->num_events; ++idx) { |
| 965 | struct perf_event *event = cpuc->events[idx]; |
| 966 | struct hw_perf_event *hwc; |
| 967 | |
| 968 | if (!test_bit(idx, cpuc->active_mask)) |
| 969 | continue; |
| 970 | |
| 971 | /* |
| 972 | * We have a single interrupt for all counters. Check that |
| 973 | * each counter has overflowed before we process it. |
| 974 | */ |
| 975 | if (!armv6_pmcr_counter_has_overflowed(pmcr, idx)) |
| 976 | continue; |
| 977 | |
| 978 | hwc = &event->hw; |
| 979 | armpmu_event_update(event, hwc, idx); |
| 980 | data.period = event->hw.last_period; |
| 981 | if (!armpmu_event_set_period(event, hwc, idx)) |
| 982 | continue; |
| 983 | |
| 984 | if (perf_event_overflow(event, 0, &data, regs)) |
| 985 | armpmu->disable(hwc, idx); |
| 986 | } |
| 987 | |
| 988 | /* |
| 989 | * Handle the pending perf events. |
| 990 | * |
| 991 | * Note: this call *must* be run with interrupts enabled. For |
| 992 | * platforms that can have the PMU interrupts raised as a PMI, this |
| 993 | * will not work. |
| 994 | */ |
| 995 | perf_event_do_pending(); |
| 996 | |
| 997 | return IRQ_HANDLED; |
| 998 | } |
| 999 | |
| 1000 | static void |
| 1001 | armv6pmu_start(void) |
| 1002 | { |
| 1003 | unsigned long flags, val; |
| 1004 | |
| 1005 | spin_lock_irqsave(&pmu_lock, flags); |
| 1006 | val = armv6_pmcr_read(); |
| 1007 | val |= ARMV6_PMCR_ENABLE; |
| 1008 | armv6_pmcr_write(val); |
| 1009 | spin_unlock_irqrestore(&pmu_lock, flags); |
| 1010 | } |
| 1011 | |
| 1012 | void |
| 1013 | armv6pmu_stop(void) |
| 1014 | { |
| 1015 | unsigned long flags, val; |
| 1016 | |
| 1017 | spin_lock_irqsave(&pmu_lock, flags); |
| 1018 | val = armv6_pmcr_read(); |
| 1019 | val &= ~ARMV6_PMCR_ENABLE; |
| 1020 | armv6_pmcr_write(val); |
| 1021 | spin_unlock_irqrestore(&pmu_lock, flags); |
| 1022 | } |
| 1023 | |
| 1024 | static inline int |
| 1025 | armv6pmu_event_map(int config) |
| 1026 | { |
| 1027 | int mapping = armv6_perf_map[config]; |
| 1028 | if (HW_OP_UNSUPPORTED == mapping) |
| 1029 | mapping = -EOPNOTSUPP; |
| 1030 | return mapping; |
| 1031 | } |
| 1032 | |
| 1033 | static inline int |
| 1034 | armv6mpcore_pmu_event_map(int config) |
| 1035 | { |
| 1036 | int mapping = armv6mpcore_perf_map[config]; |
| 1037 | if (HW_OP_UNSUPPORTED == mapping) |
| 1038 | mapping = -EOPNOTSUPP; |
| 1039 | return mapping; |
| 1040 | } |
| 1041 | |
| 1042 | static u64 |
| 1043 | armv6pmu_raw_event(u64 config) |
| 1044 | { |
| 1045 | return config & 0xff; |
| 1046 | } |
| 1047 | |
| 1048 | static int |
| 1049 | armv6pmu_get_event_idx(struct cpu_hw_events *cpuc, |
| 1050 | struct hw_perf_event *event) |
| 1051 | { |
| 1052 | /* Always place a cycle counter into the cycle counter. */ |
| 1053 | if (ARMV6_PERFCTR_CPU_CYCLES == event->config_base) { |
| 1054 | if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask)) |
| 1055 | return -EAGAIN; |
| 1056 | |
| 1057 | return ARMV6_CYCLE_COUNTER; |
| 1058 | } else { |
| 1059 | /* |
| 1060 | * For anything other than a cycle counter, try and use |
| 1061 | * counter0 and counter1. |
| 1062 | */ |
| 1063 | if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask)) { |
| 1064 | return ARMV6_COUNTER1; |
| 1065 | } |
| 1066 | |
| 1067 | if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask)) { |
| 1068 | return ARMV6_COUNTER0; |
| 1069 | } |
| 1070 | |
| 1071 | /* The counters are all in use. */ |
| 1072 | return -EAGAIN; |
| 1073 | } |
| 1074 | } |
| 1075 | |
| 1076 | static void |
| 1077 | armv6pmu_disable_event(struct hw_perf_event *hwc, |
| 1078 | int idx) |
| 1079 | { |
| 1080 | unsigned long val, mask, evt, flags; |
| 1081 | |
| 1082 | if (ARMV6_CYCLE_COUNTER == idx) { |
| 1083 | mask = ARMV6_PMCR_CCOUNT_IEN; |
| 1084 | evt = 0; |
| 1085 | } else if (ARMV6_COUNTER0 == idx) { |
| 1086 | mask = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK; |
| 1087 | evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT; |
| 1088 | } else if (ARMV6_COUNTER1 == idx) { |
| 1089 | mask = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK; |
| 1090 | evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT; |
| 1091 | } else { |
| 1092 | WARN_ONCE(1, "invalid counter number (%d)\n", idx); |
| 1093 | return; |
| 1094 | } |
| 1095 | |
| 1096 | /* |
| 1097 | * Mask out the current event and set the counter to count the number |
| 1098 | * of ETM bus signal assertion cycles. The external reporting should |
| 1099 | * be disabled and so this should never increment. |
| 1100 | */ |
| 1101 | spin_lock_irqsave(&pmu_lock, flags); |
| 1102 | val = armv6_pmcr_read(); |
| 1103 | val &= ~mask; |
| 1104 | val |= evt; |
| 1105 | armv6_pmcr_write(val); |
| 1106 | spin_unlock_irqrestore(&pmu_lock, flags); |
| 1107 | } |
| 1108 | |
| 1109 | static void |
| 1110 | armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc, |
| 1111 | int idx) |
| 1112 | { |
| 1113 | unsigned long val, mask, flags, evt = 0; |
| 1114 | |
| 1115 | if (ARMV6_CYCLE_COUNTER == idx) { |
| 1116 | mask = ARMV6_PMCR_CCOUNT_IEN; |
| 1117 | } else if (ARMV6_COUNTER0 == idx) { |
| 1118 | mask = ARMV6_PMCR_COUNT0_IEN; |
| 1119 | } else if (ARMV6_COUNTER1 == idx) { |
| 1120 | mask = ARMV6_PMCR_COUNT1_IEN; |
| 1121 | } else { |
| 1122 | WARN_ONCE(1, "invalid counter number (%d)\n", idx); |
| 1123 | return; |
| 1124 | } |
| 1125 | |
| 1126 | /* |
| 1127 | * Unlike UP ARMv6, we don't have a way of stopping the counters. We |
| 1128 | * simply disable the interrupt reporting. |
| 1129 | */ |
| 1130 | spin_lock_irqsave(&pmu_lock, flags); |
| 1131 | val = armv6_pmcr_read(); |
| 1132 | val &= ~mask; |
| 1133 | val |= evt; |
| 1134 | armv6_pmcr_write(val); |
| 1135 | spin_unlock_irqrestore(&pmu_lock, flags); |
| 1136 | } |
| 1137 | |
| 1138 | static const struct arm_pmu armv6pmu = { |
| 1139 | .name = "v6", |
| 1140 | .handle_irq = armv6pmu_handle_irq, |
| 1141 | .enable = armv6pmu_enable_event, |
| 1142 | .disable = armv6pmu_disable_event, |
| 1143 | .event_map = armv6pmu_event_map, |
| 1144 | .raw_event = armv6pmu_raw_event, |
| 1145 | .read_counter = armv6pmu_read_counter, |
| 1146 | .write_counter = armv6pmu_write_counter, |
| 1147 | .get_event_idx = armv6pmu_get_event_idx, |
| 1148 | .start = armv6pmu_start, |
| 1149 | .stop = armv6pmu_stop, |
| 1150 | .num_events = 3, |
| 1151 | .max_period = (1LLU << 32) - 1, |
| 1152 | }; |
| 1153 | |
| 1154 | /* |
| 1155 | * ARMv6mpcore is almost identical to single core ARMv6 with the exception |
| 1156 | * that some of the events have different enumerations and that there is no |
| 1157 | * *hack* to stop the programmable counters. To stop the counters we simply |
| 1158 | * disable the interrupt reporting and update the event. When unthrottling we |
| 1159 | * reset the period and enable the interrupt reporting. |
| 1160 | */ |
| 1161 | static const struct arm_pmu armv6mpcore_pmu = { |
| 1162 | .name = "v6mpcore", |
| 1163 | .handle_irq = armv6pmu_handle_irq, |
| 1164 | .enable = armv6pmu_enable_event, |
| 1165 | .disable = armv6mpcore_pmu_disable_event, |
| 1166 | .event_map = armv6mpcore_pmu_event_map, |
| 1167 | .raw_event = armv6pmu_raw_event, |
| 1168 | .read_counter = armv6pmu_read_counter, |
| 1169 | .write_counter = armv6pmu_write_counter, |
| 1170 | .get_event_idx = armv6pmu_get_event_idx, |
| 1171 | .start = armv6pmu_start, |
| 1172 | .stop = armv6pmu_stop, |
| 1173 | .num_events = 3, |
| 1174 | .max_period = (1LLU << 32) - 1, |
| 1175 | }; |
| 1176 | |
| 1177 | static int __init |
| 1178 | init_hw_perf_events(void) |
| 1179 | { |
| 1180 | unsigned long cpuid = read_cpuid_id(); |
| 1181 | unsigned long implementor = (cpuid & 0xFF000000) >> 24; |
| 1182 | unsigned long part_number = (cpuid & 0xFFF0); |
| 1183 | |
| 1184 | /* We only support ARM CPUs implemented by ARM at the moment. */ |
| 1185 | if (0x41 == implementor) { |
| 1186 | switch (part_number) { |
| 1187 | case 0xB360: /* ARM1136 */ |
| 1188 | case 0xB560: /* ARM1156 */ |
| 1189 | case 0xB760: /* ARM1176 */ |
| 1190 | armpmu = &armv6pmu; |
| 1191 | memcpy(armpmu_perf_cache_map, armv6_perf_cache_map, |
| 1192 | sizeof(armv6_perf_cache_map)); |
| 1193 | perf_max_events = armv6pmu.num_events; |
| 1194 | break; |
| 1195 | case 0xB020: /* ARM11mpcore */ |
| 1196 | armpmu = &armv6mpcore_pmu; |
| 1197 | memcpy(armpmu_perf_cache_map, |
| 1198 | armv6mpcore_perf_cache_map, |
| 1199 | sizeof(armv6mpcore_perf_cache_map)); |
| 1200 | perf_max_events = armv6mpcore_pmu.num_events; |
| 1201 | break; |
| 1202 | default: |
| 1203 | pr_info("no hardware support available\n"); |
| 1204 | perf_max_events = -1; |
| 1205 | } |
| 1206 | } |
| 1207 | |
| 1208 | if (armpmu) |
| 1209 | pr_info("enabled with %s PMU driver\n", |
| 1210 | armpmu->name); |
| 1211 | |
| 1212 | return 0; |
| 1213 | } |
| 1214 | arch_initcall(init_hw_perf_events); |
| 1215 | |
| 1216 | /* |
| 1217 | * Callchain handling code. |
| 1218 | */ |
| 1219 | static inline void |
| 1220 | callchain_store(struct perf_callchain_entry *entry, |
| 1221 | u64 ip) |
| 1222 | { |
| 1223 | if (entry->nr < PERF_MAX_STACK_DEPTH) |
| 1224 | entry->ip[entry->nr++] = ip; |
| 1225 | } |
| 1226 | |
| 1227 | /* |
| 1228 | * The registers we're interested in are at the end of the variable |
| 1229 | * length saved register structure. The fp points at the end of this |
| 1230 | * structure so the address of this struct is: |
| 1231 | * (struct frame_tail *)(xxx->fp)-1 |
| 1232 | * |
| 1233 | * This code has been adapted from the ARM OProfile support. |
| 1234 | */ |
| 1235 | struct frame_tail { |
| 1236 | struct frame_tail *fp; |
| 1237 | unsigned long sp; |
| 1238 | unsigned long lr; |
| 1239 | } __attribute__((packed)); |
| 1240 | |
| 1241 | /* |
| 1242 | * Get the return address for a single stackframe and return a pointer to the |
| 1243 | * next frame tail. |
| 1244 | */ |
| 1245 | static struct frame_tail * |
| 1246 | user_backtrace(struct frame_tail *tail, |
| 1247 | struct perf_callchain_entry *entry) |
| 1248 | { |
| 1249 | struct frame_tail buftail; |
| 1250 | |
| 1251 | /* Also check accessibility of one struct frame_tail beyond */ |
| 1252 | if (!access_ok(VERIFY_READ, tail, sizeof(buftail))) |
| 1253 | return NULL; |
| 1254 | if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail))) |
| 1255 | return NULL; |
| 1256 | |
| 1257 | callchain_store(entry, buftail.lr); |
| 1258 | |
| 1259 | /* |
| 1260 | * Frame pointers should strictly progress back up the stack |
| 1261 | * (towards higher addresses). |
| 1262 | */ |
| 1263 | if (tail >= buftail.fp) |
| 1264 | return NULL; |
| 1265 | |
| 1266 | return buftail.fp - 1; |
| 1267 | } |
| 1268 | |
| 1269 | static void |
| 1270 | perf_callchain_user(struct pt_regs *regs, |
| 1271 | struct perf_callchain_entry *entry) |
| 1272 | { |
| 1273 | struct frame_tail *tail; |
| 1274 | |
| 1275 | callchain_store(entry, PERF_CONTEXT_USER); |
| 1276 | |
| 1277 | if (!user_mode(regs)) |
| 1278 | regs = task_pt_regs(current); |
| 1279 | |
| 1280 | tail = (struct frame_tail *)regs->ARM_fp - 1; |
| 1281 | |
| 1282 | while (tail && !((unsigned long)tail & 0x3)) |
| 1283 | tail = user_backtrace(tail, entry); |
| 1284 | } |
| 1285 | |
| 1286 | /* |
| 1287 | * Gets called by walk_stackframe() for every stackframe. This will be called |
| 1288 | * whist unwinding the stackframe and is like a subroutine return so we use |
| 1289 | * the PC. |
| 1290 | */ |
| 1291 | static int |
| 1292 | callchain_trace(struct stackframe *fr, |
| 1293 | void *data) |
| 1294 | { |
| 1295 | struct perf_callchain_entry *entry = data; |
| 1296 | callchain_store(entry, fr->pc); |
| 1297 | return 0; |
| 1298 | } |
| 1299 | |
| 1300 | static void |
| 1301 | perf_callchain_kernel(struct pt_regs *regs, |
| 1302 | struct perf_callchain_entry *entry) |
| 1303 | { |
| 1304 | struct stackframe fr; |
| 1305 | |
| 1306 | callchain_store(entry, PERF_CONTEXT_KERNEL); |
| 1307 | fr.fp = regs->ARM_fp; |
| 1308 | fr.sp = regs->ARM_sp; |
| 1309 | fr.lr = regs->ARM_lr; |
| 1310 | fr.pc = regs->ARM_pc; |
| 1311 | walk_stackframe(&fr, callchain_trace, entry); |
| 1312 | } |
| 1313 | |
| 1314 | static void |
| 1315 | perf_do_callchain(struct pt_regs *regs, |
| 1316 | struct perf_callchain_entry *entry) |
| 1317 | { |
| 1318 | int is_user; |
| 1319 | |
| 1320 | if (!regs) |
| 1321 | return; |
| 1322 | |
| 1323 | is_user = user_mode(regs); |
| 1324 | |
| 1325 | if (!current || !current->pid) |
| 1326 | return; |
| 1327 | |
| 1328 | if (is_user && current->state != TASK_RUNNING) |
| 1329 | return; |
| 1330 | |
| 1331 | if (!is_user) |
| 1332 | perf_callchain_kernel(regs, entry); |
| 1333 | |
| 1334 | if (current->mm) |
| 1335 | perf_callchain_user(regs, entry); |
| 1336 | } |
| 1337 | |
| 1338 | static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry); |
| 1339 | |
| 1340 | struct perf_callchain_entry * |
| 1341 | perf_callchain(struct pt_regs *regs) |
| 1342 | { |
| 1343 | struct perf_callchain_entry *entry = &__get_cpu_var(pmc_irq_entry); |
| 1344 | |
| 1345 | entry->nr = 0; |
| 1346 | perf_do_callchain(regs, entry); |
| 1347 | return entry; |
| 1348 | } |