blob: a96c43b4ea157cb4c5e540604151b67c56926865 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * drivers/mtd/nand/diskonchip.c
3 *
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7 *
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11 *
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16 *
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
18 *
Dan Brown1a78ff62005-03-29 21:57:48 +010019 * $Id: diskonchip.c,v 1.50 2005/03/29 20:57:45 dbrown Exp $
Linus Torvalds1da177e2005-04-16 15:20:36 -070020 */
21
22#include <linux/kernel.h>
23#include <linux/init.h>
24#include <linux/sched.h>
25#include <linux/delay.h>
26#include <linux/rslib.h>
27#include <linux/moduleparam.h>
28#include <asm/io.h>
29
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/nand.h>
32#include <linux/mtd/doc2000.h>
33#include <linux/mtd/compatmac.h>
34#include <linux/mtd/partitions.h>
35#include <linux/mtd/inftl.h>
36
37/* Where to look for the devices? */
Thomas Gleixner651078b2005-01-31 20:36:46 +000038#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#endif
41
42static unsigned long __initdata doc_locations[] = {
43#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
Thomas Gleixner651078b2005-01-31 20:36:46 +000044#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
Linus Torvalds1da177e2005-04-16 15:20:36 -070045 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50#else /* CONFIG_MTD_DOCPROBE_HIGH */
51 0xc8000, 0xca000, 0xcc000, 0xce000,
52 0xd0000, 0xd2000, 0xd4000, 0xd6000,
53 0xd8000, 0xda000, 0xdc000, 0xde000,
54 0xe0000, 0xe2000, 0xe4000, 0xe6000,
55 0xe8000, 0xea000, 0xec000, 0xee000,
56#endif /* CONFIG_MTD_DOCPROBE_HIGH */
57#elif defined(__PPC__)
58 0xe4000000,
59#elif defined(CONFIG_MOMENCO_OCELOT)
60 0x2f000000,
61 0xff000000,
62#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
63 0xff000000,
64##else
65#warning Unknown architecture for DiskOnChip. No default probe locations defined
66#endif
67 0xffffffff };
68
69static struct mtd_info *doclist = NULL;
70
71struct doc_priv {
72 void __iomem *virtadr;
73 unsigned long physadr;
74 u_char ChipID;
75 u_char CDSNControl;
76 int chips_per_floor; /* The number of chips detected on each floor */
77 int curfloor;
78 int curchip;
79 int mh0_page;
80 int mh1_page;
81 struct mtd_info *nextdoc;
82};
83
Linus Torvalds1da177e2005-04-16 15:20:36 -070084/* This is the syndrome computed by the HW ecc generator upon reading an empty
85 page, one with all 0xff for data and stored ecc code. */
86static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
87/* This is the ecc value computed by the HW ecc generator upon writing an empty
88 page, one with all 0xff for data. */
89static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
90
91#define INFTL_BBT_RESERVED_BLOCKS 4
92
93#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
94#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
95#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
96
97static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
98static void doc200x_select_chip(struct mtd_info *mtd, int chip);
99
100static int debug=0;
101module_param(debug, int, 0);
102
103static int try_dword=1;
104module_param(try_dword, int, 0);
105
106static int no_ecc_failures=0;
107module_param(no_ecc_failures, int, 0);
108
109#ifdef CONFIG_MTD_PARTITIONS
110static int no_autopart=0;
111module_param(no_autopart, int, 0);
Dan Brown1a78ff62005-03-29 21:57:48 +0100112
113static int show_firmware_partition=0;
114module_param(show_firmware_partition, int, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700115#endif
116
117#ifdef MTD_NAND_DISKONCHIP_BBTWRITE
118static int inftl_bbt_write=1;
119#else
120static int inftl_bbt_write=0;
121#endif
122module_param(inftl_bbt_write, int, 0);
123
Thomas Gleixner651078b2005-01-31 20:36:46 +0000124static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700125module_param(doc_config_location, ulong, 0);
126MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
127
128
129/* Sector size for HW ECC */
130#define SECTOR_SIZE 512
131/* The sector bytes are packed into NB_DATA 10 bit words */
132#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
133/* Number of roots */
134#define NROOTS 4
135/* First consective root */
136#define FCR 510
137/* Number of symbols */
138#define NN 1023
139
140/* the Reed Solomon control structure */
141static struct rs_control *rs_decoder;
142
143/*
144 * The HW decoder in the DoC ASIC's provides us a error syndrome,
145 * which we must convert to a standard syndrom usable by the generic
146 * Reed-Solomon library code.
147 *
148 * Fabrice Bellard figured this out in the old docecc code. I added
149 * some comments, improved a minor bit and converted it to make use
150 * of the generic Reed-Solomon libary. tglx
151 */
152static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
153{
154 int i, j, nerr, errpos[8];
155 uint8_t parity;
156 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
157
158 /* Convert the ecc bytes into words */
159 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
160 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
161 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
162 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
163 parity = ecc[1];
164
165 /* Initialize the syndrom buffer */
166 for (i = 0; i < NROOTS; i++)
167 s[i] = ds[0];
168 /*
169 * Evaluate
170 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
171 * where x = alpha^(FCR + i)
172 */
173 for(j = 1; j < NROOTS; j++) {
174 if(ds[j] == 0)
175 continue;
176 tmp = rs->index_of[ds[j]];
177 for(i = 0; i < NROOTS; i++)
178 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
179 }
180
181 /* Calc s[i] = s[i] / alpha^(v + i) */
182 for (i = 0; i < NROOTS; i++) {
183 if (syn[i])
184 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
185 }
186 /* Call the decoder library */
187 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
188
189 /* Incorrectable errors ? */
190 if (nerr < 0)
191 return nerr;
192
193 /*
194 * Correct the errors. The bitpositions are a bit of magic,
195 * but they are given by the design of the de/encoder circuit
196 * in the DoC ASIC's.
197 */
198 for(i = 0;i < nerr; i++) {
199 int index, bitpos, pos = 1015 - errpos[i];
200 uint8_t val;
201 if (pos >= NB_DATA && pos < 1019)
202 continue;
203 if (pos < NB_DATA) {
204 /* extract bit position (MSB first) */
205 pos = 10 * (NB_DATA - 1 - pos) - 6;
206 /* now correct the following 10 bits. At most two bytes
207 can be modified since pos is even */
208 index = (pos >> 3) ^ 1;
209 bitpos = pos & 7;
210 if ((index >= 0 && index < SECTOR_SIZE) ||
211 index == (SECTOR_SIZE + 1)) {
212 val = (uint8_t) (errval[i] >> (2 + bitpos));
213 parity ^= val;
214 if (index < SECTOR_SIZE)
215 data[index] ^= val;
216 }
217 index = ((pos >> 3) + 1) ^ 1;
218 bitpos = (bitpos + 10) & 7;
219 if (bitpos == 0)
220 bitpos = 8;
221 if ((index >= 0 && index < SECTOR_SIZE) ||
222 index == (SECTOR_SIZE + 1)) {
223 val = (uint8_t)(errval[i] << (8 - bitpos));
224 parity ^= val;
225 if (index < SECTOR_SIZE)
226 data[index] ^= val;
227 }
228 }
229 }
230 /* If the parity is wrong, no rescue possible */
231 return parity ? -1 : nerr;
232}
233
234static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
235{
236 volatile char dummy;
237 int i;
238
239 for (i = 0; i < cycles; i++) {
240 if (DoC_is_Millennium(doc))
241 dummy = ReadDOC(doc->virtadr, NOP);
242 else if (DoC_is_MillenniumPlus(doc))
243 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
244 else
245 dummy = ReadDOC(doc->virtadr, DOCStatus);
246 }
247
248}
249
250#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
251
252/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
253static int _DoC_WaitReady(struct doc_priv *doc)
254{
255 void __iomem *docptr = doc->virtadr;
256 unsigned long timeo = jiffies + (HZ * 10);
257
258 if(debug) printk("_DoC_WaitReady...\n");
259 /* Out-of-line routine to wait for chip response */
260 if (DoC_is_MillenniumPlus(doc)) {
261 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
262 if (time_after(jiffies, timeo)) {
263 printk("_DoC_WaitReady timed out.\n");
264 return -EIO;
265 }
266 udelay(1);
267 cond_resched();
268 }
269 } else {
270 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
271 if (time_after(jiffies, timeo)) {
272 printk("_DoC_WaitReady timed out.\n");
273 return -EIO;
274 }
275 udelay(1);
276 cond_resched();
277 }
278 }
279
280 return 0;
281}
282
283static inline int DoC_WaitReady(struct doc_priv *doc)
284{
285 void __iomem *docptr = doc->virtadr;
286 int ret = 0;
287
288 if (DoC_is_MillenniumPlus(doc)) {
289 DoC_Delay(doc, 4);
290
291 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
292 /* Call the out-of-line routine to wait */
293 ret = _DoC_WaitReady(doc);
294 } else {
295 DoC_Delay(doc, 4);
296
297 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
298 /* Call the out-of-line routine to wait */
299 ret = _DoC_WaitReady(doc);
300 DoC_Delay(doc, 2);
301 }
302
303 if(debug) printk("DoC_WaitReady OK\n");
304 return ret;
305}
306
307static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
308{
309 struct nand_chip *this = mtd->priv;
310 struct doc_priv *doc = this->priv;
311 void __iomem *docptr = doc->virtadr;
312
313 if(debug)printk("write_byte %02x\n", datum);
314 WriteDOC(datum, docptr, CDSNSlowIO);
315 WriteDOC(datum, docptr, 2k_CDSN_IO);
316}
317
318static u_char doc2000_read_byte(struct mtd_info *mtd)
319{
320 struct nand_chip *this = mtd->priv;
321 struct doc_priv *doc = this->priv;
322 void __iomem *docptr = doc->virtadr;
323 u_char ret;
324
325 ReadDOC(docptr, CDSNSlowIO);
326 DoC_Delay(doc, 2);
327 ret = ReadDOC(docptr, 2k_CDSN_IO);
328 if (debug) printk("read_byte returns %02x\n", ret);
329 return ret;
330}
331
332static void doc2000_writebuf(struct mtd_info *mtd,
333 const u_char *buf, int len)
334{
335 struct nand_chip *this = mtd->priv;
336 struct doc_priv *doc = this->priv;
337 void __iomem *docptr = doc->virtadr;
338 int i;
339 if (debug)printk("writebuf of %d bytes: ", len);
340 for (i=0; i < len; i++) {
341 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
342 if (debug && i < 16)
343 printk("%02x ", buf[i]);
344 }
345 if (debug) printk("\n");
346}
347
348static void doc2000_readbuf(struct mtd_info *mtd,
349 u_char *buf, int len)
350{
351 struct nand_chip *this = mtd->priv;
352 struct doc_priv *doc = this->priv;
353 void __iomem *docptr = doc->virtadr;
354 int i;
355
356 if (debug)printk("readbuf of %d bytes: ", len);
357
358 for (i=0; i < len; i++) {
359 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
360 }
361}
362
363static void doc2000_readbuf_dword(struct mtd_info *mtd,
364 u_char *buf, int len)
365{
366 struct nand_chip *this = mtd->priv;
367 struct doc_priv *doc = this->priv;
368 void __iomem *docptr = doc->virtadr;
369 int i;
370
371 if (debug) printk("readbuf_dword of %d bytes: ", len);
372
373 if (unlikely((((unsigned long)buf)|len) & 3)) {
374 for (i=0; i < len; i++) {
375 *(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
376 }
377 } else {
378 for (i=0; i < len; i+=4) {
379 *(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
380 }
381 }
382}
383
384static int doc2000_verifybuf(struct mtd_info *mtd,
385 const u_char *buf, int len)
386{
387 struct nand_chip *this = mtd->priv;
388 struct doc_priv *doc = this->priv;
389 void __iomem *docptr = doc->virtadr;
390 int i;
391
392 for (i=0; i < len; i++)
393 if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
394 return -EFAULT;
395 return 0;
396}
397
398static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
399{
400 struct nand_chip *this = mtd->priv;
401 struct doc_priv *doc = this->priv;
402 uint16_t ret;
403
404 doc200x_select_chip(mtd, nr);
405 doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
406 this->write_byte(mtd, NAND_CMD_READID);
407 doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
408 doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
409 this->write_byte(mtd, 0);
410 doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
Thomas Gleixnerdfd61292005-02-22 21:48:25 +0000411
412 /* We cant' use dev_ready here, but at least we wait for the
413 * command to complete
414 */
415 udelay(50);
416
Linus Torvalds1da177e2005-04-16 15:20:36 -0700417 ret = this->read_byte(mtd) << 8;
418 ret |= this->read_byte(mtd);
419
420 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
421 /* First chip probe. See if we get same results by 32-bit access */
422 union {
423 uint32_t dword;
424 uint8_t byte[4];
425 } ident;
426 void __iomem *docptr = doc->virtadr;
427
428 doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
429 doc2000_write_byte(mtd, NAND_CMD_READID);
430 doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
431 doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
432 doc2000_write_byte(mtd, 0);
433 doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
434
Thomas Gleixnerdfd61292005-02-22 21:48:25 +0000435 udelay(50);
436
Linus Torvalds1da177e2005-04-16 15:20:36 -0700437 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
438 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
439 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
440 this->read_buf = &doc2000_readbuf_dword;
441 }
442 }
443
444 return ret;
445}
446
447static void __init doc2000_count_chips(struct mtd_info *mtd)
448{
449 struct nand_chip *this = mtd->priv;
450 struct doc_priv *doc = this->priv;
451 uint16_t mfrid;
452 int i;
453
454 /* Max 4 chips per floor on DiskOnChip 2000 */
455 doc->chips_per_floor = 4;
456
457 /* Find out what the first chip is */
458 mfrid = doc200x_ident_chip(mtd, 0);
459
460 /* Find how many chips in each floor. */
461 for (i = 1; i < 4; i++) {
462 if (doc200x_ident_chip(mtd, i) != mfrid)
463 break;
464 }
465 doc->chips_per_floor = i;
466 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
467}
468
469static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
470{
471 struct doc_priv *doc = this->priv;
472
473 int status;
474
475 DoC_WaitReady(doc);
476 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
477 DoC_WaitReady(doc);
478 status = (int)this->read_byte(mtd);
479
480 return status;
481}
482
483static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
484{
485 struct nand_chip *this = mtd->priv;
486 struct doc_priv *doc = this->priv;
487 void __iomem *docptr = doc->virtadr;
488
489 WriteDOC(datum, docptr, CDSNSlowIO);
490 WriteDOC(datum, docptr, Mil_CDSN_IO);
491 WriteDOC(datum, docptr, WritePipeTerm);
492}
493
494static u_char doc2001_read_byte(struct mtd_info *mtd)
495{
496 struct nand_chip *this = mtd->priv;
497 struct doc_priv *doc = this->priv;
498 void __iomem *docptr = doc->virtadr;
499
500 //ReadDOC(docptr, CDSNSlowIO);
501 /* 11.4.5 -- delay twice to allow extended length cycle */
502 DoC_Delay(doc, 2);
503 ReadDOC(docptr, ReadPipeInit);
504 //return ReadDOC(docptr, Mil_CDSN_IO);
505 return ReadDOC(docptr, LastDataRead);
506}
507
508static void doc2001_writebuf(struct mtd_info *mtd,
509 const u_char *buf, int len)
510{
511 struct nand_chip *this = mtd->priv;
512 struct doc_priv *doc = this->priv;
513 void __iomem *docptr = doc->virtadr;
514 int i;
515
516 for (i=0; i < len; i++)
517 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
518 /* Terminate write pipeline */
519 WriteDOC(0x00, docptr, WritePipeTerm);
520}
521
522static void doc2001_readbuf(struct mtd_info *mtd,
523 u_char *buf, int len)
524{
525 struct nand_chip *this = mtd->priv;
526 struct doc_priv *doc = this->priv;
527 void __iomem *docptr = doc->virtadr;
528 int i;
529
530 /* Start read pipeline */
531 ReadDOC(docptr, ReadPipeInit);
532
533 for (i=0; i < len-1; i++)
534 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
535
536 /* Terminate read pipeline */
537 buf[i] = ReadDOC(docptr, LastDataRead);
538}
539
540static int doc2001_verifybuf(struct mtd_info *mtd,
541 const u_char *buf, int len)
542{
543 struct nand_chip *this = mtd->priv;
544 struct doc_priv *doc = this->priv;
545 void __iomem *docptr = doc->virtadr;
546 int i;
547
548 /* Start read pipeline */
549 ReadDOC(docptr, ReadPipeInit);
550
551 for (i=0; i < len-1; i++)
552 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
553 ReadDOC(docptr, LastDataRead);
554 return i;
555 }
556 if (buf[i] != ReadDOC(docptr, LastDataRead))
557 return i;
558 return 0;
559}
560
561static u_char doc2001plus_read_byte(struct mtd_info *mtd)
562{
563 struct nand_chip *this = mtd->priv;
564 struct doc_priv *doc = this->priv;
565 void __iomem *docptr = doc->virtadr;
566 u_char ret;
567
568 ReadDOC(docptr, Mplus_ReadPipeInit);
569 ReadDOC(docptr, Mplus_ReadPipeInit);
570 ret = ReadDOC(docptr, Mplus_LastDataRead);
571 if (debug) printk("read_byte returns %02x\n", ret);
572 return ret;
573}
574
575static void doc2001plus_writebuf(struct mtd_info *mtd,
576 const u_char *buf, int len)
577{
578 struct nand_chip *this = mtd->priv;
579 struct doc_priv *doc = this->priv;
580 void __iomem *docptr = doc->virtadr;
581 int i;
582
583 if (debug)printk("writebuf of %d bytes: ", len);
584 for (i=0; i < len; i++) {
585 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
586 if (debug && i < 16)
587 printk("%02x ", buf[i]);
588 }
589 if (debug) printk("\n");
590}
591
592static void doc2001plus_readbuf(struct mtd_info *mtd,
593 u_char *buf, int len)
594{
595 struct nand_chip *this = mtd->priv;
596 struct doc_priv *doc = this->priv;
597 void __iomem *docptr = doc->virtadr;
598 int i;
599
600 if (debug)printk("readbuf of %d bytes: ", len);
601
602 /* Start read pipeline */
603 ReadDOC(docptr, Mplus_ReadPipeInit);
604 ReadDOC(docptr, Mplus_ReadPipeInit);
605
606 for (i=0; i < len-2; i++) {
607 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
608 if (debug && i < 16)
609 printk("%02x ", buf[i]);
610 }
611
612 /* Terminate read pipeline */
613 buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
614 if (debug && i < 16)
615 printk("%02x ", buf[len-2]);
616 buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
617 if (debug && i < 16)
618 printk("%02x ", buf[len-1]);
619 if (debug) printk("\n");
620}
621
622static int doc2001plus_verifybuf(struct mtd_info *mtd,
623 const u_char *buf, int len)
624{
625 struct nand_chip *this = mtd->priv;
626 struct doc_priv *doc = this->priv;
627 void __iomem *docptr = doc->virtadr;
628 int i;
629
630 if (debug)printk("verifybuf of %d bytes: ", len);
631
632 /* Start read pipeline */
633 ReadDOC(docptr, Mplus_ReadPipeInit);
634 ReadDOC(docptr, Mplus_ReadPipeInit);
635
636 for (i=0; i < len-2; i++)
637 if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
638 ReadDOC(docptr, Mplus_LastDataRead);
639 ReadDOC(docptr, Mplus_LastDataRead);
640 return i;
641 }
642 if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead))
643 return len-2;
644 if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead))
645 return len-1;
646 return 0;
647}
648
649static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
650{
651 struct nand_chip *this = mtd->priv;
652 struct doc_priv *doc = this->priv;
653 void __iomem *docptr = doc->virtadr;
654 int floor = 0;
655
656 if(debug)printk("select chip (%d)\n", chip);
657
658 if (chip == -1) {
659 /* Disable flash internally */
660 WriteDOC(0, docptr, Mplus_FlashSelect);
661 return;
662 }
663
664 floor = chip / doc->chips_per_floor;
665 chip -= (floor * doc->chips_per_floor);
666
667 /* Assert ChipEnable and deassert WriteProtect */
668 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
669 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
670
671 doc->curchip = chip;
672 doc->curfloor = floor;
673}
674
675static void doc200x_select_chip(struct mtd_info *mtd, int chip)
676{
677 struct nand_chip *this = mtd->priv;
678 struct doc_priv *doc = this->priv;
679 void __iomem *docptr = doc->virtadr;
680 int floor = 0;
681
682 if(debug)printk("select chip (%d)\n", chip);
683
684 if (chip == -1)
685 return;
686
687 floor = chip / doc->chips_per_floor;
688 chip -= (floor * doc->chips_per_floor);
689
690 /* 11.4.4 -- deassert CE before changing chip */
691 doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
692
693 WriteDOC(floor, docptr, FloorSelect);
694 WriteDOC(chip, docptr, CDSNDeviceSelect);
695
696 doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
697
698 doc->curchip = chip;
699 doc->curfloor = floor;
700}
701
702static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
703{
704 struct nand_chip *this = mtd->priv;
705 struct doc_priv *doc = this->priv;
706 void __iomem *docptr = doc->virtadr;
707
708 switch(cmd) {
709 case NAND_CTL_SETNCE:
710 doc->CDSNControl |= CDSN_CTRL_CE;
711 break;
712 case NAND_CTL_CLRNCE:
713 doc->CDSNControl &= ~CDSN_CTRL_CE;
714 break;
715 case NAND_CTL_SETCLE:
716 doc->CDSNControl |= CDSN_CTRL_CLE;
717 break;
718 case NAND_CTL_CLRCLE:
719 doc->CDSNControl &= ~CDSN_CTRL_CLE;
720 break;
721 case NAND_CTL_SETALE:
722 doc->CDSNControl |= CDSN_CTRL_ALE;
723 break;
724 case NAND_CTL_CLRALE:
725 doc->CDSNControl &= ~CDSN_CTRL_ALE;
726 break;
727 case NAND_CTL_SETWP:
728 doc->CDSNControl |= CDSN_CTRL_WP;
729 break;
730 case NAND_CTL_CLRWP:
731 doc->CDSNControl &= ~CDSN_CTRL_WP;
732 break;
733 }
734 if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
735 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
736 /* 11.4.3 -- 4 NOPs after CSDNControl write */
737 DoC_Delay(doc, 4);
738}
739
740static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
741{
742 struct nand_chip *this = mtd->priv;
743 struct doc_priv *doc = this->priv;
744 void __iomem *docptr = doc->virtadr;
745
746 /*
747 * Must terminate write pipeline before sending any commands
748 * to the device.
749 */
750 if (command == NAND_CMD_PAGEPROG) {
751 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
752 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
753 }
754
755 /*
756 * Write out the command to the device.
757 */
758 if (command == NAND_CMD_SEQIN) {
759 int readcmd;
760
761 if (column >= mtd->oobblock) {
762 /* OOB area */
763 column -= mtd->oobblock;
764 readcmd = NAND_CMD_READOOB;
765 } else if (column < 256) {
766 /* First 256 bytes --> READ0 */
767 readcmd = NAND_CMD_READ0;
768 } else {
769 column -= 256;
770 readcmd = NAND_CMD_READ1;
771 }
772 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
773 }
774 WriteDOC(command, docptr, Mplus_FlashCmd);
775 WriteDOC(0, docptr, Mplus_WritePipeTerm);
776 WriteDOC(0, docptr, Mplus_WritePipeTerm);
777
778 if (column != -1 || page_addr != -1) {
779 /* Serially input address */
780 if (column != -1) {
781 /* Adjust columns for 16 bit buswidth */
782 if (this->options & NAND_BUSWIDTH_16)
783 column >>= 1;
784 WriteDOC(column, docptr, Mplus_FlashAddress);
785 }
786 if (page_addr != -1) {
787 WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress);
788 WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
789 /* One more address cycle for higher density devices */
790 if (this->chipsize & 0x0c000000) {
791 WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
792 printk("high density\n");
793 }
794 }
795 WriteDOC(0, docptr, Mplus_WritePipeTerm);
796 WriteDOC(0, docptr, Mplus_WritePipeTerm);
797 /* deassert ALE */
798 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID)
799 WriteDOC(0, docptr, Mplus_FlashControl);
800 }
801
802 /*
803 * program and erase have their own busy handlers
804 * status and sequential in needs no delay
805 */
806 switch (command) {
807
808 case NAND_CMD_PAGEPROG:
809 case NAND_CMD_ERASE1:
810 case NAND_CMD_ERASE2:
811 case NAND_CMD_SEQIN:
812 case NAND_CMD_STATUS:
813 return;
814
815 case NAND_CMD_RESET:
816 if (this->dev_ready)
817 break;
818 udelay(this->chip_delay);
819 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
820 WriteDOC(0, docptr, Mplus_WritePipeTerm);
821 WriteDOC(0, docptr, Mplus_WritePipeTerm);
822 while ( !(this->read_byte(mtd) & 0x40));
823 return;
824
825 /* This applies to read commands */
826 default:
827 /*
828 * If we don't have access to the busy pin, we apply the given
829 * command delay
830 */
831 if (!this->dev_ready) {
832 udelay (this->chip_delay);
833 return;
834 }
835 }
836
837 /* Apply this short delay always to ensure that we do wait tWB in
838 * any case on any machine. */
839 ndelay (100);
840 /* wait until command is processed */
841 while (!this->dev_ready(mtd));
842}
843
844static int doc200x_dev_ready(struct mtd_info *mtd)
845{
846 struct nand_chip *this = mtd->priv;
847 struct doc_priv *doc = this->priv;
848 void __iomem *docptr = doc->virtadr;
849
850 if (DoC_is_MillenniumPlus(doc)) {
851 /* 11.4.2 -- must NOP four times before checking FR/B# */
852 DoC_Delay(doc, 4);
853 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
854 if(debug)
855 printk("not ready\n");
856 return 0;
857 }
858 if (debug)printk("was ready\n");
859 return 1;
860 } else {
861 /* 11.4.2 -- must NOP four times before checking FR/B# */
862 DoC_Delay(doc, 4);
863 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
864 if(debug)
865 printk("not ready\n");
866 return 0;
867 }
868 /* 11.4.2 -- Must NOP twice if it's ready */
869 DoC_Delay(doc, 2);
870 if (debug)printk("was ready\n");
871 return 1;
872 }
873}
874
875static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
876{
877 /* This is our last resort if we couldn't find or create a BBT. Just
878 pretend all blocks are good. */
879 return 0;
880}
881
882static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
883{
884 struct nand_chip *this = mtd->priv;
885 struct doc_priv *doc = this->priv;
886 void __iomem *docptr = doc->virtadr;
887
888 /* Prime the ECC engine */
889 switch(mode) {
890 case NAND_ECC_READ:
891 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
892 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
893 break;
894 case NAND_ECC_WRITE:
895 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
896 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
897 break;
898 }
899}
900
901static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
902{
903 struct nand_chip *this = mtd->priv;
904 struct doc_priv *doc = this->priv;
905 void __iomem *docptr = doc->virtadr;
906
907 /* Prime the ECC engine */
908 switch(mode) {
909 case NAND_ECC_READ:
910 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
911 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
912 break;
913 case NAND_ECC_WRITE:
914 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
915 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
916 break;
917 }
918}
919
920/* This code is only called on write */
921static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
922 unsigned char *ecc_code)
923{
924 struct nand_chip *this = mtd->priv;
925 struct doc_priv *doc = this->priv;
926 void __iomem *docptr = doc->virtadr;
927 int i;
928 int emptymatch = 1;
929
930 /* flush the pipeline */
931 if (DoC_is_2000(doc)) {
932 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
933 WriteDOC(0, docptr, 2k_CDSN_IO);
934 WriteDOC(0, docptr, 2k_CDSN_IO);
935 WriteDOC(0, docptr, 2k_CDSN_IO);
936 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
937 } else if (DoC_is_MillenniumPlus(doc)) {
938 WriteDOC(0, docptr, Mplus_NOP);
939 WriteDOC(0, docptr, Mplus_NOP);
940 WriteDOC(0, docptr, Mplus_NOP);
941 } else {
942 WriteDOC(0, docptr, NOP);
943 WriteDOC(0, docptr, NOP);
944 WriteDOC(0, docptr, NOP);
945 }
946
947 for (i = 0; i < 6; i++) {
948 if (DoC_is_MillenniumPlus(doc))
949 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
950 else
951 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
952 if (ecc_code[i] != empty_write_ecc[i])
953 emptymatch = 0;
954 }
955 if (DoC_is_MillenniumPlus(doc))
956 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
957 else
958 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
959#if 0
960 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
961 if (emptymatch) {
962 /* Note: this somewhat expensive test should not be triggered
963 often. It could be optimized away by examining the data in
964 the writebuf routine, and remembering the result. */
965 for (i = 0; i < 512; i++) {
966 if (dat[i] == 0xff) continue;
967 emptymatch = 0;
968 break;
969 }
970 }
971 /* If emptymatch still =1, we do have an all-0xff data buffer.
972 Return all-0xff ecc value instead of the computed one, so
973 it'll look just like a freshly-erased page. */
974 if (emptymatch) memset(ecc_code, 0xff, 6);
975#endif
976 return 0;
977}
978
979static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
980{
981 int i, ret = 0;
982 struct nand_chip *this = mtd->priv;
983 struct doc_priv *doc = this->priv;
984 void __iomem *docptr = doc->virtadr;
985 volatile u_char dummy;
986 int emptymatch = 1;
987
988 /* flush the pipeline */
989 if (DoC_is_2000(doc)) {
990 dummy = ReadDOC(docptr, 2k_ECCStatus);
991 dummy = ReadDOC(docptr, 2k_ECCStatus);
992 dummy = ReadDOC(docptr, 2k_ECCStatus);
993 } else if (DoC_is_MillenniumPlus(doc)) {
994 dummy = ReadDOC(docptr, Mplus_ECCConf);
995 dummy = ReadDOC(docptr, Mplus_ECCConf);
996 dummy = ReadDOC(docptr, Mplus_ECCConf);
997 } else {
998 dummy = ReadDOC(docptr, ECCConf);
999 dummy = ReadDOC(docptr, ECCConf);
1000 dummy = ReadDOC(docptr, ECCConf);
1001 }
1002
1003 /* Error occured ? */
1004 if (dummy & 0x80) {
1005 for (i = 0; i < 6; i++) {
1006 if (DoC_is_MillenniumPlus(doc))
1007 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
1008 else
1009 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
1010 if (calc_ecc[i] != empty_read_syndrome[i])
1011 emptymatch = 0;
1012 }
1013 /* If emptymatch=1, the read syndrome is consistent with an
1014 all-0xff data and stored ecc block. Check the stored ecc. */
1015 if (emptymatch) {
1016 for (i = 0; i < 6; i++) {
1017 if (read_ecc[i] == 0xff) continue;
1018 emptymatch = 0;
1019 break;
1020 }
1021 }
1022 /* If emptymatch still =1, check the data block. */
1023 if (emptymatch) {
1024 /* Note: this somewhat expensive test should not be triggered
1025 often. It could be optimized away by examining the data in
1026 the readbuf routine, and remembering the result. */
1027 for (i = 0; i < 512; i++) {
1028 if (dat[i] == 0xff) continue;
1029 emptymatch = 0;
1030 break;
1031 }
1032 }
1033 /* If emptymatch still =1, this is almost certainly a freshly-
1034 erased block, in which case the ECC will not come out right.
1035 We'll suppress the error and tell the caller everything's
1036 OK. Because it is. */
1037 if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc);
1038 if (ret > 0)
1039 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1040 }
1041 if (DoC_is_MillenniumPlus(doc))
1042 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1043 else
1044 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1045 if (no_ecc_failures && (ret == -1)) {
1046 printk(KERN_ERR "suppressing ECC failure\n");
1047 ret = 0;
1048 }
1049 return ret;
1050}
1051
1052//u_char mydatabuf[528];
1053
1054static struct nand_oobinfo doc200x_oobinfo = {
1055 .useecc = MTD_NANDECC_AUTOPLACE,
1056 .eccbytes = 6,
1057 .eccpos = {0, 1, 2, 3, 4, 5},
1058 .oobfree = { {8, 8} }
1059};
1060
1061/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1062 On sucessful return, buf will contain a copy of the media header for
1063 further processing. id is the string to scan for, and will presumably be
1064 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1065 header. The page #s of the found media headers are placed in mh0_page and
1066 mh1_page in the DOC private structure. */
1067static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
1068 const char *id, int findmirror)
1069{
1070 struct nand_chip *this = mtd->priv;
1071 struct doc_priv *doc = this->priv;
Dan Brown1a78ff62005-03-29 21:57:48 +01001072 unsigned offs;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001073 int ret;
1074 size_t retlen;
1075
Dan Brown1a78ff62005-03-29 21:57:48 +01001076 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001077 ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
1078 if (retlen != mtd->oobblock) continue;
1079 if (ret) {
1080 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
1081 offs);
1082 }
1083 if (memcmp(buf, id, 6)) continue;
1084 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1085 if (doc->mh0_page == -1) {
1086 doc->mh0_page = offs >> this->page_shift;
1087 if (!findmirror) return 1;
1088 continue;
1089 }
1090 doc->mh1_page = offs >> this->page_shift;
1091 return 2;
1092 }
1093 if (doc->mh0_page == -1) {
1094 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1095 return 0;
1096 }
1097 /* Only one mediaheader was found. We want buf to contain a
1098 mediaheader on return, so we'll have to re-read the one we found. */
1099 offs = doc->mh0_page << this->page_shift;
1100 ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
1101 if (retlen != mtd->oobblock) {
1102 /* Insanity. Give up. */
1103 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1104 return 0;
1105 }
1106 return 1;
1107}
1108
1109static inline int __init nftl_partscan(struct mtd_info *mtd,
1110 struct mtd_partition *parts)
1111{
1112 struct nand_chip *this = mtd->priv;
1113 struct doc_priv *doc = this->priv;
1114 int ret = 0;
1115 u_char *buf;
1116 struct NFTLMediaHeader *mh;
1117 const unsigned psize = 1 << this->page_shift;
Dan Brown1a78ff62005-03-29 21:57:48 +01001118 int numparts = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001119 unsigned blocks, maxblocks;
1120 int offs, numheaders;
1121
1122 buf = kmalloc(mtd->oobblock, GFP_KERNEL);
1123 if (!buf) {
1124 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1125 return 0;
1126 }
1127 if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
1128 mh = (struct NFTLMediaHeader *) buf;
1129
Thomas Gleixnerf29a4b82005-01-31 22:22:24 +00001130 mh->NumEraseUnits = le16_to_cpu(mh->NumEraseUnits);
1131 mh->FirstPhysicalEUN = le16_to_cpu(mh->FirstPhysicalEUN);
1132 mh->FormattedSize = le32_to_cpu(mh->FormattedSize);
1133
Linus Torvalds1da177e2005-04-16 15:20:36 -07001134 printk(KERN_INFO " DataOrgID = %s\n"
1135 " NumEraseUnits = %d\n"
1136 " FirstPhysicalEUN = %d\n"
1137 " FormattedSize = %d\n"
1138 " UnitSizeFactor = %d\n",
1139 mh->DataOrgID, mh->NumEraseUnits,
1140 mh->FirstPhysicalEUN, mh->FormattedSize,
1141 mh->UnitSizeFactor);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001142
1143 blocks = mtd->size >> this->phys_erase_shift;
1144 maxblocks = min(32768U, mtd->erasesize - psize);
1145
1146 if (mh->UnitSizeFactor == 0x00) {
1147 /* Auto-determine UnitSizeFactor. The constraints are:
1148 - There can be at most 32768 virtual blocks.
1149 - There can be at most (virtual block size - page size)
1150 virtual blocks (because MediaHeader+BBT must fit in 1).
1151 */
1152 mh->UnitSizeFactor = 0xff;
1153 while (blocks > maxblocks) {
1154 blocks >>= 1;
1155 maxblocks = min(32768U, (maxblocks << 1) + psize);
1156 mh->UnitSizeFactor--;
1157 }
1158 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1159 }
1160
1161 /* NOTE: The lines below modify internal variables of the NAND and MTD
1162 layers; variables with have already been configured by nand_scan.
1163 Unfortunately, we didn't know before this point what these values
1164 should be. Thus, this code is somewhat dependant on the exact
1165 implementation of the NAND layer. */
1166 if (mh->UnitSizeFactor != 0xff) {
1167 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1168 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1169 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1170 blocks = mtd->size >> this->bbt_erase_shift;
1171 maxblocks = min(32768U, mtd->erasesize - psize);
1172 }
1173
1174 if (blocks > maxblocks) {
1175 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1176 goto out;
1177 }
1178
1179 /* Skip past the media headers. */
1180 offs = max(doc->mh0_page, doc->mh1_page);
1181 offs <<= this->page_shift;
1182 offs += mtd->erasesize;
1183
Dan Brown1a78ff62005-03-29 21:57:48 +01001184 if (show_firmware_partition == 1) {
1185 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1186 parts[0].offset = 0;
1187 parts[0].size = offs;
1188 numparts = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001189 }
Dan Brown1a78ff62005-03-29 21:57:48 +01001190
1191 parts[numparts].name = " DiskOnChip BDTL partition";
1192 parts[numparts].offset = offs;
1193 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1194
1195 offs += parts[numparts].size;
1196 numparts++;
1197
1198 if (offs < mtd->size) {
1199 parts[numparts].name = " DiskOnChip Remainder partition";
1200 parts[numparts].offset = offs;
1201 parts[numparts].size = mtd->size - offs;
1202 numparts++;
1203 }
1204
1205 ret = numparts;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001206out:
1207 kfree(buf);
1208 return ret;
1209}
1210
1211/* This is a stripped-down copy of the code in inftlmount.c */
1212static inline int __init inftl_partscan(struct mtd_info *mtd,
1213 struct mtd_partition *parts)
1214{
1215 struct nand_chip *this = mtd->priv;
1216 struct doc_priv *doc = this->priv;
1217 int ret = 0;
1218 u_char *buf;
1219 struct INFTLMediaHeader *mh;
1220 struct INFTLPartition *ip;
1221 int numparts = 0;
1222 int blocks;
1223 int vshift, lastvunit = 0;
1224 int i;
1225 int end = mtd->size;
1226
1227 if (inftl_bbt_write)
1228 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1229
1230 buf = kmalloc(mtd->oobblock, GFP_KERNEL);
1231 if (!buf) {
1232 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1233 return 0;
1234 }
1235
1236 if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out;
1237 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1238 mh = (struct INFTLMediaHeader *) buf;
1239
1240 mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
1241 mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
1242 mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
1243 mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
1244 mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
1245 mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
1246
Linus Torvalds1da177e2005-04-16 15:20:36 -07001247 printk(KERN_INFO " bootRecordID = %s\n"
1248 " NoOfBootImageBlocks = %d\n"
1249 " NoOfBinaryPartitions = %d\n"
1250 " NoOfBDTLPartitions = %d\n"
1251 " BlockMultiplerBits = %d\n"
1252 " FormatFlgs = %d\n"
1253 " OsakVersion = %d.%d.%d.%d\n"
1254 " PercentUsed = %d\n",
1255 mh->bootRecordID, mh->NoOfBootImageBlocks,
1256 mh->NoOfBinaryPartitions,
1257 mh->NoOfBDTLPartitions,
1258 mh->BlockMultiplierBits, mh->FormatFlags,
1259 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1260 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1261 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1262 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1263 mh->PercentUsed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001264
1265 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1266
1267 blocks = mtd->size >> vshift;
1268 if (blocks > 32768) {
1269 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1270 goto out;
1271 }
1272
1273 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1274 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1275 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1276 goto out;
1277 }
1278
1279 /* Scan the partitions */
1280 for (i = 0; (i < 4); i++) {
1281 ip = &(mh->Partitions[i]);
1282 ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
1283 ip->firstUnit = le32_to_cpu(ip->firstUnit);
1284 ip->lastUnit = le32_to_cpu(ip->lastUnit);
1285 ip->flags = le32_to_cpu(ip->flags);
1286 ip->spareUnits = le32_to_cpu(ip->spareUnits);
1287 ip->Reserved0 = le32_to_cpu(ip->Reserved0);
1288
Linus Torvalds1da177e2005-04-16 15:20:36 -07001289 printk(KERN_INFO " PARTITION[%d] ->\n"
1290 " virtualUnits = %d\n"
1291 " firstUnit = %d\n"
1292 " lastUnit = %d\n"
1293 " flags = 0x%x\n"
1294 " spareUnits = %d\n",
1295 i, ip->virtualUnits, ip->firstUnit,
1296 ip->lastUnit, ip->flags,
1297 ip->spareUnits);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001298
Dan Brown1a78ff62005-03-29 21:57:48 +01001299 if ((show_firmware_partition == 1) &&
1300 (i == 0) && (ip->firstUnit > 0)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001301 parts[0].name = " DiskOnChip IPL / Media Header partition";
1302 parts[0].offset = 0;
1303 parts[0].size = mtd->erasesize * ip->firstUnit;
1304 numparts = 1;
1305 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001306
1307 if (ip->flags & INFTL_BINARY)
1308 parts[numparts].name = " DiskOnChip BDK partition";
1309 else
1310 parts[numparts].name = " DiskOnChip BDTL partition";
1311 parts[numparts].offset = ip->firstUnit << vshift;
1312 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1313 numparts++;
1314 if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
1315 if (ip->flags & INFTL_LAST) break;
1316 }
1317 lastvunit++;
1318 if ((lastvunit << vshift) < end) {
1319 parts[numparts].name = " DiskOnChip Remainder partition";
1320 parts[numparts].offset = lastvunit << vshift;
1321 parts[numparts].size = end - parts[numparts].offset;
1322 numparts++;
1323 }
1324 ret = numparts;
1325out:
1326 kfree(buf);
1327 return ret;
1328}
1329
1330static int __init nftl_scan_bbt(struct mtd_info *mtd)
1331{
1332 int ret, numparts;
1333 struct nand_chip *this = mtd->priv;
1334 struct doc_priv *doc = this->priv;
1335 struct mtd_partition parts[2];
1336
1337 memset((char *) parts, 0, sizeof(parts));
1338 /* On NFTL, we have to find the media headers before we can read the
1339 BBTs, since they're stored in the media header eraseblocks. */
1340 numparts = nftl_partscan(mtd, parts);
1341 if (!numparts) return -EIO;
1342 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1343 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1344 NAND_BBT_VERSION;
1345 this->bbt_td->veroffs = 7;
1346 this->bbt_td->pages[0] = doc->mh0_page + 1;
1347 if (doc->mh1_page != -1) {
1348 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1349 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1350 NAND_BBT_VERSION;
1351 this->bbt_md->veroffs = 7;
1352 this->bbt_md->pages[0] = doc->mh1_page + 1;
1353 } else {
1354 this->bbt_md = NULL;
1355 }
1356
1357 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1358 At least as nand_bbt.c is currently written. */
1359 if ((ret = nand_scan_bbt(mtd, NULL)))
1360 return ret;
1361 add_mtd_device(mtd);
1362#ifdef CONFIG_MTD_PARTITIONS
1363 if (!no_autopart)
1364 add_mtd_partitions(mtd, parts, numparts);
1365#endif
1366 return 0;
1367}
1368
1369static int __init inftl_scan_bbt(struct mtd_info *mtd)
1370{
1371 int ret, numparts;
1372 struct nand_chip *this = mtd->priv;
1373 struct doc_priv *doc = this->priv;
1374 struct mtd_partition parts[5];
1375
1376 if (this->numchips > doc->chips_per_floor) {
1377 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1378 return -EIO;
1379 }
1380
1381 if (DoC_is_MillenniumPlus(doc)) {
1382 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1383 if (inftl_bbt_write)
1384 this->bbt_td->options |= NAND_BBT_WRITE;
1385 this->bbt_td->pages[0] = 2;
1386 this->bbt_md = NULL;
1387 } else {
1388 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
1389 NAND_BBT_VERSION;
1390 if (inftl_bbt_write)
1391 this->bbt_td->options |= NAND_BBT_WRITE;
1392 this->bbt_td->offs = 8;
1393 this->bbt_td->len = 8;
1394 this->bbt_td->veroffs = 7;
1395 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1396 this->bbt_td->reserved_block_code = 0x01;
1397 this->bbt_td->pattern = "MSYS_BBT";
1398
1399 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
1400 NAND_BBT_VERSION;
1401 if (inftl_bbt_write)
1402 this->bbt_md->options |= NAND_BBT_WRITE;
1403 this->bbt_md->offs = 8;
1404 this->bbt_md->len = 8;
1405 this->bbt_md->veroffs = 7;
1406 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1407 this->bbt_md->reserved_block_code = 0x01;
1408 this->bbt_md->pattern = "TBB_SYSM";
1409 }
1410
1411 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1412 At least as nand_bbt.c is currently written. */
1413 if ((ret = nand_scan_bbt(mtd, NULL)))
1414 return ret;
1415 memset((char *) parts, 0, sizeof(parts));
1416 numparts = inftl_partscan(mtd, parts);
1417 /* At least for now, require the INFTL Media Header. We could probably
1418 do without it for non-INFTL use, since all it gives us is
1419 autopartitioning, but I want to give it more thought. */
1420 if (!numparts) return -EIO;
1421 add_mtd_device(mtd);
1422#ifdef CONFIG_MTD_PARTITIONS
1423 if (!no_autopart)
1424 add_mtd_partitions(mtd, parts, numparts);
1425#endif
1426 return 0;
1427}
1428
1429static inline int __init doc2000_init(struct mtd_info *mtd)
1430{
1431 struct nand_chip *this = mtd->priv;
1432 struct doc_priv *doc = this->priv;
1433
1434 this->write_byte = doc2000_write_byte;
1435 this->read_byte = doc2000_read_byte;
1436 this->write_buf = doc2000_writebuf;
1437 this->read_buf = doc2000_readbuf;
1438 this->verify_buf = doc2000_verifybuf;
1439 this->scan_bbt = nftl_scan_bbt;
1440
1441 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1442 doc2000_count_chips(mtd);
1443 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1444 return (4 * doc->chips_per_floor);
1445}
1446
1447static inline int __init doc2001_init(struct mtd_info *mtd)
1448{
1449 struct nand_chip *this = mtd->priv;
1450 struct doc_priv *doc = this->priv;
1451
1452 this->write_byte = doc2001_write_byte;
1453 this->read_byte = doc2001_read_byte;
1454 this->write_buf = doc2001_writebuf;
1455 this->read_buf = doc2001_readbuf;
1456 this->verify_buf = doc2001_verifybuf;
1457
1458 ReadDOC(doc->virtadr, ChipID);
1459 ReadDOC(doc->virtadr, ChipID);
1460 ReadDOC(doc->virtadr, ChipID);
1461 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1462 /* It's not a Millennium; it's one of the newer
1463 DiskOnChip 2000 units with a similar ASIC.
1464 Treat it like a Millennium, except that it
1465 can have multiple chips. */
1466 doc2000_count_chips(mtd);
1467 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1468 this->scan_bbt = inftl_scan_bbt;
1469 return (4 * doc->chips_per_floor);
1470 } else {
1471 /* Bog-standard Millennium */
1472 doc->chips_per_floor = 1;
1473 mtd->name = "DiskOnChip Millennium";
1474 this->scan_bbt = nftl_scan_bbt;
1475 return 1;
1476 }
1477}
1478
1479static inline int __init doc2001plus_init(struct mtd_info *mtd)
1480{
1481 struct nand_chip *this = mtd->priv;
1482 struct doc_priv *doc = this->priv;
1483
1484 this->write_byte = NULL;
1485 this->read_byte = doc2001plus_read_byte;
1486 this->write_buf = doc2001plus_writebuf;
1487 this->read_buf = doc2001plus_readbuf;
1488 this->verify_buf = doc2001plus_verifybuf;
1489 this->scan_bbt = inftl_scan_bbt;
1490 this->hwcontrol = NULL;
1491 this->select_chip = doc2001plus_select_chip;
1492 this->cmdfunc = doc2001plus_command;
1493 this->enable_hwecc = doc2001plus_enable_hwecc;
1494
1495 doc->chips_per_floor = 1;
1496 mtd->name = "DiskOnChip Millennium Plus";
1497
1498 return 1;
1499}
1500
1501static inline int __init doc_probe(unsigned long physadr)
1502{
1503 unsigned char ChipID;
1504 struct mtd_info *mtd;
1505 struct nand_chip *nand;
1506 struct doc_priv *doc;
1507 void __iomem *virtadr;
1508 unsigned char save_control;
1509 unsigned char tmp, tmpb, tmpc;
1510 int reg, len, numchips;
1511 int ret = 0;
1512
1513 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1514 if (!virtadr) {
1515 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1516 return -EIO;
1517 }
1518
1519 /* It's not possible to cleanly detect the DiskOnChip - the
1520 * bootup procedure will put the device into reset mode, and
1521 * it's not possible to talk to it without actually writing
1522 * to the DOCControl register. So we store the current contents
1523 * of the DOCControl register's location, in case we later decide
1524 * that it's not a DiskOnChip, and want to put it back how we
1525 * found it.
1526 */
1527 save_control = ReadDOC(virtadr, DOCControl);
1528
1529 /* Reset the DiskOnChip ASIC */
1530 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
1531 virtadr, DOCControl);
1532 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
1533 virtadr, DOCControl);
1534
1535 /* Enable the DiskOnChip ASIC */
1536 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
1537 virtadr, DOCControl);
1538 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
1539 virtadr, DOCControl);
1540
1541 ChipID = ReadDOC(virtadr, ChipID);
1542
1543 switch(ChipID) {
1544 case DOC_ChipID_Doc2k:
1545 reg = DoC_2k_ECCStatus;
1546 break;
1547 case DOC_ChipID_DocMil:
1548 reg = DoC_ECCConf;
1549 break;
1550 case DOC_ChipID_DocMilPlus16:
1551 case DOC_ChipID_DocMilPlus32:
1552 case 0:
1553 /* Possible Millennium Plus, need to do more checks */
1554 /* Possibly release from power down mode */
1555 for (tmp = 0; (tmp < 4); tmp++)
1556 ReadDOC(virtadr, Mplus_Power);
1557
1558 /* Reset the Millennium Plus ASIC */
1559 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
1560 DOC_MODE_BDECT;
1561 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1562 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1563
1564 mdelay(1);
1565 /* Enable the Millennium Plus ASIC */
1566 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
1567 DOC_MODE_BDECT;
1568 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1569 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1570 mdelay(1);
1571
1572 ChipID = ReadDOC(virtadr, ChipID);
1573
1574 switch (ChipID) {
1575 case DOC_ChipID_DocMilPlus16:
1576 reg = DoC_Mplus_Toggle;
1577 break;
1578 case DOC_ChipID_DocMilPlus32:
1579 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1580 default:
1581 ret = -ENODEV;
1582 goto notfound;
1583 }
1584 break;
1585
1586 default:
1587 ret = -ENODEV;
1588 goto notfound;
1589 }
1590 /* Check the TOGGLE bit in the ECC register */
1591 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1592 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1593 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1594 if ((tmp == tmpb) || (tmp != tmpc)) {
1595 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1596 ret = -ENODEV;
1597 goto notfound;
1598 }
1599
1600 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1601 unsigned char oldval;
1602 unsigned char newval;
1603 nand = mtd->priv;
1604 doc = nand->priv;
1605 /* Use the alias resolution register to determine if this is
1606 in fact the same DOC aliased to a new address. If writes
1607 to one chip's alias resolution register change the value on
1608 the other chip, they're the same chip. */
1609 if (ChipID == DOC_ChipID_DocMilPlus16) {
1610 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1611 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1612 } else {
1613 oldval = ReadDOC(doc->virtadr, AliasResolution);
1614 newval = ReadDOC(virtadr, AliasResolution);
1615 }
1616 if (oldval != newval)
1617 continue;
1618 if (ChipID == DOC_ChipID_DocMilPlus16) {
1619 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1620 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1621 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1622 } else {
1623 WriteDOC(~newval, virtadr, AliasResolution);
1624 oldval = ReadDOC(doc->virtadr, AliasResolution);
1625 WriteDOC(newval, virtadr, AliasResolution); // restore it
1626 }
1627 newval = ~newval;
1628 if (oldval == newval) {
1629 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1630 goto notfound;
1631 }
1632 }
1633
1634 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1635
1636 len = sizeof(struct mtd_info) +
1637 sizeof(struct nand_chip) +
1638 sizeof(struct doc_priv) +
1639 (2 * sizeof(struct nand_bbt_descr));
1640 mtd = kmalloc(len, GFP_KERNEL);
1641 if (!mtd) {
1642 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1643 ret = -ENOMEM;
1644 goto fail;
1645 }
1646 memset(mtd, 0, len);
1647
1648 nand = (struct nand_chip *) (mtd + 1);
1649 doc = (struct doc_priv *) (nand + 1);
1650 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1651 nand->bbt_md = nand->bbt_td + 1;
1652
1653 mtd->priv = nand;
1654 mtd->owner = THIS_MODULE;
1655
1656 nand->priv = doc;
1657 nand->select_chip = doc200x_select_chip;
1658 nand->hwcontrol = doc200x_hwcontrol;
1659 nand->dev_ready = doc200x_dev_ready;
1660 nand->waitfunc = doc200x_wait;
1661 nand->block_bad = doc200x_block_bad;
1662 nand->enable_hwecc = doc200x_enable_hwecc;
1663 nand->calculate_ecc = doc200x_calculate_ecc;
1664 nand->correct_data = doc200x_correct_data;
1665
1666 nand->autooob = &doc200x_oobinfo;
1667 nand->eccmode = NAND_ECC_HW6_512;
1668 nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
1669
1670 doc->physadr = physadr;
1671 doc->virtadr = virtadr;
1672 doc->ChipID = ChipID;
1673 doc->curfloor = -1;
1674 doc->curchip = -1;
1675 doc->mh0_page = -1;
1676 doc->mh1_page = -1;
1677 doc->nextdoc = doclist;
1678
1679 if (ChipID == DOC_ChipID_Doc2k)
1680 numchips = doc2000_init(mtd);
1681 else if (ChipID == DOC_ChipID_DocMilPlus16)
1682 numchips = doc2001plus_init(mtd);
1683 else
1684 numchips = doc2001_init(mtd);
1685
1686 if ((ret = nand_scan(mtd, numchips))) {
1687 /* DBB note: i believe nand_release is necessary here, as
1688 buffers may have been allocated in nand_base. Check with
1689 Thomas. FIX ME! */
1690 /* nand_release will call del_mtd_device, but we haven't yet
1691 added it. This is handled without incident by
1692 del_mtd_device, as far as I can tell. */
1693 nand_release(mtd);
1694 kfree(mtd);
1695 goto fail;
1696 }
1697
1698 /* Success! */
1699 doclist = mtd;
1700 return 0;
1701
1702notfound:
1703 /* Put back the contents of the DOCControl register, in case it's not
1704 actually a DiskOnChip. */
1705 WriteDOC(save_control, virtadr, DOCControl);
1706fail:
1707 iounmap(virtadr);
1708 return ret;
1709}
1710
1711static void release_nanddoc(void)
1712{
1713 struct mtd_info *mtd, *nextmtd;
1714 struct nand_chip *nand;
1715 struct doc_priv *doc;
1716
1717 for (mtd = doclist; mtd; mtd = nextmtd) {
1718 nand = mtd->priv;
1719 doc = nand->priv;
1720
1721 nextmtd = doc->nextdoc;
1722 nand_release(mtd);
1723 iounmap(doc->virtadr);
1724 kfree(mtd);
1725 }
1726}
1727
1728static int __init init_nanddoc(void)
1729{
1730 int i, ret = 0;
1731
1732 /* We could create the decoder on demand, if memory is a concern.
1733 * This way we have it handy, if an error happens
1734 *
1735 * Symbolsize is 10 (bits)
1736 * Primitve polynomial is x^10+x^3+1
1737 * first consecutive root is 510
1738 * primitve element to generate roots = 1
1739 * generator polinomial degree = 4
1740 */
1741 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1742 if (!rs_decoder) {
1743 printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1744 return -ENOMEM;
1745 }
1746
1747 if (doc_config_location) {
1748 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1749 ret = doc_probe(doc_config_location);
1750 if (ret < 0)
1751 goto outerr;
1752 } else {
1753 for (i=0; (doc_locations[i] != 0xffffffff); i++) {
1754 doc_probe(doc_locations[i]);
1755 }
1756 }
1757 /* No banner message any more. Print a message if no DiskOnChip
1758 found, so the user knows we at least tried. */
1759 if (!doclist) {
1760 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1761 ret = -ENODEV;
1762 goto outerr;
1763 }
1764 return 0;
1765outerr:
1766 free_rs(rs_decoder);
1767 return ret;
1768}
1769
1770static void __exit cleanup_nanddoc(void)
1771{
1772 /* Cleanup the nand/DoC resources */
1773 release_nanddoc();
1774
1775 /* Free the reed solomon resources */
1776 if (rs_decoder) {
1777 free_rs(rs_decoder);
1778 }
1779}
1780
1781module_init(init_nanddoc);
1782module_exit(cleanup_nanddoc);
1783
1784MODULE_LICENSE("GPL");
1785MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1786MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");