blob: cd8cf302068c92a01aadef5a27b08cb309300da3 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/drivers/block/ll_rw_blk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
6 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
8 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12/*
13 * This handles all read/write requests to block devices
14 */
15#include <linux/config.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/backing-dev.h>
19#include <linux/bio.h>
20#include <linux/blkdev.h>
21#include <linux/highmem.h>
22#include <linux/mm.h>
23#include <linux/kernel_stat.h>
24#include <linux/string.h>
25#include <linux/init.h>
26#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
27#include <linux/completion.h>
28#include <linux/slab.h>
29#include <linux/swap.h>
30#include <linux/writeback.h>
Christoph Lameter19460892005-06-23 00:08:19 -070031#include <linux/blkdev.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070032
33/*
34 * for max sense size
35 */
36#include <scsi/scsi_cmnd.h>
37
38static void blk_unplug_work(void *data);
39static void blk_unplug_timeout(unsigned long data);
40
41/*
42 * For the allocated request tables
43 */
44static kmem_cache_t *request_cachep;
45
46/*
47 * For queue allocation
48 */
49static kmem_cache_t *requestq_cachep;
50
51/*
52 * For io context allocations
53 */
54static kmem_cache_t *iocontext_cachep;
55
56static wait_queue_head_t congestion_wqh[2] = {
57 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
58 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
59 };
60
61/*
62 * Controlling structure to kblockd
63 */
64static struct workqueue_struct *kblockd_workqueue;
65
66unsigned long blk_max_low_pfn, blk_max_pfn;
67
68EXPORT_SYMBOL(blk_max_low_pfn);
69EXPORT_SYMBOL(blk_max_pfn);
70
71/* Amount of time in which a process may batch requests */
72#define BLK_BATCH_TIME (HZ/50UL)
73
74/* Number of requests a "batching" process may submit */
75#define BLK_BATCH_REQ 32
76
77/*
78 * Return the threshold (number of used requests) at which the queue is
79 * considered to be congested. It include a little hysteresis to keep the
80 * context switch rate down.
81 */
82static inline int queue_congestion_on_threshold(struct request_queue *q)
83{
84 return q->nr_congestion_on;
85}
86
87/*
88 * The threshold at which a queue is considered to be uncongested
89 */
90static inline int queue_congestion_off_threshold(struct request_queue *q)
91{
92 return q->nr_congestion_off;
93}
94
95static void blk_queue_congestion_threshold(struct request_queue *q)
96{
97 int nr;
98
99 nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 if (nr > q->nr_requests)
101 nr = q->nr_requests;
102 q->nr_congestion_on = nr;
103
104 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105 if (nr < 1)
106 nr = 1;
107 q->nr_congestion_off = nr;
108}
109
110/*
111 * A queue has just exitted congestion. Note this in the global counter of
112 * congested queues, and wake up anyone who was waiting for requests to be
113 * put back.
114 */
115static void clear_queue_congested(request_queue_t *q, int rw)
116{
117 enum bdi_state bit;
118 wait_queue_head_t *wqh = &congestion_wqh[rw];
119
120 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
121 clear_bit(bit, &q->backing_dev_info.state);
122 smp_mb__after_clear_bit();
123 if (waitqueue_active(wqh))
124 wake_up(wqh);
125}
126
127/*
128 * A queue has just entered congestion. Flag that in the queue's VM-visible
129 * state flags and increment the global gounter of congested queues.
130 */
131static void set_queue_congested(request_queue_t *q, int rw)
132{
133 enum bdi_state bit;
134
135 bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
136 set_bit(bit, &q->backing_dev_info.state);
137}
138
139/**
140 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
141 * @bdev: device
142 *
143 * Locates the passed device's request queue and returns the address of its
144 * backing_dev_info
145 *
146 * Will return NULL if the request queue cannot be located.
147 */
148struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
149{
150 struct backing_dev_info *ret = NULL;
151 request_queue_t *q = bdev_get_queue(bdev);
152
153 if (q)
154 ret = &q->backing_dev_info;
155 return ret;
156}
157
158EXPORT_SYMBOL(blk_get_backing_dev_info);
159
160void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
161{
162 q->activity_fn = fn;
163 q->activity_data = data;
164}
165
166EXPORT_SYMBOL(blk_queue_activity_fn);
167
168/**
169 * blk_queue_prep_rq - set a prepare_request function for queue
170 * @q: queue
171 * @pfn: prepare_request function
172 *
173 * It's possible for a queue to register a prepare_request callback which
174 * is invoked before the request is handed to the request_fn. The goal of
175 * the function is to prepare a request for I/O, it can be used to build a
176 * cdb from the request data for instance.
177 *
178 */
179void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
180{
181 q->prep_rq_fn = pfn;
182}
183
184EXPORT_SYMBOL(blk_queue_prep_rq);
185
186/**
187 * blk_queue_merge_bvec - set a merge_bvec function for queue
188 * @q: queue
189 * @mbfn: merge_bvec_fn
190 *
191 * Usually queues have static limitations on the max sectors or segments that
192 * we can put in a request. Stacking drivers may have some settings that
193 * are dynamic, and thus we have to query the queue whether it is ok to
194 * add a new bio_vec to a bio at a given offset or not. If the block device
195 * has such limitations, it needs to register a merge_bvec_fn to control
196 * the size of bio's sent to it. Note that a block device *must* allow a
197 * single page to be added to an empty bio. The block device driver may want
198 * to use the bio_split() function to deal with these bio's. By default
199 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
200 * honored.
201 */
202void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
203{
204 q->merge_bvec_fn = mbfn;
205}
206
207EXPORT_SYMBOL(blk_queue_merge_bvec);
208
209/**
210 * blk_queue_make_request - define an alternate make_request function for a device
211 * @q: the request queue for the device to be affected
212 * @mfn: the alternate make_request function
213 *
214 * Description:
215 * The normal way for &struct bios to be passed to a device
216 * driver is for them to be collected into requests on a request
217 * queue, and then to allow the device driver to select requests
218 * off that queue when it is ready. This works well for many block
219 * devices. However some block devices (typically virtual devices
220 * such as md or lvm) do not benefit from the processing on the
221 * request queue, and are served best by having the requests passed
222 * directly to them. This can be achieved by providing a function
223 * to blk_queue_make_request().
224 *
225 * Caveat:
226 * The driver that does this *must* be able to deal appropriately
227 * with buffers in "highmemory". This can be accomplished by either calling
228 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
229 * blk_queue_bounce() to create a buffer in normal memory.
230 **/
231void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
232{
233 /*
234 * set defaults
235 */
236 q->nr_requests = BLKDEV_MAX_RQ;
237 q->max_phys_segments = MAX_PHYS_SEGMENTS;
238 q->max_hw_segments = MAX_HW_SEGMENTS;
239 q->make_request_fn = mfn;
240 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
241 q->backing_dev_info.state = 0;
242 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
243 blk_queue_max_sectors(q, MAX_SECTORS);
244 blk_queue_hardsect_size(q, 512);
245 blk_queue_dma_alignment(q, 511);
246 blk_queue_congestion_threshold(q);
247 q->nr_batching = BLK_BATCH_REQ;
248
249 q->unplug_thresh = 4; /* hmm */
250 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
251 if (q->unplug_delay == 0)
252 q->unplug_delay = 1;
253
254 INIT_WORK(&q->unplug_work, blk_unplug_work, q);
255
256 q->unplug_timer.function = blk_unplug_timeout;
257 q->unplug_timer.data = (unsigned long)q;
258
259 /*
260 * by default assume old behaviour and bounce for any highmem page
261 */
262 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
263
264 blk_queue_activity_fn(q, NULL, NULL);
265
266 INIT_LIST_HEAD(&q->drain_list);
267}
268
269EXPORT_SYMBOL(blk_queue_make_request);
270
271static inline void rq_init(request_queue_t *q, struct request *rq)
272{
273 INIT_LIST_HEAD(&rq->queuelist);
274
275 rq->errors = 0;
276 rq->rq_status = RQ_ACTIVE;
277 rq->bio = rq->biotail = NULL;
278 rq->buffer = NULL;
279 rq->ref_count = 1;
280 rq->q = q;
281 rq->waiting = NULL;
282 rq->special = NULL;
283 rq->data_len = 0;
284 rq->data = NULL;
285 rq->sense = NULL;
286 rq->end_io = NULL;
287 rq->end_io_data = NULL;
288}
289
290/**
291 * blk_queue_ordered - does this queue support ordered writes
292 * @q: the request queue
293 * @flag: see below
294 *
295 * Description:
296 * For journalled file systems, doing ordered writes on a commit
297 * block instead of explicitly doing wait_on_buffer (which is bad
298 * for performance) can be a big win. Block drivers supporting this
299 * feature should call this function and indicate so.
300 *
301 **/
302void blk_queue_ordered(request_queue_t *q, int flag)
303{
304 switch (flag) {
305 case QUEUE_ORDERED_NONE:
306 if (q->flush_rq)
307 kmem_cache_free(request_cachep, q->flush_rq);
308 q->flush_rq = NULL;
309 q->ordered = flag;
310 break;
311 case QUEUE_ORDERED_TAG:
312 q->ordered = flag;
313 break;
314 case QUEUE_ORDERED_FLUSH:
315 q->ordered = flag;
316 if (!q->flush_rq)
317 q->flush_rq = kmem_cache_alloc(request_cachep,
318 GFP_KERNEL);
319 break;
320 default:
321 printk("blk_queue_ordered: bad value %d\n", flag);
322 break;
323 }
324}
325
326EXPORT_SYMBOL(blk_queue_ordered);
327
328/**
329 * blk_queue_issue_flush_fn - set function for issuing a flush
330 * @q: the request queue
331 * @iff: the function to be called issuing the flush
332 *
333 * Description:
334 * If a driver supports issuing a flush command, the support is notified
335 * to the block layer by defining it through this call.
336 *
337 **/
338void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
339{
340 q->issue_flush_fn = iff;
341}
342
343EXPORT_SYMBOL(blk_queue_issue_flush_fn);
344
345/*
346 * Cache flushing for ordered writes handling
347 */
348static void blk_pre_flush_end_io(struct request *flush_rq)
349{
350 struct request *rq = flush_rq->end_io_data;
351 request_queue_t *q = rq->q;
352
353 rq->flags |= REQ_BAR_PREFLUSH;
354
355 if (!flush_rq->errors)
356 elv_requeue_request(q, rq);
357 else {
358 q->end_flush_fn(q, flush_rq);
359 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
360 q->request_fn(q);
361 }
362}
363
364static void blk_post_flush_end_io(struct request *flush_rq)
365{
366 struct request *rq = flush_rq->end_io_data;
367 request_queue_t *q = rq->q;
368
369 rq->flags |= REQ_BAR_POSTFLUSH;
370
371 q->end_flush_fn(q, flush_rq);
372 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
373 q->request_fn(q);
374}
375
376struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
377{
378 struct request *flush_rq = q->flush_rq;
379
380 BUG_ON(!blk_barrier_rq(rq));
381
382 if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
383 return NULL;
384
385 rq_init(q, flush_rq);
386 flush_rq->elevator_private = NULL;
387 flush_rq->flags = REQ_BAR_FLUSH;
388 flush_rq->rq_disk = rq->rq_disk;
389 flush_rq->rl = NULL;
390
391 /*
392 * prepare_flush returns 0 if no flush is needed, just mark both
393 * pre and post flush as done in that case
394 */
395 if (!q->prepare_flush_fn(q, flush_rq)) {
396 rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
397 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
398 return rq;
399 }
400
401 /*
402 * some drivers dequeue requests right away, some only after io
403 * completion. make sure the request is dequeued.
404 */
405 if (!list_empty(&rq->queuelist))
406 blkdev_dequeue_request(rq);
407
408 elv_deactivate_request(q, rq);
409
410 flush_rq->end_io_data = rq;
411 flush_rq->end_io = blk_pre_flush_end_io;
412
413 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
414 return flush_rq;
415}
416
417static void blk_start_post_flush(request_queue_t *q, struct request *rq)
418{
419 struct request *flush_rq = q->flush_rq;
420
421 BUG_ON(!blk_barrier_rq(rq));
422
423 rq_init(q, flush_rq);
424 flush_rq->elevator_private = NULL;
425 flush_rq->flags = REQ_BAR_FLUSH;
426 flush_rq->rq_disk = rq->rq_disk;
427 flush_rq->rl = NULL;
428
429 if (q->prepare_flush_fn(q, flush_rq)) {
430 flush_rq->end_io_data = rq;
431 flush_rq->end_io = blk_post_flush_end_io;
432
433 __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
434 q->request_fn(q);
435 }
436}
437
438static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
439 int sectors)
440{
441 if (sectors > rq->nr_sectors)
442 sectors = rq->nr_sectors;
443
444 rq->nr_sectors -= sectors;
445 return rq->nr_sectors;
446}
447
448static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
449 int sectors, int queue_locked)
450{
451 if (q->ordered != QUEUE_ORDERED_FLUSH)
452 return 0;
453 if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
454 return 0;
455 if (blk_barrier_postflush(rq))
456 return 0;
457
458 if (!blk_check_end_barrier(q, rq, sectors)) {
459 unsigned long flags = 0;
460
461 if (!queue_locked)
462 spin_lock_irqsave(q->queue_lock, flags);
463
464 blk_start_post_flush(q, rq);
465
466 if (!queue_locked)
467 spin_unlock_irqrestore(q->queue_lock, flags);
468 }
469
470 return 1;
471}
472
473/**
474 * blk_complete_barrier_rq - complete possible barrier request
475 * @q: the request queue for the device
476 * @rq: the request
477 * @sectors: number of sectors to complete
478 *
479 * Description:
480 * Used in driver end_io handling to determine whether to postpone
481 * completion of a barrier request until a post flush has been done. This
482 * is the unlocked variant, used if the caller doesn't already hold the
483 * queue lock.
484 **/
485int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
486{
487 return __blk_complete_barrier_rq(q, rq, sectors, 0);
488}
489EXPORT_SYMBOL(blk_complete_barrier_rq);
490
491/**
492 * blk_complete_barrier_rq_locked - complete possible barrier request
493 * @q: the request queue for the device
494 * @rq: the request
495 * @sectors: number of sectors to complete
496 *
497 * Description:
498 * See blk_complete_barrier_rq(). This variant must be used if the caller
499 * holds the queue lock.
500 **/
501int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
502 int sectors)
503{
504 return __blk_complete_barrier_rq(q, rq, sectors, 1);
505}
506EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
507
508/**
509 * blk_queue_bounce_limit - set bounce buffer limit for queue
510 * @q: the request queue for the device
511 * @dma_addr: bus address limit
512 *
513 * Description:
514 * Different hardware can have different requirements as to what pages
515 * it can do I/O directly to. A low level driver can call
516 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
517 * buffers for doing I/O to pages residing above @page. By default
518 * the block layer sets this to the highest numbered "low" memory page.
519 **/
520void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
521{
522 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
523
524 /*
525 * set appropriate bounce gfp mask -- unfortunately we don't have a
526 * full 4GB zone, so we have to resort to low memory for any bounces.
527 * ISA has its own < 16MB zone.
528 */
529 if (bounce_pfn < blk_max_low_pfn) {
530 BUG_ON(dma_addr < BLK_BOUNCE_ISA);
531 init_emergency_isa_pool();
532 q->bounce_gfp = GFP_NOIO | GFP_DMA;
533 } else
534 q->bounce_gfp = GFP_NOIO;
535
536 q->bounce_pfn = bounce_pfn;
537}
538
539EXPORT_SYMBOL(blk_queue_bounce_limit);
540
541/**
542 * blk_queue_max_sectors - set max sectors for a request for this queue
543 * @q: the request queue for the device
544 * @max_sectors: max sectors in the usual 512b unit
545 *
546 * Description:
547 * Enables a low level driver to set an upper limit on the size of
548 * received requests.
549 **/
550void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
551{
552 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
553 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
554 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
555 }
556
557 q->max_sectors = q->max_hw_sectors = max_sectors;
558}
559
560EXPORT_SYMBOL(blk_queue_max_sectors);
561
562/**
563 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
564 * @q: the request queue for the device
565 * @max_segments: max number of segments
566 *
567 * Description:
568 * Enables a low level driver to set an upper limit on the number of
569 * physical data segments in a request. This would be the largest sized
570 * scatter list the driver could handle.
571 **/
572void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
573{
574 if (!max_segments) {
575 max_segments = 1;
576 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
577 }
578
579 q->max_phys_segments = max_segments;
580}
581
582EXPORT_SYMBOL(blk_queue_max_phys_segments);
583
584/**
585 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
586 * @q: the request queue for the device
587 * @max_segments: max number of segments
588 *
589 * Description:
590 * Enables a low level driver to set an upper limit on the number of
591 * hw data segments in a request. This would be the largest number of
592 * address/length pairs the host adapter can actually give as once
593 * to the device.
594 **/
595void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
596{
597 if (!max_segments) {
598 max_segments = 1;
599 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
600 }
601
602 q->max_hw_segments = max_segments;
603}
604
605EXPORT_SYMBOL(blk_queue_max_hw_segments);
606
607/**
608 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
609 * @q: the request queue for the device
610 * @max_size: max size of segment in bytes
611 *
612 * Description:
613 * Enables a low level driver to set an upper limit on the size of a
614 * coalesced segment
615 **/
616void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
617{
618 if (max_size < PAGE_CACHE_SIZE) {
619 max_size = PAGE_CACHE_SIZE;
620 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
621 }
622
623 q->max_segment_size = max_size;
624}
625
626EXPORT_SYMBOL(blk_queue_max_segment_size);
627
628/**
629 * blk_queue_hardsect_size - set hardware sector size for the queue
630 * @q: the request queue for the device
631 * @size: the hardware sector size, in bytes
632 *
633 * Description:
634 * This should typically be set to the lowest possible sector size
635 * that the hardware can operate on (possible without reverting to
636 * even internal read-modify-write operations). Usually the default
637 * of 512 covers most hardware.
638 **/
639void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
640{
641 q->hardsect_size = size;
642}
643
644EXPORT_SYMBOL(blk_queue_hardsect_size);
645
646/*
647 * Returns the minimum that is _not_ zero, unless both are zero.
648 */
649#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
650
651/**
652 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
653 * @t: the stacking driver (top)
654 * @b: the underlying device (bottom)
655 **/
656void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
657{
658 /* zero is "infinity" */
659 t->max_sectors = t->max_hw_sectors =
660 min_not_zero(t->max_sectors,b->max_sectors);
661
662 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
663 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
664 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
665 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
666}
667
668EXPORT_SYMBOL(blk_queue_stack_limits);
669
670/**
671 * blk_queue_segment_boundary - set boundary rules for segment merging
672 * @q: the request queue for the device
673 * @mask: the memory boundary mask
674 **/
675void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
676{
677 if (mask < PAGE_CACHE_SIZE - 1) {
678 mask = PAGE_CACHE_SIZE - 1;
679 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
680 }
681
682 q->seg_boundary_mask = mask;
683}
684
685EXPORT_SYMBOL(blk_queue_segment_boundary);
686
687/**
688 * blk_queue_dma_alignment - set dma length and memory alignment
689 * @q: the request queue for the device
690 * @mask: alignment mask
691 *
692 * description:
693 * set required memory and length aligment for direct dma transactions.
694 * this is used when buiding direct io requests for the queue.
695 *
696 **/
697void blk_queue_dma_alignment(request_queue_t *q, int mask)
698{
699 q->dma_alignment = mask;
700}
701
702EXPORT_SYMBOL(blk_queue_dma_alignment);
703
704/**
705 * blk_queue_find_tag - find a request by its tag and queue
706 *
707 * @q: The request queue for the device
708 * @tag: The tag of the request
709 *
710 * Notes:
711 * Should be used when a device returns a tag and you want to match
712 * it with a request.
713 *
714 * no locks need be held.
715 **/
716struct request *blk_queue_find_tag(request_queue_t *q, int tag)
717{
718 struct blk_queue_tag *bqt = q->queue_tags;
719
720 if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
721 return NULL;
722
723 return bqt->tag_index[tag];
724}
725
726EXPORT_SYMBOL(blk_queue_find_tag);
727
728/**
729 * __blk_queue_free_tags - release tag maintenance info
730 * @q: the request queue for the device
731 *
732 * Notes:
733 * blk_cleanup_queue() will take care of calling this function, if tagging
734 * has been used. So there's no need to call this directly.
735 **/
736static void __blk_queue_free_tags(request_queue_t *q)
737{
738 struct blk_queue_tag *bqt = q->queue_tags;
739
740 if (!bqt)
741 return;
742
743 if (atomic_dec_and_test(&bqt->refcnt)) {
744 BUG_ON(bqt->busy);
745 BUG_ON(!list_empty(&bqt->busy_list));
746
747 kfree(bqt->tag_index);
748 bqt->tag_index = NULL;
749
750 kfree(bqt->tag_map);
751 bqt->tag_map = NULL;
752
753 kfree(bqt);
754 }
755
756 q->queue_tags = NULL;
757 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
758}
759
760/**
761 * blk_queue_free_tags - release tag maintenance info
762 * @q: the request queue for the device
763 *
764 * Notes:
765 * This is used to disabled tagged queuing to a device, yet leave
766 * queue in function.
767 **/
768void blk_queue_free_tags(request_queue_t *q)
769{
770 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
771}
772
773EXPORT_SYMBOL(blk_queue_free_tags);
774
775static int
776init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
777{
778 int bits, i;
779 struct request **tag_index;
780 unsigned long *tag_map;
781
782 if (depth > q->nr_requests * 2) {
783 depth = q->nr_requests * 2;
784 printk(KERN_ERR "%s: adjusted depth to %d\n",
785 __FUNCTION__, depth);
786 }
787
788 tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
789 if (!tag_index)
790 goto fail;
791
792 bits = (depth / BLK_TAGS_PER_LONG) + 1;
793 tag_map = kmalloc(bits * sizeof(unsigned long), GFP_ATOMIC);
794 if (!tag_map)
795 goto fail;
796
797 memset(tag_index, 0, depth * sizeof(struct request *));
798 memset(tag_map, 0, bits * sizeof(unsigned long));
799 tags->max_depth = depth;
800 tags->real_max_depth = bits * BITS_PER_LONG;
801 tags->tag_index = tag_index;
802 tags->tag_map = tag_map;
803
804 /*
805 * set the upper bits if the depth isn't a multiple of the word size
806 */
807 for (i = depth; i < bits * BLK_TAGS_PER_LONG; i++)
808 __set_bit(i, tag_map);
809
810 return 0;
811fail:
812 kfree(tag_index);
813 return -ENOMEM;
814}
815
816/**
817 * blk_queue_init_tags - initialize the queue tag info
818 * @q: the request queue for the device
819 * @depth: the maximum queue depth supported
820 * @tags: the tag to use
821 **/
822int blk_queue_init_tags(request_queue_t *q, int depth,
823 struct blk_queue_tag *tags)
824{
825 int rc;
826
827 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
828
829 if (!tags && !q->queue_tags) {
830 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
831 if (!tags)
832 goto fail;
833
834 if (init_tag_map(q, tags, depth))
835 goto fail;
836
837 INIT_LIST_HEAD(&tags->busy_list);
838 tags->busy = 0;
839 atomic_set(&tags->refcnt, 1);
840 } else if (q->queue_tags) {
841 if ((rc = blk_queue_resize_tags(q, depth)))
842 return rc;
843 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
844 return 0;
845 } else
846 atomic_inc(&tags->refcnt);
847
848 /*
849 * assign it, all done
850 */
851 q->queue_tags = tags;
852 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
853 return 0;
854fail:
855 kfree(tags);
856 return -ENOMEM;
857}
858
859EXPORT_SYMBOL(blk_queue_init_tags);
860
861/**
862 * blk_queue_resize_tags - change the queueing depth
863 * @q: the request queue for the device
864 * @new_depth: the new max command queueing depth
865 *
866 * Notes:
867 * Must be called with the queue lock held.
868 **/
869int blk_queue_resize_tags(request_queue_t *q, int new_depth)
870{
871 struct blk_queue_tag *bqt = q->queue_tags;
872 struct request **tag_index;
873 unsigned long *tag_map;
874 int bits, max_depth;
875
876 if (!bqt)
877 return -ENXIO;
878
879 /*
880 * don't bother sizing down
881 */
882 if (new_depth <= bqt->real_max_depth) {
883 bqt->max_depth = new_depth;
884 return 0;
885 }
886
887 /*
888 * save the old state info, so we can copy it back
889 */
890 tag_index = bqt->tag_index;
891 tag_map = bqt->tag_map;
892 max_depth = bqt->real_max_depth;
893
894 if (init_tag_map(q, bqt, new_depth))
895 return -ENOMEM;
896
897 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
898 bits = max_depth / BLK_TAGS_PER_LONG;
899 memcpy(bqt->tag_map, tag_map, bits * sizeof(unsigned long));
900
901 kfree(tag_index);
902 kfree(tag_map);
903 return 0;
904}
905
906EXPORT_SYMBOL(blk_queue_resize_tags);
907
908/**
909 * blk_queue_end_tag - end tag operations for a request
910 * @q: the request queue for the device
911 * @rq: the request that has completed
912 *
913 * Description:
914 * Typically called when end_that_request_first() returns 0, meaning
915 * all transfers have been done for a request. It's important to call
916 * this function before end_that_request_last(), as that will put the
917 * request back on the free list thus corrupting the internal tag list.
918 *
919 * Notes:
920 * queue lock must be held.
921 **/
922void blk_queue_end_tag(request_queue_t *q, struct request *rq)
923{
924 struct blk_queue_tag *bqt = q->queue_tags;
925 int tag = rq->tag;
926
927 BUG_ON(tag == -1);
928
929 if (unlikely(tag >= bqt->real_max_depth))
930 return;
931
932 if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
933 printk("attempt to clear non-busy tag (%d)\n", tag);
934 return;
935 }
936
937 list_del_init(&rq->queuelist);
938 rq->flags &= ~REQ_QUEUED;
939 rq->tag = -1;
940
941 if (unlikely(bqt->tag_index[tag] == NULL))
942 printk("tag %d is missing\n", tag);
943
944 bqt->tag_index[tag] = NULL;
945 bqt->busy--;
946}
947
948EXPORT_SYMBOL(blk_queue_end_tag);
949
950/**
951 * blk_queue_start_tag - find a free tag and assign it
952 * @q: the request queue for the device
953 * @rq: the block request that needs tagging
954 *
955 * Description:
956 * This can either be used as a stand-alone helper, or possibly be
957 * assigned as the queue &prep_rq_fn (in which case &struct request
958 * automagically gets a tag assigned). Note that this function
959 * assumes that any type of request can be queued! if this is not
960 * true for your device, you must check the request type before
961 * calling this function. The request will also be removed from
962 * the request queue, so it's the drivers responsibility to readd
963 * it if it should need to be restarted for some reason.
964 *
965 * Notes:
966 * queue lock must be held.
967 **/
968int blk_queue_start_tag(request_queue_t *q, struct request *rq)
969{
970 struct blk_queue_tag *bqt = q->queue_tags;
971 unsigned long *map = bqt->tag_map;
972 int tag = 0;
973
974 if (unlikely((rq->flags & REQ_QUEUED))) {
975 printk(KERN_ERR
976 "request %p for device [%s] already tagged %d",
977 rq, rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
978 BUG();
979 }
980
981 for (map = bqt->tag_map; *map == -1UL; map++) {
982 tag += BLK_TAGS_PER_LONG;
983
984 if (tag >= bqt->max_depth)
985 return 1;
986 }
987
988 tag += ffz(*map);
989 __set_bit(tag, bqt->tag_map);
990
991 rq->flags |= REQ_QUEUED;
992 rq->tag = tag;
993 bqt->tag_index[tag] = rq;
994 blkdev_dequeue_request(rq);
995 list_add(&rq->queuelist, &bqt->busy_list);
996 bqt->busy++;
997 return 0;
998}
999
1000EXPORT_SYMBOL(blk_queue_start_tag);
1001
1002/**
1003 * blk_queue_invalidate_tags - invalidate all pending tags
1004 * @q: the request queue for the device
1005 *
1006 * Description:
1007 * Hardware conditions may dictate a need to stop all pending requests.
1008 * In this case, we will safely clear the block side of the tag queue and
1009 * readd all requests to the request queue in the right order.
1010 *
1011 * Notes:
1012 * queue lock must be held.
1013 **/
1014void blk_queue_invalidate_tags(request_queue_t *q)
1015{
1016 struct blk_queue_tag *bqt = q->queue_tags;
1017 struct list_head *tmp, *n;
1018 struct request *rq;
1019
1020 list_for_each_safe(tmp, n, &bqt->busy_list) {
1021 rq = list_entry_rq(tmp);
1022
1023 if (rq->tag == -1) {
1024 printk("bad tag found on list\n");
1025 list_del_init(&rq->queuelist);
1026 rq->flags &= ~REQ_QUEUED;
1027 } else
1028 blk_queue_end_tag(q, rq);
1029
1030 rq->flags &= ~REQ_STARTED;
1031 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1032 }
1033}
1034
1035EXPORT_SYMBOL(blk_queue_invalidate_tags);
1036
1037static char *rq_flags[] = {
1038 "REQ_RW",
1039 "REQ_FAILFAST",
1040 "REQ_SOFTBARRIER",
1041 "REQ_HARDBARRIER",
1042 "REQ_CMD",
1043 "REQ_NOMERGE",
1044 "REQ_STARTED",
1045 "REQ_DONTPREP",
1046 "REQ_QUEUED",
1047 "REQ_PC",
1048 "REQ_BLOCK_PC",
1049 "REQ_SENSE",
1050 "REQ_FAILED",
1051 "REQ_QUIET",
1052 "REQ_SPECIAL",
1053 "REQ_DRIVE_CMD",
1054 "REQ_DRIVE_TASK",
1055 "REQ_DRIVE_TASKFILE",
1056 "REQ_PREEMPT",
1057 "REQ_PM_SUSPEND",
1058 "REQ_PM_RESUME",
1059 "REQ_PM_SHUTDOWN",
1060};
1061
1062void blk_dump_rq_flags(struct request *rq, char *msg)
1063{
1064 int bit;
1065
1066 printk("%s: dev %s: flags = ", msg,
1067 rq->rq_disk ? rq->rq_disk->disk_name : "?");
1068 bit = 0;
1069 do {
1070 if (rq->flags & (1 << bit))
1071 printk("%s ", rq_flags[bit]);
1072 bit++;
1073 } while (bit < __REQ_NR_BITS);
1074
1075 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1076 rq->nr_sectors,
1077 rq->current_nr_sectors);
1078 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1079
1080 if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
1081 printk("cdb: ");
1082 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1083 printk("%02x ", rq->cmd[bit]);
1084 printk("\n");
1085 }
1086}
1087
1088EXPORT_SYMBOL(blk_dump_rq_flags);
1089
1090void blk_recount_segments(request_queue_t *q, struct bio *bio)
1091{
1092 struct bio_vec *bv, *bvprv = NULL;
1093 int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1094 int high, highprv = 1;
1095
1096 if (unlikely(!bio->bi_io_vec))
1097 return;
1098
1099 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1100 hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1101 bio_for_each_segment(bv, bio, i) {
1102 /*
1103 * the trick here is making sure that a high page is never
1104 * considered part of another segment, since that might
1105 * change with the bounce page.
1106 */
1107 high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
1108 if (high || highprv)
1109 goto new_hw_segment;
1110 if (cluster) {
1111 if (seg_size + bv->bv_len > q->max_segment_size)
1112 goto new_segment;
1113 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1114 goto new_segment;
1115 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1116 goto new_segment;
1117 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1118 goto new_hw_segment;
1119
1120 seg_size += bv->bv_len;
1121 hw_seg_size += bv->bv_len;
1122 bvprv = bv;
1123 continue;
1124 }
1125new_segment:
1126 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1127 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1128 hw_seg_size += bv->bv_len;
1129 } else {
1130new_hw_segment:
1131 if (hw_seg_size > bio->bi_hw_front_size)
1132 bio->bi_hw_front_size = hw_seg_size;
1133 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1134 nr_hw_segs++;
1135 }
1136
1137 nr_phys_segs++;
1138 bvprv = bv;
1139 seg_size = bv->bv_len;
1140 highprv = high;
1141 }
1142 if (hw_seg_size > bio->bi_hw_back_size)
1143 bio->bi_hw_back_size = hw_seg_size;
1144 if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1145 bio->bi_hw_front_size = hw_seg_size;
1146 bio->bi_phys_segments = nr_phys_segs;
1147 bio->bi_hw_segments = nr_hw_segs;
1148 bio->bi_flags |= (1 << BIO_SEG_VALID);
1149}
1150
1151
1152int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1153 struct bio *nxt)
1154{
1155 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1156 return 0;
1157
1158 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1159 return 0;
1160 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1161 return 0;
1162
1163 /*
1164 * bio and nxt are contigous in memory, check if the queue allows
1165 * these two to be merged into one
1166 */
1167 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1168 return 1;
1169
1170 return 0;
1171}
1172
1173EXPORT_SYMBOL(blk_phys_contig_segment);
1174
1175int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1176 struct bio *nxt)
1177{
1178 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1179 blk_recount_segments(q, bio);
1180 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1181 blk_recount_segments(q, nxt);
1182 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1183 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1184 return 0;
1185 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1186 return 0;
1187
1188 return 1;
1189}
1190
1191EXPORT_SYMBOL(blk_hw_contig_segment);
1192
1193/*
1194 * map a request to scatterlist, return number of sg entries setup. Caller
1195 * must make sure sg can hold rq->nr_phys_segments entries
1196 */
1197int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1198{
1199 struct bio_vec *bvec, *bvprv;
1200 struct bio *bio;
1201 int nsegs, i, cluster;
1202
1203 nsegs = 0;
1204 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1205
1206 /*
1207 * for each bio in rq
1208 */
1209 bvprv = NULL;
1210 rq_for_each_bio(bio, rq) {
1211 /*
1212 * for each segment in bio
1213 */
1214 bio_for_each_segment(bvec, bio, i) {
1215 int nbytes = bvec->bv_len;
1216
1217 if (bvprv && cluster) {
1218 if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1219 goto new_segment;
1220
1221 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1222 goto new_segment;
1223 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1224 goto new_segment;
1225
1226 sg[nsegs - 1].length += nbytes;
1227 } else {
1228new_segment:
1229 memset(&sg[nsegs],0,sizeof(struct scatterlist));
1230 sg[nsegs].page = bvec->bv_page;
1231 sg[nsegs].length = nbytes;
1232 sg[nsegs].offset = bvec->bv_offset;
1233
1234 nsegs++;
1235 }
1236 bvprv = bvec;
1237 } /* segments in bio */
1238 } /* bios in rq */
1239
1240 return nsegs;
1241}
1242
1243EXPORT_SYMBOL(blk_rq_map_sg);
1244
1245/*
1246 * the standard queue merge functions, can be overridden with device
1247 * specific ones if so desired
1248 */
1249
1250static inline int ll_new_mergeable(request_queue_t *q,
1251 struct request *req,
1252 struct bio *bio)
1253{
1254 int nr_phys_segs = bio_phys_segments(q, bio);
1255
1256 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1257 req->flags |= REQ_NOMERGE;
1258 if (req == q->last_merge)
1259 q->last_merge = NULL;
1260 return 0;
1261 }
1262
1263 /*
1264 * A hw segment is just getting larger, bump just the phys
1265 * counter.
1266 */
1267 req->nr_phys_segments += nr_phys_segs;
1268 return 1;
1269}
1270
1271static inline int ll_new_hw_segment(request_queue_t *q,
1272 struct request *req,
1273 struct bio *bio)
1274{
1275 int nr_hw_segs = bio_hw_segments(q, bio);
1276 int nr_phys_segs = bio_phys_segments(q, bio);
1277
1278 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1279 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1280 req->flags |= REQ_NOMERGE;
1281 if (req == q->last_merge)
1282 q->last_merge = NULL;
1283 return 0;
1284 }
1285
1286 /*
1287 * This will form the start of a new hw segment. Bump both
1288 * counters.
1289 */
1290 req->nr_hw_segments += nr_hw_segs;
1291 req->nr_phys_segments += nr_phys_segs;
1292 return 1;
1293}
1294
1295static int ll_back_merge_fn(request_queue_t *q, struct request *req,
1296 struct bio *bio)
1297{
1298 int len;
1299
1300 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1301 req->flags |= REQ_NOMERGE;
1302 if (req == q->last_merge)
1303 q->last_merge = NULL;
1304 return 0;
1305 }
1306 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1307 blk_recount_segments(q, req->biotail);
1308 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1309 blk_recount_segments(q, bio);
1310 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1311 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1312 !BIOVEC_VIRT_OVERSIZE(len)) {
1313 int mergeable = ll_new_mergeable(q, req, bio);
1314
1315 if (mergeable) {
1316 if (req->nr_hw_segments == 1)
1317 req->bio->bi_hw_front_size = len;
1318 if (bio->bi_hw_segments == 1)
1319 bio->bi_hw_back_size = len;
1320 }
1321 return mergeable;
1322 }
1323
1324 return ll_new_hw_segment(q, req, bio);
1325}
1326
1327static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1328 struct bio *bio)
1329{
1330 int len;
1331
1332 if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
1333 req->flags |= REQ_NOMERGE;
1334 if (req == q->last_merge)
1335 q->last_merge = NULL;
1336 return 0;
1337 }
1338 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1339 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1340 blk_recount_segments(q, bio);
1341 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1342 blk_recount_segments(q, req->bio);
1343 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1344 !BIOVEC_VIRT_OVERSIZE(len)) {
1345 int mergeable = ll_new_mergeable(q, req, bio);
1346
1347 if (mergeable) {
1348 if (bio->bi_hw_segments == 1)
1349 bio->bi_hw_front_size = len;
1350 if (req->nr_hw_segments == 1)
1351 req->biotail->bi_hw_back_size = len;
1352 }
1353 return mergeable;
1354 }
1355
1356 return ll_new_hw_segment(q, req, bio);
1357}
1358
1359static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1360 struct request *next)
1361{
1362 int total_phys_segments = req->nr_phys_segments +next->nr_phys_segments;
1363 int total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1364
1365 /*
1366 * First check if the either of the requests are re-queued
1367 * requests. Can't merge them if they are.
1368 */
1369 if (req->special || next->special)
1370 return 0;
1371
1372 /*
1373 * Will it become to large?
1374 */
1375 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1376 return 0;
1377
1378 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1379 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1380 total_phys_segments--;
1381
1382 if (total_phys_segments > q->max_phys_segments)
1383 return 0;
1384
1385 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1386 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1387 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1388 /*
1389 * propagate the combined length to the end of the requests
1390 */
1391 if (req->nr_hw_segments == 1)
1392 req->bio->bi_hw_front_size = len;
1393 if (next->nr_hw_segments == 1)
1394 next->biotail->bi_hw_back_size = len;
1395 total_hw_segments--;
1396 }
1397
1398 if (total_hw_segments > q->max_hw_segments)
1399 return 0;
1400
1401 /* Merge is OK... */
1402 req->nr_phys_segments = total_phys_segments;
1403 req->nr_hw_segments = total_hw_segments;
1404 return 1;
1405}
1406
1407/*
1408 * "plug" the device if there are no outstanding requests: this will
1409 * force the transfer to start only after we have put all the requests
1410 * on the list.
1411 *
1412 * This is called with interrupts off and no requests on the queue and
1413 * with the queue lock held.
1414 */
1415void blk_plug_device(request_queue_t *q)
1416{
1417 WARN_ON(!irqs_disabled());
1418
1419 /*
1420 * don't plug a stopped queue, it must be paired with blk_start_queue()
1421 * which will restart the queueing
1422 */
1423 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1424 return;
1425
1426 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1427 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1428}
1429
1430EXPORT_SYMBOL(blk_plug_device);
1431
1432/*
1433 * remove the queue from the plugged list, if present. called with
1434 * queue lock held and interrupts disabled.
1435 */
1436int blk_remove_plug(request_queue_t *q)
1437{
1438 WARN_ON(!irqs_disabled());
1439
1440 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1441 return 0;
1442
1443 del_timer(&q->unplug_timer);
1444 return 1;
1445}
1446
1447EXPORT_SYMBOL(blk_remove_plug);
1448
1449/*
1450 * remove the plug and let it rip..
1451 */
1452void __generic_unplug_device(request_queue_t *q)
1453{
1454 if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
1455 return;
1456
1457 if (!blk_remove_plug(q))
1458 return;
1459
1460 /*
1461 * was plugged, fire request_fn if queue has stuff to do
1462 */
1463 if (elv_next_request(q))
1464 q->request_fn(q);
1465}
1466EXPORT_SYMBOL(__generic_unplug_device);
1467
1468/**
1469 * generic_unplug_device - fire a request queue
1470 * @q: The &request_queue_t in question
1471 *
1472 * Description:
1473 * Linux uses plugging to build bigger requests queues before letting
1474 * the device have at them. If a queue is plugged, the I/O scheduler
1475 * is still adding and merging requests on the queue. Once the queue
1476 * gets unplugged, the request_fn defined for the queue is invoked and
1477 * transfers started.
1478 **/
1479void generic_unplug_device(request_queue_t *q)
1480{
1481 spin_lock_irq(q->queue_lock);
1482 __generic_unplug_device(q);
1483 spin_unlock_irq(q->queue_lock);
1484}
1485EXPORT_SYMBOL(generic_unplug_device);
1486
1487static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1488 struct page *page)
1489{
1490 request_queue_t *q = bdi->unplug_io_data;
1491
1492 /*
1493 * devices don't necessarily have an ->unplug_fn defined
1494 */
1495 if (q->unplug_fn)
1496 q->unplug_fn(q);
1497}
1498
1499static void blk_unplug_work(void *data)
1500{
1501 request_queue_t *q = data;
1502
1503 q->unplug_fn(q);
1504}
1505
1506static void blk_unplug_timeout(unsigned long data)
1507{
1508 request_queue_t *q = (request_queue_t *)data;
1509
1510 kblockd_schedule_work(&q->unplug_work);
1511}
1512
1513/**
1514 * blk_start_queue - restart a previously stopped queue
1515 * @q: The &request_queue_t in question
1516 *
1517 * Description:
1518 * blk_start_queue() will clear the stop flag on the queue, and call
1519 * the request_fn for the queue if it was in a stopped state when
1520 * entered. Also see blk_stop_queue(). Queue lock must be held.
1521 **/
1522void blk_start_queue(request_queue_t *q)
1523{
1524 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1525
1526 /*
1527 * one level of recursion is ok and is much faster than kicking
1528 * the unplug handling
1529 */
1530 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1531 q->request_fn(q);
1532 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1533 } else {
1534 blk_plug_device(q);
1535 kblockd_schedule_work(&q->unplug_work);
1536 }
1537}
1538
1539EXPORT_SYMBOL(blk_start_queue);
1540
1541/**
1542 * blk_stop_queue - stop a queue
1543 * @q: The &request_queue_t in question
1544 *
1545 * Description:
1546 * The Linux block layer assumes that a block driver will consume all
1547 * entries on the request queue when the request_fn strategy is called.
1548 * Often this will not happen, because of hardware limitations (queue
1549 * depth settings). If a device driver gets a 'queue full' response,
1550 * or if it simply chooses not to queue more I/O at one point, it can
1551 * call this function to prevent the request_fn from being called until
1552 * the driver has signalled it's ready to go again. This happens by calling
1553 * blk_start_queue() to restart queue operations. Queue lock must be held.
1554 **/
1555void blk_stop_queue(request_queue_t *q)
1556{
1557 blk_remove_plug(q);
1558 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1559}
1560EXPORT_SYMBOL(blk_stop_queue);
1561
1562/**
1563 * blk_sync_queue - cancel any pending callbacks on a queue
1564 * @q: the queue
1565 *
1566 * Description:
1567 * The block layer may perform asynchronous callback activity
1568 * on a queue, such as calling the unplug function after a timeout.
1569 * A block device may call blk_sync_queue to ensure that any
1570 * such activity is cancelled, thus allowing it to release resources
1571 * the the callbacks might use. The caller must already have made sure
1572 * that its ->make_request_fn will not re-add plugging prior to calling
1573 * this function.
1574 *
1575 */
1576void blk_sync_queue(struct request_queue *q)
1577{
1578 del_timer_sync(&q->unplug_timer);
1579 kblockd_flush();
1580}
1581EXPORT_SYMBOL(blk_sync_queue);
1582
1583/**
1584 * blk_run_queue - run a single device queue
1585 * @q: The queue to run
1586 */
1587void blk_run_queue(struct request_queue *q)
1588{
1589 unsigned long flags;
1590
1591 spin_lock_irqsave(q->queue_lock, flags);
1592 blk_remove_plug(q);
Ken Chena2997382005-04-16 15:25:43 -07001593 if (!elv_queue_empty(q))
1594 q->request_fn(q);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001595 spin_unlock_irqrestore(q->queue_lock, flags);
1596}
1597EXPORT_SYMBOL(blk_run_queue);
1598
1599/**
1600 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1601 * @q: the request queue to be released
1602 *
1603 * Description:
1604 * blk_cleanup_queue is the pair to blk_init_queue() or
1605 * blk_queue_make_request(). It should be called when a request queue is
1606 * being released; typically when a block device is being de-registered.
1607 * Currently, its primary task it to free all the &struct request
1608 * structures that were allocated to the queue and the queue itself.
1609 *
1610 * Caveat:
1611 * Hopefully the low level driver will have finished any
1612 * outstanding requests first...
1613 **/
1614void blk_cleanup_queue(request_queue_t * q)
1615{
1616 struct request_list *rl = &q->rq;
1617
1618 if (!atomic_dec_and_test(&q->refcnt))
1619 return;
1620
1621 if (q->elevator)
1622 elevator_exit(q->elevator);
1623
1624 blk_sync_queue(q);
1625
1626 if (rl->rq_pool)
1627 mempool_destroy(rl->rq_pool);
1628
1629 if (q->queue_tags)
1630 __blk_queue_free_tags(q);
1631
1632 blk_queue_ordered(q, QUEUE_ORDERED_NONE);
1633
1634 kmem_cache_free(requestq_cachep, q);
1635}
1636
1637EXPORT_SYMBOL(blk_cleanup_queue);
1638
1639static int blk_init_free_list(request_queue_t *q)
1640{
1641 struct request_list *rl = &q->rq;
1642
1643 rl->count[READ] = rl->count[WRITE] = 0;
1644 rl->starved[READ] = rl->starved[WRITE] = 0;
1645 init_waitqueue_head(&rl->wait[READ]);
1646 init_waitqueue_head(&rl->wait[WRITE]);
1647 init_waitqueue_head(&rl->drain);
1648
Christoph Lameter19460892005-06-23 00:08:19 -07001649 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1650 mempool_free_slab, request_cachep, q->node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001651
1652 if (!rl->rq_pool)
1653 return -ENOMEM;
1654
1655 return 0;
1656}
1657
1658static int __make_request(request_queue_t *, struct bio *);
1659
1660request_queue_t *blk_alloc_queue(int gfp_mask)
1661{
Christoph Lameter19460892005-06-23 00:08:19 -07001662 return blk_alloc_queue_node(gfp_mask, -1);
1663}
1664EXPORT_SYMBOL(blk_alloc_queue);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001665
Christoph Lameter19460892005-06-23 00:08:19 -07001666request_queue_t *blk_alloc_queue_node(int gfp_mask, int node_id)
1667{
1668 request_queue_t *q;
1669
1670 q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001671 if (!q)
1672 return NULL;
1673
1674 memset(q, 0, sizeof(*q));
1675 init_timer(&q->unplug_timer);
1676 atomic_set(&q->refcnt, 1);
1677
1678 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1679 q->backing_dev_info.unplug_io_data = q;
1680
1681 return q;
1682}
Christoph Lameter19460892005-06-23 00:08:19 -07001683EXPORT_SYMBOL(blk_alloc_queue_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001684
1685/**
1686 * blk_init_queue - prepare a request queue for use with a block device
1687 * @rfn: The function to be called to process requests that have been
1688 * placed on the queue.
1689 * @lock: Request queue spin lock
1690 *
1691 * Description:
1692 * If a block device wishes to use the standard request handling procedures,
1693 * which sorts requests and coalesces adjacent requests, then it must
1694 * call blk_init_queue(). The function @rfn will be called when there
1695 * are requests on the queue that need to be processed. If the device
1696 * supports plugging, then @rfn may not be called immediately when requests
1697 * are available on the queue, but may be called at some time later instead.
1698 * Plugged queues are generally unplugged when a buffer belonging to one
1699 * of the requests on the queue is needed, or due to memory pressure.
1700 *
1701 * @rfn is not required, or even expected, to remove all requests off the
1702 * queue, but only as many as it can handle at a time. If it does leave
1703 * requests on the queue, it is responsible for arranging that the requests
1704 * get dealt with eventually.
1705 *
1706 * The queue spin lock must be held while manipulating the requests on the
1707 * request queue.
1708 *
1709 * Function returns a pointer to the initialized request queue, or NULL if
1710 * it didn't succeed.
1711 *
1712 * Note:
1713 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1714 * when the block device is deactivated (such as at module unload).
1715 **/
Christoph Lameter19460892005-06-23 00:08:19 -07001716
Linus Torvalds1da177e2005-04-16 15:20:36 -07001717request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1718{
Christoph Lameter19460892005-06-23 00:08:19 -07001719 return blk_init_queue_node(rfn, lock, -1);
1720}
1721EXPORT_SYMBOL(blk_init_queue);
1722
1723request_queue_t *
1724blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1725{
1726 request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001727
1728 if (!q)
1729 return NULL;
1730
Christoph Lameter19460892005-06-23 00:08:19 -07001731 q->node = node_id;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001732 if (blk_init_free_list(q))
1733 goto out_init;
1734
152587d2005-04-12 16:22:06 -05001735 /*
1736 * if caller didn't supply a lock, they get per-queue locking with
1737 * our embedded lock
1738 */
1739 if (!lock) {
1740 spin_lock_init(&q->__queue_lock);
1741 lock = &q->__queue_lock;
1742 }
1743
Linus Torvalds1da177e2005-04-16 15:20:36 -07001744 q->request_fn = rfn;
1745 q->back_merge_fn = ll_back_merge_fn;
1746 q->front_merge_fn = ll_front_merge_fn;
1747 q->merge_requests_fn = ll_merge_requests_fn;
1748 q->prep_rq_fn = NULL;
1749 q->unplug_fn = generic_unplug_device;
1750 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1751 q->queue_lock = lock;
1752
1753 blk_queue_segment_boundary(q, 0xffffffff);
1754
1755 blk_queue_make_request(q, __make_request);
1756 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1757
1758 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1759 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1760
1761 /*
1762 * all done
1763 */
1764 if (!elevator_init(q, NULL)) {
1765 blk_queue_congestion_threshold(q);
1766 return q;
1767 }
1768
1769 blk_cleanup_queue(q);
1770out_init:
1771 kmem_cache_free(requestq_cachep, q);
1772 return NULL;
1773}
Christoph Lameter19460892005-06-23 00:08:19 -07001774EXPORT_SYMBOL(blk_init_queue_node);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001775
1776int blk_get_queue(request_queue_t *q)
1777{
1778 if (!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
1779 atomic_inc(&q->refcnt);
1780 return 0;
1781 }
1782
1783 return 1;
1784}
1785
1786EXPORT_SYMBOL(blk_get_queue);
1787
1788static inline void blk_free_request(request_queue_t *q, struct request *rq)
1789{
1790 elv_put_request(q, rq);
1791 mempool_free(rq, q->rq.rq_pool);
1792}
1793
1794static inline struct request *blk_alloc_request(request_queue_t *q, int rw,
1795 int gfp_mask)
1796{
1797 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1798
1799 if (!rq)
1800 return NULL;
1801
1802 /*
1803 * first three bits are identical in rq->flags and bio->bi_rw,
1804 * see bio.h and blkdev.h
1805 */
1806 rq->flags = rw;
1807
1808 if (!elv_set_request(q, rq, gfp_mask))
1809 return rq;
1810
1811 mempool_free(rq, q->rq.rq_pool);
1812 return NULL;
1813}
1814
1815/*
1816 * ioc_batching returns true if the ioc is a valid batching request and
1817 * should be given priority access to a request.
1818 */
1819static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1820{
1821 if (!ioc)
1822 return 0;
1823
1824 /*
1825 * Make sure the process is able to allocate at least 1 request
1826 * even if the batch times out, otherwise we could theoretically
1827 * lose wakeups.
1828 */
1829 return ioc->nr_batch_requests == q->nr_batching ||
1830 (ioc->nr_batch_requests > 0
1831 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1832}
1833
1834/*
1835 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1836 * will cause the process to be a "batcher" on all queues in the system. This
1837 * is the behaviour we want though - once it gets a wakeup it should be given
1838 * a nice run.
1839 */
1840void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
1841{
1842 if (!ioc || ioc_batching(q, ioc))
1843 return;
1844
1845 ioc->nr_batch_requests = q->nr_batching;
1846 ioc->last_waited = jiffies;
1847}
1848
1849static void __freed_request(request_queue_t *q, int rw)
1850{
1851 struct request_list *rl = &q->rq;
1852
1853 if (rl->count[rw] < queue_congestion_off_threshold(q))
1854 clear_queue_congested(q, rw);
1855
1856 if (rl->count[rw] + 1 <= q->nr_requests) {
1857 smp_mb();
1858 if (waitqueue_active(&rl->wait[rw]))
1859 wake_up(&rl->wait[rw]);
1860
1861 blk_clear_queue_full(q, rw);
1862 }
1863}
1864
1865/*
1866 * A request has just been released. Account for it, update the full and
1867 * congestion status, wake up any waiters. Called under q->queue_lock.
1868 */
1869static void freed_request(request_queue_t *q, int rw)
1870{
1871 struct request_list *rl = &q->rq;
1872
1873 rl->count[rw]--;
1874
1875 __freed_request(q, rw);
1876
1877 if (unlikely(rl->starved[rw ^ 1]))
1878 __freed_request(q, rw ^ 1);
1879
1880 if (!rl->count[READ] && !rl->count[WRITE]) {
1881 smp_mb();
1882 if (unlikely(waitqueue_active(&rl->drain)))
1883 wake_up(&rl->drain);
1884 }
1885}
1886
1887#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
1888/*
1889 * Get a free request, queue_lock must not be held
1890 */
1891static struct request *get_request(request_queue_t *q, int rw, int gfp_mask)
1892{
1893 struct request *rq = NULL;
1894 struct request_list *rl = &q->rq;
1895 struct io_context *ioc = get_io_context(gfp_mask);
1896
1897 if (unlikely(test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)))
1898 goto out;
1899
1900 spin_lock_irq(q->queue_lock);
1901 if (rl->count[rw]+1 >= q->nr_requests) {
1902 /*
1903 * The queue will fill after this allocation, so set it as
1904 * full, and mark this process as "batching". This process
1905 * will be allowed to complete a batch of requests, others
1906 * will be blocked.
1907 */
1908 if (!blk_queue_full(q, rw)) {
1909 ioc_set_batching(q, ioc);
1910 blk_set_queue_full(q, rw);
1911 }
1912 }
1913
1914 switch (elv_may_queue(q, rw)) {
1915 case ELV_MQUEUE_NO:
1916 goto rq_starved;
1917 case ELV_MQUEUE_MAY:
1918 break;
1919 case ELV_MQUEUE_MUST:
1920 goto get_rq;
1921 }
1922
1923 if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
1924 /*
1925 * The queue is full and the allocating process is not a
1926 * "batcher", and not exempted by the IO scheduler
1927 */
1928 spin_unlock_irq(q->queue_lock);
1929 goto out;
1930 }
1931
1932get_rq:
1933 rl->count[rw]++;
1934 rl->starved[rw] = 0;
1935 if (rl->count[rw] >= queue_congestion_on_threshold(q))
1936 set_queue_congested(q, rw);
1937 spin_unlock_irq(q->queue_lock);
1938
1939 rq = blk_alloc_request(q, rw, gfp_mask);
1940 if (!rq) {
1941 /*
1942 * Allocation failed presumably due to memory. Undo anything
1943 * we might have messed up.
1944 *
1945 * Allocating task should really be put onto the front of the
1946 * wait queue, but this is pretty rare.
1947 */
1948 spin_lock_irq(q->queue_lock);
1949 freed_request(q, rw);
1950
1951 /*
1952 * in the very unlikely event that allocation failed and no
1953 * requests for this direction was pending, mark us starved
1954 * so that freeing of a request in the other direction will
1955 * notice us. another possible fix would be to split the
1956 * rq mempool into READ and WRITE
1957 */
1958rq_starved:
1959 if (unlikely(rl->count[rw] == 0))
1960 rl->starved[rw] = 1;
1961
1962 spin_unlock_irq(q->queue_lock);
1963 goto out;
1964 }
1965
1966 if (ioc_batching(q, ioc))
1967 ioc->nr_batch_requests--;
1968
1969 rq_init(q, rq);
1970 rq->rl = rl;
1971out:
1972 put_io_context(ioc);
1973 return rq;
1974}
1975
1976/*
1977 * No available requests for this queue, unplug the device and wait for some
1978 * requests to become available.
1979 */
1980static struct request *get_request_wait(request_queue_t *q, int rw)
1981{
1982 DEFINE_WAIT(wait);
1983 struct request *rq;
1984
1985 generic_unplug_device(q);
1986 do {
1987 struct request_list *rl = &q->rq;
1988
1989 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
1990 TASK_UNINTERRUPTIBLE);
1991
1992 rq = get_request(q, rw, GFP_NOIO);
1993
1994 if (!rq) {
1995 struct io_context *ioc;
1996
1997 io_schedule();
1998
1999 /*
2000 * After sleeping, we become a "batching" process and
2001 * will be able to allocate at least one request, and
2002 * up to a big batch of them for a small period time.
2003 * See ioc_batching, ioc_set_batching
2004 */
2005 ioc = get_io_context(GFP_NOIO);
2006 ioc_set_batching(q, ioc);
2007 put_io_context(ioc);
2008 }
2009 finish_wait(&rl->wait[rw], &wait);
2010 } while (!rq);
2011
2012 return rq;
2013}
2014
2015struct request *blk_get_request(request_queue_t *q, int rw, int gfp_mask)
2016{
2017 struct request *rq;
2018
2019 BUG_ON(rw != READ && rw != WRITE);
2020
2021 if (gfp_mask & __GFP_WAIT)
2022 rq = get_request_wait(q, rw);
2023 else
2024 rq = get_request(q, rw, gfp_mask);
2025
2026 return rq;
2027}
2028
2029EXPORT_SYMBOL(blk_get_request);
2030
2031/**
2032 * blk_requeue_request - put a request back on queue
2033 * @q: request queue where request should be inserted
2034 * @rq: request to be inserted
2035 *
2036 * Description:
2037 * Drivers often keep queueing requests until the hardware cannot accept
2038 * more, when that condition happens we need to put the request back
2039 * on the queue. Must be called with queue lock held.
2040 */
2041void blk_requeue_request(request_queue_t *q, struct request *rq)
2042{
2043 if (blk_rq_tagged(rq))
2044 blk_queue_end_tag(q, rq);
2045
2046 elv_requeue_request(q, rq);
2047}
2048
2049EXPORT_SYMBOL(blk_requeue_request);
2050
2051/**
2052 * blk_insert_request - insert a special request in to a request queue
2053 * @q: request queue where request should be inserted
2054 * @rq: request to be inserted
2055 * @at_head: insert request at head or tail of queue
2056 * @data: private data
Linus Torvalds1da177e2005-04-16 15:20:36 -07002057 *
2058 * Description:
2059 * Many block devices need to execute commands asynchronously, so they don't
2060 * block the whole kernel from preemption during request execution. This is
2061 * accomplished normally by inserting aritficial requests tagged as
2062 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2063 * scheduled for actual execution by the request queue.
2064 *
2065 * We have the option of inserting the head or the tail of the queue.
2066 * Typically we use the tail for new ioctls and so forth. We use the head
2067 * of the queue for things like a QUEUE_FULL message from a device, or a
2068 * host that is unable to accept a particular command.
2069 */
2070void blk_insert_request(request_queue_t *q, struct request *rq,
Tejun Heo 867d1192005-04-24 02:06:05 -05002071 int at_head, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002072{
Tejun Heo 867d1192005-04-24 02:06:05 -05002073 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074 unsigned long flags;
2075
2076 /*
2077 * tell I/O scheduler that this isn't a regular read/write (ie it
2078 * must not attempt merges on this) and that it acts as a soft
2079 * barrier
2080 */
2081 rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
2082
2083 rq->special = data;
2084
2085 spin_lock_irqsave(q->queue_lock, flags);
2086
2087 /*
2088 * If command is tagged, release the tag
2089 */
Tejun Heo 867d1192005-04-24 02:06:05 -05002090 if (blk_rq_tagged(rq))
2091 blk_queue_end_tag(q, rq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002092
Tejun Heo 867d1192005-04-24 02:06:05 -05002093 drive_stat_acct(rq, rq->nr_sectors, 1);
2094 __elv_add_request(q, rq, where, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002095
Linus Torvalds1da177e2005-04-16 15:20:36 -07002096 if (blk_queue_plugged(q))
2097 __generic_unplug_device(q);
2098 else
2099 q->request_fn(q);
2100 spin_unlock_irqrestore(q->queue_lock, flags);
2101}
2102
2103EXPORT_SYMBOL(blk_insert_request);
2104
2105/**
2106 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2107 * @q: request queue where request should be inserted
2108 * @rw: READ or WRITE data
2109 * @ubuf: the user buffer
2110 * @len: length of user data
2111 *
2112 * Description:
2113 * Data will be mapped directly for zero copy io, if possible. Otherwise
2114 * a kernel bounce buffer is used.
2115 *
2116 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2117 * still in process context.
2118 *
2119 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2120 * before being submitted to the device, as pages mapped may be out of
2121 * reach. It's the callers responsibility to make sure this happens. The
2122 * original bio must be passed back in to blk_rq_unmap_user() for proper
2123 * unmapping.
2124 */
2125struct request *blk_rq_map_user(request_queue_t *q, int rw, void __user *ubuf,
2126 unsigned int len)
2127{
2128 unsigned long uaddr;
2129 struct request *rq;
2130 struct bio *bio;
2131
2132 if (len > (q->max_sectors << 9))
2133 return ERR_PTR(-EINVAL);
2134 if ((!len && ubuf) || (len && !ubuf))
2135 return ERR_PTR(-EINVAL);
2136
2137 rq = blk_get_request(q, rw, __GFP_WAIT);
2138 if (!rq)
2139 return ERR_PTR(-ENOMEM);
2140
2141 /*
2142 * if alignment requirement is satisfied, map in user pages for
2143 * direct dma. else, set up kernel bounce buffers
2144 */
2145 uaddr = (unsigned long) ubuf;
2146 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2147 bio = bio_map_user(q, NULL, uaddr, len, rw == READ);
2148 else
2149 bio = bio_copy_user(q, uaddr, len, rw == READ);
2150
2151 if (!IS_ERR(bio)) {
2152 rq->bio = rq->biotail = bio;
2153 blk_rq_bio_prep(q, rq, bio);
2154
2155 rq->buffer = rq->data = NULL;
2156 rq->data_len = len;
2157 return rq;
2158 }
2159
2160 /*
2161 * bio is the err-ptr
2162 */
2163 blk_put_request(rq);
2164 return (struct request *) bio;
2165}
2166
2167EXPORT_SYMBOL(blk_rq_map_user);
2168
2169/**
2170 * blk_rq_unmap_user - unmap a request with user data
2171 * @rq: request to be unmapped
2172 * @bio: bio for the request
2173 * @ulen: length of user buffer
2174 *
2175 * Description:
2176 * Unmap a request previously mapped by blk_rq_map_user().
2177 */
2178int blk_rq_unmap_user(struct request *rq, struct bio *bio, unsigned int ulen)
2179{
2180 int ret = 0;
2181
2182 if (bio) {
2183 if (bio_flagged(bio, BIO_USER_MAPPED))
2184 bio_unmap_user(bio);
2185 else
2186 ret = bio_uncopy_user(bio);
2187 }
2188
2189 blk_put_request(rq);
2190 return ret;
2191}
2192
2193EXPORT_SYMBOL(blk_rq_unmap_user);
2194
2195/**
2196 * blk_execute_rq - insert a request into queue for execution
2197 * @q: queue to insert the request in
2198 * @bd_disk: matching gendisk
2199 * @rq: request to insert
2200 *
2201 * Description:
2202 * Insert a fully prepared request at the back of the io scheduler queue
2203 * for execution.
2204 */
2205int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2206 struct request *rq)
2207{
2208 DECLARE_COMPLETION(wait);
2209 char sense[SCSI_SENSE_BUFFERSIZE];
2210 int err = 0;
2211
2212 rq->rq_disk = bd_disk;
2213
2214 /*
2215 * we need an extra reference to the request, so we can look at
2216 * it after io completion
2217 */
2218 rq->ref_count++;
2219
2220 if (!rq->sense) {
2221 memset(sense, 0, sizeof(sense));
2222 rq->sense = sense;
2223 rq->sense_len = 0;
2224 }
2225
2226 rq->flags |= REQ_NOMERGE;
2227 rq->waiting = &wait;
2228 rq->end_io = blk_end_sync_rq;
2229 elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2230 generic_unplug_device(q);
2231 wait_for_completion(&wait);
2232 rq->waiting = NULL;
2233
2234 if (rq->errors)
2235 err = -EIO;
2236
2237 return err;
2238}
2239
2240EXPORT_SYMBOL(blk_execute_rq);
2241
2242/**
2243 * blkdev_issue_flush - queue a flush
2244 * @bdev: blockdev to issue flush for
2245 * @error_sector: error sector
2246 *
2247 * Description:
2248 * Issue a flush for the block device in question. Caller can supply
2249 * room for storing the error offset in case of a flush error, if they
2250 * wish to. Caller must run wait_for_completion() on its own.
2251 */
2252int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2253{
2254 request_queue_t *q;
2255
2256 if (bdev->bd_disk == NULL)
2257 return -ENXIO;
2258
2259 q = bdev_get_queue(bdev);
2260 if (!q)
2261 return -ENXIO;
2262 if (!q->issue_flush_fn)
2263 return -EOPNOTSUPP;
2264
2265 return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2266}
2267
2268EXPORT_SYMBOL(blkdev_issue_flush);
2269
2270/**
2271 * blkdev_scsi_issue_flush_fn - issue flush for SCSI devices
2272 * @q: device queue
2273 * @disk: gendisk
2274 * @error_sector: error offset
2275 *
2276 * Description:
2277 * Devices understanding the SCSI command set, can use this function as
2278 * a helper for issuing a cache flush. Note: driver is required to store
2279 * the error offset (in case of error flushing) in ->sector of struct
2280 * request.
2281 */
2282int blkdev_scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
2283 sector_t *error_sector)
2284{
2285 struct request *rq = blk_get_request(q, WRITE, __GFP_WAIT);
2286 int ret;
2287
2288 rq->flags |= REQ_BLOCK_PC | REQ_SOFTBARRIER;
2289 rq->sector = 0;
2290 memset(rq->cmd, 0, sizeof(rq->cmd));
2291 rq->cmd[0] = 0x35;
2292 rq->cmd_len = 12;
2293 rq->data = NULL;
2294 rq->data_len = 0;
2295 rq->timeout = 60 * HZ;
2296
2297 ret = blk_execute_rq(q, disk, rq);
2298
2299 if (ret && error_sector)
2300 *error_sector = rq->sector;
2301
2302 blk_put_request(rq);
2303 return ret;
2304}
2305
2306EXPORT_SYMBOL(blkdev_scsi_issue_flush_fn);
2307
2308void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2309{
2310 int rw = rq_data_dir(rq);
2311
2312 if (!blk_fs_request(rq) || !rq->rq_disk)
2313 return;
2314
2315 if (rw == READ) {
2316 __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
2317 if (!new_io)
2318 __disk_stat_inc(rq->rq_disk, read_merges);
2319 } else if (rw == WRITE) {
2320 __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
2321 if (!new_io)
2322 __disk_stat_inc(rq->rq_disk, write_merges);
2323 }
2324 if (new_io) {
2325 disk_round_stats(rq->rq_disk);
2326 rq->rq_disk->in_flight++;
2327 }
2328}
2329
2330/*
2331 * add-request adds a request to the linked list.
2332 * queue lock is held and interrupts disabled, as we muck with the
2333 * request queue list.
2334 */
2335static inline void add_request(request_queue_t * q, struct request * req)
2336{
2337 drive_stat_acct(req, req->nr_sectors, 1);
2338
2339 if (q->activity_fn)
2340 q->activity_fn(q->activity_data, rq_data_dir(req));
2341
2342 /*
2343 * elevator indicated where it wants this request to be
2344 * inserted at elevator_merge time
2345 */
2346 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2347}
2348
2349/*
2350 * disk_round_stats() - Round off the performance stats on a struct
2351 * disk_stats.
2352 *
2353 * The average IO queue length and utilisation statistics are maintained
2354 * by observing the current state of the queue length and the amount of
2355 * time it has been in this state for.
2356 *
2357 * Normally, that accounting is done on IO completion, but that can result
2358 * in more than a second's worth of IO being accounted for within any one
2359 * second, leading to >100% utilisation. To deal with that, we call this
2360 * function to do a round-off before returning the results when reading
2361 * /proc/diskstats. This accounts immediately for all queue usage up to
2362 * the current jiffies and restarts the counters again.
2363 */
2364void disk_round_stats(struct gendisk *disk)
2365{
2366 unsigned long now = jiffies;
2367
2368 __disk_stat_add(disk, time_in_queue,
2369 disk->in_flight * (now - disk->stamp));
2370 disk->stamp = now;
2371
2372 if (disk->in_flight)
2373 __disk_stat_add(disk, io_ticks, (now - disk->stamp_idle));
2374 disk->stamp_idle = now;
2375}
2376
2377/*
2378 * queue lock must be held
2379 */
2380static void __blk_put_request(request_queue_t *q, struct request *req)
2381{
2382 struct request_list *rl = req->rl;
2383
2384 if (unlikely(!q))
2385 return;
2386 if (unlikely(--req->ref_count))
2387 return;
2388
2389 req->rq_status = RQ_INACTIVE;
2390 req->q = NULL;
2391 req->rl = NULL;
2392
2393 /*
2394 * Request may not have originated from ll_rw_blk. if not,
2395 * it didn't come out of our reserved rq pools
2396 */
2397 if (rl) {
2398 int rw = rq_data_dir(req);
2399
2400 elv_completed_request(q, req);
2401
2402 BUG_ON(!list_empty(&req->queuelist));
2403
2404 blk_free_request(q, req);
2405 freed_request(q, rw);
2406 }
2407}
2408
2409void blk_put_request(struct request *req)
2410{
2411 /*
2412 * if req->rl isn't set, this request didnt originate from the
2413 * block layer, so it's safe to just disregard it
2414 */
2415 if (req->rl) {
2416 unsigned long flags;
2417 request_queue_t *q = req->q;
2418
2419 spin_lock_irqsave(q->queue_lock, flags);
2420 __blk_put_request(q, req);
2421 spin_unlock_irqrestore(q->queue_lock, flags);
2422 }
2423}
2424
2425EXPORT_SYMBOL(blk_put_request);
2426
2427/**
2428 * blk_end_sync_rq - executes a completion event on a request
2429 * @rq: request to complete
2430 */
2431void blk_end_sync_rq(struct request *rq)
2432{
2433 struct completion *waiting = rq->waiting;
2434
2435 rq->waiting = NULL;
2436 __blk_put_request(rq->q, rq);
2437
2438 /*
2439 * complete last, if this is a stack request the process (and thus
2440 * the rq pointer) could be invalid right after this complete()
2441 */
2442 complete(waiting);
2443}
2444EXPORT_SYMBOL(blk_end_sync_rq);
2445
2446/**
2447 * blk_congestion_wait - wait for a queue to become uncongested
2448 * @rw: READ or WRITE
2449 * @timeout: timeout in jiffies
2450 *
2451 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2452 * If no queues are congested then just wait for the next request to be
2453 * returned.
2454 */
2455long blk_congestion_wait(int rw, long timeout)
2456{
2457 long ret;
2458 DEFINE_WAIT(wait);
2459 wait_queue_head_t *wqh = &congestion_wqh[rw];
2460
2461 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
2462 ret = io_schedule_timeout(timeout);
2463 finish_wait(wqh, &wait);
2464 return ret;
2465}
2466
2467EXPORT_SYMBOL(blk_congestion_wait);
2468
2469/*
2470 * Has to be called with the request spinlock acquired
2471 */
2472static int attempt_merge(request_queue_t *q, struct request *req,
2473 struct request *next)
2474{
2475 if (!rq_mergeable(req) || !rq_mergeable(next))
2476 return 0;
2477
2478 /*
2479 * not contigious
2480 */
2481 if (req->sector + req->nr_sectors != next->sector)
2482 return 0;
2483
2484 if (rq_data_dir(req) != rq_data_dir(next)
2485 || req->rq_disk != next->rq_disk
2486 || next->waiting || next->special)
2487 return 0;
2488
2489 /*
2490 * If we are allowed to merge, then append bio list
2491 * from next to rq and release next. merge_requests_fn
2492 * will have updated segment counts, update sector
2493 * counts here.
2494 */
2495 if (!q->merge_requests_fn(q, req, next))
2496 return 0;
2497
2498 /*
2499 * At this point we have either done a back merge
2500 * or front merge. We need the smaller start_time of
2501 * the merged requests to be the current request
2502 * for accounting purposes.
2503 */
2504 if (time_after(req->start_time, next->start_time))
2505 req->start_time = next->start_time;
2506
2507 req->biotail->bi_next = next->bio;
2508 req->biotail = next->biotail;
2509
2510 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2511
2512 elv_merge_requests(q, req, next);
2513
2514 if (req->rq_disk) {
2515 disk_round_stats(req->rq_disk);
2516 req->rq_disk->in_flight--;
2517 }
2518
2519 __blk_put_request(q, next);
2520 return 1;
2521}
2522
2523static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2524{
2525 struct request *next = elv_latter_request(q, rq);
2526
2527 if (next)
2528 return attempt_merge(q, rq, next);
2529
2530 return 0;
2531}
2532
2533static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2534{
2535 struct request *prev = elv_former_request(q, rq);
2536
2537 if (prev)
2538 return attempt_merge(q, prev, rq);
2539
2540 return 0;
2541}
2542
2543/**
2544 * blk_attempt_remerge - attempt to remerge active head with next request
2545 * @q: The &request_queue_t belonging to the device
2546 * @rq: The head request (usually)
2547 *
2548 * Description:
2549 * For head-active devices, the queue can easily be unplugged so quickly
2550 * that proper merging is not done on the front request. This may hurt
2551 * performance greatly for some devices. The block layer cannot safely
2552 * do merging on that first request for these queues, but the driver can
2553 * call this function and make it happen any way. Only the driver knows
2554 * when it is safe to do so.
2555 **/
2556void blk_attempt_remerge(request_queue_t *q, struct request *rq)
2557{
2558 unsigned long flags;
2559
2560 spin_lock_irqsave(q->queue_lock, flags);
2561 attempt_back_merge(q, rq);
2562 spin_unlock_irqrestore(q->queue_lock, flags);
2563}
2564
2565EXPORT_SYMBOL(blk_attempt_remerge);
2566
2567/*
2568 * Non-locking blk_attempt_remerge variant.
2569 */
2570void __blk_attempt_remerge(request_queue_t *q, struct request *rq)
2571{
2572 attempt_back_merge(q, rq);
2573}
2574
2575EXPORT_SYMBOL(__blk_attempt_remerge);
2576
2577static int __make_request(request_queue_t *q, struct bio *bio)
2578{
2579 struct request *req, *freereq = NULL;
Jens Axboe4a534f92005-04-16 15:25:40 -07002580 int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002581 sector_t sector;
2582
2583 sector = bio->bi_sector;
2584 nr_sectors = bio_sectors(bio);
2585 cur_nr_sectors = bio_cur_sectors(bio);
2586
2587 rw = bio_data_dir(bio);
Jens Axboe4a534f92005-04-16 15:25:40 -07002588 sync = bio_sync(bio);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002589
2590 /*
2591 * low level driver can indicate that it wants pages above a
2592 * certain limit bounced to low memory (ie for highmem, or even
2593 * ISA dma in theory)
2594 */
2595 blk_queue_bounce(q, &bio);
2596
2597 spin_lock_prefetch(q->queue_lock);
2598
2599 barrier = bio_barrier(bio);
2600 if (barrier && (q->ordered == QUEUE_ORDERED_NONE)) {
2601 err = -EOPNOTSUPP;
2602 goto end_io;
2603 }
2604
2605again:
2606 spin_lock_irq(q->queue_lock);
2607
2608 if (elv_queue_empty(q)) {
2609 blk_plug_device(q);
2610 goto get_rq;
2611 }
2612 if (barrier)
2613 goto get_rq;
2614
2615 el_ret = elv_merge(q, &req, bio);
2616 switch (el_ret) {
2617 case ELEVATOR_BACK_MERGE:
2618 BUG_ON(!rq_mergeable(req));
2619
2620 if (!q->back_merge_fn(q, req, bio))
2621 break;
2622
2623 req->biotail->bi_next = bio;
2624 req->biotail = bio;
2625 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2626 drive_stat_acct(req, nr_sectors, 0);
2627 if (!attempt_back_merge(q, req))
2628 elv_merged_request(q, req);
2629 goto out;
2630
2631 case ELEVATOR_FRONT_MERGE:
2632 BUG_ON(!rq_mergeable(req));
2633
2634 if (!q->front_merge_fn(q, req, bio))
2635 break;
2636
2637 bio->bi_next = req->bio;
2638 req->bio = bio;
2639
2640 /*
2641 * may not be valid. if the low level driver said
2642 * it didn't need a bounce buffer then it better
2643 * not touch req->buffer either...
2644 */
2645 req->buffer = bio_data(bio);
2646 req->current_nr_sectors = cur_nr_sectors;
2647 req->hard_cur_sectors = cur_nr_sectors;
2648 req->sector = req->hard_sector = sector;
2649 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2650 drive_stat_acct(req, nr_sectors, 0);
2651 if (!attempt_front_merge(q, req))
2652 elv_merged_request(q, req);
2653 goto out;
2654
2655 /*
2656 * elevator says don't/can't merge. get new request
2657 */
2658 case ELEVATOR_NO_MERGE:
2659 break;
2660
2661 default:
2662 printk("elevator returned crap (%d)\n", el_ret);
2663 BUG();
2664 }
2665
2666 /*
2667 * Grab a free request from the freelist - if that is empty, check
2668 * if we are doing read ahead and abort instead of blocking for
2669 * a free slot.
2670 */
2671get_rq:
2672 if (freereq) {
2673 req = freereq;
2674 freereq = NULL;
2675 } else {
2676 spin_unlock_irq(q->queue_lock);
2677 if ((freereq = get_request(q, rw, GFP_ATOMIC)) == NULL) {
2678 /*
2679 * READA bit set
2680 */
2681 err = -EWOULDBLOCK;
2682 if (bio_rw_ahead(bio))
2683 goto end_io;
2684
2685 freereq = get_request_wait(q, rw);
2686 }
2687 goto again;
2688 }
2689
2690 req->flags |= REQ_CMD;
2691
2692 /*
2693 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2694 */
2695 if (bio_rw_ahead(bio) || bio_failfast(bio))
2696 req->flags |= REQ_FAILFAST;
2697
2698 /*
2699 * REQ_BARRIER implies no merging, but lets make it explicit
2700 */
2701 if (barrier)
2702 req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2703
2704 req->errors = 0;
2705 req->hard_sector = req->sector = sector;
2706 req->hard_nr_sectors = req->nr_sectors = nr_sectors;
2707 req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
2708 req->nr_phys_segments = bio_phys_segments(q, bio);
2709 req->nr_hw_segments = bio_hw_segments(q, bio);
2710 req->buffer = bio_data(bio); /* see ->buffer comment above */
2711 req->waiting = NULL;
2712 req->bio = req->biotail = bio;
2713 req->rq_disk = bio->bi_bdev->bd_disk;
2714 req->start_time = jiffies;
2715
2716 add_request(q, req);
2717out:
2718 if (freereq)
2719 __blk_put_request(q, freereq);
Jens Axboe4a534f92005-04-16 15:25:40 -07002720 if (sync)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002721 __generic_unplug_device(q);
2722
2723 spin_unlock_irq(q->queue_lock);
2724 return 0;
2725
2726end_io:
2727 bio_endio(bio, nr_sectors << 9, err);
2728 return 0;
2729}
2730
2731/*
2732 * If bio->bi_dev is a partition, remap the location
2733 */
2734static inline void blk_partition_remap(struct bio *bio)
2735{
2736 struct block_device *bdev = bio->bi_bdev;
2737
2738 if (bdev != bdev->bd_contains) {
2739 struct hd_struct *p = bdev->bd_part;
2740
2741 switch (bio->bi_rw) {
2742 case READ:
2743 p->read_sectors += bio_sectors(bio);
2744 p->reads++;
2745 break;
2746 case WRITE:
2747 p->write_sectors += bio_sectors(bio);
2748 p->writes++;
2749 break;
2750 }
2751 bio->bi_sector += p->start_sect;
2752 bio->bi_bdev = bdev->bd_contains;
2753 }
2754}
2755
2756void blk_finish_queue_drain(request_queue_t *q)
2757{
2758 struct request_list *rl = &q->rq;
2759 struct request *rq;
2760
2761 spin_lock_irq(q->queue_lock);
2762 clear_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2763
2764 while (!list_empty(&q->drain_list)) {
2765 rq = list_entry_rq(q->drain_list.next);
2766
2767 list_del_init(&rq->queuelist);
2768 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
2769 }
2770
2771 spin_unlock_irq(q->queue_lock);
2772
2773 wake_up(&rl->wait[0]);
2774 wake_up(&rl->wait[1]);
2775 wake_up(&rl->drain);
2776}
2777
2778static int wait_drain(request_queue_t *q, struct request_list *rl, int dispatch)
2779{
2780 int wait = rl->count[READ] + rl->count[WRITE];
2781
2782 if (dispatch)
2783 wait += !list_empty(&q->queue_head);
2784
2785 return wait;
2786}
2787
2788/*
2789 * We rely on the fact that only requests allocated through blk_alloc_request()
2790 * have io scheduler private data structures associated with them. Any other
2791 * type of request (allocated on stack or through kmalloc()) should not go
2792 * to the io scheduler core, but be attached to the queue head instead.
2793 */
2794void blk_wait_queue_drained(request_queue_t *q, int wait_dispatch)
2795{
2796 struct request_list *rl = &q->rq;
2797 DEFINE_WAIT(wait);
2798
2799 spin_lock_irq(q->queue_lock);
2800 set_bit(QUEUE_FLAG_DRAIN, &q->queue_flags);
2801
2802 while (wait_drain(q, rl, wait_dispatch)) {
2803 prepare_to_wait(&rl->drain, &wait, TASK_UNINTERRUPTIBLE);
2804
2805 if (wait_drain(q, rl, wait_dispatch)) {
2806 __generic_unplug_device(q);
2807 spin_unlock_irq(q->queue_lock);
2808 io_schedule();
2809 spin_lock_irq(q->queue_lock);
2810 }
2811
2812 finish_wait(&rl->drain, &wait);
2813 }
2814
2815 spin_unlock_irq(q->queue_lock);
2816}
2817
2818/*
2819 * block waiting for the io scheduler being started again.
2820 */
2821static inline void block_wait_queue_running(request_queue_t *q)
2822{
2823 DEFINE_WAIT(wait);
2824
2825 while (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags)) {
2826 struct request_list *rl = &q->rq;
2827
2828 prepare_to_wait_exclusive(&rl->drain, &wait,
2829 TASK_UNINTERRUPTIBLE);
2830
2831 /*
2832 * re-check the condition. avoids using prepare_to_wait()
2833 * in the fast path (queue is running)
2834 */
2835 if (test_bit(QUEUE_FLAG_DRAIN, &q->queue_flags))
2836 io_schedule();
2837
2838 finish_wait(&rl->drain, &wait);
2839 }
2840}
2841
2842static void handle_bad_sector(struct bio *bio)
2843{
2844 char b[BDEVNAME_SIZE];
2845
2846 printk(KERN_INFO "attempt to access beyond end of device\n");
2847 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
2848 bdevname(bio->bi_bdev, b),
2849 bio->bi_rw,
2850 (unsigned long long)bio->bi_sector + bio_sectors(bio),
2851 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
2852
2853 set_bit(BIO_EOF, &bio->bi_flags);
2854}
2855
2856/**
2857 * generic_make_request: hand a buffer to its device driver for I/O
2858 * @bio: The bio describing the location in memory and on the device.
2859 *
2860 * generic_make_request() is used to make I/O requests of block
2861 * devices. It is passed a &struct bio, which describes the I/O that needs
2862 * to be done.
2863 *
2864 * generic_make_request() does not return any status. The
2865 * success/failure status of the request, along with notification of
2866 * completion, is delivered asynchronously through the bio->bi_end_io
2867 * function described (one day) else where.
2868 *
2869 * The caller of generic_make_request must make sure that bi_io_vec
2870 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2871 * set to describe the device address, and the
2872 * bi_end_io and optionally bi_private are set to describe how
2873 * completion notification should be signaled.
2874 *
2875 * generic_make_request and the drivers it calls may use bi_next if this
2876 * bio happens to be merged with someone else, and may change bi_dev and
2877 * bi_sector for remaps as it sees fit. So the values of these fields
2878 * should NOT be depended on after the call to generic_make_request.
2879 */
2880void generic_make_request(struct bio *bio)
2881{
2882 request_queue_t *q;
2883 sector_t maxsector;
2884 int ret, nr_sectors = bio_sectors(bio);
2885
2886 might_sleep();
2887 /* Test device or partition size, when known. */
2888 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
2889 if (maxsector) {
2890 sector_t sector = bio->bi_sector;
2891
2892 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2893 /*
2894 * This may well happen - the kernel calls bread()
2895 * without checking the size of the device, e.g., when
2896 * mounting a device.
2897 */
2898 handle_bad_sector(bio);
2899 goto end_io;
2900 }
2901 }
2902
2903 /*
2904 * Resolve the mapping until finished. (drivers are
2905 * still free to implement/resolve their own stacking
2906 * by explicitly returning 0)
2907 *
2908 * NOTE: we don't repeat the blk_size check for each new device.
2909 * Stacking drivers are expected to know what they are doing.
2910 */
2911 do {
2912 char b[BDEVNAME_SIZE];
2913
2914 q = bdev_get_queue(bio->bi_bdev);
2915 if (!q) {
2916 printk(KERN_ERR
2917 "generic_make_request: Trying to access "
2918 "nonexistent block-device %s (%Lu)\n",
2919 bdevname(bio->bi_bdev, b),
2920 (long long) bio->bi_sector);
2921end_io:
2922 bio_endio(bio, bio->bi_size, -EIO);
2923 break;
2924 }
2925
2926 if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
2927 printk("bio too big device %s (%u > %u)\n",
2928 bdevname(bio->bi_bdev, b),
2929 bio_sectors(bio),
2930 q->max_hw_sectors);
2931 goto end_io;
2932 }
2933
2934 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))
2935 goto end_io;
2936
2937 block_wait_queue_running(q);
2938
2939 /*
2940 * If this device has partitions, remap block n
2941 * of partition p to block n+start(p) of the disk.
2942 */
2943 blk_partition_remap(bio);
2944
2945 ret = q->make_request_fn(q, bio);
2946 } while (ret);
2947}
2948
2949EXPORT_SYMBOL(generic_make_request);
2950
2951/**
2952 * submit_bio: submit a bio to the block device layer for I/O
2953 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2954 * @bio: The &struct bio which describes the I/O
2955 *
2956 * submit_bio() is very similar in purpose to generic_make_request(), and
2957 * uses that function to do most of the work. Both are fairly rough
2958 * interfaces, @bio must be presetup and ready for I/O.
2959 *
2960 */
2961void submit_bio(int rw, struct bio *bio)
2962{
2963 int count = bio_sectors(bio);
2964
2965 BIO_BUG_ON(!bio->bi_size);
2966 BIO_BUG_ON(!bio->bi_io_vec);
2967 bio->bi_rw = rw;
2968 if (rw & WRITE)
2969 mod_page_state(pgpgout, count);
2970 else
2971 mod_page_state(pgpgin, count);
2972
2973 if (unlikely(block_dump)) {
2974 char b[BDEVNAME_SIZE];
2975 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2976 current->comm, current->pid,
2977 (rw & WRITE) ? "WRITE" : "READ",
2978 (unsigned long long)bio->bi_sector,
2979 bdevname(bio->bi_bdev,b));
2980 }
2981
2982 generic_make_request(bio);
2983}
2984
2985EXPORT_SYMBOL(submit_bio);
2986
2987void blk_recalc_rq_segments(struct request *rq)
2988{
2989 struct bio *bio, *prevbio = NULL;
2990 int nr_phys_segs, nr_hw_segs;
2991 unsigned int phys_size, hw_size;
2992 request_queue_t *q = rq->q;
2993
2994 if (!rq->bio)
2995 return;
2996
2997 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
2998 rq_for_each_bio(bio, rq) {
2999 /* Force bio hw/phys segs to be recalculated. */
3000 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3001
3002 nr_phys_segs += bio_phys_segments(q, bio);
3003 nr_hw_segs += bio_hw_segments(q, bio);
3004 if (prevbio) {
3005 int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3006 int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3007
3008 if (blk_phys_contig_segment(q, prevbio, bio) &&
3009 pseg <= q->max_segment_size) {
3010 nr_phys_segs--;
3011 phys_size += prevbio->bi_size + bio->bi_size;
3012 } else
3013 phys_size = 0;
3014
3015 if (blk_hw_contig_segment(q, prevbio, bio) &&
3016 hseg <= q->max_segment_size) {
3017 nr_hw_segs--;
3018 hw_size += prevbio->bi_size + bio->bi_size;
3019 } else
3020 hw_size = 0;
3021 }
3022 prevbio = bio;
3023 }
3024
3025 rq->nr_phys_segments = nr_phys_segs;
3026 rq->nr_hw_segments = nr_hw_segs;
3027}
3028
3029void blk_recalc_rq_sectors(struct request *rq, int nsect)
3030{
3031 if (blk_fs_request(rq)) {
3032 rq->hard_sector += nsect;
3033 rq->hard_nr_sectors -= nsect;
3034
3035 /*
3036 * Move the I/O submission pointers ahead if required.
3037 */
3038 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3039 (rq->sector <= rq->hard_sector)) {
3040 rq->sector = rq->hard_sector;
3041 rq->nr_sectors = rq->hard_nr_sectors;
3042 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3043 rq->current_nr_sectors = rq->hard_cur_sectors;
3044 rq->buffer = bio_data(rq->bio);
3045 }
3046
3047 /*
3048 * if total number of sectors is less than the first segment
3049 * size, something has gone terribly wrong
3050 */
3051 if (rq->nr_sectors < rq->current_nr_sectors) {
3052 printk("blk: request botched\n");
3053 rq->nr_sectors = rq->current_nr_sectors;
3054 }
3055 }
3056}
3057
3058static int __end_that_request_first(struct request *req, int uptodate,
3059 int nr_bytes)
3060{
3061 int total_bytes, bio_nbytes, error, next_idx = 0;
3062 struct bio *bio;
3063
3064 /*
3065 * extend uptodate bool to allow < 0 value to be direct io error
3066 */
3067 error = 0;
3068 if (end_io_error(uptodate))
3069 error = !uptodate ? -EIO : uptodate;
3070
3071 /*
3072 * for a REQ_BLOCK_PC request, we want to carry any eventual
3073 * sense key with us all the way through
3074 */
3075 if (!blk_pc_request(req))
3076 req->errors = 0;
3077
3078 if (!uptodate) {
3079 if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
3080 printk("end_request: I/O error, dev %s, sector %llu\n",
3081 req->rq_disk ? req->rq_disk->disk_name : "?",
3082 (unsigned long long)req->sector);
3083 }
3084
3085 total_bytes = bio_nbytes = 0;
3086 while ((bio = req->bio) != NULL) {
3087 int nbytes;
3088
3089 if (nr_bytes >= bio->bi_size) {
3090 req->bio = bio->bi_next;
3091 nbytes = bio->bi_size;
3092 bio_endio(bio, nbytes, error);
3093 next_idx = 0;
3094 bio_nbytes = 0;
3095 } else {
3096 int idx = bio->bi_idx + next_idx;
3097
3098 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3099 blk_dump_rq_flags(req, "__end_that");
3100 printk("%s: bio idx %d >= vcnt %d\n",
3101 __FUNCTION__,
3102 bio->bi_idx, bio->bi_vcnt);
3103 break;
3104 }
3105
3106 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3107 BIO_BUG_ON(nbytes > bio->bi_size);
3108
3109 /*
3110 * not a complete bvec done
3111 */
3112 if (unlikely(nbytes > nr_bytes)) {
3113 bio_nbytes += nr_bytes;
3114 total_bytes += nr_bytes;
3115 break;
3116 }
3117
3118 /*
3119 * advance to the next vector
3120 */
3121 next_idx++;
3122 bio_nbytes += nbytes;
3123 }
3124
3125 total_bytes += nbytes;
3126 nr_bytes -= nbytes;
3127
3128 if ((bio = req->bio)) {
3129 /*
3130 * end more in this run, or just return 'not-done'
3131 */
3132 if (unlikely(nr_bytes <= 0))
3133 break;
3134 }
3135 }
3136
3137 /*
3138 * completely done
3139 */
3140 if (!req->bio)
3141 return 0;
3142
3143 /*
3144 * if the request wasn't completed, update state
3145 */
3146 if (bio_nbytes) {
3147 bio_endio(bio, bio_nbytes, error);
3148 bio->bi_idx += next_idx;
3149 bio_iovec(bio)->bv_offset += nr_bytes;
3150 bio_iovec(bio)->bv_len -= nr_bytes;
3151 }
3152
3153 blk_recalc_rq_sectors(req, total_bytes >> 9);
3154 blk_recalc_rq_segments(req);
3155 return 1;
3156}
3157
3158/**
3159 * end_that_request_first - end I/O on a request
3160 * @req: the request being processed
3161 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3162 * @nr_sectors: number of sectors to end I/O on
3163 *
3164 * Description:
3165 * Ends I/O on a number of sectors attached to @req, and sets it up
3166 * for the next range of segments (if any) in the cluster.
3167 *
3168 * Return:
3169 * 0 - we are done with this request, call end_that_request_last()
3170 * 1 - still buffers pending for this request
3171 **/
3172int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3173{
3174 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3175}
3176
3177EXPORT_SYMBOL(end_that_request_first);
3178
3179/**
3180 * end_that_request_chunk - end I/O on a request
3181 * @req: the request being processed
3182 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3183 * @nr_bytes: number of bytes to complete
3184 *
3185 * Description:
3186 * Ends I/O on a number of bytes attached to @req, and sets it up
3187 * for the next range of segments (if any). Like end_that_request_first(),
3188 * but deals with bytes instead of sectors.
3189 *
3190 * Return:
3191 * 0 - we are done with this request, call end_that_request_last()
3192 * 1 - still buffers pending for this request
3193 **/
3194int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3195{
3196 return __end_that_request_first(req, uptodate, nr_bytes);
3197}
3198
3199EXPORT_SYMBOL(end_that_request_chunk);
3200
3201/*
3202 * queue lock must be held
3203 */
3204void end_that_request_last(struct request *req)
3205{
3206 struct gendisk *disk = req->rq_disk;
3207
3208 if (unlikely(laptop_mode) && blk_fs_request(req))
3209 laptop_io_completion();
3210
3211 if (disk && blk_fs_request(req)) {
3212 unsigned long duration = jiffies - req->start_time;
3213 switch (rq_data_dir(req)) {
3214 case WRITE:
3215 __disk_stat_inc(disk, writes);
3216 __disk_stat_add(disk, write_ticks, duration);
3217 break;
3218 case READ:
3219 __disk_stat_inc(disk, reads);
3220 __disk_stat_add(disk, read_ticks, duration);
3221 break;
3222 }
3223 disk_round_stats(disk);
3224 disk->in_flight--;
3225 }
3226 if (req->end_io)
3227 req->end_io(req);
3228 else
3229 __blk_put_request(req->q, req);
3230}
3231
3232EXPORT_SYMBOL(end_that_request_last);
3233
3234void end_request(struct request *req, int uptodate)
3235{
3236 if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3237 add_disk_randomness(req->rq_disk);
3238 blkdev_dequeue_request(req);
3239 end_that_request_last(req);
3240 }
3241}
3242
3243EXPORT_SYMBOL(end_request);
3244
3245void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3246{
3247 /* first three bits are identical in rq->flags and bio->bi_rw */
3248 rq->flags |= (bio->bi_rw & 7);
3249
3250 rq->nr_phys_segments = bio_phys_segments(q, bio);
3251 rq->nr_hw_segments = bio_hw_segments(q, bio);
3252 rq->current_nr_sectors = bio_cur_sectors(bio);
3253 rq->hard_cur_sectors = rq->current_nr_sectors;
3254 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3255 rq->buffer = bio_data(bio);
3256
3257 rq->bio = rq->biotail = bio;
3258}
3259
3260EXPORT_SYMBOL(blk_rq_bio_prep);
3261
3262int kblockd_schedule_work(struct work_struct *work)
3263{
3264 return queue_work(kblockd_workqueue, work);
3265}
3266
3267EXPORT_SYMBOL(kblockd_schedule_work);
3268
3269void kblockd_flush(void)
3270{
3271 flush_workqueue(kblockd_workqueue);
3272}
3273EXPORT_SYMBOL(kblockd_flush);
3274
3275int __init blk_dev_init(void)
3276{
3277 kblockd_workqueue = create_workqueue("kblockd");
3278 if (!kblockd_workqueue)
3279 panic("Failed to create kblockd\n");
3280
3281 request_cachep = kmem_cache_create("blkdev_requests",
3282 sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3283
3284 requestq_cachep = kmem_cache_create("blkdev_queue",
3285 sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3286
3287 iocontext_cachep = kmem_cache_create("blkdev_ioc",
3288 sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3289
3290 blk_max_low_pfn = max_low_pfn;
3291 blk_max_pfn = max_pfn;
3292
3293 return 0;
3294}
3295
3296/*
3297 * IO Context helper functions
3298 */
3299void put_io_context(struct io_context *ioc)
3300{
3301 if (ioc == NULL)
3302 return;
3303
3304 BUG_ON(atomic_read(&ioc->refcount) == 0);
3305
3306 if (atomic_dec_and_test(&ioc->refcount)) {
3307 if (ioc->aic && ioc->aic->dtor)
3308 ioc->aic->dtor(ioc->aic);
3309 if (ioc->cic && ioc->cic->dtor)
3310 ioc->cic->dtor(ioc->cic);
3311
3312 kmem_cache_free(iocontext_cachep, ioc);
3313 }
3314}
3315EXPORT_SYMBOL(put_io_context);
3316
3317/* Called by the exitting task */
3318void exit_io_context(void)
3319{
3320 unsigned long flags;
3321 struct io_context *ioc;
3322
3323 local_irq_save(flags);
3324 ioc = current->io_context;
3325 current->io_context = NULL;
3326 local_irq_restore(flags);
3327
3328 if (ioc->aic && ioc->aic->exit)
3329 ioc->aic->exit(ioc->aic);
3330 if (ioc->cic && ioc->cic->exit)
3331 ioc->cic->exit(ioc->cic);
3332
3333 put_io_context(ioc);
3334}
3335
3336/*
3337 * If the current task has no IO context then create one and initialise it.
3338 * If it does have a context, take a ref on it.
3339 *
3340 * This is always called in the context of the task which submitted the I/O.
3341 * But weird things happen, so we disable local interrupts to ensure exclusive
3342 * access to *current.
3343 */
3344struct io_context *get_io_context(int gfp_flags)
3345{
3346 struct task_struct *tsk = current;
3347 unsigned long flags;
3348 struct io_context *ret;
3349
3350 local_irq_save(flags);
3351 ret = tsk->io_context;
3352 if (ret)
3353 goto out;
3354
3355 local_irq_restore(flags);
3356
3357 ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
3358 if (ret) {
3359 atomic_set(&ret->refcount, 1);
3360 ret->pid = tsk->pid;
3361 ret->last_waited = jiffies; /* doesn't matter... */
3362 ret->nr_batch_requests = 0; /* because this is 0 */
3363 ret->aic = NULL;
3364 ret->cic = NULL;
3365 spin_lock_init(&ret->lock);
3366
3367 local_irq_save(flags);
3368
3369 /*
3370 * very unlikely, someone raced with us in setting up the task
3371 * io context. free new context and just grab a reference.
3372 */
3373 if (!tsk->io_context)
3374 tsk->io_context = ret;
3375 else {
3376 kmem_cache_free(iocontext_cachep, ret);
3377 ret = tsk->io_context;
3378 }
3379
3380out:
3381 atomic_inc(&ret->refcount);
3382 local_irq_restore(flags);
3383 }
3384
3385 return ret;
3386}
3387EXPORT_SYMBOL(get_io_context);
3388
3389void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3390{
3391 struct io_context *src = *psrc;
3392 struct io_context *dst = *pdst;
3393
3394 if (src) {
3395 BUG_ON(atomic_read(&src->refcount) == 0);
3396 atomic_inc(&src->refcount);
3397 put_io_context(dst);
3398 *pdst = src;
3399 }
3400}
3401EXPORT_SYMBOL(copy_io_context);
3402
3403void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3404{
3405 struct io_context *temp;
3406 temp = *ioc1;
3407 *ioc1 = *ioc2;
3408 *ioc2 = temp;
3409}
3410EXPORT_SYMBOL(swap_io_context);
3411
3412/*
3413 * sysfs parts below
3414 */
3415struct queue_sysfs_entry {
3416 struct attribute attr;
3417 ssize_t (*show)(struct request_queue *, char *);
3418 ssize_t (*store)(struct request_queue *, const char *, size_t);
3419};
3420
3421static ssize_t
3422queue_var_show(unsigned int var, char *page)
3423{
3424 return sprintf(page, "%d\n", var);
3425}
3426
3427static ssize_t
3428queue_var_store(unsigned long *var, const char *page, size_t count)
3429{
3430 char *p = (char *) page;
3431
3432 *var = simple_strtoul(p, &p, 10);
3433 return count;
3434}
3435
3436static ssize_t queue_requests_show(struct request_queue *q, char *page)
3437{
3438 return queue_var_show(q->nr_requests, (page));
3439}
3440
3441static ssize_t
3442queue_requests_store(struct request_queue *q, const char *page, size_t count)
3443{
3444 struct request_list *rl = &q->rq;
3445
3446 int ret = queue_var_store(&q->nr_requests, page, count);
3447 if (q->nr_requests < BLKDEV_MIN_RQ)
3448 q->nr_requests = BLKDEV_MIN_RQ;
3449 blk_queue_congestion_threshold(q);
3450
3451 if (rl->count[READ] >= queue_congestion_on_threshold(q))
3452 set_queue_congested(q, READ);
3453 else if (rl->count[READ] < queue_congestion_off_threshold(q))
3454 clear_queue_congested(q, READ);
3455
3456 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3457 set_queue_congested(q, WRITE);
3458 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3459 clear_queue_congested(q, WRITE);
3460
3461 if (rl->count[READ] >= q->nr_requests) {
3462 blk_set_queue_full(q, READ);
3463 } else if (rl->count[READ]+1 <= q->nr_requests) {
3464 blk_clear_queue_full(q, READ);
3465 wake_up(&rl->wait[READ]);
3466 }
3467
3468 if (rl->count[WRITE] >= q->nr_requests) {
3469 blk_set_queue_full(q, WRITE);
3470 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
3471 blk_clear_queue_full(q, WRITE);
3472 wake_up(&rl->wait[WRITE]);
3473 }
3474 return ret;
3475}
3476
3477static ssize_t queue_ra_show(struct request_queue *q, char *page)
3478{
3479 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3480
3481 return queue_var_show(ra_kb, (page));
3482}
3483
3484static ssize_t
3485queue_ra_store(struct request_queue *q, const char *page, size_t count)
3486{
3487 unsigned long ra_kb;
3488 ssize_t ret = queue_var_store(&ra_kb, page, count);
3489
3490 spin_lock_irq(q->queue_lock);
3491 if (ra_kb > (q->max_sectors >> 1))
3492 ra_kb = (q->max_sectors >> 1);
3493
3494 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3495 spin_unlock_irq(q->queue_lock);
3496
3497 return ret;
3498}
3499
3500static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3501{
3502 int max_sectors_kb = q->max_sectors >> 1;
3503
3504 return queue_var_show(max_sectors_kb, (page));
3505}
3506
3507static ssize_t
3508queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3509{
3510 unsigned long max_sectors_kb,
3511 max_hw_sectors_kb = q->max_hw_sectors >> 1,
3512 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3513 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3514 int ra_kb;
3515
3516 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3517 return -EINVAL;
3518 /*
3519 * Take the queue lock to update the readahead and max_sectors
3520 * values synchronously:
3521 */
3522 spin_lock_irq(q->queue_lock);
3523 /*
3524 * Trim readahead window as well, if necessary:
3525 */
3526 ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3527 if (ra_kb > max_sectors_kb)
3528 q->backing_dev_info.ra_pages =
3529 max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3530
3531 q->max_sectors = max_sectors_kb << 1;
3532 spin_unlock_irq(q->queue_lock);
3533
3534 return ret;
3535}
3536
3537static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3538{
3539 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3540
3541 return queue_var_show(max_hw_sectors_kb, (page));
3542}
3543
3544
3545static struct queue_sysfs_entry queue_requests_entry = {
3546 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3547 .show = queue_requests_show,
3548 .store = queue_requests_store,
3549};
3550
3551static struct queue_sysfs_entry queue_ra_entry = {
3552 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3553 .show = queue_ra_show,
3554 .store = queue_ra_store,
3555};
3556
3557static struct queue_sysfs_entry queue_max_sectors_entry = {
3558 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3559 .show = queue_max_sectors_show,
3560 .store = queue_max_sectors_store,
3561};
3562
3563static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
3564 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
3565 .show = queue_max_hw_sectors_show,
3566};
3567
3568static struct queue_sysfs_entry queue_iosched_entry = {
3569 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
3570 .show = elv_iosched_show,
3571 .store = elv_iosched_store,
3572};
3573
3574static struct attribute *default_attrs[] = {
3575 &queue_requests_entry.attr,
3576 &queue_ra_entry.attr,
3577 &queue_max_hw_sectors_entry.attr,
3578 &queue_max_sectors_entry.attr,
3579 &queue_iosched_entry.attr,
3580 NULL,
3581};
3582
3583#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3584
3585static ssize_t
3586queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3587{
3588 struct queue_sysfs_entry *entry = to_queue(attr);
3589 struct request_queue *q;
3590
3591 q = container_of(kobj, struct request_queue, kobj);
3592 if (!entry->show)
Dmitry Torokhov6c1852a2005-04-29 01:26:06 -05003593 return -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003594
3595 return entry->show(q, page);
3596}
3597
3598static ssize_t
3599queue_attr_store(struct kobject *kobj, struct attribute *attr,
3600 const char *page, size_t length)
3601{
3602 struct queue_sysfs_entry *entry = to_queue(attr);
3603 struct request_queue *q;
3604
3605 q = container_of(kobj, struct request_queue, kobj);
3606 if (!entry->store)
Dmitry Torokhov6c1852a2005-04-29 01:26:06 -05003607 return -EIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003608
3609 return entry->store(q, page, length);
3610}
3611
3612static struct sysfs_ops queue_sysfs_ops = {
3613 .show = queue_attr_show,
3614 .store = queue_attr_store,
3615};
3616
3617struct kobj_type queue_ktype = {
3618 .sysfs_ops = &queue_sysfs_ops,
3619 .default_attrs = default_attrs,
3620};
3621
3622int blk_register_queue(struct gendisk *disk)
3623{
3624 int ret;
3625
3626 request_queue_t *q = disk->queue;
3627
3628 if (!q || !q->request_fn)
3629 return -ENXIO;
3630
3631 q->kobj.parent = kobject_get(&disk->kobj);
3632 if (!q->kobj.parent)
3633 return -EBUSY;
3634
3635 snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
3636 q->kobj.ktype = &queue_ktype;
3637
3638 ret = kobject_register(&q->kobj);
3639 if (ret < 0)
3640 return ret;
3641
3642 ret = elv_register_queue(q);
3643 if (ret) {
3644 kobject_unregister(&q->kobj);
3645 return ret;
3646 }
3647
3648 return 0;
3649}
3650
3651void blk_unregister_queue(struct gendisk *disk)
3652{
3653 request_queue_t *q = disk->queue;
3654
3655 if (q && q->request_fn) {
3656 elv_unregister_queue(q);
3657
3658 kobject_unregister(&q->kobj);
3659 kobject_put(&disk->kobj);
3660 }
3661}