Greg Kroah-Hartman | b244131 | 2017-11-01 15:07:57 +0100 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
Peter Zijlstra | 70fbe05 | 2016-09-05 16:08:12 -0300 | [diff] [blame] | 2 | #include "block-range.h" |
| 3 | #include "annotate.h" |
Arnaldo Carvalho de Melo | e7a795d | 2019-01-22 11:03:49 -0200 | [diff] [blame] | 4 | #include <assert.h> |
| 5 | #include <stdlib.h> |
Peter Zijlstra | 70fbe05 | 2016-09-05 16:08:12 -0300 | [diff] [blame] | 6 | |
| 7 | struct { |
| 8 | struct rb_root root; |
| 9 | u64 blocks; |
| 10 | } block_ranges; |
| 11 | |
| 12 | static void block_range__debug(void) |
| 13 | { |
| 14 | /* |
| 15 | * XXX still paranoid for now; see if we can make this depend on |
| 16 | * DEBUG=1 builds. |
| 17 | */ |
| 18 | #if 1 |
| 19 | struct rb_node *rb; |
| 20 | u64 old = 0; /* NULL isn't executable */ |
| 21 | |
| 22 | for (rb = rb_first(&block_ranges.root); rb; rb = rb_next(rb)) { |
| 23 | struct block_range *entry = rb_entry(rb, struct block_range, node); |
| 24 | |
| 25 | assert(old < entry->start); |
| 26 | assert(entry->start <= entry->end); /* single instruction block; jump to a jump */ |
| 27 | |
| 28 | old = entry->end; |
| 29 | } |
| 30 | #endif |
| 31 | } |
| 32 | |
| 33 | struct block_range *block_range__find(u64 addr) |
| 34 | { |
| 35 | struct rb_node **p = &block_ranges.root.rb_node; |
| 36 | struct rb_node *parent = NULL; |
| 37 | struct block_range *entry; |
| 38 | |
| 39 | while (*p != NULL) { |
| 40 | parent = *p; |
| 41 | entry = rb_entry(parent, struct block_range, node); |
| 42 | |
| 43 | if (addr < entry->start) |
| 44 | p = &parent->rb_left; |
| 45 | else if (addr > entry->end) |
| 46 | p = &parent->rb_right; |
| 47 | else |
| 48 | return entry; |
| 49 | } |
| 50 | |
| 51 | return NULL; |
| 52 | } |
| 53 | |
| 54 | static inline void rb_link_left_of_node(struct rb_node *left, struct rb_node *node) |
| 55 | { |
| 56 | struct rb_node **p = &node->rb_left; |
| 57 | while (*p) { |
| 58 | node = *p; |
| 59 | p = &node->rb_right; |
| 60 | } |
| 61 | rb_link_node(left, node, p); |
| 62 | } |
| 63 | |
| 64 | static inline void rb_link_right_of_node(struct rb_node *right, struct rb_node *node) |
| 65 | { |
| 66 | struct rb_node **p = &node->rb_right; |
| 67 | while (*p) { |
| 68 | node = *p; |
| 69 | p = &node->rb_left; |
| 70 | } |
| 71 | rb_link_node(right, node, p); |
| 72 | } |
| 73 | |
| 74 | /** |
| 75 | * block_range__create |
| 76 | * @start: branch target starting this basic block |
| 77 | * @end: branch ending this basic block |
| 78 | * |
| 79 | * Create all the required block ranges to precisely span the given range. |
| 80 | */ |
| 81 | struct block_range_iter block_range__create(u64 start, u64 end) |
| 82 | { |
| 83 | struct rb_node **p = &block_ranges.root.rb_node; |
| 84 | struct rb_node *n, *parent = NULL; |
| 85 | struct block_range *next, *entry = NULL; |
| 86 | struct block_range_iter iter = { NULL, NULL }; |
| 87 | |
| 88 | while (*p != NULL) { |
| 89 | parent = *p; |
| 90 | entry = rb_entry(parent, struct block_range, node); |
| 91 | |
| 92 | if (start < entry->start) |
| 93 | p = &parent->rb_left; |
| 94 | else if (start > entry->end) |
| 95 | p = &parent->rb_right; |
| 96 | else |
| 97 | break; |
| 98 | } |
| 99 | |
| 100 | /* |
| 101 | * Didn't find anything.. there's a hole at @start, however @end might |
| 102 | * be inside/behind the next range. |
| 103 | */ |
| 104 | if (!*p) { |
| 105 | if (!entry) /* tree empty */ |
| 106 | goto do_whole; |
| 107 | |
| 108 | /* |
| 109 | * If the last node is before, advance one to find the next. |
| 110 | */ |
| 111 | n = parent; |
| 112 | if (entry->end < start) { |
| 113 | n = rb_next(n); |
| 114 | if (!n) |
| 115 | goto do_whole; |
| 116 | } |
| 117 | next = rb_entry(n, struct block_range, node); |
| 118 | |
| 119 | if (next->start <= end) { /* add head: [start...][n->start...] */ |
| 120 | struct block_range *head = malloc(sizeof(struct block_range)); |
| 121 | if (!head) |
| 122 | return iter; |
| 123 | |
| 124 | *head = (struct block_range){ |
| 125 | .start = start, |
| 126 | .end = next->start - 1, |
| 127 | .is_target = 1, |
| 128 | .is_branch = 0, |
| 129 | }; |
| 130 | |
| 131 | rb_link_left_of_node(&head->node, &next->node); |
| 132 | rb_insert_color(&head->node, &block_ranges.root); |
| 133 | block_range__debug(); |
| 134 | |
| 135 | iter.start = head; |
| 136 | goto do_tail; |
| 137 | } |
| 138 | |
| 139 | do_whole: |
| 140 | /* |
| 141 | * The whole [start..end] range is non-overlapping. |
| 142 | */ |
| 143 | entry = malloc(sizeof(struct block_range)); |
| 144 | if (!entry) |
| 145 | return iter; |
| 146 | |
| 147 | *entry = (struct block_range){ |
| 148 | .start = start, |
| 149 | .end = end, |
| 150 | .is_target = 1, |
| 151 | .is_branch = 1, |
| 152 | }; |
| 153 | |
| 154 | rb_link_node(&entry->node, parent, p); |
| 155 | rb_insert_color(&entry->node, &block_ranges.root); |
| 156 | block_range__debug(); |
| 157 | |
| 158 | iter.start = entry; |
| 159 | iter.end = entry; |
| 160 | goto done; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | * We found a range that overlapped with ours, split if needed. |
| 165 | */ |
| 166 | if (entry->start < start) { /* split: [e->start...][start...] */ |
| 167 | struct block_range *head = malloc(sizeof(struct block_range)); |
| 168 | if (!head) |
| 169 | return iter; |
| 170 | |
| 171 | *head = (struct block_range){ |
| 172 | .start = entry->start, |
| 173 | .end = start - 1, |
| 174 | .is_target = entry->is_target, |
| 175 | .is_branch = 0, |
| 176 | |
| 177 | .coverage = entry->coverage, |
| 178 | .entry = entry->entry, |
| 179 | }; |
| 180 | |
| 181 | entry->start = start; |
| 182 | entry->is_target = 1; |
| 183 | entry->entry = 0; |
| 184 | |
| 185 | rb_link_left_of_node(&head->node, &entry->node); |
| 186 | rb_insert_color(&head->node, &block_ranges.root); |
| 187 | block_range__debug(); |
| 188 | |
| 189 | } else if (entry->start == start) |
| 190 | entry->is_target = 1; |
| 191 | |
| 192 | iter.start = entry; |
| 193 | |
| 194 | do_tail: |
| 195 | /* |
| 196 | * At this point we've got: @iter.start = [@start...] but @end can still be |
| 197 | * inside or beyond it. |
| 198 | */ |
| 199 | entry = iter.start; |
| 200 | for (;;) { |
| 201 | /* |
| 202 | * If @end is inside @entry, split. |
| 203 | */ |
| 204 | if (end < entry->end) { /* split: [...end][...e->end] */ |
| 205 | struct block_range *tail = malloc(sizeof(struct block_range)); |
| 206 | if (!tail) |
| 207 | return iter; |
| 208 | |
| 209 | *tail = (struct block_range){ |
| 210 | .start = end + 1, |
| 211 | .end = entry->end, |
| 212 | .is_target = 0, |
| 213 | .is_branch = entry->is_branch, |
| 214 | |
| 215 | .coverage = entry->coverage, |
| 216 | .taken = entry->taken, |
| 217 | .pred = entry->pred, |
| 218 | }; |
| 219 | |
| 220 | entry->end = end; |
| 221 | entry->is_branch = 1; |
| 222 | entry->taken = 0; |
| 223 | entry->pred = 0; |
| 224 | |
| 225 | rb_link_right_of_node(&tail->node, &entry->node); |
| 226 | rb_insert_color(&tail->node, &block_ranges.root); |
| 227 | block_range__debug(); |
| 228 | |
| 229 | iter.end = entry; |
| 230 | goto done; |
| 231 | } |
| 232 | |
| 233 | /* |
| 234 | * If @end matches @entry, done |
| 235 | */ |
| 236 | if (end == entry->end) { |
| 237 | entry->is_branch = 1; |
| 238 | iter.end = entry; |
| 239 | goto done; |
| 240 | } |
| 241 | |
| 242 | next = block_range__next(entry); |
| 243 | if (!next) |
| 244 | goto add_tail; |
| 245 | |
| 246 | /* |
| 247 | * If @end is in beyond @entry but not inside @next, add tail. |
| 248 | */ |
| 249 | if (end < next->start) { /* add tail: [...e->end][...end] */ |
| 250 | struct block_range *tail; |
| 251 | add_tail: |
| 252 | tail = malloc(sizeof(struct block_range)); |
| 253 | if (!tail) |
| 254 | return iter; |
| 255 | |
| 256 | *tail = (struct block_range){ |
| 257 | .start = entry->end + 1, |
| 258 | .end = end, |
| 259 | .is_target = 0, |
| 260 | .is_branch = 1, |
| 261 | }; |
| 262 | |
| 263 | rb_link_right_of_node(&tail->node, &entry->node); |
| 264 | rb_insert_color(&tail->node, &block_ranges.root); |
| 265 | block_range__debug(); |
| 266 | |
| 267 | iter.end = tail; |
| 268 | goto done; |
| 269 | } |
| 270 | |
| 271 | /* |
| 272 | * If there is a hole between @entry and @next, fill it. |
| 273 | */ |
| 274 | if (entry->end + 1 != next->start) { |
| 275 | struct block_range *hole = malloc(sizeof(struct block_range)); |
| 276 | if (!hole) |
| 277 | return iter; |
| 278 | |
| 279 | *hole = (struct block_range){ |
| 280 | .start = entry->end + 1, |
| 281 | .end = next->start - 1, |
| 282 | .is_target = 0, |
| 283 | .is_branch = 0, |
| 284 | }; |
| 285 | |
| 286 | rb_link_left_of_node(&hole->node, &next->node); |
| 287 | rb_insert_color(&hole->node, &block_ranges.root); |
| 288 | block_range__debug(); |
| 289 | } |
| 290 | |
| 291 | entry = next; |
| 292 | } |
| 293 | |
| 294 | done: |
| 295 | assert(iter.start->start == start && iter.start->is_target); |
| 296 | assert(iter.end->end == end && iter.end->is_branch); |
| 297 | |
| 298 | block_ranges.blocks++; |
| 299 | |
| 300 | return iter; |
| 301 | } |
| 302 | |
| 303 | |
| 304 | /* |
| 305 | * Compute coverage as: |
| 306 | * |
| 307 | * br->coverage / br->sym->max_coverage |
| 308 | * |
| 309 | * This ensures each symbol has a 100% spot, to reflect that each symbol has a |
| 310 | * most covered section. |
| 311 | * |
| 312 | * Returns [0-1] for coverage and -1 if we had no data what so ever or the |
| 313 | * symbol does not exist. |
| 314 | */ |
| 315 | double block_range__coverage(struct block_range *br) |
| 316 | { |
| 317 | struct symbol *sym; |
| 318 | |
| 319 | if (!br) { |
| 320 | if (block_ranges.blocks) |
| 321 | return 0; |
| 322 | |
| 323 | return -1; |
| 324 | } |
| 325 | |
| 326 | sym = br->sym; |
| 327 | if (!sym) |
| 328 | return -1; |
| 329 | |
| 330 | return (double)br->coverage / symbol__annotation(sym)->max_coverage; |
| 331 | } |