blob: 40f13579a3fe7648b5033e4559deeccd068cf9cc [file] [log] [blame]
Mika Westerbergb0407982019-12-17 15:33:40 +03001// SPDX-License-Identifier: GPL-2.0
2/*
3 * USB4 specific functionality
4 *
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
8 */
9
10#include <linux/delay.h>
11#include <linux/ktime.h>
12
Rajmohan Mani02d12852020-03-05 16:33:46 +020013#include "sb_regs.h"
Mika Westerbergb0407982019-12-17 15:33:40 +030014#include "tb.h"
15
16#define USB4_DATA_DWORDS 16
17#define USB4_DATA_RETRIES 3
18
19enum usb4_switch_op {
20 USB4_SWITCH_OP_QUERY_DP_RESOURCE = 0x10,
21 USB4_SWITCH_OP_ALLOC_DP_RESOURCE = 0x11,
22 USB4_SWITCH_OP_DEALLOC_DP_RESOURCE = 0x12,
23 USB4_SWITCH_OP_NVM_WRITE = 0x20,
24 USB4_SWITCH_OP_NVM_AUTH = 0x21,
25 USB4_SWITCH_OP_NVM_READ = 0x22,
26 USB4_SWITCH_OP_NVM_SET_OFFSET = 0x23,
27 USB4_SWITCH_OP_DROM_READ = 0x24,
28 USB4_SWITCH_OP_NVM_SECTOR_SIZE = 0x25,
29};
30
Rajmohan Mani02d12852020-03-05 16:33:46 +020031enum usb4_sb_target {
32 USB4_SB_TARGET_ROUTER,
33 USB4_SB_TARGET_PARTNER,
34 USB4_SB_TARGET_RETIMER,
35};
36
Mika Westerbergb0407982019-12-17 15:33:40 +030037#define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
38#define USB4_NVM_READ_OFFSET_SHIFT 2
39#define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
40#define USB4_NVM_READ_LENGTH_SHIFT 24
41
42#define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
43#define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
44
45#define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
46#define USB4_DROM_ADDRESS_SHIFT 2
47#define USB4_DROM_SIZE_MASK GENMASK(19, 15)
48#define USB4_DROM_SIZE_SHIFT 15
49
50#define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
51
Mika Westerberg7e728462020-02-14 19:23:03 +020052typedef int (*read_block_fn)(void *, unsigned int, void *, size_t);
53typedef int (*write_block_fn)(void *, const void *, size_t);
Mika Westerbergb0407982019-12-17 15:33:40 +030054
55static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
56 u32 value, int timeout_msec)
57{
58 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
59
60 do {
61 u32 val;
62 int ret;
63
64 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
65 if (ret)
66 return ret;
67
68 if ((val & bit) == value)
69 return 0;
70
71 usleep_range(50, 100);
72 } while (ktime_before(ktime_get(), timeout));
73
74 return -ETIMEDOUT;
75}
76
77static int usb4_switch_op_read_data(struct tb_switch *sw, void *data,
78 size_t dwords)
79{
80 if (dwords > USB4_DATA_DWORDS)
81 return -EINVAL;
82
83 return tb_sw_read(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
84}
85
86static int usb4_switch_op_write_data(struct tb_switch *sw, const void *data,
87 size_t dwords)
88{
89 if (dwords > USB4_DATA_DWORDS)
90 return -EINVAL;
91
92 return tb_sw_write(sw, data, TB_CFG_SWITCH, ROUTER_CS_9, dwords);
93}
94
95static int usb4_switch_op_read_metadata(struct tb_switch *sw, u32 *metadata)
96{
97 return tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
98}
99
100static int usb4_switch_op_write_metadata(struct tb_switch *sw, u32 metadata)
101{
102 return tb_sw_write(sw, &metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
103}
104
Mika Westerberg7e728462020-02-14 19:23:03 +0200105static int usb4_do_read_data(u16 address, void *buf, size_t size,
106 read_block_fn read_block, void *read_block_data)
Mika Westerbergb0407982019-12-17 15:33:40 +0300107{
108 unsigned int retries = USB4_DATA_RETRIES;
109 unsigned int offset;
110
111 offset = address & 3;
112 address = address & ~3;
113
114 do {
115 size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4);
116 unsigned int dwaddress, dwords;
117 u8 data[USB4_DATA_DWORDS * 4];
118 int ret;
119
120 dwaddress = address / 4;
121 dwords = ALIGN(nbytes, 4) / 4;
122
Mika Westerberg7e728462020-02-14 19:23:03 +0200123 ret = read_block(read_block_data, dwaddress, data, dwords);
Mika Westerbergb0407982019-12-17 15:33:40 +0300124 if (ret) {
Mika Westerberg6bfe3342020-02-14 19:25:34 +0200125 if (ret != -ENODEV && retries--)
126 continue;
Mika Westerbergb0407982019-12-17 15:33:40 +0300127 return ret;
128 }
129
130 memcpy(buf, data + offset, nbytes);
131
132 size -= nbytes;
133 address += nbytes;
134 buf += nbytes;
135 } while (size > 0);
136
137 return 0;
138}
139
Mika Westerberg7e728462020-02-14 19:23:03 +0200140static int usb4_do_write_data(unsigned int address, const void *buf, size_t size,
141 write_block_fn write_next_block, void *write_block_data)
Mika Westerbergb0407982019-12-17 15:33:40 +0300142{
143 unsigned int retries = USB4_DATA_RETRIES;
144 unsigned int offset;
145
146 offset = address & 3;
147 address = address & ~3;
148
149 do {
150 u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
151 u8 data[USB4_DATA_DWORDS * 4];
152 int ret;
153
154 memcpy(data + offset, buf, nbytes);
155
Mika Westerberg7e728462020-02-14 19:23:03 +0200156 ret = write_next_block(write_block_data, data, nbytes / 4);
Mika Westerbergb0407982019-12-17 15:33:40 +0300157 if (ret) {
158 if (ret == -ETIMEDOUT) {
159 if (retries--)
160 continue;
161 ret = -EIO;
162 }
163 return ret;
164 }
165
166 size -= nbytes;
167 address += nbytes;
168 buf += nbytes;
169 } while (size > 0);
170
171 return 0;
172}
173
174static int usb4_switch_op(struct tb_switch *sw, u16 opcode, u8 *status)
175{
176 u32 val;
177 int ret;
178
179 val = opcode | ROUTER_CS_26_OV;
180 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
181 if (ret)
182 return ret;
183
184 ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
185 if (ret)
186 return ret;
187
188 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
Mika Westerbergc3bf9932020-04-09 10:18:10 +0300189 if (ret)
190 return ret;
191
Mika Westerbergb0407982019-12-17 15:33:40 +0300192 if (val & ROUTER_CS_26_ONS)
193 return -EOPNOTSUPP;
194
195 *status = (val & ROUTER_CS_26_STATUS_MASK) >> ROUTER_CS_26_STATUS_SHIFT;
196 return 0;
197}
198
Mika Westerbergb2911a52019-12-06 18:36:07 +0200199static void usb4_switch_check_wakes(struct tb_switch *sw)
200{
201 struct tb_port *port;
202 bool wakeup = false;
203 u32 val;
204
205 if (!device_may_wakeup(&sw->dev))
206 return;
207
208 if (tb_route(sw)) {
209 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
210 return;
211
212 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
213 (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
214 (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
215
216 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
217 }
218
219 /* Check for any connected downstream ports for USB4 wake */
220 tb_switch_for_each_port(sw, port) {
221 if (!tb_port_has_remote(port))
222 continue;
223
224 if (tb_port_read(port, &val, TB_CFG_PORT,
225 port->cap_usb4 + PORT_CS_18, 1))
226 break;
227
228 tb_port_dbg(port, "USB4 wake: %s\n",
229 (val & PORT_CS_18_WOU4S) ? "yes" : "no");
230
231 if (val & PORT_CS_18_WOU4S)
232 wakeup = true;
233 }
234
235 if (wakeup)
236 pm_wakeup_event(&sw->dev, 0);
237}
238
Mika Westerbergbbcf40b2020-03-04 17:09:14 +0200239static bool link_is_usb4(struct tb_port *port)
240{
241 u32 val;
242
243 if (!port->cap_usb4)
244 return false;
245
246 if (tb_port_read(port, &val, TB_CFG_PORT,
247 port->cap_usb4 + PORT_CS_18, 1))
248 return false;
249
250 return !(val & PORT_CS_18_TCM);
251}
252
Mika Westerbergb0407982019-12-17 15:33:40 +0300253/**
254 * usb4_switch_setup() - Additional setup for USB4 device
255 * @sw: USB4 router to setup
256 *
257 * USB4 routers need additional settings in order to enable all the
258 * tunneling. This function enables USB and PCIe tunneling if it can be
259 * enabled (e.g the parent switch also supports them). If USB tunneling
260 * is not available for some reason (like that there is Thunderbolt 3
261 * switch upstream) then the internal xHCI controller is enabled
262 * instead.
263 */
264int usb4_switch_setup(struct tb_switch *sw)
265{
Mika Westerbergbbcf40b2020-03-04 17:09:14 +0200266 struct tb_port *downstream_port;
Mika Westerbergb0407982019-12-17 15:33:40 +0300267 struct tb_switch *parent;
268 bool tbt3, xhci;
269 u32 val = 0;
270 int ret;
271
Mika Westerbergb2911a52019-12-06 18:36:07 +0200272 usb4_switch_check_wakes(sw);
273
Mika Westerbergb0407982019-12-17 15:33:40 +0300274 if (!tb_route(sw))
275 return 0;
276
277 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
278 if (ret)
279 return ret;
280
Mika Westerbergbbcf40b2020-03-04 17:09:14 +0200281 parent = tb_switch_parent(sw);
282 downstream_port = tb_port_at(tb_route(sw), parent);
283 sw->link_usb4 = link_is_usb4(downstream_port);
284 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT3");
285
Mika Westerbergb0407982019-12-17 15:33:40 +0300286 xhci = val & ROUTER_CS_6_HCI;
287 tbt3 = !(val & ROUTER_CS_6_TNS);
288
289 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
290 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
291
292 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
293 if (ret)
294 return ret;
295
Mika Westerbergbbcf40b2020-03-04 17:09:14 +0200296 if (sw->link_usb4 && tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
Rajmohan Manie6f81852019-12-17 15:33:44 +0300297 val |= ROUTER_CS_5_UTO;
298 xhci = false;
299 }
300
Mika Westerbergb0407982019-12-17 15:33:40 +0300301 /* Only enable PCIe tunneling if the parent router supports it */
302 if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
303 val |= ROUTER_CS_5_PTO;
Rajmohan Manie6f81852019-12-17 15:33:44 +0300304 /*
305 * xHCI can be enabled if PCIe tunneling is supported
306 * and the parent does not have any USB3 dowstream
307 * adapters (so we cannot do USB 3.x tunneling).
308 */
Mika Westerbergc7a7ac82020-01-08 15:53:16 +0300309 if (xhci)
Mika Westerbergb0407982019-12-17 15:33:40 +0300310 val |= ROUTER_CS_5_HCO;
311 }
312
313 /* TBT3 supported by the CM */
314 val |= ROUTER_CS_5_C3S;
315 /* Tunneling configuration is ready now */
316 val |= ROUTER_CS_5_CV;
317
318 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
319 if (ret)
320 return ret;
321
322 return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
323 ROUTER_CS_6_CR, 50);
324}
325
326/**
327 * usb4_switch_read_uid() - Read UID from USB4 router
328 * @sw: USB4 router
Mika Westerberg21d78d82020-02-14 15:16:38 +0300329 * @uid: UID is stored here
Mika Westerbergb0407982019-12-17 15:33:40 +0300330 *
331 * Reads 64-bit UID from USB4 router config space.
332 */
333int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
334{
335 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
336}
337
Mika Westerberg7e728462020-02-14 19:23:03 +0200338static int usb4_switch_drom_read_block(void *data,
Mika Westerbergb0407982019-12-17 15:33:40 +0300339 unsigned int dwaddress, void *buf,
340 size_t dwords)
341{
Mika Westerberg7e728462020-02-14 19:23:03 +0200342 struct tb_switch *sw = data;
Mika Westerbergb0407982019-12-17 15:33:40 +0300343 u8 status = 0;
344 u32 metadata;
345 int ret;
346
347 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
348 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
349 USB4_DROM_ADDRESS_MASK;
350
351 ret = usb4_switch_op_write_metadata(sw, metadata);
352 if (ret)
353 return ret;
354
355 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DROM_READ, &status);
356 if (ret)
357 return ret;
358
359 if (status)
360 return -EIO;
361
362 return usb4_switch_op_read_data(sw, buf, dwords);
363}
364
365/**
366 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
367 * @sw: USB4 router
Mika Westerberg21d78d82020-02-14 15:16:38 +0300368 * @address: Byte address inside DROM to start reading
369 * @buf: Buffer where the DROM content is stored
370 * @size: Number of bytes to read from DROM
Mika Westerbergb0407982019-12-17 15:33:40 +0300371 *
372 * Uses USB4 router operations to read router DROM. For devices this
373 * should always work but for hosts it may return %-EOPNOTSUPP in which
374 * case the host router does not have DROM.
375 */
376int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
377 size_t size)
378{
Mika Westerberg7e728462020-02-14 19:23:03 +0200379 return usb4_do_read_data(address, buf, size,
380 usb4_switch_drom_read_block, sw);
Mika Westerbergb0407982019-12-17 15:33:40 +0300381}
382
Mika Westerbergb0407982019-12-17 15:33:40 +0300383/**
384 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
385 * @sw: USB4 router
386 *
387 * Checks whether conditions are met so that lane bonding can be
388 * established with the upstream router. Call only for device routers.
389 */
390bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
391{
392 struct tb_port *up;
393 int ret;
394 u32 val;
395
396 up = tb_upstream_port(sw);
397 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
398 if (ret)
399 return false;
400
401 return !!(val & PORT_CS_18_BE);
402}
403
404/**
Mika Westerbergb2911a52019-12-06 18:36:07 +0200405 * usb4_switch_set_wake() - Enabled/disable wake
406 * @sw: USB4 router
407 * @flags: Wakeup flags (%0 to disable)
408 *
409 * Enables/disables router to wake up from sleep.
410 */
411int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
412{
413 struct tb_port *port;
414 u64 route = tb_route(sw);
415 u32 val;
416 int ret;
417
418 /*
419 * Enable wakes coming from all USB4 downstream ports (from
420 * child routers). For device routers do this also for the
421 * upstream USB4 port.
422 */
423 tb_switch_for_each_port(sw, port) {
424 if (!route && tb_is_upstream_port(port))
425 continue;
426
427 ret = tb_port_read(port, &val, TB_CFG_PORT,
428 port->cap_usb4 + PORT_CS_19, 1);
429 if (ret)
430 return ret;
431
432 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
433
434 if (flags & TB_WAKE_ON_CONNECT)
435 val |= PORT_CS_19_WOC;
436 if (flags & TB_WAKE_ON_DISCONNECT)
437 val |= PORT_CS_19_WOD;
438 if (flags & TB_WAKE_ON_USB4)
439 val |= PORT_CS_19_WOU4;
440
441 ret = tb_port_write(port, &val, TB_CFG_PORT,
442 port->cap_usb4 + PORT_CS_19, 1);
443 if (ret)
444 return ret;
445 }
446
447 /*
448 * Enable wakes from PCIe and USB 3.x on this router. Only
449 * needed for device routers.
450 */
451 if (route) {
452 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
453 if (ret)
454 return ret;
455
456 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU);
457 if (flags & TB_WAKE_ON_USB3)
458 val |= ROUTER_CS_5_WOU;
459 if (flags & TB_WAKE_ON_PCIE)
460 val |= ROUTER_CS_5_WOP;
461
462 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
463 if (ret)
464 return ret;
465 }
466
467 return 0;
468}
469
470/**
Mika Westerbergb0407982019-12-17 15:33:40 +0300471 * usb4_switch_set_sleep() - Prepare the router to enter sleep
472 * @sw: USB4 router
473 *
Mika Westerbergb2911a52019-12-06 18:36:07 +0200474 * Sets sleep bit for the router. Returns when the router sleep ready
475 * bit has been asserted.
Mika Westerbergb0407982019-12-17 15:33:40 +0300476 */
477int usb4_switch_set_sleep(struct tb_switch *sw)
478{
479 int ret;
480 u32 val;
481
482 /* Set sleep bit and wait for sleep ready to be asserted */
483 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
484 if (ret)
485 return ret;
486
487 val |= ROUTER_CS_5_SLP;
488
489 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
490 if (ret)
491 return ret;
492
493 return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
494 ROUTER_CS_6_SLPR, 500);
495}
496
497/**
498 * usb4_switch_nvm_sector_size() - Return router NVM sector size
499 * @sw: USB4 router
500 *
501 * If the router supports NVM operations this function returns the NVM
502 * sector size in bytes. If NVM operations are not supported returns
503 * %-EOPNOTSUPP.
504 */
505int usb4_switch_nvm_sector_size(struct tb_switch *sw)
506{
507 u32 metadata;
508 u8 status;
509 int ret;
510
511 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &status);
512 if (ret)
513 return ret;
514
515 if (status)
516 return status == 0x2 ? -EOPNOTSUPP : -EIO;
517
518 ret = usb4_switch_op_read_metadata(sw, &metadata);
519 if (ret)
520 return ret;
521
522 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
523}
524
Mika Westerberg7e728462020-02-14 19:23:03 +0200525static int usb4_switch_nvm_read_block(void *data,
Mika Westerbergb0407982019-12-17 15:33:40 +0300526 unsigned int dwaddress, void *buf, size_t dwords)
527{
Mika Westerberg7e728462020-02-14 19:23:03 +0200528 struct tb_switch *sw = data;
Mika Westerbergb0407982019-12-17 15:33:40 +0300529 u8 status = 0;
530 u32 metadata;
531 int ret;
532
533 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
534 USB4_NVM_READ_LENGTH_MASK;
535 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
536 USB4_NVM_READ_OFFSET_MASK;
537
538 ret = usb4_switch_op_write_metadata(sw, metadata);
539 if (ret)
540 return ret;
541
542 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_READ, &status);
543 if (ret)
544 return ret;
545
546 if (status)
547 return -EIO;
548
549 return usb4_switch_op_read_data(sw, buf, dwords);
550}
551
552/**
553 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
554 * @sw: USB4 router
555 * @address: Starting address in bytes
556 * @buf: Read data is placed here
557 * @size: How many bytes to read
558 *
559 * Reads NVM contents of the router. If NVM is not supported returns
560 * %-EOPNOTSUPP.
561 */
562int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
563 size_t size)
564{
Mika Westerberg7e728462020-02-14 19:23:03 +0200565 return usb4_do_read_data(address, buf, size,
566 usb4_switch_nvm_read_block, sw);
Mika Westerbergb0407982019-12-17 15:33:40 +0300567}
568
569static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
570 unsigned int address)
571{
572 u32 metadata, dwaddress;
573 u8 status = 0;
574 int ret;
575
576 dwaddress = address / 4;
577 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
578 USB4_NVM_SET_OFFSET_MASK;
579
580 ret = usb4_switch_op_write_metadata(sw, metadata);
581 if (ret)
582 return ret;
583
584 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &status);
585 if (ret)
586 return ret;
587
588 return status ? -EIO : 0;
589}
590
Mika Westerberg7e728462020-02-14 19:23:03 +0200591static int usb4_switch_nvm_write_next_block(void *data, const void *buf,
592 size_t dwords)
Mika Westerbergb0407982019-12-17 15:33:40 +0300593{
Mika Westerberg7e728462020-02-14 19:23:03 +0200594 struct tb_switch *sw = data;
Mika Westerbergb0407982019-12-17 15:33:40 +0300595 u8 status;
596 int ret;
597
598 ret = usb4_switch_op_write_data(sw, buf, dwords);
599 if (ret)
600 return ret;
601
602 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_WRITE, &status);
603 if (ret)
604 return ret;
605
606 return status ? -EIO : 0;
607}
608
609/**
610 * usb4_switch_nvm_write() - Write to the router NVM
611 * @sw: USB4 router
612 * @address: Start address where to write in bytes
613 * @buf: Pointer to the data to write
614 * @size: Size of @buf in bytes
615 *
616 * Writes @buf to the router NVM using USB4 router operations. If NVM
617 * write is not supported returns %-EOPNOTSUPP.
618 */
619int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
620 const void *buf, size_t size)
621{
622 int ret;
623
624 ret = usb4_switch_nvm_set_offset(sw, address);
625 if (ret)
626 return ret;
627
Mika Westerberg7e728462020-02-14 19:23:03 +0200628 return usb4_do_write_data(address, buf, size,
629 usb4_switch_nvm_write_next_block, sw);
Mika Westerbergb0407982019-12-17 15:33:40 +0300630}
631
632/**
633 * usb4_switch_nvm_authenticate() - Authenticate new NVM
634 * @sw: USB4 router
635 *
636 * After the new NVM has been written via usb4_switch_nvm_write(), this
637 * function triggers NVM authentication process. If the authentication
638 * is successful the router is power cycled and the new NVM starts
639 * running. In case of failure returns negative errno.
640 */
641int usb4_switch_nvm_authenticate(struct tb_switch *sw)
642{
643 u8 status = 0;
644 int ret;
645
646 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, &status);
647 if (ret)
648 return ret;
649
650 switch (status) {
651 case 0x0:
652 tb_sw_dbg(sw, "NVM authentication successful\n");
653 return 0;
654 case 0x1:
655 return -EINVAL;
656 case 0x2:
657 return -EAGAIN;
658 case 0x3:
659 return -EOPNOTSUPP;
660 default:
661 return -EIO;
662 }
663}
664
665/**
666 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
667 * @sw: USB4 router
668 * @in: DP IN adapter
669 *
670 * For DP tunneling this function can be used to query availability of
671 * DP IN resource. Returns true if the resource is available for DP
672 * tunneling, false otherwise.
673 */
674bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
675{
676 u8 status;
677 int ret;
678
679 ret = usb4_switch_op_write_metadata(sw, in->port);
680 if (ret)
681 return false;
682
683 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &status);
684 /*
685 * If DP resource allocation is not supported assume it is
686 * always available.
687 */
688 if (ret == -EOPNOTSUPP)
689 return true;
690 else if (ret)
691 return false;
692
693 return !status;
694}
695
696/**
697 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
698 * @sw: USB4 router
699 * @in: DP IN adapter
700 *
701 * Allocates DP IN resource for DP tunneling using USB4 router
702 * operations. If the resource was allocated returns %0. Otherwise
703 * returns negative errno, in particular %-EBUSY if the resource is
704 * already allocated.
705 */
706int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
707{
708 u8 status;
709 int ret;
710
711 ret = usb4_switch_op_write_metadata(sw, in->port);
712 if (ret)
713 return ret;
714
715 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &status);
716 if (ret == -EOPNOTSUPP)
717 return 0;
718 else if (ret)
719 return ret;
720
721 return status ? -EBUSY : 0;
722}
723
724/**
725 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
726 * @sw: USB4 router
727 * @in: DP IN adapter
728 *
729 * Releases the previously allocated DP IN resource.
730 */
731int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
732{
733 u8 status;
734 int ret;
735
736 ret = usb4_switch_op_write_metadata(sw, in->port);
737 if (ret)
738 return ret;
739
740 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &status);
741 if (ret == -EOPNOTSUPP)
742 return 0;
743 else if (ret)
744 return ret;
745
746 return status ? -EIO : 0;
747}
748
749static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
750{
751 struct tb_port *p;
752 int usb4_idx = 0;
753
754 /* Assume port is primary */
755 tb_switch_for_each_port(sw, p) {
756 if (!tb_port_is_null(p))
757 continue;
758 if (tb_is_upstream_port(p))
759 continue;
760 if (!p->link_nr) {
761 if (p == port)
762 break;
763 usb4_idx++;
764 }
765 }
766
767 return usb4_idx;
768}
769
770/**
771 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
772 * @sw: USB4 router
773 * @port: USB4 port
774 *
775 * USB4 routers have direct mapping between USB4 ports and PCIe
776 * downstream adapters where the PCIe topology is extended. This
777 * function returns the corresponding downstream PCIe adapter or %NULL
778 * if no such mapping was possible.
779 */
780struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
781 const struct tb_port *port)
782{
783 int usb4_idx = usb4_port_idx(sw, port);
784 struct tb_port *p;
785 int pcie_idx = 0;
786
787 /* Find PCIe down port matching usb4_port */
788 tb_switch_for_each_port(sw, p) {
789 if (!tb_port_is_pcie_down(p))
790 continue;
791
Mika Westerberg9cac51a2020-03-11 16:12:50 +0300792 if (pcie_idx == usb4_idx)
Mika Westerbergb0407982019-12-17 15:33:40 +0300793 return p;
794
795 pcie_idx++;
796 }
797
798 return NULL;
799}
800
801/**
Rajmohan Manie6f81852019-12-17 15:33:44 +0300802 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
803 * @sw: USB4 router
804 * @port: USB4 port
805 *
806 * USB4 routers have direct mapping between USB4 ports and USB 3.x
807 * downstream adapters where the USB 3.x topology is extended. This
808 * function returns the corresponding downstream USB 3.x adapter or
809 * %NULL if no such mapping was possible.
810 */
811struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
812 const struct tb_port *port)
813{
814 int usb4_idx = usb4_port_idx(sw, port);
815 struct tb_port *p;
816 int usb_idx = 0;
817
818 /* Find USB3 down port matching usb4_port */
819 tb_switch_for_each_port(sw, p) {
820 if (!tb_port_is_usb3_down(p))
821 continue;
822
Mika Westerberg77cfa402020-03-11 16:00:46 +0300823 if (usb_idx == usb4_idx)
Rajmohan Manie6f81852019-12-17 15:33:44 +0300824 return p;
825
826 usb_idx++;
827 }
828
829 return NULL;
830}
831
832/**
Mika Westerbergb0407982019-12-17 15:33:40 +0300833 * usb4_port_unlock() - Unlock USB4 downstream port
834 * @port: USB4 port to unlock
835 *
836 * Unlocks USB4 downstream port so that the connection manager can
837 * access the router below this port.
838 */
839int usb4_port_unlock(struct tb_port *port)
840{
841 int ret;
842 u32 val;
843
844 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
845 if (ret)
846 return ret;
847
848 val &= ~ADP_CS_4_LCK;
849 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
850}
Mika Westerberg3b1d8d52020-02-21 23:14:41 +0200851
Mika Westerberge28178b2020-04-02 12:42:44 +0300852static int usb4_port_set_configured(struct tb_port *port, bool configured)
853{
854 int ret;
855 u32 val;
856
857 if (!port->cap_usb4)
858 return -EINVAL;
859
860 ret = tb_port_read(port, &val, TB_CFG_PORT,
861 port->cap_usb4 + PORT_CS_19, 1);
862 if (ret)
863 return ret;
864
865 if (configured)
866 val |= PORT_CS_19_PC;
867 else
868 val &= ~PORT_CS_19_PC;
869
870 return tb_port_write(port, &val, TB_CFG_PORT,
871 port->cap_usb4 + PORT_CS_19, 1);
872}
873
874/**
875 * usb4_port_configure() - Set USB4 port configured
876 * @port: USB4 router
877 *
878 * Sets the USB4 link to be configured for power management purposes.
879 */
880int usb4_port_configure(struct tb_port *port)
881{
882 return usb4_port_set_configured(port, true);
883}
884
885/**
886 * usb4_port_unconfigure() - Set USB4 port unconfigured
887 * @port: USB4 router
888 *
889 * Sets the USB4 link to be unconfigured for power management purposes.
890 */
891void usb4_port_unconfigure(struct tb_port *port)
892{
893 usb4_port_set_configured(port, false);
894}
895
Mika Westerberg284652a2020-04-09 14:23:32 +0300896static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
897{
898 int ret;
899 u32 val;
900
901 if (!port->cap_usb4)
902 return -EINVAL;
903
904 ret = tb_port_read(port, &val, TB_CFG_PORT,
905 port->cap_usb4 + PORT_CS_19, 1);
906 if (ret)
907 return ret;
908
909 if (configured)
910 val |= PORT_CS_19_PID;
911 else
912 val &= ~PORT_CS_19_PID;
913
914 return tb_port_write(port, &val, TB_CFG_PORT,
915 port->cap_usb4 + PORT_CS_19, 1);
916}
917
918/**
919 * usb4_port_configure_xdomain() - Configure port for XDomain
920 * @port: USB4 port connected to another host
921 *
922 * Marks the USB4 port as being connected to another host. Returns %0 in
923 * success and negative errno in failure.
924 */
925int usb4_port_configure_xdomain(struct tb_port *port)
926{
927 return usb4_set_xdomain_configured(port, true);
928}
929
930/**
931 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
932 * @port: USB4 port that was connected to another host
933 *
934 * Clears USB4 port from being marked as XDomain.
935 */
936void usb4_port_unconfigure_xdomain(struct tb_port *port)
937{
938 usb4_set_xdomain_configured(port, false);
939}
940
Mika Westerberg3b1d8d52020-02-21 23:14:41 +0200941static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
942 u32 value, int timeout_msec)
943{
944 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
945
946 do {
947 u32 val;
948 int ret;
949
950 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
951 if (ret)
952 return ret;
953
954 if ((val & bit) == value)
955 return 0;
956
957 usleep_range(50, 100);
958 } while (ktime_before(ktime_get(), timeout));
959
960 return -ETIMEDOUT;
961}
962
Rajmohan Mani02d12852020-03-05 16:33:46 +0200963static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
964{
965 if (dwords > USB4_DATA_DWORDS)
966 return -EINVAL;
967
968 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
969 dwords);
970}
971
972static int usb4_port_write_data(struct tb_port *port, const void *data,
973 size_t dwords)
974{
975 if (dwords > USB4_DATA_DWORDS)
976 return -EINVAL;
977
978 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
979 dwords);
980}
981
982static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
983 u8 index, u8 reg, void *buf, u8 size)
984{
985 size_t dwords = DIV_ROUND_UP(size, 4);
986 int ret;
987 u32 val;
988
989 if (!port->cap_usb4)
990 return -EINVAL;
991
992 val = reg;
993 val |= size << PORT_CS_1_LENGTH_SHIFT;
994 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
995 if (target == USB4_SB_TARGET_RETIMER)
996 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
997 val |= PORT_CS_1_PND;
998
999 ret = tb_port_write(port, &val, TB_CFG_PORT,
1000 port->cap_usb4 + PORT_CS_1, 1);
1001 if (ret)
1002 return ret;
1003
1004 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1005 PORT_CS_1_PND, 0, 500);
1006 if (ret)
1007 return ret;
1008
1009 ret = tb_port_read(port, &val, TB_CFG_PORT,
1010 port->cap_usb4 + PORT_CS_1, 1);
1011 if (ret)
1012 return ret;
1013
1014 if (val & PORT_CS_1_NR)
1015 return -ENODEV;
1016 if (val & PORT_CS_1_RC)
1017 return -EIO;
1018
1019 return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1020}
1021
1022static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1023 u8 index, u8 reg, const void *buf, u8 size)
1024{
1025 size_t dwords = DIV_ROUND_UP(size, 4);
1026 int ret;
1027 u32 val;
1028
1029 if (!port->cap_usb4)
1030 return -EINVAL;
1031
1032 if (buf) {
1033 ret = usb4_port_write_data(port, buf, dwords);
1034 if (ret)
1035 return ret;
1036 }
1037
1038 val = reg;
1039 val |= size << PORT_CS_1_LENGTH_SHIFT;
1040 val |= PORT_CS_1_WNR_WRITE;
1041 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1042 if (target == USB4_SB_TARGET_RETIMER)
1043 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1044 val |= PORT_CS_1_PND;
1045
1046 ret = tb_port_write(port, &val, TB_CFG_PORT,
1047 port->cap_usb4 + PORT_CS_1, 1);
1048 if (ret)
1049 return ret;
1050
1051 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1052 PORT_CS_1_PND, 0, 500);
1053 if (ret)
1054 return ret;
1055
1056 ret = tb_port_read(port, &val, TB_CFG_PORT,
1057 port->cap_usb4 + PORT_CS_1, 1);
1058 if (ret)
1059 return ret;
1060
1061 if (val & PORT_CS_1_NR)
1062 return -ENODEV;
1063 if (val & PORT_CS_1_RC)
1064 return -EIO;
1065
1066 return 0;
1067}
1068
1069static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1070 u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1071{
1072 ktime_t timeout;
1073 u32 val;
1074 int ret;
1075
1076 val = opcode;
1077 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1078 sizeof(val));
1079 if (ret)
1080 return ret;
1081
1082 timeout = ktime_add_ms(ktime_get(), timeout_msec);
1083
1084 do {
1085 /* Check results */
1086 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1087 &val, sizeof(val));
1088 if (ret)
1089 return ret;
1090
1091 switch (val) {
1092 case 0:
1093 return 0;
1094
1095 case USB4_SB_OPCODE_ERR:
1096 return -EAGAIN;
1097
1098 case USB4_SB_OPCODE_ONS:
1099 return -EOPNOTSUPP;
1100
1101 default:
1102 if (val != opcode)
1103 return -EIO;
1104 break;
1105 }
1106 } while (ktime_before(ktime_get(), timeout));
1107
1108 return -ETIMEDOUT;
1109}
1110
1111/**
1112 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1113 * @port: USB4 port
1114 *
1115 * This forces the USB4 port to send broadcast RT transaction which
1116 * makes the retimers on the link to assign index to themselves. Returns
1117 * %0 in case of success and negative errno if there was an error.
1118 */
1119int usb4_port_enumerate_retimers(struct tb_port *port)
1120{
1121 u32 val;
1122
1123 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1124 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1125 USB4_SB_OPCODE, &val, sizeof(val));
1126}
1127
1128static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1129 enum usb4_sb_opcode opcode,
1130 int timeout_msec)
1131{
1132 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1133 timeout_msec);
1134}
1135
1136/**
1137 * usb4_port_retimer_read() - Read from retimer sideband registers
1138 * @port: USB4 port
1139 * @index: Retimer index
1140 * @reg: Sideband register to read
1141 * @buf: Data from @reg is stored here
1142 * @size: Number of bytes to read
1143 *
1144 * Function reads retimer sideband registers starting from @reg. The
1145 * retimer is connected to @port at @index. Returns %0 in case of
1146 * success, and read data is copied to @buf. If there is no retimer
1147 * present at given @index returns %-ENODEV. In any other failure
1148 * returns negative errno.
1149 */
1150int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1151 u8 size)
1152{
1153 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1154 size);
1155}
1156
1157/**
1158 * usb4_port_retimer_write() - Write to retimer sideband registers
1159 * @port: USB4 port
1160 * @index: Retimer index
1161 * @reg: Sideband register to write
1162 * @buf: Data that is written starting from @reg
1163 * @size: Number of bytes to write
1164 *
1165 * Writes retimer sideband registers starting from @reg. The retimer is
1166 * connected to @port at @index. Returns %0 in case of success. If there
1167 * is no retimer present at given @index returns %-ENODEV. In any other
1168 * failure returns negative errno.
1169 */
1170int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1171 const void *buf, u8 size)
1172{
1173 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1174 size);
1175}
1176
1177/**
1178 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1179 * @port: USB4 port
1180 * @index: Retimer index
1181 *
1182 * If the retimer at @index is last one (connected directly to the
1183 * Type-C port) this function returns %1. If it is not returns %0. If
1184 * the retimer is not present returns %-ENODEV. Otherwise returns
1185 * negative errno.
1186 */
1187int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1188{
1189 u32 metadata;
1190 int ret;
1191
1192 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1193 500);
1194 if (ret)
1195 return ret;
1196
1197 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1198 sizeof(metadata));
1199 return ret ? ret : metadata & 1;
1200}
1201
1202/**
1203 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1204 * @port: USB4 port
1205 * @index: Retimer index
1206 *
1207 * Reads NVM sector size (in bytes) of a retimer at @index. This
1208 * operation can be used to determine whether the retimer supports NVM
1209 * upgrade for example. Returns sector size in bytes or negative errno
1210 * in case of error. Specifically returns %-ENODEV if there is no
1211 * retimer at @index.
1212 */
1213int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1214{
1215 u32 metadata;
1216 int ret;
1217
1218 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1219 500);
1220 if (ret)
1221 return ret;
1222
1223 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1224 sizeof(metadata));
1225 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1226}
1227
1228static int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1229 unsigned int address)
1230{
1231 u32 metadata, dwaddress;
1232 int ret;
1233
1234 dwaddress = address / 4;
1235 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1236 USB4_NVM_SET_OFFSET_MASK;
1237
1238 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1239 sizeof(metadata));
1240 if (ret)
1241 return ret;
1242
1243 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1244 500);
1245}
1246
1247struct retimer_info {
1248 struct tb_port *port;
1249 u8 index;
1250};
1251
1252static int usb4_port_retimer_nvm_write_next_block(void *data, const void *buf,
1253 size_t dwords)
1254
1255{
1256 const struct retimer_info *info = data;
1257 struct tb_port *port = info->port;
1258 u8 index = info->index;
1259 int ret;
1260
1261 ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1262 buf, dwords * 4);
1263 if (ret)
1264 return ret;
1265
1266 return usb4_port_retimer_op(port, index,
1267 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1268}
1269
1270/**
1271 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1272 * @port: USB4 port
1273 * @index: Retimer index
1274 * @address: Byte address where to start the write
1275 * @buf: Data to write
1276 * @size: Size in bytes how much to write
1277 *
1278 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1279 * upgrade. Returns %0 if the data was written successfully and negative
1280 * errno in case of failure. Specifically returns %-ENODEV if there is
1281 * no retimer at @index.
1282 */
1283int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1284 const void *buf, size_t size)
1285{
1286 struct retimer_info info = { .port = port, .index = index };
1287 int ret;
1288
1289 ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1290 if (ret)
1291 return ret;
1292
1293 return usb4_do_write_data(address, buf, size,
1294 usb4_port_retimer_nvm_write_next_block, &info);
1295}
1296
1297/**
1298 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1299 * @port: USB4 port
1300 * @index: Retimer index
1301 *
1302 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1303 * this function can be used to trigger the NVM upgrade process. If
1304 * successful the retimer restarts with the new NVM and may not have the
1305 * index set so one needs to call usb4_port_enumerate_retimers() to
1306 * force index to be assigned.
1307 */
1308int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1309{
1310 u32 val;
1311
1312 /*
1313 * We need to use the raw operation here because once the
1314 * authentication completes the retimer index is not set anymore
1315 * so we do not get back the status now.
1316 */
1317 val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1318 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1319 USB4_SB_OPCODE, &val, sizeof(val));
1320}
1321
1322/**
1323 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1324 * @port: USB4 port
1325 * @index: Retimer index
1326 * @status: Raw status code read from metadata
1327 *
1328 * This can be called after usb4_port_retimer_nvm_authenticate() and
1329 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1330 *
1331 * Returns %0 if the authentication status was successfully read. The
1332 * completion metadata (the result) is then stored into @status. If
1333 * reading the status fails, returns negative errno.
1334 */
1335int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1336 u32 *status)
1337{
1338 u32 metadata, val;
1339 int ret;
1340
1341 ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1342 sizeof(val));
1343 if (ret)
1344 return ret;
1345
1346 switch (val) {
1347 case 0:
1348 *status = 0;
1349 return 0;
1350
1351 case USB4_SB_OPCODE_ERR:
1352 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1353 &metadata, sizeof(metadata));
1354 if (ret)
1355 return ret;
1356
1357 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1358 return 0;
1359
1360 case USB4_SB_OPCODE_ONS:
1361 return -EOPNOTSUPP;
1362
1363 default:
1364 return -EIO;
1365 }
1366}
1367
1368static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1369 void *buf, size_t dwords)
1370{
1371 const struct retimer_info *info = data;
1372 struct tb_port *port = info->port;
1373 u8 index = info->index;
1374 u32 metadata;
1375 int ret;
1376
1377 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1378 if (dwords < USB4_DATA_DWORDS)
1379 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1380
1381 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1382 sizeof(metadata));
1383 if (ret)
1384 return ret;
1385
1386 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1387 if (ret)
1388 return ret;
1389
1390 return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1391 dwords * 4);
1392}
1393
1394/**
1395 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1396 * @port: USB4 port
1397 * @index: Retimer index
1398 * @address: NVM address (in bytes) to start reading
1399 * @buf: Data read from NVM is stored here
1400 * @size: Number of bytes to read
1401 *
1402 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1403 * read was successful and negative errno in case of failure.
1404 * Specifically returns %-ENODEV if there is no retimer at @index.
1405 */
1406int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1407 unsigned int address, void *buf, size_t size)
1408{
1409 struct retimer_info info = { .port = port, .index = index };
1410
1411 return usb4_do_read_data(address, buf, size,
1412 usb4_port_retimer_nvm_read_block, &info);
1413}
1414
Mika Westerberg3b1d8d52020-02-21 23:14:41 +02001415/**
1416 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1417 * @port: USB3 adapter port
1418 *
1419 * Return maximum supported link rate of a USB3 adapter in Mb/s.
1420 * Negative errno in case of error.
1421 */
1422int usb4_usb3_port_max_link_rate(struct tb_port *port)
1423{
1424 int ret, lr;
1425 u32 val;
1426
1427 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1428 return -EINVAL;
1429
1430 ret = tb_port_read(port, &val, TB_CFG_PORT,
1431 port->cap_adap + ADP_USB3_CS_4, 1);
1432 if (ret)
1433 return ret;
1434
1435 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1436 return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1437}
1438
1439/**
1440 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1441 * @port: USB3 adapter port
1442 *
1443 * Return actual established link rate of a USB3 adapter in Mb/s. If the
1444 * link is not up returns %0 and negative errno in case of failure.
1445 */
1446int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1447{
1448 int ret, lr;
1449 u32 val;
1450
1451 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1452 return -EINVAL;
1453
1454 ret = tb_port_read(port, &val, TB_CFG_PORT,
1455 port->cap_adap + ADP_USB3_CS_4, 1);
1456 if (ret)
1457 return ret;
1458
1459 if (!(val & ADP_USB3_CS_4_ULV))
1460 return 0;
1461
1462 lr = val & ADP_USB3_CS_4_ALR_MASK;
1463 return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1464}
1465
1466static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1467{
1468 int ret;
1469 u32 val;
1470
1471 if (!tb_port_is_usb3_down(port))
1472 return -EINVAL;
1473 if (tb_route(port->sw))
1474 return -EINVAL;
1475
1476 ret = tb_port_read(port, &val, TB_CFG_PORT,
1477 port->cap_adap + ADP_USB3_CS_2, 1);
1478 if (ret)
1479 return ret;
1480
1481 if (request)
1482 val |= ADP_USB3_CS_2_CMR;
1483 else
1484 val &= ~ADP_USB3_CS_2_CMR;
1485
1486 ret = tb_port_write(port, &val, TB_CFG_PORT,
1487 port->cap_adap + ADP_USB3_CS_2, 1);
1488 if (ret)
1489 return ret;
1490
1491 /*
1492 * We can use val here directly as the CMR bit is in the same place
1493 * as HCA. Just mask out others.
1494 */
1495 val &= ADP_USB3_CS_2_CMR;
1496 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1497 ADP_USB3_CS_1_HCA, val, 1500);
1498}
1499
1500static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1501{
1502 return usb4_usb3_port_cm_request(port, true);
1503}
1504
1505static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1506{
1507 return usb4_usb3_port_cm_request(port, false);
1508}
1509
1510static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1511{
1512 unsigned long uframes;
1513
Colin Ian King4c767ce2020-06-30 15:55:58 +01001514 uframes = bw * 512UL << scale;
Mika Westerberg3b1d8d52020-02-21 23:14:41 +02001515 return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1516}
1517
1518static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
1519{
1520 unsigned long uframes;
1521
1522 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1523 uframes = ((unsigned long)mbps * 1000 * 1000) / 8000;
Colin Ian King4c767ce2020-06-30 15:55:58 +01001524 return DIV_ROUND_UP(uframes, 512UL << scale);
Mika Westerberg3b1d8d52020-02-21 23:14:41 +02001525}
1526
1527static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
1528 int *upstream_bw,
1529 int *downstream_bw)
1530{
1531 u32 val, bw, scale;
1532 int ret;
1533
1534 ret = tb_port_read(port, &val, TB_CFG_PORT,
1535 port->cap_adap + ADP_USB3_CS_2, 1);
1536 if (ret)
1537 return ret;
1538
1539 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1540 port->cap_adap + ADP_USB3_CS_3, 1);
1541 if (ret)
1542 return ret;
1543
1544 scale &= ADP_USB3_CS_3_SCALE_MASK;
1545
1546 bw = val & ADP_USB3_CS_2_AUBW_MASK;
1547 *upstream_bw = usb3_bw_to_mbps(bw, scale);
1548
1549 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
1550 *downstream_bw = usb3_bw_to_mbps(bw, scale);
1551
1552 return 0;
1553}
1554
1555/**
1556 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
1557 * @port: USB3 adapter port
1558 * @upstream_bw: Allocated upstream bandwidth is stored here
1559 * @downstream_bw: Allocated downstream bandwidth is stored here
1560 *
1561 * Stores currently allocated USB3 bandwidth into @upstream_bw and
1562 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
1563 * errno in failure.
1564 */
1565int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
1566 int *downstream_bw)
1567{
1568 int ret;
1569
1570 ret = usb4_usb3_port_set_cm_request(port);
1571 if (ret)
1572 return ret;
1573
1574 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
1575 downstream_bw);
1576 usb4_usb3_port_clear_cm_request(port);
1577
1578 return ret;
1579}
1580
1581static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
1582 int *upstream_bw,
1583 int *downstream_bw)
1584{
1585 u32 val, bw, scale;
1586 int ret;
1587
1588 ret = tb_port_read(port, &val, TB_CFG_PORT,
1589 port->cap_adap + ADP_USB3_CS_1, 1);
1590 if (ret)
1591 return ret;
1592
1593 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1594 port->cap_adap + ADP_USB3_CS_3, 1);
1595 if (ret)
1596 return ret;
1597
1598 scale &= ADP_USB3_CS_3_SCALE_MASK;
1599
1600 bw = val & ADP_USB3_CS_1_CUBW_MASK;
1601 *upstream_bw = usb3_bw_to_mbps(bw, scale);
1602
1603 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
1604 *downstream_bw = usb3_bw_to_mbps(bw, scale);
1605
1606 return 0;
1607}
1608
1609static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
1610 int upstream_bw,
1611 int downstream_bw)
1612{
1613 u32 val, ubw, dbw, scale;
1614 int ret;
1615
1616 /* Read the used scale, hardware default is 0 */
1617 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1618 port->cap_adap + ADP_USB3_CS_3, 1);
1619 if (ret)
1620 return ret;
1621
1622 scale &= ADP_USB3_CS_3_SCALE_MASK;
1623 ubw = mbps_to_usb3_bw(upstream_bw, scale);
1624 dbw = mbps_to_usb3_bw(downstream_bw, scale);
1625
1626 ret = tb_port_read(port, &val, TB_CFG_PORT,
1627 port->cap_adap + ADP_USB3_CS_2, 1);
1628 if (ret)
1629 return ret;
1630
1631 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
1632 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
1633 val |= ubw;
1634
1635 return tb_port_write(port, &val, TB_CFG_PORT,
1636 port->cap_adap + ADP_USB3_CS_2, 1);
1637}
1638
1639/**
1640 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
1641 * @port: USB3 adapter port
1642 * @upstream_bw: New upstream bandwidth
1643 * @downstream_bw: New downstream bandwidth
1644 *
1645 * This can be used to set how much bandwidth is allocated for the USB3
1646 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
1647 * new values programmed to the USB3 adapter allocation registers. If
1648 * the values are lower than what is currently consumed the allocation
1649 * is set to what is currently consumed instead (consumed bandwidth
1650 * cannot be taken away by CM). The actual new values are returned in
1651 * @upstream_bw and @downstream_bw.
1652 *
1653 * Returns %0 in case of success and negative errno if there was a
1654 * failure.
1655 */
1656int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
1657 int *downstream_bw)
1658{
1659 int ret, consumed_up, consumed_down, allocate_up, allocate_down;
1660
1661 ret = usb4_usb3_port_set_cm_request(port);
1662 if (ret)
1663 return ret;
1664
1665 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1666 &consumed_down);
1667 if (ret)
1668 goto err_request;
1669
1670 /* Don't allow it go lower than what is consumed */
1671 allocate_up = max(*upstream_bw, consumed_up);
1672 allocate_down = max(*downstream_bw, consumed_down);
1673
1674 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
1675 allocate_down);
1676 if (ret)
1677 goto err_request;
1678
1679 *upstream_bw = allocate_up;
1680 *downstream_bw = allocate_down;
1681
1682err_request:
1683 usb4_usb3_port_clear_cm_request(port);
1684 return ret;
1685}
1686
1687/**
1688 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
1689 * @port: USB3 adapter port
1690 * @upstream_bw: New allocated upstream bandwidth
1691 * @downstream_bw: New allocated downstream bandwidth
1692 *
1693 * Releases USB3 allocated bandwidth down to what is actually consumed.
1694 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
1695 *
1696 * Returns 0% in success and negative errno in case of failure.
1697 */
1698int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
1699 int *downstream_bw)
1700{
1701 int ret, consumed_up, consumed_down;
1702
1703 ret = usb4_usb3_port_set_cm_request(port);
1704 if (ret)
1705 return ret;
1706
1707 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1708 &consumed_down);
1709 if (ret)
1710 goto err_request;
1711
1712 /*
1713 * Always keep 1000 Mb/s to make sure xHCI has at least some
1714 * bandwidth available for isochronous traffic.
1715 */
1716 if (consumed_up < 1000)
1717 consumed_up = 1000;
1718 if (consumed_down < 1000)
1719 consumed_down = 1000;
1720
1721 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
1722 consumed_down);
1723 if (ret)
1724 goto err_request;
1725
1726 *upstream_bw = consumed_up;
1727 *downstream_bw = consumed_down;
1728
1729err_request:
1730 usb4_usb3_port_clear_cm_request(port);
1731 return ret;
1732}