Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Routines to emulate some Altivec/VMX instructions, specifically |
| 3 | * those that can trap when given denormalized operands in Java mode. |
| 4 | */ |
| 5 | #include <linux/kernel.h> |
| 6 | #include <linux/errno.h> |
| 7 | #include <linux/sched.h> |
| 8 | #include <asm/ptrace.h> |
| 9 | #include <asm/processor.h> |
| 10 | #include <asm/uaccess.h> |
| 11 | |
| 12 | /* Functions in vector.S */ |
| 13 | extern void vaddfp(vector128 *dst, vector128 *a, vector128 *b); |
| 14 | extern void vsubfp(vector128 *dst, vector128 *a, vector128 *b); |
| 15 | extern void vmaddfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c); |
| 16 | extern void vnmsubfp(vector128 *dst, vector128 *a, vector128 *b, vector128 *c); |
| 17 | extern void vrefp(vector128 *dst, vector128 *src); |
| 18 | extern void vrsqrtefp(vector128 *dst, vector128 *src); |
| 19 | extern void vexptep(vector128 *dst, vector128 *src); |
| 20 | |
| 21 | static unsigned int exp2s[8] = { |
| 22 | 0x800000, |
| 23 | 0x8b95c2, |
| 24 | 0x9837f0, |
| 25 | 0xa5fed7, |
| 26 | 0xb504f3, |
| 27 | 0xc5672a, |
| 28 | 0xd744fd, |
| 29 | 0xeac0c7 |
| 30 | }; |
| 31 | |
| 32 | /* |
| 33 | * Computes an estimate of 2^x. The `s' argument is the 32-bit |
| 34 | * single-precision floating-point representation of x. |
| 35 | */ |
| 36 | static unsigned int eexp2(unsigned int s) |
| 37 | { |
| 38 | int exp, pwr; |
| 39 | unsigned int mant, frac; |
| 40 | |
| 41 | /* extract exponent field from input */ |
| 42 | exp = ((s >> 23) & 0xff) - 127; |
| 43 | if (exp > 7) { |
| 44 | /* check for NaN input */ |
| 45 | if (exp == 128 && (s & 0x7fffff) != 0) |
| 46 | return s | 0x400000; /* return QNaN */ |
| 47 | /* 2^-big = 0, 2^+big = +Inf */ |
| 48 | return (s & 0x80000000)? 0: 0x7f800000; /* 0 or +Inf */ |
| 49 | } |
| 50 | if (exp < -23) |
| 51 | return 0x3f800000; /* 1.0 */ |
| 52 | |
| 53 | /* convert to fixed point integer in 9.23 representation */ |
| 54 | pwr = (s & 0x7fffff) | 0x800000; |
| 55 | if (exp > 0) |
| 56 | pwr <<= exp; |
| 57 | else |
| 58 | pwr >>= -exp; |
| 59 | if (s & 0x80000000) |
| 60 | pwr = -pwr; |
| 61 | |
| 62 | /* extract integer part, which becomes exponent part of result */ |
| 63 | exp = (pwr >> 23) + 126; |
| 64 | if (exp >= 254) |
| 65 | return 0x7f800000; |
| 66 | if (exp < -23) |
| 67 | return 0; |
| 68 | |
| 69 | /* table lookup on top 3 bits of fraction to get mantissa */ |
| 70 | mant = exp2s[(pwr >> 20) & 7]; |
| 71 | |
| 72 | /* linear interpolation using remaining 20 bits of fraction */ |
| 73 | asm("mulhwu %0,%1,%2" : "=r" (frac) |
| 74 | : "r" (pwr << 12), "r" (0x172b83ff)); |
| 75 | asm("mulhwu %0,%1,%2" : "=r" (frac) : "r" (frac), "r" (mant)); |
| 76 | mant += frac; |
| 77 | |
| 78 | if (exp >= 0) |
| 79 | return mant + (exp << 23); |
| 80 | |
| 81 | /* denormalized result */ |
| 82 | exp = -exp; |
| 83 | mant += 1 << (exp - 1); |
| 84 | return mant >> exp; |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * Computes an estimate of log_2(x). The `s' argument is the 32-bit |
| 89 | * single-precision floating-point representation of x. |
| 90 | */ |
| 91 | static unsigned int elog2(unsigned int s) |
| 92 | { |
| 93 | int exp, mant, lz, frac; |
| 94 | |
| 95 | exp = s & 0x7f800000; |
| 96 | mant = s & 0x7fffff; |
| 97 | if (exp == 0x7f800000) { /* Inf or NaN */ |
| 98 | if (mant != 0) |
| 99 | s |= 0x400000; /* turn NaN into QNaN */ |
| 100 | return s; |
| 101 | } |
| 102 | if ((exp | mant) == 0) /* +0 or -0 */ |
| 103 | return 0xff800000; /* return -Inf */ |
| 104 | |
| 105 | if (exp == 0) { |
| 106 | /* denormalized */ |
| 107 | asm("cntlzw %0,%1" : "=r" (lz) : "r" (mant)); |
| 108 | mant <<= lz - 8; |
| 109 | exp = (-118 - lz) << 23; |
| 110 | } else { |
| 111 | mant |= 0x800000; |
| 112 | exp -= 127 << 23; |
| 113 | } |
| 114 | |
| 115 | if (mant >= 0xb504f3) { /* 2^0.5 * 2^23 */ |
| 116 | exp |= 0x400000; /* 0.5 * 2^23 */ |
| 117 | asm("mulhwu %0,%1,%2" : "=r" (mant) |
| 118 | : "r" (mant), "r" (0xb504f334)); /* 2^-0.5 * 2^32 */ |
| 119 | } |
| 120 | if (mant >= 0x9837f0) { /* 2^0.25 * 2^23 */ |
| 121 | exp |= 0x200000; /* 0.25 * 2^23 */ |
| 122 | asm("mulhwu %0,%1,%2" : "=r" (mant) |
| 123 | : "r" (mant), "r" (0xd744fccb)); /* 2^-0.25 * 2^32 */ |
| 124 | } |
| 125 | if (mant >= 0x8b95c2) { /* 2^0.125 * 2^23 */ |
| 126 | exp |= 0x100000; /* 0.125 * 2^23 */ |
| 127 | asm("mulhwu %0,%1,%2" : "=r" (mant) |
| 128 | : "r" (mant), "r" (0xeac0c6e8)); /* 2^-0.125 * 2^32 */ |
| 129 | } |
| 130 | if (mant > 0x800000) { /* 1.0 * 2^23 */ |
| 131 | /* calculate (mant - 1) * 1.381097463 */ |
| 132 | /* 1.381097463 == 0.125 / (2^0.125 - 1) */ |
| 133 | asm("mulhwu %0,%1,%2" : "=r" (frac) |
| 134 | : "r" ((mant - 0x800000) << 1), "r" (0xb0c7cd3a)); |
| 135 | exp += frac; |
| 136 | } |
| 137 | s = exp & 0x80000000; |
| 138 | if (exp != 0) { |
| 139 | if (s) |
| 140 | exp = -exp; |
| 141 | asm("cntlzw %0,%1" : "=r" (lz) : "r" (exp)); |
| 142 | lz = 8 - lz; |
| 143 | if (lz > 0) |
| 144 | exp >>= lz; |
| 145 | else if (lz < 0) |
| 146 | exp <<= -lz; |
| 147 | s += ((lz + 126) << 23) + exp; |
| 148 | } |
| 149 | return s; |
| 150 | } |
| 151 | |
| 152 | #define VSCR_SAT 1 |
| 153 | |
| 154 | static int ctsxs(unsigned int x, int scale, unsigned int *vscrp) |
| 155 | { |
| 156 | int exp, mant; |
| 157 | |
| 158 | exp = (x >> 23) & 0xff; |
| 159 | mant = x & 0x7fffff; |
| 160 | if (exp == 255 && mant != 0) |
| 161 | return 0; /* NaN -> 0 */ |
| 162 | exp = exp - 127 + scale; |
| 163 | if (exp < 0) |
| 164 | return 0; /* round towards zero */ |
| 165 | if (exp >= 31) { |
| 166 | /* saturate, unless the result would be -2^31 */ |
| 167 | if (x + (scale << 23) != 0xcf000000) |
| 168 | *vscrp |= VSCR_SAT; |
| 169 | return (x & 0x80000000)? 0x80000000: 0x7fffffff; |
| 170 | } |
| 171 | mant |= 0x800000; |
| 172 | mant = (mant << 7) >> (30 - exp); |
| 173 | return (x & 0x80000000)? -mant: mant; |
| 174 | } |
| 175 | |
| 176 | static unsigned int ctuxs(unsigned int x, int scale, unsigned int *vscrp) |
| 177 | { |
| 178 | int exp; |
| 179 | unsigned int mant; |
| 180 | |
| 181 | exp = (x >> 23) & 0xff; |
| 182 | mant = x & 0x7fffff; |
| 183 | if (exp == 255 && mant != 0) |
| 184 | return 0; /* NaN -> 0 */ |
| 185 | exp = exp - 127 + scale; |
| 186 | if (exp < 0) |
| 187 | return 0; /* round towards zero */ |
| 188 | if (x & 0x80000000) { |
| 189 | /* negative => saturate to 0 */ |
| 190 | *vscrp |= VSCR_SAT; |
| 191 | return 0; |
| 192 | } |
| 193 | if (exp >= 32) { |
| 194 | /* saturate */ |
| 195 | *vscrp |= VSCR_SAT; |
| 196 | return 0xffffffff; |
| 197 | } |
| 198 | mant |= 0x800000; |
| 199 | mant = (mant << 8) >> (31 - exp); |
| 200 | return mant; |
| 201 | } |
| 202 | |
| 203 | /* Round to floating integer, towards 0 */ |
| 204 | static unsigned int rfiz(unsigned int x) |
| 205 | { |
| 206 | int exp; |
| 207 | |
| 208 | exp = ((x >> 23) & 0xff) - 127; |
| 209 | if (exp == 128 && (x & 0x7fffff) != 0) |
| 210 | return x | 0x400000; /* NaN -> make it a QNaN */ |
| 211 | if (exp >= 23) |
| 212 | return x; /* it's an integer already (or Inf) */ |
| 213 | if (exp < 0) |
| 214 | return x & 0x80000000; /* |x| < 1.0 rounds to 0 */ |
| 215 | return x & ~(0x7fffff >> exp); |
| 216 | } |
| 217 | |
| 218 | /* Round to floating integer, towards +/- Inf */ |
| 219 | static unsigned int rfii(unsigned int x) |
| 220 | { |
| 221 | int exp, mask; |
| 222 | |
| 223 | exp = ((x >> 23) & 0xff) - 127; |
| 224 | if (exp == 128 && (x & 0x7fffff) != 0) |
| 225 | return x | 0x400000; /* NaN -> make it a QNaN */ |
| 226 | if (exp >= 23) |
| 227 | return x; /* it's an integer already (or Inf) */ |
| 228 | if ((x & 0x7fffffff) == 0) |
| 229 | return x; /* +/-0 -> +/-0 */ |
| 230 | if (exp < 0) |
| 231 | /* 0 < |x| < 1.0 rounds to +/- 1.0 */ |
| 232 | return (x & 0x80000000) | 0x3f800000; |
| 233 | mask = 0x7fffff >> exp; |
| 234 | /* mantissa overflows into exponent - that's OK, |
| 235 | it can't overflow into the sign bit */ |
| 236 | return (x + mask) & ~mask; |
| 237 | } |
| 238 | |
| 239 | /* Round to floating integer, to nearest */ |
| 240 | static unsigned int rfin(unsigned int x) |
| 241 | { |
| 242 | int exp, half; |
| 243 | |
| 244 | exp = ((x >> 23) & 0xff) - 127; |
| 245 | if (exp == 128 && (x & 0x7fffff) != 0) |
| 246 | return x | 0x400000; /* NaN -> make it a QNaN */ |
| 247 | if (exp >= 23) |
| 248 | return x; /* it's an integer already (or Inf) */ |
| 249 | if (exp < -1) |
| 250 | return x & 0x80000000; /* |x| < 0.5 -> +/-0 */ |
| 251 | if (exp == -1) |
| 252 | /* 0.5 <= |x| < 1.0 rounds to +/- 1.0 */ |
| 253 | return (x & 0x80000000) | 0x3f800000; |
| 254 | half = 0x400000 >> exp; |
| 255 | /* add 0.5 to the magnitude and chop off the fraction bits */ |
| 256 | return (x + half) & ~(0x7fffff >> exp); |
| 257 | } |
| 258 | |
| 259 | int emulate_altivec(struct pt_regs *regs) |
| 260 | { |
| 261 | unsigned int instr, i; |
| 262 | unsigned int va, vb, vc, vd; |
| 263 | vector128 *vrs; |
| 264 | |
| 265 | if (get_user(instr, (unsigned int __user *) regs->nip)) |
| 266 | return -EFAULT; |
| 267 | if ((instr >> 26) != 4) |
| 268 | return -EINVAL; /* not an altivec instruction */ |
| 269 | vd = (instr >> 21) & 0x1f; |
| 270 | va = (instr >> 16) & 0x1f; |
| 271 | vb = (instr >> 11) & 0x1f; |
| 272 | vc = (instr >> 6) & 0x1f; |
| 273 | |
| 274 | vrs = current->thread.vr; |
| 275 | switch (instr & 0x3f) { |
| 276 | case 10: |
| 277 | switch (vc) { |
| 278 | case 0: /* vaddfp */ |
| 279 | vaddfp(&vrs[vd], &vrs[va], &vrs[vb]); |
| 280 | break; |
| 281 | case 1: /* vsubfp */ |
| 282 | vsubfp(&vrs[vd], &vrs[va], &vrs[vb]); |
| 283 | break; |
| 284 | case 4: /* vrefp */ |
| 285 | vrefp(&vrs[vd], &vrs[vb]); |
| 286 | break; |
| 287 | case 5: /* vrsqrtefp */ |
| 288 | vrsqrtefp(&vrs[vd], &vrs[vb]); |
| 289 | break; |
| 290 | case 6: /* vexptefp */ |
| 291 | for (i = 0; i < 4; ++i) |
| 292 | vrs[vd].u[i] = eexp2(vrs[vb].u[i]); |
| 293 | break; |
| 294 | case 7: /* vlogefp */ |
| 295 | for (i = 0; i < 4; ++i) |
| 296 | vrs[vd].u[i] = elog2(vrs[vb].u[i]); |
| 297 | break; |
| 298 | case 8: /* vrfin */ |
| 299 | for (i = 0; i < 4; ++i) |
| 300 | vrs[vd].u[i] = rfin(vrs[vb].u[i]); |
| 301 | break; |
| 302 | case 9: /* vrfiz */ |
| 303 | for (i = 0; i < 4; ++i) |
| 304 | vrs[vd].u[i] = rfiz(vrs[vb].u[i]); |
| 305 | break; |
| 306 | case 10: /* vrfip */ |
| 307 | for (i = 0; i < 4; ++i) { |
| 308 | u32 x = vrs[vb].u[i]; |
| 309 | x = (x & 0x80000000)? rfiz(x): rfii(x); |
| 310 | vrs[vd].u[i] = x; |
| 311 | } |
| 312 | break; |
| 313 | case 11: /* vrfim */ |
| 314 | for (i = 0; i < 4; ++i) { |
| 315 | u32 x = vrs[vb].u[i]; |
| 316 | x = (x & 0x80000000)? rfii(x): rfiz(x); |
| 317 | vrs[vd].u[i] = x; |
| 318 | } |
| 319 | break; |
| 320 | case 14: /* vctuxs */ |
| 321 | for (i = 0; i < 4; ++i) |
| 322 | vrs[vd].u[i] = ctuxs(vrs[vb].u[i], va, |
| 323 | ¤t->thread.vscr.u[3]); |
| 324 | break; |
| 325 | case 15: /* vctsxs */ |
| 326 | for (i = 0; i < 4; ++i) |
| 327 | vrs[vd].u[i] = ctsxs(vrs[vb].u[i], va, |
| 328 | ¤t->thread.vscr.u[3]); |
| 329 | break; |
| 330 | default: |
| 331 | return -EINVAL; |
| 332 | } |
| 333 | break; |
| 334 | case 46: /* vmaddfp */ |
| 335 | vmaddfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]); |
| 336 | break; |
| 337 | case 47: /* vnmsubfp */ |
| 338 | vnmsubfp(&vrs[vd], &vrs[va], &vrs[vb], &vrs[vc]); |
| 339 | break; |
| 340 | default: |
| 341 | return -EINVAL; |
| 342 | } |
| 343 | |
| 344 | return 0; |
| 345 | } |