Ben Gardon | fe5db27 | 2020-10-14 11:26:43 -0700 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
Ben Gardon | 02c00b3 | 2020-10-14 20:26:44 +0200 | [diff] [blame] | 3 | #include "mmu.h" |
| 4 | #include "mmu_internal.h" |
Ben Gardon | bb18842 | 2020-10-14 11:26:50 -0700 | [diff] [blame] | 5 | #include "mmutrace.h" |
Ben Gardon | 2f2fad0 | 2020-10-14 20:26:45 +0200 | [diff] [blame] | 6 | #include "tdp_iter.h" |
Ben Gardon | fe5db27 | 2020-10-14 11:26:43 -0700 | [diff] [blame] | 7 | #include "tdp_mmu.h" |
Ben Gardon | 02c00b3 | 2020-10-14 20:26:44 +0200 | [diff] [blame] | 8 | #include "spte.h" |
Ben Gardon | fe5db27 | 2020-10-14 11:26:43 -0700 | [diff] [blame] | 9 | |
| 10 | static bool __read_mostly tdp_mmu_enabled = false; |
| 11 | |
| 12 | static bool is_tdp_mmu_enabled(void) |
| 13 | { |
| 14 | #ifdef CONFIG_X86_64 |
| 15 | return tdp_enabled && READ_ONCE(tdp_mmu_enabled); |
| 16 | #else |
| 17 | return false; |
| 18 | #endif /* CONFIG_X86_64 */ |
| 19 | } |
| 20 | |
| 21 | /* Initializes the TDP MMU for the VM, if enabled. */ |
| 22 | void kvm_mmu_init_tdp_mmu(struct kvm *kvm) |
| 23 | { |
| 24 | if (!is_tdp_mmu_enabled()) |
| 25 | return; |
| 26 | |
| 27 | /* This should not be changed for the lifetime of the VM. */ |
| 28 | kvm->arch.tdp_mmu_enabled = true; |
Ben Gardon | 02c00b3 | 2020-10-14 20:26:44 +0200 | [diff] [blame] | 29 | |
| 30 | INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots); |
Ben Gardon | 89c0fd4 | 2020-10-14 11:26:51 -0700 | [diff] [blame] | 31 | INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages); |
Ben Gardon | fe5db27 | 2020-10-14 11:26:43 -0700 | [diff] [blame] | 32 | } |
| 33 | |
| 34 | void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm) |
| 35 | { |
| 36 | if (!kvm->arch.tdp_mmu_enabled) |
| 37 | return; |
Ben Gardon | 02c00b3 | 2020-10-14 20:26:44 +0200 | [diff] [blame] | 38 | |
| 39 | WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots)); |
| 40 | } |
| 41 | |
| 42 | #define for_each_tdp_mmu_root(_kvm, _root) \ |
| 43 | list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link) |
| 44 | |
| 45 | bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa) |
| 46 | { |
| 47 | struct kvm_mmu_page *sp; |
| 48 | |
| 49 | sp = to_shadow_page(hpa); |
| 50 | |
| 51 | return sp->tdp_mmu_page && sp->root_count; |
| 52 | } |
| 53 | |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 54 | static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, |
Ben Gardon | 063afac | 2020-10-14 11:26:52 -0700 | [diff] [blame] | 55 | gfn_t start, gfn_t end, bool can_yield); |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 56 | |
Ben Gardon | 02c00b3 | 2020-10-14 20:26:44 +0200 | [diff] [blame] | 57 | void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root) |
| 58 | { |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 59 | gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT); |
| 60 | |
Ben Gardon | 02c00b3 | 2020-10-14 20:26:44 +0200 | [diff] [blame] | 61 | lockdep_assert_held(&kvm->mmu_lock); |
| 62 | |
| 63 | WARN_ON(root->root_count); |
| 64 | WARN_ON(!root->tdp_mmu_page); |
| 65 | |
| 66 | list_del(&root->link); |
| 67 | |
Ben Gardon | 063afac | 2020-10-14 11:26:52 -0700 | [diff] [blame] | 68 | zap_gfn_range(kvm, root, 0, max_gfn, false); |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 69 | |
Ben Gardon | 02c00b3 | 2020-10-14 20:26:44 +0200 | [diff] [blame] | 70 | free_page((unsigned long)root->spt); |
| 71 | kmem_cache_free(mmu_page_header_cache, root); |
| 72 | } |
| 73 | |
| 74 | static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu, |
| 75 | int level) |
| 76 | { |
| 77 | union kvm_mmu_page_role role; |
| 78 | |
| 79 | role = vcpu->arch.mmu->mmu_role.base; |
| 80 | role.level = level; |
| 81 | role.direct = true; |
| 82 | role.gpte_is_8_bytes = true; |
| 83 | role.access = ACC_ALL; |
| 84 | |
| 85 | return role; |
| 86 | } |
| 87 | |
| 88 | static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn, |
| 89 | int level) |
| 90 | { |
| 91 | struct kvm_mmu_page *sp; |
| 92 | |
| 93 | sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); |
| 94 | sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); |
| 95 | set_page_private(virt_to_page(sp->spt), (unsigned long)sp); |
| 96 | |
| 97 | sp->role.word = page_role_for_level(vcpu, level).word; |
| 98 | sp->gfn = gfn; |
| 99 | sp->tdp_mmu_page = true; |
| 100 | |
| 101 | return sp; |
| 102 | } |
| 103 | |
| 104 | static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu) |
| 105 | { |
| 106 | union kvm_mmu_page_role role; |
| 107 | struct kvm *kvm = vcpu->kvm; |
| 108 | struct kvm_mmu_page *root; |
| 109 | |
| 110 | role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level); |
| 111 | |
| 112 | spin_lock(&kvm->mmu_lock); |
| 113 | |
| 114 | /* Check for an existing root before allocating a new one. */ |
| 115 | for_each_tdp_mmu_root(kvm, root) { |
| 116 | if (root->role.word == role.word) { |
| 117 | kvm_mmu_get_root(kvm, root); |
| 118 | spin_unlock(&kvm->mmu_lock); |
| 119 | return root; |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level); |
| 124 | root->root_count = 1; |
| 125 | |
| 126 | list_add(&root->link, &kvm->arch.tdp_mmu_roots); |
| 127 | |
| 128 | spin_unlock(&kvm->mmu_lock); |
| 129 | |
| 130 | return root; |
| 131 | } |
| 132 | |
| 133 | hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu) |
| 134 | { |
| 135 | struct kvm_mmu_page *root; |
| 136 | |
| 137 | root = get_tdp_mmu_vcpu_root(vcpu); |
| 138 | if (!root) |
| 139 | return INVALID_PAGE; |
| 140 | |
| 141 | return __pa(root->spt); |
Ben Gardon | fe5db27 | 2020-10-14 11:26:43 -0700 | [diff] [blame] | 142 | } |
Ben Gardon | 2f2fad0 | 2020-10-14 20:26:45 +0200 | [diff] [blame] | 143 | |
| 144 | static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, |
| 145 | u64 old_spte, u64 new_spte, int level); |
| 146 | |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 147 | static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp) |
| 148 | { |
| 149 | return sp->role.smm ? 1 : 0; |
| 150 | } |
| 151 | |
Ben Gardon | f8e1449 | 2020-10-14 11:26:53 -0700 | [diff] [blame] | 152 | static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level) |
| 153 | { |
| 154 | bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); |
| 155 | |
| 156 | if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level)) |
| 157 | return; |
| 158 | |
| 159 | if (is_accessed_spte(old_spte) && |
| 160 | (!is_accessed_spte(new_spte) || pfn_changed)) |
| 161 | kvm_set_pfn_accessed(spte_to_pfn(old_spte)); |
| 162 | } |
| 163 | |
Ben Gardon | a6a0b05 | 2020-10-14 11:26:55 -0700 | [diff] [blame] | 164 | static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn, |
| 165 | u64 old_spte, u64 new_spte, int level) |
| 166 | { |
| 167 | bool pfn_changed; |
| 168 | struct kvm_memory_slot *slot; |
| 169 | |
| 170 | if (level > PG_LEVEL_4K) |
| 171 | return; |
| 172 | |
| 173 | pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); |
| 174 | |
| 175 | if ((!is_writable_pte(old_spte) || pfn_changed) && |
| 176 | is_writable_pte(new_spte)) { |
| 177 | slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn); |
| 178 | mark_page_dirty_in_slot(slot, gfn); |
| 179 | } |
| 180 | } |
| 181 | |
Ben Gardon | 2f2fad0 | 2020-10-14 20:26:45 +0200 | [diff] [blame] | 182 | /** |
| 183 | * handle_changed_spte - handle bookkeeping associated with an SPTE change |
| 184 | * @kvm: kvm instance |
| 185 | * @as_id: the address space of the paging structure the SPTE was a part of |
| 186 | * @gfn: the base GFN that was mapped by the SPTE |
| 187 | * @old_spte: The value of the SPTE before the change |
| 188 | * @new_spte: The value of the SPTE after the change |
| 189 | * @level: the level of the PT the SPTE is part of in the paging structure |
| 190 | * |
| 191 | * Handle bookkeeping that might result from the modification of a SPTE. |
| 192 | * This function must be called for all TDP SPTE modifications. |
| 193 | */ |
| 194 | static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, |
| 195 | u64 old_spte, u64 new_spte, int level) |
| 196 | { |
| 197 | bool was_present = is_shadow_present_pte(old_spte); |
| 198 | bool is_present = is_shadow_present_pte(new_spte); |
| 199 | bool was_leaf = was_present && is_last_spte(old_spte, level); |
| 200 | bool is_leaf = is_present && is_last_spte(new_spte, level); |
| 201 | bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte); |
| 202 | u64 *pt; |
Ben Gardon | 89c0fd4 | 2020-10-14 11:26:51 -0700 | [diff] [blame] | 203 | struct kvm_mmu_page *sp; |
Ben Gardon | 2f2fad0 | 2020-10-14 20:26:45 +0200 | [diff] [blame] | 204 | u64 old_child_spte; |
| 205 | int i; |
| 206 | |
| 207 | WARN_ON(level > PT64_ROOT_MAX_LEVEL); |
| 208 | WARN_ON(level < PG_LEVEL_4K); |
| 209 | WARN_ON(gfn % KVM_PAGES_PER_HPAGE(level)); |
| 210 | |
| 211 | /* |
| 212 | * If this warning were to trigger it would indicate that there was a |
| 213 | * missing MMU notifier or a race with some notifier handler. |
| 214 | * A present, leaf SPTE should never be directly replaced with another |
| 215 | * present leaf SPTE pointing to a differnt PFN. A notifier handler |
| 216 | * should be zapping the SPTE before the main MM's page table is |
| 217 | * changed, or the SPTE should be zeroed, and the TLBs flushed by the |
| 218 | * thread before replacement. |
| 219 | */ |
| 220 | if (was_leaf && is_leaf && pfn_changed) { |
| 221 | pr_err("Invalid SPTE change: cannot replace a present leaf\n" |
| 222 | "SPTE with another present leaf SPTE mapping a\n" |
| 223 | "different PFN!\n" |
| 224 | "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", |
| 225 | as_id, gfn, old_spte, new_spte, level); |
| 226 | |
| 227 | /* |
| 228 | * Crash the host to prevent error propagation and guest data |
| 229 | * courruption. |
| 230 | */ |
| 231 | BUG(); |
| 232 | } |
| 233 | |
| 234 | if (old_spte == new_spte) |
| 235 | return; |
| 236 | |
| 237 | /* |
| 238 | * The only times a SPTE should be changed from a non-present to |
| 239 | * non-present state is when an MMIO entry is installed/modified/ |
| 240 | * removed. In that case, there is nothing to do here. |
| 241 | */ |
| 242 | if (!was_present && !is_present) { |
| 243 | /* |
| 244 | * If this change does not involve a MMIO SPTE, it is |
| 245 | * unexpected. Log the change, though it should not impact the |
| 246 | * guest since both the former and current SPTEs are nonpresent. |
| 247 | */ |
| 248 | if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte))) |
| 249 | pr_err("Unexpected SPTE change! Nonpresent SPTEs\n" |
| 250 | "should not be replaced with another,\n" |
| 251 | "different nonpresent SPTE, unless one or both\n" |
| 252 | "are MMIO SPTEs.\n" |
| 253 | "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d", |
| 254 | as_id, gfn, old_spte, new_spte, level); |
| 255 | return; |
| 256 | } |
| 257 | |
| 258 | |
| 259 | if (was_leaf && is_dirty_spte(old_spte) && |
| 260 | (!is_dirty_spte(new_spte) || pfn_changed)) |
| 261 | kvm_set_pfn_dirty(spte_to_pfn(old_spte)); |
| 262 | |
| 263 | /* |
| 264 | * Recursively handle child PTs if the change removed a subtree from |
| 265 | * the paging structure. |
| 266 | */ |
| 267 | if (was_present && !was_leaf && (pfn_changed || !is_present)) { |
| 268 | pt = spte_to_child_pt(old_spte, level); |
Ben Gardon | 89c0fd4 | 2020-10-14 11:26:51 -0700 | [diff] [blame] | 269 | sp = sptep_to_sp(pt); |
| 270 | |
| 271 | list_del(&sp->link); |
Ben Gardon | 2f2fad0 | 2020-10-14 20:26:45 +0200 | [diff] [blame] | 272 | |
| 273 | for (i = 0; i < PT64_ENT_PER_PAGE; i++) { |
| 274 | old_child_spte = READ_ONCE(*(pt + i)); |
| 275 | WRITE_ONCE(*(pt + i), 0); |
| 276 | handle_changed_spte(kvm, as_id, |
| 277 | gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)), |
| 278 | old_child_spte, 0, level - 1); |
| 279 | } |
| 280 | |
| 281 | kvm_flush_remote_tlbs_with_address(kvm, gfn, |
| 282 | KVM_PAGES_PER_HPAGE(level)); |
| 283 | |
| 284 | free_page((unsigned long)pt); |
Ben Gardon | 89c0fd4 | 2020-10-14 11:26:51 -0700 | [diff] [blame] | 285 | kmem_cache_free(mmu_page_header_cache, sp); |
Ben Gardon | 2f2fad0 | 2020-10-14 20:26:45 +0200 | [diff] [blame] | 286 | } |
| 287 | } |
| 288 | |
| 289 | static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn, |
| 290 | u64 old_spte, u64 new_spte, int level) |
| 291 | { |
| 292 | __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level); |
Ben Gardon | f8e1449 | 2020-10-14 11:26:53 -0700 | [diff] [blame] | 293 | handle_changed_spte_acc_track(old_spte, new_spte, level); |
Ben Gardon | a6a0b05 | 2020-10-14 11:26:55 -0700 | [diff] [blame] | 294 | handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte, |
| 295 | new_spte, level); |
Ben Gardon | 2f2fad0 | 2020-10-14 20:26:45 +0200 | [diff] [blame] | 296 | } |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 297 | |
Ben Gardon | f8e1449 | 2020-10-14 11:26:53 -0700 | [diff] [blame] | 298 | static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, |
Ben Gardon | a6a0b05 | 2020-10-14 11:26:55 -0700 | [diff] [blame] | 299 | u64 new_spte, bool record_acc_track, |
| 300 | bool record_dirty_log) |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 301 | { |
| 302 | u64 *root_pt = tdp_iter_root_pt(iter); |
| 303 | struct kvm_mmu_page *root = sptep_to_sp(root_pt); |
| 304 | int as_id = kvm_mmu_page_as_id(root); |
| 305 | |
Ben Gardon | f8e1449 | 2020-10-14 11:26:53 -0700 | [diff] [blame] | 306 | WRITE_ONCE(*iter->sptep, new_spte); |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 307 | |
Ben Gardon | f8e1449 | 2020-10-14 11:26:53 -0700 | [diff] [blame] | 308 | __handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte, |
| 309 | iter->level); |
| 310 | if (record_acc_track) |
| 311 | handle_changed_spte_acc_track(iter->old_spte, new_spte, |
| 312 | iter->level); |
Ben Gardon | a6a0b05 | 2020-10-14 11:26:55 -0700 | [diff] [blame] | 313 | if (record_dirty_log) |
| 314 | handle_changed_spte_dirty_log(kvm, as_id, iter->gfn, |
| 315 | iter->old_spte, new_spte, |
| 316 | iter->level); |
Ben Gardon | f8e1449 | 2020-10-14 11:26:53 -0700 | [diff] [blame] | 317 | } |
| 318 | |
| 319 | static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, |
| 320 | u64 new_spte) |
| 321 | { |
Ben Gardon | a6a0b05 | 2020-10-14 11:26:55 -0700 | [diff] [blame] | 322 | __tdp_mmu_set_spte(kvm, iter, new_spte, true, true); |
Ben Gardon | f8e1449 | 2020-10-14 11:26:53 -0700 | [diff] [blame] | 323 | } |
| 324 | |
| 325 | static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm, |
| 326 | struct tdp_iter *iter, |
| 327 | u64 new_spte) |
| 328 | { |
Ben Gardon | a6a0b05 | 2020-10-14 11:26:55 -0700 | [diff] [blame] | 329 | __tdp_mmu_set_spte(kvm, iter, new_spte, false, true); |
| 330 | } |
| 331 | |
| 332 | static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm, |
| 333 | struct tdp_iter *iter, |
| 334 | u64 new_spte) |
| 335 | { |
| 336 | __tdp_mmu_set_spte(kvm, iter, new_spte, true, false); |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 337 | } |
| 338 | |
| 339 | #define tdp_root_for_each_pte(_iter, _root, _start, _end) \ |
| 340 | for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end) |
| 341 | |
Ben Gardon | f8e1449 | 2020-10-14 11:26:53 -0700 | [diff] [blame] | 342 | #define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \ |
| 343 | tdp_root_for_each_pte(_iter, _root, _start, _end) \ |
| 344 | if (!is_shadow_present_pte(_iter.old_spte) || \ |
| 345 | !is_last_spte(_iter.old_spte, _iter.level)) \ |
| 346 | continue; \ |
| 347 | else |
| 348 | |
Ben Gardon | bb18842 | 2020-10-14 11:26:50 -0700 | [diff] [blame] | 349 | #define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \ |
| 350 | for_each_tdp_pte(_iter, __va(_mmu->root_hpa), \ |
| 351 | _mmu->shadow_root_level, _start, _end) |
| 352 | |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 353 | /* |
| 354 | * Flush the TLB if the process should drop kvm->mmu_lock. |
| 355 | * Return whether the caller still needs to flush the tlb. |
| 356 | */ |
| 357 | static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *iter) |
| 358 | { |
| 359 | if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { |
| 360 | kvm_flush_remote_tlbs(kvm); |
| 361 | cond_resched_lock(&kvm->mmu_lock); |
| 362 | tdp_iter_refresh_walk(iter); |
| 363 | return false; |
| 364 | } else { |
| 365 | return true; |
| 366 | } |
| 367 | } |
| 368 | |
Ben Gardon | a6a0b05 | 2020-10-14 11:26:55 -0700 | [diff] [blame] | 369 | static void tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter) |
| 370 | { |
| 371 | if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { |
| 372 | cond_resched_lock(&kvm->mmu_lock); |
| 373 | tdp_iter_refresh_walk(iter); |
| 374 | } |
| 375 | } |
| 376 | |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 377 | /* |
| 378 | * Tears down the mappings for the range of gfns, [start, end), and frees the |
| 379 | * non-root pages mapping GFNs strictly within that range. Returns true if |
| 380 | * SPTEs have been cleared and a TLB flush is needed before releasing the |
| 381 | * MMU lock. |
Ben Gardon | 063afac | 2020-10-14 11:26:52 -0700 | [diff] [blame] | 382 | * If can_yield is true, will release the MMU lock and reschedule if the |
| 383 | * scheduler needs the CPU or there is contention on the MMU lock. If this |
| 384 | * function cannot yield, it will not release the MMU lock or reschedule and |
| 385 | * the caller must ensure it does not supply too large a GFN range, or the |
| 386 | * operation can cause a soft lockup. |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 387 | */ |
| 388 | static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, |
Ben Gardon | 063afac | 2020-10-14 11:26:52 -0700 | [diff] [blame] | 389 | gfn_t start, gfn_t end, bool can_yield) |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 390 | { |
| 391 | struct tdp_iter iter; |
| 392 | bool flush_needed = false; |
| 393 | |
| 394 | tdp_root_for_each_pte(iter, root, start, end) { |
| 395 | if (!is_shadow_present_pte(iter.old_spte)) |
| 396 | continue; |
| 397 | |
| 398 | /* |
| 399 | * If this is a non-last-level SPTE that covers a larger range |
| 400 | * than should be zapped, continue, and zap the mappings at a |
| 401 | * lower level. |
| 402 | */ |
| 403 | if ((iter.gfn < start || |
| 404 | iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) && |
| 405 | !is_last_spte(iter.old_spte, iter.level)) |
| 406 | continue; |
| 407 | |
| 408 | tdp_mmu_set_spte(kvm, &iter, 0); |
| 409 | |
Ben Gardon | 063afac | 2020-10-14 11:26:52 -0700 | [diff] [blame] | 410 | if (can_yield) |
| 411 | flush_needed = tdp_mmu_iter_flush_cond_resched(kvm, &iter); |
| 412 | else |
| 413 | flush_needed = true; |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 414 | } |
| 415 | return flush_needed; |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | * Tears down the mappings for the range of gfns, [start, end), and frees the |
| 420 | * non-root pages mapping GFNs strictly within that range. Returns true if |
| 421 | * SPTEs have been cleared and a TLB flush is needed before releasing the |
| 422 | * MMU lock. |
| 423 | */ |
| 424 | bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end) |
| 425 | { |
| 426 | struct kvm_mmu_page *root; |
| 427 | bool flush = false; |
| 428 | |
| 429 | for_each_tdp_mmu_root(kvm, root) { |
| 430 | /* |
| 431 | * Take a reference on the root so that it cannot be freed if |
| 432 | * this thread releases the MMU lock and yields in this loop. |
| 433 | */ |
| 434 | kvm_mmu_get_root(kvm, root); |
| 435 | |
Ben Gardon | 063afac | 2020-10-14 11:26:52 -0700 | [diff] [blame] | 436 | flush |= zap_gfn_range(kvm, root, start, end, true); |
Ben Gardon | faaf05b0 | 2020-10-14 11:26:47 -0700 | [diff] [blame] | 437 | |
| 438 | kvm_mmu_put_root(kvm, root); |
| 439 | } |
| 440 | |
| 441 | return flush; |
| 442 | } |
| 443 | |
| 444 | void kvm_tdp_mmu_zap_all(struct kvm *kvm) |
| 445 | { |
| 446 | gfn_t max_gfn = 1ULL << (boot_cpu_data.x86_phys_bits - PAGE_SHIFT); |
| 447 | bool flush; |
| 448 | |
| 449 | flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn); |
| 450 | if (flush) |
| 451 | kvm_flush_remote_tlbs(kvm); |
| 452 | } |
Ben Gardon | bb18842 | 2020-10-14 11:26:50 -0700 | [diff] [blame] | 453 | |
| 454 | /* |
| 455 | * Installs a last-level SPTE to handle a TDP page fault. |
| 456 | * (NPT/EPT violation/misconfiguration) |
| 457 | */ |
| 458 | static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write, |
| 459 | int map_writable, |
| 460 | struct tdp_iter *iter, |
| 461 | kvm_pfn_t pfn, bool prefault) |
| 462 | { |
| 463 | u64 new_spte; |
| 464 | int ret = 0; |
| 465 | int make_spte_ret = 0; |
| 466 | |
| 467 | if (unlikely(is_noslot_pfn(pfn))) { |
| 468 | new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL); |
| 469 | trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte); |
| 470 | } else |
| 471 | make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn, |
| 472 | pfn, iter->old_spte, prefault, true, |
| 473 | map_writable, !shadow_accessed_mask, |
| 474 | &new_spte); |
| 475 | |
| 476 | if (new_spte == iter->old_spte) |
| 477 | ret = RET_PF_SPURIOUS; |
| 478 | else |
| 479 | tdp_mmu_set_spte(vcpu->kvm, iter, new_spte); |
| 480 | |
| 481 | /* |
| 482 | * If the page fault was caused by a write but the page is write |
| 483 | * protected, emulation is needed. If the emulation was skipped, |
| 484 | * the vCPU would have the same fault again. |
| 485 | */ |
| 486 | if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { |
| 487 | if (write) |
| 488 | ret = RET_PF_EMULATE; |
| 489 | kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); |
| 490 | } |
| 491 | |
| 492 | /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */ |
| 493 | if (unlikely(is_mmio_spte(new_spte))) |
| 494 | ret = RET_PF_EMULATE; |
| 495 | |
| 496 | trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep); |
| 497 | if (!prefault) |
| 498 | vcpu->stat.pf_fixed++; |
| 499 | |
| 500 | return ret; |
| 501 | } |
| 502 | |
| 503 | /* |
| 504 | * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing |
| 505 | * page tables and SPTEs to translate the faulting guest physical address. |
| 506 | */ |
| 507 | int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, |
| 508 | int map_writable, int max_level, kvm_pfn_t pfn, |
| 509 | bool prefault) |
| 510 | { |
| 511 | bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); |
| 512 | bool write = error_code & PFERR_WRITE_MASK; |
| 513 | bool exec = error_code & PFERR_FETCH_MASK; |
| 514 | bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; |
| 515 | struct kvm_mmu *mmu = vcpu->arch.mmu; |
| 516 | struct tdp_iter iter; |
Ben Gardon | 89c0fd4 | 2020-10-14 11:26:51 -0700 | [diff] [blame] | 517 | struct kvm_mmu_page *sp; |
Ben Gardon | bb18842 | 2020-10-14 11:26:50 -0700 | [diff] [blame] | 518 | u64 *child_pt; |
| 519 | u64 new_spte; |
| 520 | int ret; |
| 521 | gfn_t gfn = gpa >> PAGE_SHIFT; |
| 522 | int level; |
| 523 | int req_level; |
| 524 | |
| 525 | if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) |
| 526 | return RET_PF_RETRY; |
| 527 | if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))) |
| 528 | return RET_PF_RETRY; |
| 529 | |
| 530 | level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, |
| 531 | huge_page_disallowed, &req_level); |
| 532 | |
| 533 | trace_kvm_mmu_spte_requested(gpa, level, pfn); |
| 534 | tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) { |
| 535 | if (nx_huge_page_workaround_enabled) |
| 536 | disallowed_hugepage_adjust(iter.old_spte, gfn, |
| 537 | iter.level, &pfn, &level); |
| 538 | |
| 539 | if (iter.level == level) |
| 540 | break; |
| 541 | |
| 542 | /* |
| 543 | * If there is an SPTE mapping a large page at a higher level |
| 544 | * than the target, that SPTE must be cleared and replaced |
| 545 | * with a non-leaf SPTE. |
| 546 | */ |
| 547 | if (is_shadow_present_pte(iter.old_spte) && |
| 548 | is_large_pte(iter.old_spte)) { |
| 549 | tdp_mmu_set_spte(vcpu->kvm, &iter, 0); |
| 550 | |
| 551 | kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn, |
| 552 | KVM_PAGES_PER_HPAGE(iter.level)); |
| 553 | |
| 554 | /* |
| 555 | * The iter must explicitly re-read the spte here |
| 556 | * because the new value informs the !present |
| 557 | * path below. |
| 558 | */ |
| 559 | iter.old_spte = READ_ONCE(*iter.sptep); |
| 560 | } |
| 561 | |
| 562 | if (!is_shadow_present_pte(iter.old_spte)) { |
Ben Gardon | 89c0fd4 | 2020-10-14 11:26:51 -0700 | [diff] [blame] | 563 | sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level); |
| 564 | list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages); |
| 565 | child_pt = sp->spt; |
Ben Gardon | bb18842 | 2020-10-14 11:26:50 -0700 | [diff] [blame] | 566 | clear_page(child_pt); |
| 567 | new_spte = make_nonleaf_spte(child_pt, |
| 568 | !shadow_accessed_mask); |
| 569 | |
| 570 | trace_kvm_mmu_get_page(sp, true); |
| 571 | tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte); |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | if (WARN_ON(iter.level != level)) |
| 576 | return RET_PF_RETRY; |
| 577 | |
| 578 | ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter, |
| 579 | pfn, prefault); |
| 580 | |
| 581 | return ret; |
| 582 | } |
Ben Gardon | 063afac | 2020-10-14 11:26:52 -0700 | [diff] [blame] | 583 | |
| 584 | static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start, |
| 585 | unsigned long end, unsigned long data, |
| 586 | int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot, |
| 587 | struct kvm_mmu_page *root, gfn_t start, |
| 588 | gfn_t end, unsigned long data)) |
| 589 | { |
| 590 | struct kvm_memslots *slots; |
| 591 | struct kvm_memory_slot *memslot; |
| 592 | struct kvm_mmu_page *root; |
| 593 | int ret = 0; |
| 594 | int as_id; |
| 595 | |
| 596 | for_each_tdp_mmu_root(kvm, root) { |
| 597 | /* |
| 598 | * Take a reference on the root so that it cannot be freed if |
| 599 | * this thread releases the MMU lock and yields in this loop. |
| 600 | */ |
| 601 | kvm_mmu_get_root(kvm, root); |
| 602 | |
| 603 | as_id = kvm_mmu_page_as_id(root); |
| 604 | slots = __kvm_memslots(kvm, as_id); |
| 605 | kvm_for_each_memslot(memslot, slots) { |
| 606 | unsigned long hva_start, hva_end; |
| 607 | gfn_t gfn_start, gfn_end; |
| 608 | |
| 609 | hva_start = max(start, memslot->userspace_addr); |
| 610 | hva_end = min(end, memslot->userspace_addr + |
| 611 | (memslot->npages << PAGE_SHIFT)); |
| 612 | if (hva_start >= hva_end) |
| 613 | continue; |
| 614 | /* |
| 615 | * {gfn(page) | page intersects with [hva_start, hva_end)} = |
| 616 | * {gfn_start, gfn_start+1, ..., gfn_end-1}. |
| 617 | */ |
| 618 | gfn_start = hva_to_gfn_memslot(hva_start, memslot); |
| 619 | gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); |
| 620 | |
| 621 | ret |= handler(kvm, memslot, root, gfn_start, |
| 622 | gfn_end, data); |
| 623 | } |
| 624 | |
| 625 | kvm_mmu_put_root(kvm, root); |
| 626 | } |
| 627 | |
| 628 | return ret; |
| 629 | } |
| 630 | |
| 631 | static int zap_gfn_range_hva_wrapper(struct kvm *kvm, |
| 632 | struct kvm_memory_slot *slot, |
| 633 | struct kvm_mmu_page *root, gfn_t start, |
| 634 | gfn_t end, unsigned long unused) |
| 635 | { |
| 636 | return zap_gfn_range(kvm, root, start, end, false); |
| 637 | } |
| 638 | |
| 639 | int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start, |
| 640 | unsigned long end) |
| 641 | { |
| 642 | return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0, |
| 643 | zap_gfn_range_hva_wrapper); |
| 644 | } |
Ben Gardon | f8e1449 | 2020-10-14 11:26:53 -0700 | [diff] [blame] | 645 | |
| 646 | /* |
| 647 | * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero |
| 648 | * if any of the GFNs in the range have been accessed. |
| 649 | */ |
| 650 | static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot, |
| 651 | struct kvm_mmu_page *root, gfn_t start, gfn_t end, |
| 652 | unsigned long unused) |
| 653 | { |
| 654 | struct tdp_iter iter; |
| 655 | int young = 0; |
| 656 | u64 new_spte = 0; |
| 657 | |
| 658 | tdp_root_for_each_leaf_pte(iter, root, start, end) { |
| 659 | /* |
| 660 | * If we have a non-accessed entry we don't need to change the |
| 661 | * pte. |
| 662 | */ |
| 663 | if (!is_accessed_spte(iter.old_spte)) |
| 664 | continue; |
| 665 | |
| 666 | new_spte = iter.old_spte; |
| 667 | |
| 668 | if (spte_ad_enabled(new_spte)) { |
| 669 | clear_bit((ffs(shadow_accessed_mask) - 1), |
| 670 | (unsigned long *)&new_spte); |
| 671 | } else { |
| 672 | /* |
| 673 | * Capture the dirty status of the page, so that it doesn't get |
| 674 | * lost when the SPTE is marked for access tracking. |
| 675 | */ |
| 676 | if (is_writable_pte(new_spte)) |
| 677 | kvm_set_pfn_dirty(spte_to_pfn(new_spte)); |
| 678 | |
| 679 | new_spte = mark_spte_for_access_track(new_spte); |
| 680 | } |
Ben Gardon | a6a0b05 | 2020-10-14 11:26:55 -0700 | [diff] [blame] | 681 | new_spte &= ~shadow_dirty_mask; |
Ben Gardon | f8e1449 | 2020-10-14 11:26:53 -0700 | [diff] [blame] | 682 | |
| 683 | tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte); |
| 684 | young = 1; |
| 685 | } |
| 686 | |
| 687 | return young; |
| 688 | } |
| 689 | |
| 690 | int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start, |
| 691 | unsigned long end) |
| 692 | { |
| 693 | return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0, |
| 694 | age_gfn_range); |
| 695 | } |
| 696 | |
| 697 | static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot, |
| 698 | struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused, |
| 699 | unsigned long unused2) |
| 700 | { |
| 701 | struct tdp_iter iter; |
| 702 | |
| 703 | tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) |
| 704 | if (is_accessed_spte(iter.old_spte)) |
| 705 | return 1; |
| 706 | |
| 707 | return 0; |
| 708 | } |
| 709 | |
| 710 | int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva) |
| 711 | { |
| 712 | return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0, |
| 713 | test_age_gfn); |
| 714 | } |
Ben Gardon | 1d8dd6b | 2020-10-14 11:26:54 -0700 | [diff] [blame] | 715 | |
| 716 | /* |
| 717 | * Handle the changed_pte MMU notifier for the TDP MMU. |
| 718 | * data is a pointer to the new pte_t mapping the HVA specified by the MMU |
| 719 | * notifier. |
| 720 | * Returns non-zero if a flush is needed before releasing the MMU lock. |
| 721 | */ |
| 722 | static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot, |
| 723 | struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused, |
| 724 | unsigned long data) |
| 725 | { |
| 726 | struct tdp_iter iter; |
| 727 | pte_t *ptep = (pte_t *)data; |
| 728 | kvm_pfn_t new_pfn; |
| 729 | u64 new_spte; |
| 730 | int need_flush = 0; |
| 731 | |
| 732 | WARN_ON(pte_huge(*ptep)); |
| 733 | |
| 734 | new_pfn = pte_pfn(*ptep); |
| 735 | |
| 736 | tdp_root_for_each_pte(iter, root, gfn, gfn + 1) { |
| 737 | if (iter.level != PG_LEVEL_4K) |
| 738 | continue; |
| 739 | |
| 740 | if (!is_shadow_present_pte(iter.old_spte)) |
| 741 | break; |
| 742 | |
| 743 | tdp_mmu_set_spte(kvm, &iter, 0); |
| 744 | |
| 745 | kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1); |
| 746 | |
| 747 | if (!pte_write(*ptep)) { |
| 748 | new_spte = kvm_mmu_changed_pte_notifier_make_spte( |
| 749 | iter.old_spte, new_pfn); |
| 750 | |
| 751 | tdp_mmu_set_spte(kvm, &iter, new_spte); |
| 752 | } |
| 753 | |
| 754 | need_flush = 1; |
| 755 | } |
| 756 | |
| 757 | if (need_flush) |
| 758 | kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); |
| 759 | |
| 760 | return 0; |
| 761 | } |
| 762 | |
| 763 | int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address, |
| 764 | pte_t *host_ptep) |
| 765 | { |
| 766 | return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1, |
| 767 | (unsigned long)host_ptep, |
| 768 | set_tdp_spte); |
| 769 | } |
| 770 | |
Ben Gardon | a6a0b05 | 2020-10-14 11:26:55 -0700 | [diff] [blame] | 771 | /* |
| 772 | * Remove write access from all the SPTEs mapping GFNs [start, end). If |
| 773 | * skip_4k is set, SPTEs that map 4k pages, will not be write-protected. |
| 774 | * Returns true if an SPTE has been changed and the TLBs need to be flushed. |
| 775 | */ |
| 776 | static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, |
| 777 | gfn_t start, gfn_t end, int min_level) |
| 778 | { |
| 779 | struct tdp_iter iter; |
| 780 | u64 new_spte; |
| 781 | bool spte_set = false; |
| 782 | |
| 783 | BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL); |
| 784 | |
| 785 | for_each_tdp_pte_min_level(iter, root->spt, root->role.level, |
| 786 | min_level, start, end) { |
| 787 | if (!is_shadow_present_pte(iter.old_spte) || |
| 788 | !is_last_spte(iter.old_spte, iter.level)) |
| 789 | continue; |
| 790 | |
| 791 | new_spte = iter.old_spte & ~PT_WRITABLE_MASK; |
| 792 | |
| 793 | tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte); |
| 794 | spte_set = true; |
| 795 | |
| 796 | tdp_mmu_iter_cond_resched(kvm, &iter); |
| 797 | } |
| 798 | return spte_set; |
| 799 | } |
| 800 | |
| 801 | /* |
| 802 | * Remove write access from all the SPTEs mapping GFNs in the memslot. Will |
| 803 | * only affect leaf SPTEs down to min_level. |
| 804 | * Returns true if an SPTE has been changed and the TLBs need to be flushed. |
| 805 | */ |
| 806 | bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot, |
| 807 | int min_level) |
| 808 | { |
| 809 | struct kvm_mmu_page *root; |
| 810 | int root_as_id; |
| 811 | bool spte_set = false; |
| 812 | |
| 813 | for_each_tdp_mmu_root(kvm, root) { |
| 814 | root_as_id = kvm_mmu_page_as_id(root); |
| 815 | if (root_as_id != slot->as_id) |
| 816 | continue; |
| 817 | |
| 818 | /* |
| 819 | * Take a reference on the root so that it cannot be freed if |
| 820 | * this thread releases the MMU lock and yields in this loop. |
| 821 | */ |
| 822 | kvm_mmu_get_root(kvm, root); |
| 823 | |
| 824 | spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn, |
| 825 | slot->base_gfn + slot->npages, min_level); |
| 826 | |
| 827 | kvm_mmu_put_root(kvm, root); |
| 828 | } |
| 829 | |
| 830 | return spte_set; |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If |
| 835 | * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. |
| 836 | * If AD bits are not enabled, this will require clearing the writable bit on |
| 837 | * each SPTE. Returns true if an SPTE has been changed and the TLBs need to |
| 838 | * be flushed. |
| 839 | */ |
| 840 | static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, |
| 841 | gfn_t start, gfn_t end) |
| 842 | { |
| 843 | struct tdp_iter iter; |
| 844 | u64 new_spte; |
| 845 | bool spte_set = false; |
| 846 | |
| 847 | tdp_root_for_each_leaf_pte(iter, root, start, end) { |
| 848 | if (spte_ad_need_write_protect(iter.old_spte)) { |
| 849 | if (is_writable_pte(iter.old_spte)) |
| 850 | new_spte = iter.old_spte & ~PT_WRITABLE_MASK; |
| 851 | else |
| 852 | continue; |
| 853 | } else { |
| 854 | if (iter.old_spte & shadow_dirty_mask) |
| 855 | new_spte = iter.old_spte & ~shadow_dirty_mask; |
| 856 | else |
| 857 | continue; |
| 858 | } |
| 859 | |
| 860 | tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte); |
| 861 | spte_set = true; |
| 862 | |
| 863 | tdp_mmu_iter_cond_resched(kvm, &iter); |
| 864 | } |
| 865 | return spte_set; |
| 866 | } |
| 867 | |
| 868 | /* |
| 869 | * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If |
| 870 | * AD bits are enabled, this will involve clearing the dirty bit on each SPTE. |
| 871 | * If AD bits are not enabled, this will require clearing the writable bit on |
| 872 | * each SPTE. Returns true if an SPTE has been changed and the TLBs need to |
| 873 | * be flushed. |
| 874 | */ |
| 875 | bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot) |
| 876 | { |
| 877 | struct kvm_mmu_page *root; |
| 878 | int root_as_id; |
| 879 | bool spte_set = false; |
| 880 | |
| 881 | for_each_tdp_mmu_root(kvm, root) { |
| 882 | root_as_id = kvm_mmu_page_as_id(root); |
| 883 | if (root_as_id != slot->as_id) |
| 884 | continue; |
| 885 | |
| 886 | /* |
| 887 | * Take a reference on the root so that it cannot be freed if |
| 888 | * this thread releases the MMU lock and yields in this loop. |
| 889 | */ |
| 890 | kvm_mmu_get_root(kvm, root); |
| 891 | |
| 892 | spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn, |
| 893 | slot->base_gfn + slot->npages); |
| 894 | |
| 895 | kvm_mmu_put_root(kvm, root); |
| 896 | } |
| 897 | |
| 898 | return spte_set; |
| 899 | } |
| 900 | |
| 901 | /* |
| 902 | * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is |
| 903 | * set in mask, starting at gfn. The given memslot is expected to contain all |
| 904 | * the GFNs represented by set bits in the mask. If AD bits are enabled, |
| 905 | * clearing the dirty status will involve clearing the dirty bit on each SPTE |
| 906 | * or, if AD bits are not enabled, clearing the writable bit on each SPTE. |
| 907 | */ |
| 908 | static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root, |
| 909 | gfn_t gfn, unsigned long mask, bool wrprot) |
| 910 | { |
| 911 | struct tdp_iter iter; |
| 912 | u64 new_spte; |
| 913 | |
| 914 | tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask), |
| 915 | gfn + BITS_PER_LONG) { |
| 916 | if (!mask) |
| 917 | break; |
| 918 | |
| 919 | if (iter.level > PG_LEVEL_4K || |
| 920 | !(mask & (1UL << (iter.gfn - gfn)))) |
| 921 | continue; |
| 922 | |
| 923 | if (wrprot || spte_ad_need_write_protect(iter.old_spte)) { |
| 924 | if (is_writable_pte(iter.old_spte)) |
| 925 | new_spte = iter.old_spte & ~PT_WRITABLE_MASK; |
| 926 | else |
| 927 | continue; |
| 928 | } else { |
| 929 | if (iter.old_spte & shadow_dirty_mask) |
| 930 | new_spte = iter.old_spte & ~shadow_dirty_mask; |
| 931 | else |
| 932 | continue; |
| 933 | } |
| 934 | |
| 935 | tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte); |
| 936 | |
| 937 | mask &= ~(1UL << (iter.gfn - gfn)); |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | /* |
| 942 | * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is |
| 943 | * set in mask, starting at gfn. The given memslot is expected to contain all |
| 944 | * the GFNs represented by set bits in the mask. If AD bits are enabled, |
| 945 | * clearing the dirty status will involve clearing the dirty bit on each SPTE |
| 946 | * or, if AD bits are not enabled, clearing the writable bit on each SPTE. |
| 947 | */ |
| 948 | void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm, |
| 949 | struct kvm_memory_slot *slot, |
| 950 | gfn_t gfn, unsigned long mask, |
| 951 | bool wrprot) |
| 952 | { |
| 953 | struct kvm_mmu_page *root; |
| 954 | int root_as_id; |
| 955 | |
| 956 | lockdep_assert_held(&kvm->mmu_lock); |
| 957 | for_each_tdp_mmu_root(kvm, root) { |
| 958 | root_as_id = kvm_mmu_page_as_id(root); |
| 959 | if (root_as_id != slot->as_id) |
| 960 | continue; |
| 961 | |
| 962 | clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot); |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | /* |
| 967 | * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is |
| 968 | * only used for PML, and so will involve setting the dirty bit on each SPTE. |
| 969 | * Returns true if an SPTE has been changed and the TLBs need to be flushed. |
| 970 | */ |
| 971 | static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root, |
| 972 | gfn_t start, gfn_t end) |
| 973 | { |
| 974 | struct tdp_iter iter; |
| 975 | u64 new_spte; |
| 976 | bool spte_set = false; |
| 977 | |
| 978 | tdp_root_for_each_pte(iter, root, start, end) { |
| 979 | if (!is_shadow_present_pte(iter.old_spte)) |
| 980 | continue; |
| 981 | |
| 982 | new_spte = iter.old_spte | shadow_dirty_mask; |
| 983 | |
| 984 | tdp_mmu_set_spte(kvm, &iter, new_spte); |
| 985 | spte_set = true; |
| 986 | |
| 987 | tdp_mmu_iter_cond_resched(kvm, &iter); |
| 988 | } |
| 989 | |
| 990 | return spte_set; |
| 991 | } |
| 992 | |
| 993 | /* |
| 994 | * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is |
| 995 | * only used for PML, and so will involve setting the dirty bit on each SPTE. |
| 996 | * Returns true if an SPTE has been changed and the TLBs need to be flushed. |
| 997 | */ |
| 998 | bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot) |
| 999 | { |
| 1000 | struct kvm_mmu_page *root; |
| 1001 | int root_as_id; |
| 1002 | bool spte_set = false; |
| 1003 | |
| 1004 | for_each_tdp_mmu_root(kvm, root) { |
| 1005 | root_as_id = kvm_mmu_page_as_id(root); |
| 1006 | if (root_as_id != slot->as_id) |
| 1007 | continue; |
| 1008 | |
| 1009 | /* |
| 1010 | * Take a reference on the root so that it cannot be freed if |
| 1011 | * this thread releases the MMU lock and yields in this loop. |
| 1012 | */ |
| 1013 | kvm_mmu_get_root(kvm, root); |
| 1014 | |
| 1015 | spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn, |
| 1016 | slot->base_gfn + slot->npages); |
| 1017 | |
| 1018 | kvm_mmu_put_root(kvm, root); |
| 1019 | } |
| 1020 | return spte_set; |
| 1021 | } |
| 1022 | |
Ben Gardon | 1488199 | 2020-10-14 11:26:56 -0700 | [diff] [blame^] | 1023 | /* |
| 1024 | * Clear non-leaf entries (and free associated page tables) which could |
| 1025 | * be replaced by large mappings, for GFNs within the slot. |
| 1026 | */ |
| 1027 | static void zap_collapsible_spte_range(struct kvm *kvm, |
| 1028 | struct kvm_mmu_page *root, |
| 1029 | gfn_t start, gfn_t end) |
| 1030 | { |
| 1031 | struct tdp_iter iter; |
| 1032 | kvm_pfn_t pfn; |
| 1033 | bool spte_set = false; |
| 1034 | |
| 1035 | tdp_root_for_each_pte(iter, root, start, end) { |
| 1036 | if (!is_shadow_present_pte(iter.old_spte) || |
| 1037 | is_last_spte(iter.old_spte, iter.level)) |
| 1038 | continue; |
| 1039 | |
| 1040 | pfn = spte_to_pfn(iter.old_spte); |
| 1041 | if (kvm_is_reserved_pfn(pfn) || |
| 1042 | !PageTransCompoundMap(pfn_to_page(pfn))) |
| 1043 | continue; |
| 1044 | |
| 1045 | tdp_mmu_set_spte(kvm, &iter, 0); |
| 1046 | |
| 1047 | spte_set = tdp_mmu_iter_flush_cond_resched(kvm, &iter); |
| 1048 | } |
| 1049 | |
| 1050 | if (spte_set) |
| 1051 | kvm_flush_remote_tlbs(kvm); |
| 1052 | } |
| 1053 | |
| 1054 | /* |
| 1055 | * Clear non-leaf entries (and free associated page tables) which could |
| 1056 | * be replaced by large mappings, for GFNs within the slot. |
| 1057 | */ |
| 1058 | void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm, |
| 1059 | const struct kvm_memory_slot *slot) |
| 1060 | { |
| 1061 | struct kvm_mmu_page *root; |
| 1062 | int root_as_id; |
| 1063 | |
| 1064 | for_each_tdp_mmu_root(kvm, root) { |
| 1065 | root_as_id = kvm_mmu_page_as_id(root); |
| 1066 | if (root_as_id != slot->as_id) |
| 1067 | continue; |
| 1068 | |
| 1069 | /* |
| 1070 | * Take a reference on the root so that it cannot be freed if |
| 1071 | * this thread releases the MMU lock and yields in this loop. |
| 1072 | */ |
| 1073 | kvm_mmu_get_root(kvm, root); |
| 1074 | |
| 1075 | zap_collapsible_spte_range(kvm, root, slot->base_gfn, |
| 1076 | slot->base_gfn + slot->npages); |
| 1077 | |
| 1078 | kvm_mmu_put_root(kvm, root); |
| 1079 | } |
| 1080 | } |