blob: 5a6e714b115edaf89e602849d85bae027d60be3f [file] [log] [blame]
Doug Thompson2bc65412009-05-04 20:11:14 +02001#include "amd64_edac.h"
2
3static struct edac_pci_ctl_info *amd64_ctl_pci;
4
5static int report_gart_errors;
6module_param(report_gart_errors, int, 0644);
7
8/*
9 * Set by command line parameter. If BIOS has enabled the ECC, this override is
10 * cleared to prevent re-enabling the hardware by this driver.
11 */
12static int ecc_enable_override;
13module_param(ecc_enable_override, int, 0644);
14
15/* Lookup table for all possible MC control instances */
16struct amd64_pvt;
17static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
18static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
19
20/*
21 * Memory scrubber control interface. For K8, memory scrubbing is handled by
22 * hardware and can involve L2 cache, dcache as well as the main memory. With
23 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
24 * functionality.
25 *
26 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
27 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
28 * bytes/sec for the setting.
29 *
30 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
31 * other archs, we might not have access to the caches directly.
32 */
33
34/*
35 * scan the scrub rate mapping table for a close or matching bandwidth value to
36 * issue. If requested is too big, then use last maximum value found.
37 */
38static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
39 u32 min_scrubrate)
40{
41 u32 scrubval;
42 int i;
43
44 /*
45 * map the configured rate (new_bw) to a value specific to the AMD64
46 * memory controller and apply to register. Search for the first
47 * bandwidth entry that is greater or equal than the setting requested
48 * and program that. If at last entry, turn off DRAM scrubbing.
49 */
50 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
51 /*
52 * skip scrub rates which aren't recommended
53 * (see F10 BKDG, F3x58)
54 */
55 if (scrubrates[i].scrubval < min_scrubrate)
56 continue;
57
58 if (scrubrates[i].bandwidth <= new_bw)
59 break;
60
61 /*
62 * if no suitable bandwidth found, turn off DRAM scrubbing
63 * entirely by falling back to the last element in the
64 * scrubrates array.
65 */
66 }
67
68 scrubval = scrubrates[i].scrubval;
69 if (scrubval)
70 edac_printk(KERN_DEBUG, EDAC_MC,
71 "Setting scrub rate bandwidth: %u\n",
72 scrubrates[i].bandwidth);
73 else
74 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
75
76 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
77
78 return 0;
79}
80
81static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
82{
83 struct amd64_pvt *pvt = mci->pvt_info;
84 u32 min_scrubrate = 0x0;
85
86 switch (boot_cpu_data.x86) {
87 case 0xf:
88 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
89 break;
90 case 0x10:
91 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
92 break;
93 case 0x11:
94 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
95 break;
96
97 default:
98 amd64_printk(KERN_ERR, "Unsupported family!\n");
99 break;
100 }
101 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
102 min_scrubrate);
103}
104
105static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
106{
107 struct amd64_pvt *pvt = mci->pvt_info;
108 u32 scrubval = 0;
109 int status = -1, i, ret = 0;
110
111 ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
112 if (ret)
113 debugf0("Reading K8_SCRCTRL failed\n");
114
115 scrubval = scrubval & 0x001F;
116
117 edac_printk(KERN_DEBUG, EDAC_MC,
118 "pci-read, sdram scrub control value: %d \n", scrubval);
119
120 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
121 if (scrubrates[i].scrubval == scrubval) {
122 *bw = scrubrates[i].bandwidth;
123 status = 0;
124 break;
125 }
126 }
127
128 return status;
129}
130
Doug Thompson67757632009-04-27 15:53:22 +0200131/* Map from a CSROW entry to the mask entry that operates on it */
132static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
133{
134 return csrow >> (pvt->num_dcsm >> 3);
135}
136
137/* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
138static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
139{
140 if (dct == 0)
141 return pvt->dcsb0[csrow];
142 else
143 return pvt->dcsb1[csrow];
144}
145
146/*
147 * Return the 'mask' address the i'th CS entry. This function is needed because
148 * there number of DCSM registers on Rev E and prior vs Rev F and later is
149 * different.
150 */
151static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
152{
153 if (dct == 0)
154 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
155 else
156 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
157}
158
159
160/*
161 * In *base and *limit, pass back the full 40-bit base and limit physical
162 * addresses for the node given by node_id. This information is obtained from
163 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
164 * base and limit addresses are of type SysAddr, as defined at the start of
165 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
166 * in the address range they represent.
167 */
168static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
169 u64 *base, u64 *limit)
170{
171 *base = pvt->dram_base[node_id];
172 *limit = pvt->dram_limit[node_id];
173}
174
175/*
176 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
177 * with node_id
178 */
179static int amd64_base_limit_match(struct amd64_pvt *pvt,
180 u64 sys_addr, int node_id)
181{
182 u64 base, limit, addr;
183
184 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
185
186 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
187 * all ones if the most significant implemented address bit is 1.
188 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
189 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
190 * Application Programming.
191 */
192 addr = sys_addr & 0x000000ffffffffffull;
193
194 return (addr >= base) && (addr <= limit);
195}
196
197/*
198 * Attempt to map a SysAddr to a node. On success, return a pointer to the
199 * mem_ctl_info structure for the node that the SysAddr maps to.
200 *
201 * On failure, return NULL.
202 */
203static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
204 u64 sys_addr)
205{
206 struct amd64_pvt *pvt;
207 int node_id;
208 u32 intlv_en, bits;
209
210 /*
211 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
212 * 3.4.4.2) registers to map the SysAddr to a node ID.
213 */
214 pvt = mci->pvt_info;
215
216 /*
217 * The value of this field should be the same for all DRAM Base
218 * registers. Therefore we arbitrarily choose to read it from the
219 * register for node 0.
220 */
221 intlv_en = pvt->dram_IntlvEn[0];
222
223 if (intlv_en == 0) {
224 for (node_id = 0; ; ) {
225 if (amd64_base_limit_match(pvt, sys_addr, node_id))
226 break;
227
228 if (++node_id >= DRAM_REG_COUNT)
229 goto err_no_match;
230 }
231 goto found;
232 }
233
234 if (unlikely((intlv_en != (0x01 << 8)) &&
235 (intlv_en != (0x03 << 8)) &&
236 (intlv_en != (0x07 << 8)))) {
237 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
238 "IntlvEn field of DRAM Base Register for node 0: "
239 "This probably indicates a BIOS bug.\n", intlv_en);
240 return NULL;
241 }
242
243 bits = (((u32) sys_addr) >> 12) & intlv_en;
244
245 for (node_id = 0; ; ) {
246 if ((pvt->dram_limit[node_id] & intlv_en) == bits)
247 break; /* intlv_sel field matches */
248
249 if (++node_id >= DRAM_REG_COUNT)
250 goto err_no_match;
251 }
252
253 /* sanity test for sys_addr */
254 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
255 amd64_printk(KERN_WARNING,
256 "%s(): sys_addr 0x%lx falls outside base/limit "
257 "address range for node %d with node interleaving "
258 "enabled.\n", __func__, (unsigned long)sys_addr,
259 node_id);
260 return NULL;
261 }
262
263found:
264 return edac_mc_find(node_id);
265
266err_no_match:
267 debugf2("sys_addr 0x%lx doesn't match any node\n",
268 (unsigned long)sys_addr);
269
270 return NULL;
271}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200272
273/*
274 * Extract the DRAM CS base address from selected csrow register.
275 */
276static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
277{
278 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
279 pvt->dcs_shift;
280}
281
282/*
283 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
284 */
285static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
286{
287 u64 dcsm_bits, other_bits;
288 u64 mask;
289
290 /* Extract bits from DRAM CS Mask. */
291 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
292
293 other_bits = pvt->dcsm_mask;
294 other_bits = ~(other_bits << pvt->dcs_shift);
295
296 /*
297 * The extracted bits from DCSM belong in the spaces represented by
298 * the cleared bits in other_bits.
299 */
300 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
301
302 return mask;
303}
304
305/*
306 * @input_addr is an InputAddr associated with the node given by mci. Return the
307 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
308 */
309static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
310{
311 struct amd64_pvt *pvt;
312 int csrow;
313 u64 base, mask;
314
315 pvt = mci->pvt_info;
316
317 /*
318 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
319 * base/mask register pair, test the condition shown near the start of
320 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
321 */
322 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
323
324 /* This DRAM chip select is disabled on this node */
325 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
326 continue;
327
328 base = base_from_dct_base(pvt, csrow);
329 mask = ~mask_from_dct_mask(pvt, csrow);
330
331 if ((input_addr & mask) == (base & mask)) {
332 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
333 (unsigned long)input_addr, csrow,
334 pvt->mc_node_id);
335
336 return csrow;
337 }
338 }
339
340 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
341 (unsigned long)input_addr, pvt->mc_node_id);
342
343 return -1;
344}
345
346/*
347 * Return the base value defined by the DRAM Base register for the node
348 * represented by mci. This function returns the full 40-bit value despite the
349 * fact that the register only stores bits 39-24 of the value. See section
350 * 3.4.4.1 (BKDG #26094, K8, revA-E)
351 */
352static inline u64 get_dram_base(struct mem_ctl_info *mci)
353{
354 struct amd64_pvt *pvt = mci->pvt_info;
355
356 return pvt->dram_base[pvt->mc_node_id];
357}
358
359/*
360 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
361 * for the node represented by mci. Info is passed back in *hole_base,
362 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
363 * info is invalid. Info may be invalid for either of the following reasons:
364 *
365 * - The revision of the node is not E or greater. In this case, the DRAM Hole
366 * Address Register does not exist.
367 *
368 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
369 * indicating that its contents are not valid.
370 *
371 * The values passed back in *hole_base, *hole_offset, and *hole_size are
372 * complete 32-bit values despite the fact that the bitfields in the DHAR
373 * only represent bits 31-24 of the base and offset values.
374 */
375int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
376 u64 *hole_offset, u64 *hole_size)
377{
378 struct amd64_pvt *pvt = mci->pvt_info;
379 u64 base;
380
381 /* only revE and later have the DRAM Hole Address Register */
382 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
383 debugf1(" revision %d for node %d does not support DHAR\n",
384 pvt->ext_model, pvt->mc_node_id);
385 return 1;
386 }
387
388 /* only valid for Fam10h */
389 if (boot_cpu_data.x86 == 0x10 &&
390 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
391 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
392 return 1;
393 }
394
395 if ((pvt->dhar & DHAR_VALID) == 0) {
396 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
397 pvt->mc_node_id);
398 return 1;
399 }
400
401 /* This node has Memory Hoisting */
402
403 /* +------------------+--------------------+--------------------+-----
404 * | memory | DRAM hole | relocated |
405 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
406 * | | | DRAM hole |
407 * | | | [0x100000000, |
408 * | | | (0x100000000+ |
409 * | | | (0xffffffff-x))] |
410 * +------------------+--------------------+--------------------+-----
411 *
412 * Above is a diagram of physical memory showing the DRAM hole and the
413 * relocated addresses from the DRAM hole. As shown, the DRAM hole
414 * starts at address x (the base address) and extends through address
415 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
416 * addresses in the hole so that they start at 0x100000000.
417 */
418
419 base = dhar_base(pvt->dhar);
420
421 *hole_base = base;
422 *hole_size = (0x1ull << 32) - base;
423
424 if (boot_cpu_data.x86 > 0xf)
425 *hole_offset = f10_dhar_offset(pvt->dhar);
426 else
427 *hole_offset = k8_dhar_offset(pvt->dhar);
428
429 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
430 pvt->mc_node_id, (unsigned long)*hole_base,
431 (unsigned long)*hole_offset, (unsigned long)*hole_size);
432
433 return 0;
434}
435EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
436
Doug Thompson93c2df52009-05-04 20:46:50 +0200437/*
438 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
439 * assumed that sys_addr maps to the node given by mci.
440 *
441 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
442 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
443 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
444 * then it is also involved in translating a SysAddr to a DramAddr. Sections
445 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
446 * These parts of the documentation are unclear. I interpret them as follows:
447 *
448 * When node n receives a SysAddr, it processes the SysAddr as follows:
449 *
450 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
451 * Limit registers for node n. If the SysAddr is not within the range
452 * specified by the base and limit values, then node n ignores the Sysaddr
453 * (since it does not map to node n). Otherwise continue to step 2 below.
454 *
455 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
456 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
457 * the range of relocated addresses (starting at 0x100000000) from the DRAM
458 * hole. If not, skip to step 3 below. Else get the value of the
459 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
460 * offset defined by this value from the SysAddr.
461 *
462 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
463 * Base register for node n. To obtain the DramAddr, subtract the base
464 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
465 */
466static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
467{
468 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
469 int ret = 0;
470
471 dram_base = get_dram_base(mci);
472
473 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
474 &hole_size);
475 if (!ret) {
476 if ((sys_addr >= (1ull << 32)) &&
477 (sys_addr < ((1ull << 32) + hole_size))) {
478 /* use DHAR to translate SysAddr to DramAddr */
479 dram_addr = sys_addr - hole_offset;
480
481 debugf2("using DHAR to translate SysAddr 0x%lx to "
482 "DramAddr 0x%lx\n",
483 (unsigned long)sys_addr,
484 (unsigned long)dram_addr);
485
486 return dram_addr;
487 }
488 }
489
490 /*
491 * Translate the SysAddr to a DramAddr as shown near the start of
492 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
493 * only deals with 40-bit values. Therefore we discard bits 63-40 of
494 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
495 * discard are all 1s. Otherwise the bits we discard are all 0s. See
496 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
497 * Programmer's Manual Volume 1 Application Programming.
498 */
499 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
500
501 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
502 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
503 (unsigned long)dram_addr);
504 return dram_addr;
505}
506
507/*
508 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
509 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
510 * for node interleaving.
511 */
512static int num_node_interleave_bits(unsigned intlv_en)
513{
514 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
515 int n;
516
517 BUG_ON(intlv_en > 7);
518 n = intlv_shift_table[intlv_en];
519 return n;
520}
521
522/* Translate the DramAddr given by @dram_addr to an InputAddr. */
523static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
524{
525 struct amd64_pvt *pvt;
526 int intlv_shift;
527 u64 input_addr;
528
529 pvt = mci->pvt_info;
530
531 /*
532 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
533 * concerning translating a DramAddr to an InputAddr.
534 */
535 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
536 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
537 (dram_addr & 0xfff);
538
539 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
540 intlv_shift, (unsigned long)dram_addr,
541 (unsigned long)input_addr);
542
543 return input_addr;
544}
545
546/*
547 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
548 * assumed that @sys_addr maps to the node given by mci.
549 */
550static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
551{
552 u64 input_addr;
553
554 input_addr =
555 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
556
557 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
558 (unsigned long)sys_addr, (unsigned long)input_addr);
559
560 return input_addr;
561}
562
563
564/*
565 * @input_addr is an InputAddr associated with the node represented by mci.
566 * Translate @input_addr to a DramAddr and return the result.
567 */
568static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
569{
570 struct amd64_pvt *pvt;
571 int node_id, intlv_shift;
572 u64 bits, dram_addr;
573 u32 intlv_sel;
574
575 /*
576 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
577 * shows how to translate a DramAddr to an InputAddr. Here we reverse
578 * this procedure. When translating from a DramAddr to an InputAddr, the
579 * bits used for node interleaving are discarded. Here we recover these
580 * bits from the IntlvSel field of the DRAM Limit register (section
581 * 3.4.4.2) for the node that input_addr is associated with.
582 */
583 pvt = mci->pvt_info;
584 node_id = pvt->mc_node_id;
585 BUG_ON((node_id < 0) || (node_id > 7));
586
587 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
588
589 if (intlv_shift == 0) {
590 debugf1(" InputAddr 0x%lx translates to DramAddr of "
591 "same value\n", (unsigned long)input_addr);
592
593 return input_addr;
594 }
595
596 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
597 (input_addr & 0xfff);
598
599 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
600 dram_addr = bits + (intlv_sel << 12);
601
602 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
603 "(%d node interleave bits)\n", (unsigned long)input_addr,
604 (unsigned long)dram_addr, intlv_shift);
605
606 return dram_addr;
607}
608
609/*
610 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
611 * @dram_addr to a SysAddr.
612 */
613static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
614{
615 struct amd64_pvt *pvt = mci->pvt_info;
616 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
617 int ret = 0;
618
619 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
620 &hole_size);
621 if (!ret) {
622 if ((dram_addr >= hole_base) &&
623 (dram_addr < (hole_base + hole_size))) {
624 sys_addr = dram_addr + hole_offset;
625
626 debugf1("using DHAR to translate DramAddr 0x%lx to "
627 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
628 (unsigned long)sys_addr);
629
630 return sys_addr;
631 }
632 }
633
634 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
635 sys_addr = dram_addr + base;
636
637 /*
638 * The sys_addr we have computed up to this point is a 40-bit value
639 * because the k8 deals with 40-bit values. However, the value we are
640 * supposed to return is a full 64-bit physical address. The AMD
641 * x86-64 architecture specifies that the most significant implemented
642 * address bit through bit 63 of a physical address must be either all
643 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
644 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
645 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
646 * Programming.
647 */
648 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
649
650 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
651 pvt->mc_node_id, (unsigned long)dram_addr,
652 (unsigned long)sys_addr);
653
654 return sys_addr;
655}
656
657/*
658 * @input_addr is an InputAddr associated with the node given by mci. Translate
659 * @input_addr to a SysAddr.
660 */
661static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
662 u64 input_addr)
663{
664 return dram_addr_to_sys_addr(mci,
665 input_addr_to_dram_addr(mci, input_addr));
666}
667
668/*
669 * Find the minimum and maximum InputAddr values that map to the given @csrow.
670 * Pass back these values in *input_addr_min and *input_addr_max.
671 */
672static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
673 u64 *input_addr_min, u64 *input_addr_max)
674{
675 struct amd64_pvt *pvt;
676 u64 base, mask;
677
678 pvt = mci->pvt_info;
679 BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
680
681 base = base_from_dct_base(pvt, csrow);
682 mask = mask_from_dct_mask(pvt, csrow);
683
684 *input_addr_min = base & ~mask;
685 *input_addr_max = base | mask | pvt->dcs_mask_notused;
686}
687
688/*
689 * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
690 * Address High (section 3.6.4.6) register values and return the result. Address
691 * is located in the info structure (nbeah and nbeal), the encoding is device
692 * specific.
693 */
694static u64 extract_error_address(struct mem_ctl_info *mci,
695 struct amd64_error_info_regs *info)
696{
697 struct amd64_pvt *pvt = mci->pvt_info;
698
699 return pvt->ops->get_error_address(mci, info);
700}
701
702
703/* Map the Error address to a PAGE and PAGE OFFSET. */
704static inline void error_address_to_page_and_offset(u64 error_address,
705 u32 *page, u32 *offset)
706{
707 *page = (u32) (error_address >> PAGE_SHIFT);
708 *offset = ((u32) error_address) & ~PAGE_MASK;
709}
710
711/*
712 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
713 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
714 * of a node that detected an ECC memory error. mci represents the node that
715 * the error address maps to (possibly different from the node that detected
716 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
717 * error.
718 */
719static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
720{
721 int csrow;
722
723 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
724
725 if (csrow == -1)
726 amd64_mc_printk(mci, KERN_ERR,
727 "Failed to translate InputAddr to csrow for "
728 "address 0x%lx\n", (unsigned long)sys_addr);
729 return csrow;
730}
Doug Thompsone2ce7252009-04-27 15:57:12 +0200731
Doug Thompson2da11652009-04-27 16:09:09 +0200732static int get_channel_from_ecc_syndrome(unsigned short syndrome);
733
734static void amd64_cpu_display_info(struct amd64_pvt *pvt)
735{
736 if (boot_cpu_data.x86 == 0x11)
737 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
738 else if (boot_cpu_data.x86 == 0x10)
739 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
740 else if (boot_cpu_data.x86 == 0xf)
741 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
742 (pvt->ext_model >= OPTERON_CPU_REV_F) ?
743 "Rev F or later" : "Rev E or earlier");
744 else
745 /* we'll hardly ever ever get here */
746 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
747}
748
749/*
750 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
751 * are ECC capable.
752 */
753static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
754{
755 int bit;
756 enum dev_type edac_cap = EDAC_NONE;
757
758 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
759 ? 19
760 : 17;
761
762 if (pvt->dclr0 >> BIT(bit))
763 edac_cap = EDAC_FLAG_SECDED;
764
765 return edac_cap;
766}
767
768
769static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
770 int ganged);
771
772/* Display and decode various NB registers for debug purposes. */
773static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
774{
775 int ganged;
776
777 debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
778 pvt->nbcap,
779 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
780 (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
781 (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
782 debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
783 (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
784 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
785 debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
786 pvt->dclr0,
787 (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
788 (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
789 (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
790 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
791 (pvt->dclr0 & BIT(12)) ? "Y" : "N",
792 (pvt->dclr0 & BIT(13)) ? "Y" : "N",
793 (pvt->dclr0 & BIT(14)) ? "Y" : "N",
794 (pvt->dclr0 & BIT(15)) ? "Y" : "N",
795 (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
796
797
798 debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
799
800 if (boot_cpu_data.x86 == 0xf) {
801 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
802 pvt->dhar, dhar_base(pvt->dhar),
803 k8_dhar_offset(pvt->dhar));
804 debugf1(" DramHoleValid=%s\n",
805 (pvt->dhar & DHAR_VALID) ? "True" : "False");
806
807 debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
808
809 /* everything below this point is Fam10h and above */
810 return;
811
812 } else {
813 debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
814 pvt->dhar, dhar_base(pvt->dhar),
815 f10_dhar_offset(pvt->dhar));
816 debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
817 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
818 "True" : "False",
819 (pvt->dhar & DHAR_VALID) ?
820 "True" : "False");
821 }
822
823 /* Only if NOT ganged does dcl1 have valid info */
824 if (!dct_ganging_enabled(pvt)) {
825 debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
826 "Width=%s\n", pvt->dclr1,
827 (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
828 (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
829 (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
830 debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
831 "DIMM Type=%s\n",
832 (pvt->dclr1 & BIT(12)) ? "Y" : "N",
833 (pvt->dclr1 & BIT(13)) ? "Y" : "N",
834 (pvt->dclr1 & BIT(14)) ? "Y" : "N",
835 (pvt->dclr1 & BIT(15)) ? "Y" : "N",
836 (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
837 }
838
839 /*
840 * Determine if ganged and then dump memory sizes for first controller,
841 * and if NOT ganged dump info for 2nd controller.
842 */
843 ganged = dct_ganging_enabled(pvt);
844
845 f10_debug_display_dimm_sizes(0, pvt, ganged);
846
847 if (!ganged)
848 f10_debug_display_dimm_sizes(1, pvt, ganged);
849}
850
851/* Read in both of DBAM registers */
852static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
853{
854 int err = 0;
855 unsigned int reg;
856
857 reg = DBAM0;
858 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
859 if (err)
860 goto err_reg;
861
862 if (boot_cpu_data.x86 >= 0x10) {
863 reg = DBAM1;
864 err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
865
866 if (err)
867 goto err_reg;
868 }
869
870err_reg:
871 debugf0("Error reading F2x%03x.\n", reg);
872}
873
Doug Thompson94be4bf2009-04-27 16:12:00 +0200874/*
875 * NOTE: CPU Revision Dependent code: Rev E and Rev F
876 *
877 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
878 * set the shift factor for the DCSB and DCSM values.
879 *
880 * ->dcs_mask_notused, RevE:
881 *
882 * To find the max InputAddr for the csrow, start with the base address and set
883 * all bits that are "don't care" bits in the test at the start of section
884 * 3.5.4 (p. 84).
885 *
886 * The "don't care" bits are all set bits in the mask and all bits in the gaps
887 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
888 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
889 * gaps.
890 *
891 * ->dcs_mask_notused, RevF and later:
892 *
893 * To find the max InputAddr for the csrow, start with the base address and set
894 * all bits that are "don't care" bits in the test at the start of NPT section
895 * 4.5.4 (p. 87).
896 *
897 * The "don't care" bits are all set bits in the mask and all bits in the gaps
898 * between bit ranges [36:27] and [21:13].
899 *
900 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
901 * which are all bits in the above-mentioned gaps.
902 */
903static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
904{
905 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
906 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
907 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
908 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
909 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
910
911 switch (boot_cpu_data.x86) {
912 case 0xf:
913 pvt->num_dcsm = REV_F_DCSM_COUNT;
914 break;
915
916 case 0x10:
917 pvt->num_dcsm = F10_DCSM_COUNT;
918 break;
919
920 case 0x11:
921 pvt->num_dcsm = F11_DCSM_COUNT;
922 break;
923
924 default:
925 amd64_printk(KERN_ERR, "Unsupported family!\n");
926 break;
927 }
928 } else {
929 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
930 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
931 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
932 pvt->dcs_shift = REV_E_DCS_SHIFT;
933 pvt->num_dcsm = REV_E_DCSM_COUNT;
934 }
935}
936
937/*
938 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
939 */
940static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
941{
942 int cs, reg, err = 0;
943
944 amd64_set_dct_base_and_mask(pvt);
945
946 for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
947 reg = K8_DCSB0 + (cs * 4);
948 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
949 &pvt->dcsb0[cs]);
950 if (unlikely(err))
951 debugf0("Reading K8_DCSB0[%d] failed\n", cs);
952 else
953 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
954 cs, pvt->dcsb0[cs], reg);
955
956 /* If DCT are NOT ganged, then read in DCT1's base */
957 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
958 reg = F10_DCSB1 + (cs * 4);
959 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
960 &pvt->dcsb1[cs]);
961 if (unlikely(err))
962 debugf0("Reading F10_DCSB1[%d] failed\n", cs);
963 else
964 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
965 cs, pvt->dcsb1[cs], reg);
966 } else {
967 pvt->dcsb1[cs] = 0;
968 }
969 }
970
971 for (cs = 0; cs < pvt->num_dcsm; cs++) {
972 reg = K8_DCSB0 + (cs * 4);
973 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
974 &pvt->dcsm0[cs]);
975 if (unlikely(err))
976 debugf0("Reading K8_DCSM0 failed\n");
977 else
978 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
979 cs, pvt->dcsm0[cs], reg);
980
981 /* If DCT are NOT ganged, then read in DCT1's mask */
982 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
983 reg = F10_DCSM1 + (cs * 4);
984 err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
985 &pvt->dcsm1[cs]);
986 if (unlikely(err))
987 debugf0("Reading F10_DCSM1[%d] failed\n", cs);
988 else
989 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
990 cs, pvt->dcsm1[cs], reg);
991 } else
992 pvt->dcsm1[cs] = 0;
993 }
994}
995
996static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
997{
998 enum mem_type type;
999
1000 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
1001 /* Rev F and later */
1002 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1003 } else {
1004 /* Rev E and earlier */
1005 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1006 }
1007
1008 debugf1(" Memory type is: %s\n",
1009 (type == MEM_DDR2) ? "MEM_DDR2" :
1010 (type == MEM_RDDR2) ? "MEM_RDDR2" :
1011 (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
1012
1013 return type;
1014}
1015
Doug Thompsonddff8762009-04-27 16:14:52 +02001016/*
1017 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1018 * and the later RevF memory controllers (DDR vs DDR2)
1019 *
1020 * Return:
1021 * number of memory channels in operation
1022 * Pass back:
1023 * contents of the DCL0_LOW register
1024 */
1025static int k8_early_channel_count(struct amd64_pvt *pvt)
1026{
1027 int flag, err = 0;
1028
1029 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1030 if (err)
1031 return err;
1032
1033 if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
1034 /* RevF (NPT) and later */
1035 flag = pvt->dclr0 & F10_WIDTH_128;
1036 } else {
1037 /* RevE and earlier */
1038 flag = pvt->dclr0 & REVE_WIDTH_128;
1039 }
1040
1041 /* not used */
1042 pvt->dclr1 = 0;
1043
1044 return (flag) ? 2 : 1;
1045}
1046
1047/* extract the ERROR ADDRESS for the K8 CPUs */
1048static u64 k8_get_error_address(struct mem_ctl_info *mci,
1049 struct amd64_error_info_regs *info)
1050{
1051 return (((u64) (info->nbeah & 0xff)) << 32) +
1052 (info->nbeal & ~0x03);
1053}
1054
1055/*
1056 * Read the Base and Limit registers for K8 based Memory controllers; extract
1057 * fields from the 'raw' reg into separate data fields
1058 *
1059 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1060 */
1061static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1062{
1063 u32 low;
1064 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1065 int err;
1066
1067 err = pci_read_config_dword(pvt->addr_f1_ctl,
1068 K8_DRAM_BASE_LOW + off, &low);
1069 if (err)
1070 debugf0("Reading K8_DRAM_BASE_LOW failed\n");
1071
1072 /* Extract parts into separate data entries */
1073 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1074 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1075 pvt->dram_rw_en[dram] = (low & 0x3);
1076
1077 err = pci_read_config_dword(pvt->addr_f1_ctl,
1078 K8_DRAM_LIMIT_LOW + off, &low);
1079 if (err)
1080 debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
1081
1082 /*
1083 * Extract parts into separate data entries. Limit is the HIGHEST memory
1084 * location of the region, so lower 24 bits need to be all ones
1085 */
1086 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1087 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1088 pvt->dram_DstNode[dram] = (low & 0x7);
1089}
1090
1091static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1092 struct amd64_error_info_regs *info,
1093 u64 SystemAddress)
1094{
1095 struct mem_ctl_info *src_mci;
1096 unsigned short syndrome;
1097 int channel, csrow;
1098 u32 page, offset;
1099
1100 /* Extract the syndrome parts and form a 16-bit syndrome */
1101 syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
1102 syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
1103
1104 /* CHIPKILL enabled */
1105 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1106 channel = get_channel_from_ecc_syndrome(syndrome);
1107 if (channel < 0) {
1108 /*
1109 * Syndrome didn't map, so we don't know which of the
1110 * 2 DIMMs is in error. So we need to ID 'both' of them
1111 * as suspect.
1112 */
1113 amd64_mc_printk(mci, KERN_WARNING,
1114 "unknown syndrome 0x%x - possible error "
1115 "reporting race\n", syndrome);
1116 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1117 return;
1118 }
1119 } else {
1120 /*
1121 * non-chipkill ecc mode
1122 *
1123 * The k8 documentation is unclear about how to determine the
1124 * channel number when using non-chipkill memory. This method
1125 * was obtained from email communication with someone at AMD.
1126 * (Wish the email was placed in this comment - norsk)
1127 */
1128 channel = ((SystemAddress & BIT(3)) != 0);
1129 }
1130
1131 /*
1132 * Find out which node the error address belongs to. This may be
1133 * different from the node that detected the error.
1134 */
1135 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
1136 if (src_mci) {
1137 amd64_mc_printk(mci, KERN_ERR,
1138 "failed to map error address 0x%lx to a node\n",
1139 (unsigned long)SystemAddress);
1140 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1141 return;
1142 }
1143
1144 /* Now map the SystemAddress to a CSROW */
1145 csrow = sys_addr_to_csrow(src_mci, SystemAddress);
1146 if (csrow < 0) {
1147 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1148 } else {
1149 error_address_to_page_and_offset(SystemAddress, &page, &offset);
1150
1151 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1152 channel, EDAC_MOD_STR);
1153 }
1154}
1155
1156/*
1157 * determrine the number of PAGES in for this DIMM's size based on its DRAM
1158 * Address Mapping.
1159 *
1160 * First step is to calc the number of bits to shift a value of 1 left to
1161 * indicate show many pages. Start with the DBAM value as the starting bits,
1162 * then proceed to adjust those shift bits, based on CPU rev and the table.
1163 * See BKDG on the DBAM
1164 */
1165static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1166{
1167 int nr_pages;
1168
1169 if (pvt->ext_model >= OPTERON_CPU_REV_F) {
1170 nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1171 } else {
1172 /*
1173 * RevE and less section; this line is tricky. It collapses the
1174 * table used by RevD and later to one that matches revisions CG
1175 * and earlier.
1176 */
1177 dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
1178 (dram_map > 8 ? 4 : (dram_map > 5 ?
1179 3 : (dram_map > 2 ? 1 : 0))) : 0;
1180
1181 /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
1182 nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
1183 }
1184
1185 return nr_pages;
1186}
1187
Doug Thompson1afd3c92009-04-27 16:16:50 +02001188/*
1189 * Get the number of DCT channels in use.
1190 *
1191 * Return:
1192 * number of Memory Channels in operation
1193 * Pass back:
1194 * contents of the DCL0_LOW register
1195 */
1196static int f10_early_channel_count(struct amd64_pvt *pvt)
1197{
1198 int err = 0, channels = 0;
1199 u32 dbam;
Doug Thompsonddff8762009-04-27 16:14:52 +02001200
Doug Thompson1afd3c92009-04-27 16:16:50 +02001201 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1202 if (err)
1203 goto err_reg;
1204
1205 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
1206 if (err)
1207 goto err_reg;
1208
1209 /* If we are in 128 bit mode, then we are using 2 channels */
1210 if (pvt->dclr0 & F10_WIDTH_128) {
1211 debugf0("Data WIDTH is 128 bits - 2 channels\n");
1212 channels = 2;
1213 return channels;
1214 }
1215
1216 /*
1217 * Need to check if in UN-ganged mode: In such, there are 2 channels,
1218 * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
1219 * will be OFF.
1220 *
1221 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1222 * their CSEnable bit on. If so, then SINGLE DIMM case.
1223 */
1224 debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
1225
1226 /*
1227 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1228 * is more than just one DIMM present in unganged mode. Need to check
1229 * both controllers since DIMMs can be placed in either one.
1230 */
1231 channels = 0;
1232 err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
1233 if (err)
1234 goto err_reg;
1235
1236 if (DBAM_DIMM(0, dbam) > 0)
1237 channels++;
1238 if (DBAM_DIMM(1, dbam) > 0)
1239 channels++;
1240 if (DBAM_DIMM(2, dbam) > 0)
1241 channels++;
1242 if (DBAM_DIMM(3, dbam) > 0)
1243 channels++;
1244
1245 /* If more than 2 DIMMs are present, then we have 2 channels */
1246 if (channels > 2)
1247 channels = 2;
1248 else if (channels == 0) {
1249 /* No DIMMs on DCT0, so look at DCT1 */
1250 err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
1251 if (err)
1252 goto err_reg;
1253
1254 if (DBAM_DIMM(0, dbam) > 0)
1255 channels++;
1256 if (DBAM_DIMM(1, dbam) > 0)
1257 channels++;
1258 if (DBAM_DIMM(2, dbam) > 0)
1259 channels++;
1260 if (DBAM_DIMM(3, dbam) > 0)
1261 channels++;
1262
1263 if (channels > 2)
1264 channels = 2;
1265 }
1266
1267 /* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
1268 if (channels == 0)
1269 channels = 1;
1270
1271 debugf0("DIMM count= %d\n", channels);
1272
1273 return channels;
1274
1275err_reg:
1276 return -1;
1277
1278}
1279
1280static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
1281{
1282 return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
1283}
1284
1285/* Enable extended configuration access via 0xCF8 feature */
1286static void amd64_setup(struct amd64_pvt *pvt)
1287{
1288 u32 reg;
1289
1290 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1291
1292 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1293 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1294 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1295}
1296
1297/* Restore the extended configuration access via 0xCF8 feature */
1298static void amd64_teardown(struct amd64_pvt *pvt)
1299{
1300 u32 reg;
1301
1302 pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1303
1304 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1305 if (pvt->flags.cf8_extcfg)
1306 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1307 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1308}
1309
1310static u64 f10_get_error_address(struct mem_ctl_info *mci,
1311 struct amd64_error_info_regs *info)
1312{
1313 return (((u64) (info->nbeah & 0xffff)) << 32) +
1314 (info->nbeal & ~0x01);
1315}
1316
1317/*
1318 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1319 * fields from the 'raw' reg into separate data fields.
1320 *
1321 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1322 */
1323static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1324{
1325 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1326
1327 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1328 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1329
1330 /* read the 'raw' DRAM BASE Address register */
1331 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
1332
1333 /* Read from the ECS data register */
1334 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
1335
1336 /* Extract parts into separate data entries */
1337 pvt->dram_rw_en[dram] = (low_base & 0x3);
1338
1339 if (pvt->dram_rw_en[dram] == 0)
1340 return;
1341
1342 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1343
1344 pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
1345 ((u64) low_base & 0xFFFF0000))) << 8;
1346
1347 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1348 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1349
1350 /* read the 'raw' LIMIT registers */
1351 pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
1352
1353 /* Read from the ECS data register for the HIGH portion */
1354 pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
1355
1356 debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
1357 high_base, low_base, high_limit, low_limit);
1358
1359 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1360 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1361
1362 /*
1363 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1364 * memory location of the region, so low 24 bits need to be all ones.
1365 */
1366 low_limit |= 0x0000FFFF;
1367 pvt->dram_limit[dram] =
1368 ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
1369}
Doug Thompson6163b5d2009-04-27 16:20:17 +02001370
1371static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1372{
1373 int err = 0;
1374
1375 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1376 &pvt->dram_ctl_select_low);
1377 if (err) {
1378 debugf0("Reading F10_DCTL_SEL_LOW failed\n");
1379 } else {
1380 debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
1381 pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
1382
1383 debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
1384 "sel-hi-range=%s\n",
1385 (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
1386 (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
1387 (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
1388
1389 debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
1390 (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
1391 (dct_memory_cleared(pvt) ? "True " : "False "),
1392 dct_sel_interleave_addr(pvt));
1393 }
1394
1395 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1396 &pvt->dram_ctl_select_high);
1397 if (err)
1398 debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
1399}
1400
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001401/*
1402 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1403 * Interleaving Modes.
1404 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001405static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1406 int hi_range_sel, u32 intlv_en)
1407{
1408 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1409
1410 if (dct_ganging_enabled(pvt))
1411 cs = 0;
1412 else if (hi_range_sel)
1413 cs = dct_sel_high;
1414 else if (dct_interleave_enabled(pvt)) {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001415 /*
1416 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1417 */
Doug Thompson6163b5d2009-04-27 16:20:17 +02001418 if (dct_sel_interleave_addr(pvt) == 0)
1419 cs = sys_addr >> 6 & 1;
1420 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1421 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1422
1423 if (dct_sel_interleave_addr(pvt) & 1)
1424 cs = (sys_addr >> 9 & 1) ^ temp;
1425 else
1426 cs = (sys_addr >> 6 & 1) ^ temp;
1427 } else if (intlv_en & 4)
1428 cs = sys_addr >> 15 & 1;
1429 else if (intlv_en & 2)
1430 cs = sys_addr >> 14 & 1;
1431 else if (intlv_en & 1)
1432 cs = sys_addr >> 13 & 1;
1433 else
1434 cs = sys_addr >> 12 & 1;
1435 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1436 cs = ~dct_sel_high & 1;
1437 else
1438 cs = 0;
1439
1440 return cs;
1441}
1442
1443static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1444{
1445 if (intlv_en == 1)
1446 return 1;
1447 else if (intlv_en == 3)
1448 return 2;
1449 else if (intlv_en == 7)
1450 return 3;
1451
1452 return 0;
1453}
1454
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001455/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1456static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001457 u32 dct_sel_base_addr,
1458 u64 dct_sel_base_off,
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001459 u32 hole_valid, u32 hole_off,
Doug Thompson6163b5d2009-04-27 16:20:17 +02001460 u64 dram_base)
1461{
1462 u64 chan_off;
1463
1464 if (hi_range_sel) {
1465 if (!(dct_sel_base_addr & 0xFFFFF800) &&
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001466 hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001467 chan_off = hole_off << 16;
1468 else
1469 chan_off = dct_sel_base_off;
1470 } else {
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001471 if (hole_valid && (sys_addr >= 0x100000000ULL))
Doug Thompson6163b5d2009-04-27 16:20:17 +02001472 chan_off = hole_off << 16;
1473 else
1474 chan_off = dram_base & 0xFFFFF8000000ULL;
1475 }
1476
1477 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1478 (chan_off & 0x0000FFFFFF800000ULL);
1479}
1480
1481/* Hack for the time being - Can we get this from BIOS?? */
1482#define CH0SPARE_RANK 0
1483#define CH1SPARE_RANK 1
1484
1485/*
1486 * checks if the csrow passed in is marked as SPARED, if so returns the new
1487 * spare row
1488 */
1489static inline int f10_process_possible_spare(int csrow,
1490 u32 cs, struct amd64_pvt *pvt)
1491{
1492 u32 swap_done;
1493 u32 bad_dram_cs;
1494
1495 /* Depending on channel, isolate respective SPARING info */
1496 if (cs) {
1497 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1498 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1499 if (swap_done && (csrow == bad_dram_cs))
1500 csrow = CH1SPARE_RANK;
1501 } else {
1502 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1503 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1504 if (swap_done && (csrow == bad_dram_cs))
1505 csrow = CH0SPARE_RANK;
1506 }
1507 return csrow;
1508}
1509
1510/*
1511 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1512 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1513 *
1514 * Return:
1515 * -EINVAL: NOT FOUND
1516 * 0..csrow = Chip-Select Row
1517 */
1518static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1519{
1520 struct mem_ctl_info *mci;
1521 struct amd64_pvt *pvt;
1522 u32 cs_base, cs_mask;
1523 int cs_found = -EINVAL;
1524 int csrow;
1525
1526 mci = mci_lookup[nid];
1527 if (!mci)
1528 return cs_found;
1529
1530 pvt = mci->pvt_info;
1531
1532 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1533
1534 for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
1535
1536 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1537 if (!(cs_base & K8_DCSB_CS_ENABLE))
1538 continue;
1539
1540 /*
1541 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1542 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1543 * of the actual address.
1544 */
1545 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1546
1547 /*
1548 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1549 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1550 */
1551 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1552
1553 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1554 csrow, cs_base, cs_mask);
1555
1556 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1557
1558 debugf1(" Final CSMask=0x%x\n", cs_mask);
1559 debugf1(" (InputAddr & ~CSMask)=0x%x "
1560 "(CSBase & ~CSMask)=0x%x\n",
1561 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1562
1563 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1564 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1565
1566 debugf1(" MATCH csrow=%d\n", cs_found);
1567 break;
1568 }
1569 }
1570 return cs_found;
1571}
1572
Doug Thompsonf71d0a02009-04-27 16:22:43 +02001573/* For a given @dram_range, check if @sys_addr falls within it. */
1574static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1575 u64 sys_addr, int *nid, int *chan_sel)
1576{
1577 int node_id, cs_found = -EINVAL, high_range = 0;
1578 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1579 u32 hole_valid, tmp, dct_sel_base, channel;
1580 u64 dram_base, chan_addr, dct_sel_base_off;
1581
1582 dram_base = pvt->dram_base[dram_range];
1583 intlv_en = pvt->dram_IntlvEn[dram_range];
1584
1585 node_id = pvt->dram_DstNode[dram_range];
1586 intlv_sel = pvt->dram_IntlvSel[dram_range];
1587
1588 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1589 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1590
1591 /*
1592 * This assumes that one node's DHAR is the same as all the other
1593 * nodes' DHAR.
1594 */
1595 hole_off = (pvt->dhar & 0x0000FF80);
1596 hole_valid = (pvt->dhar & 0x1);
1597 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1598
1599 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1600 hole_off, hole_valid, intlv_sel);
1601
1602 if (intlv_en ||
1603 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1604 return -EINVAL;
1605
1606 dct_sel_base = dct_sel_baseaddr(pvt);
1607
1608 /*
1609 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1610 * select between DCT0 and DCT1.
1611 */
1612 if (dct_high_range_enabled(pvt) &&
1613 !dct_ganging_enabled(pvt) &&
1614 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1615 high_range = 1;
1616
1617 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1618
1619 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1620 dct_sel_base_off, hole_valid,
1621 hole_off, dram_base);
1622
1623 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1624
1625 /* remove Node ID (in case of memory interleaving) */
1626 tmp = chan_addr & 0xFC0;
1627
1628 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1629
1630 /* remove channel interleave and hash */
1631 if (dct_interleave_enabled(pvt) &&
1632 !dct_high_range_enabled(pvt) &&
1633 !dct_ganging_enabled(pvt)) {
1634 if (dct_sel_interleave_addr(pvt) != 1)
1635 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1636 else {
1637 tmp = chan_addr & 0xFC0;
1638 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1639 | tmp;
1640 }
1641 }
1642
1643 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1644 chan_addr, (u32)(chan_addr >> 8));
1645
1646 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1647
1648 if (cs_found >= 0) {
1649 *nid = node_id;
1650 *chan_sel = channel;
1651 }
1652 return cs_found;
1653}
1654
1655static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1656 int *node, int *chan_sel)
1657{
1658 int dram_range, cs_found = -EINVAL;
1659 u64 dram_base, dram_limit;
1660
1661 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1662
1663 if (!pvt->dram_rw_en[dram_range])
1664 continue;
1665
1666 dram_base = pvt->dram_base[dram_range];
1667 dram_limit = pvt->dram_limit[dram_range];
1668
1669 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1670
1671 cs_found = f10_match_to_this_node(pvt, dram_range,
1672 sys_addr, node,
1673 chan_sel);
1674 if (cs_found >= 0)
1675 break;
1676 }
1677 }
1678 return cs_found;
1679}
1680
1681/*
1682 * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1683 * CSROW, Channel.
1684 *
1685 * The @sys_addr is usually an error address received from the hardware.
1686 */
1687static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1688 struct amd64_error_info_regs *info,
1689 u64 sys_addr)
1690{
1691 struct amd64_pvt *pvt = mci->pvt_info;
1692 u32 page, offset;
1693 unsigned short syndrome;
1694 int nid, csrow, chan = 0;
1695
1696 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1697
1698 if (csrow >= 0) {
1699 error_address_to_page_and_offset(sys_addr, &page, &offset);
1700
1701 syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
1702 syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
1703
1704 /*
1705 * Is CHIPKILL on? If so, then we can attempt to use the
1706 * syndrome to isolate which channel the error was on.
1707 */
1708 if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
1709 chan = get_channel_from_ecc_syndrome(syndrome);
1710
1711 if (chan >= 0) {
1712 edac_mc_handle_ce(mci, page, offset, syndrome,
1713 csrow, chan, EDAC_MOD_STR);
1714 } else {
1715 /*
1716 * Channel unknown, report all channels on this
1717 * CSROW as failed.
1718 */
1719 for (chan = 0; chan < mci->csrows[csrow].nr_channels;
1720 chan++) {
1721 edac_mc_handle_ce(mci, page, offset,
1722 syndrome,
1723 csrow, chan,
1724 EDAC_MOD_STR);
1725 }
1726 }
1727
1728 } else {
1729 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1730 }
1731}
1732
1733/*
1734 * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
1735 * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
1736 * indicates an empty DIMM slot, as reported by Hardware on empty slots.
1737 *
1738 * Normalize to 128MB by subracting 27 bit shift.
1739 */
1740static int map_dbam_to_csrow_size(int index)
1741{
1742 int mega_bytes = 0;
1743
1744 if (index > 0 && index <= DBAM_MAX_VALUE)
1745 mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
1746
1747 return mega_bytes;
1748}
1749
1750/*
1751 * debug routine to display the memory sizes of a DIMM (ganged or not) and it
1752 * CSROWs as well
1753 */
1754static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
1755 int ganged)
1756{
1757 int dimm, size0, size1;
1758 u32 dbam;
1759 u32 *dcsb;
1760
1761 debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
1762 ctrl ? pvt->dbam1 : pvt->dbam0,
1763 ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
1764
1765 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1766 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1767
1768 /* Dump memory sizes for DIMM and its CSROWs */
1769 for (dimm = 0; dimm < 4; dimm++) {
1770
1771 size0 = 0;
1772 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1773 size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1774
1775 size1 = 0;
1776 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1777 size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
1778
1779 debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
1780 "CSROW-%d=%5dMB\n",
1781 ctrl,
1782 dimm,
1783 size0 + size1,
1784 dimm * 2,
1785 size0,
1786 dimm * 2 + 1,
1787 size1);
1788 }
1789}
1790
1791/*
1792 * Very early hardware probe on pci_probe thread to determine if this module
1793 * supports the hardware.
1794 *
1795 * Return:
1796 * 0 for OK
1797 * 1 for error
1798 */
1799static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
1800{
1801 int ret = 0;
1802
1803 /*
1804 * If we are on a DDR3 machine, we don't know yet if
1805 * we support that properly at this time
1806 */
1807 if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
1808 (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
1809
1810 amd64_printk(KERN_WARNING,
1811 "%s() This machine is running with DDR3 memory. "
1812 "This is not currently supported. "
1813 "DCHR0=0x%x DCHR1=0x%x\n",
1814 __func__, pvt->dchr0, pvt->dchr1);
1815
1816 amd64_printk(KERN_WARNING,
1817 " Contact '%s' module MAINTAINER to help add"
1818 " support.\n",
1819 EDAC_MOD_STR);
1820
1821 ret = 1;
1822
1823 }
1824 return ret;
1825}
Doug Thompson6163b5d2009-04-27 16:20:17 +02001826
Doug Thompson4d376072009-04-27 16:25:05 +02001827/*
1828 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1829 * (as per PCI DEVICE_IDs):
1830 *
1831 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1832 * DEVICE ID, even though there is differences between the different Revisions
1833 * (CG,D,E,F).
1834 *
1835 * Family F10h and F11h.
1836 *
1837 */
1838static struct amd64_family_type amd64_family_types[] = {
1839 [K8_CPUS] = {
1840 .ctl_name = "RevF",
1841 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1842 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1843 .ops = {
1844 .early_channel_count = k8_early_channel_count,
1845 .get_error_address = k8_get_error_address,
1846 .read_dram_base_limit = k8_read_dram_base_limit,
1847 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1848 .dbam_map_to_pages = k8_dbam_map_to_pages,
1849 }
1850 },
1851 [F10_CPUS] = {
1852 .ctl_name = "Family 10h",
1853 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1854 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1855 .ops = {
1856 .probe_valid_hardware = f10_probe_valid_hardware,
1857 .early_channel_count = f10_early_channel_count,
1858 .get_error_address = f10_get_error_address,
1859 .read_dram_base_limit = f10_read_dram_base_limit,
1860 .read_dram_ctl_register = f10_read_dram_ctl_register,
1861 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1862 .dbam_map_to_pages = f10_dbam_map_to_pages,
1863 }
1864 },
1865 [F11_CPUS] = {
1866 .ctl_name = "Family 11h",
1867 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1868 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1869 .ops = {
1870 .probe_valid_hardware = f10_probe_valid_hardware,
1871 .early_channel_count = f10_early_channel_count,
1872 .get_error_address = f10_get_error_address,
1873 .read_dram_base_limit = f10_read_dram_base_limit,
1874 .read_dram_ctl_register = f10_read_dram_ctl_register,
1875 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1876 .dbam_map_to_pages = f10_dbam_map_to_pages,
1877 }
1878 },
1879};
1880
1881static struct pci_dev *pci_get_related_function(unsigned int vendor,
1882 unsigned int device,
1883 struct pci_dev *related)
1884{
1885 struct pci_dev *dev = NULL;
1886
1887 dev = pci_get_device(vendor, device, dev);
1888 while (dev) {
1889 if ((dev->bus->number == related->bus->number) &&
1890 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1891 break;
1892 dev = pci_get_device(vendor, device, dev);
1893 }
1894
1895 return dev;
1896}
1897
Doug Thompsonb1289d62009-04-27 16:37:05 +02001898/*
1899 * syndrome mapping table for ECC ChipKill devices
1900 *
1901 * The comment in each row is the token (nibble) number that is in error.
1902 * The least significant nibble of the syndrome is the mask for the bits
1903 * that are in error (need to be toggled) for the particular nibble.
1904 *
1905 * Each row contains 16 entries.
1906 * The first entry (0th) is the channel number for that row of syndromes.
1907 * The remaining 15 entries are the syndromes for the respective Error
1908 * bit mask index.
1909 *
1910 * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
1911 * bit in error.
1912 * The 2nd index entry is 0x0010 that the second bit is damaged.
1913 * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
1914 * are damaged.
1915 * Thus so on until index 15, 0x1111, whose entry has the syndrome
1916 * indicating that all 4 bits are damaged.
1917 *
1918 * A search is performed on this table looking for a given syndrome.
1919 *
1920 * See the AMD documentation for ECC syndromes. This ECC table is valid
1921 * across all the versions of the AMD64 processors.
1922 *
1923 * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
1924 * COLUMN index, then search all ROWS of that column, looking for a match
1925 * with the input syndrome. The ROW value will be the token number.
1926 *
1927 * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
1928 * error.
1929 */
1930#define NUMBER_ECC_ROWS 36
1931static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
1932 /* Channel 0 syndromes */
1933 {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
1934 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
1935 {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
1936 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
1937 {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
1938 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
1939 {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
1940 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
1941 {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
1942 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
1943 {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
1944 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
1945 {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
1946 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
1947 {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
1948 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
1949 {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
1950 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
1951 {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
1952 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
1953 {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
1954 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
1955 {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
1956 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
1957 {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
1958 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
1959 {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
1960 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
1961 {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
1962 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
1963 {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
1964 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
Doug Thompson4d376072009-04-27 16:25:05 +02001965
Doug Thompsonb1289d62009-04-27 16:37:05 +02001966 /* Channel 1 syndromes */
1967 {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
1968 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
1969 {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
1970 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
1971 {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
1972 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
1973 {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
1974 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
1975 {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
1976 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
1977 {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
1978 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
1979 {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
1980 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
1981 {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
1982 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
1983 {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
1984 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
1985 {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
1986 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
1987 {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
1988 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
1989 {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
1990 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
1991 {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
1992 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
1993 {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
1994 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
1995 {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
1996 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
1997 {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
1998 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
1999
2000 /* ECC bits are also in the set of tokens and they too can go bad
2001 * first 2 cover channel 0, while the second 2 cover channel 1
2002 */
2003 {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
2004 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
2005 {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
2006 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
2007 {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
2008 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
2009 {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
2010 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
2011};
2012
2013/*
2014 * Given the syndrome argument, scan each of the channel tables for a syndrome
2015 * match. Depending on which table it is found, return the channel number.
2016 */
2017static int get_channel_from_ecc_syndrome(unsigned short syndrome)
2018{
2019 int row;
2020 int column;
2021
2022 /* Determine column to scan */
2023 column = syndrome & 0xF;
2024
2025 /* Scan all rows, looking for syndrome, or end of table */
2026 for (row = 0; row < NUMBER_ECC_ROWS; row++) {
2027 if (ecc_chipkill_syndromes[row][column] == syndrome)
2028 return ecc_chipkill_syndromes[row][0];
2029 }
2030
2031 debugf0("syndrome(%x) not found\n", syndrome);
2032 return -1;
2033}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002034
2035/*
2036 * Check for valid error in the NB Status High register. If so, proceed to read
2037 * NB Status Low, NB Address Low and NB Address High registers and store data
2038 * into error structure.
2039 *
2040 * Returns:
2041 * - 1: if hardware regs contains valid error info
2042 * - 0: if no valid error is indicated
2043 */
2044static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
2045 struct amd64_error_info_regs *regs)
2046{
2047 struct amd64_pvt *pvt;
2048 struct pci_dev *misc_f3_ctl;
2049 int err = 0;
2050
2051 pvt = mci->pvt_info;
2052 misc_f3_ctl = pvt->misc_f3_ctl;
2053
2054 err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
2055 if (err)
2056 goto err_reg;
2057
2058 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
2059 return 0;
2060
2061 /* valid error, read remaining error information registers */
2062 err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
2063 if (err)
2064 goto err_reg;
2065
2066 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
2067 if (err)
2068 goto err_reg;
2069
2070 err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
2071 if (err)
2072 goto err_reg;
2073
2074 err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
2075 if (err)
2076 goto err_reg;
2077
2078 return 1;
2079
2080err_reg:
2081 debugf0("Reading error info register failed\n");
2082 return 0;
2083}
2084
2085/*
2086 * This function is called to retrieve the error data from hardware and store it
2087 * in the info structure.
2088 *
2089 * Returns:
2090 * - 1: if a valid error is found
2091 * - 0: if no error is found
2092 */
2093static int amd64_get_error_info(struct mem_ctl_info *mci,
2094 struct amd64_error_info_regs *info)
2095{
2096 struct amd64_pvt *pvt;
2097 struct amd64_error_info_regs regs;
2098
2099 pvt = mci->pvt_info;
2100
2101 if (!amd64_get_error_info_regs(mci, info))
2102 return 0;
2103
2104 /*
2105 * Here's the problem with the K8's EDAC reporting: There are four
2106 * registers which report pieces of error information. They are shared
2107 * between CEs and UEs. Furthermore, contrary to what is stated in the
2108 * BKDG, the overflow bit is never used! Every error always updates the
2109 * reporting registers.
2110 *
2111 * Can you see the race condition? All four error reporting registers
2112 * must be read before a new error updates them! There is no way to read
2113 * all four registers atomically. The best than can be done is to detect
2114 * that a race has occured and then report the error without any kind of
2115 * precision.
2116 *
2117 * What is still positive is that errors are still reported and thus
2118 * problems can still be detected - just not localized because the
2119 * syndrome and address are spread out across registers.
2120 *
2121 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2122 * UEs and CEs should have separate register sets with proper overflow
2123 * bits that are used! At very least the problem can be fixed by
2124 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2125 * set the overflow bit - unless the current error is CE and the new
2126 * error is UE which would be the only situation for overwriting the
2127 * current values.
2128 */
2129
2130 regs = *info;
2131
2132 /* Use info from the second read - most current */
2133 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2134 return 0;
2135
2136 /* clear the error bits in hardware */
2137 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2138
2139 /* Check for the possible race condition */
2140 if ((regs.nbsh != info->nbsh) ||
2141 (regs.nbsl != info->nbsl) ||
2142 (regs.nbeah != info->nbeah) ||
2143 (regs.nbeal != info->nbeal)) {
2144 amd64_mc_printk(mci, KERN_WARNING,
2145 "hardware STATUS read access race condition "
2146 "detected!\n");
2147 return 0;
2148 }
2149 return 1;
2150}
2151
2152static inline void amd64_decode_gart_tlb_error(struct mem_ctl_info *mci,
2153 struct amd64_error_info_regs *info)
2154{
2155 u32 err_code;
2156 u32 ec_tt; /* error code transaction type (2b) */
2157 u32 ec_ll; /* error code cache level (2b) */
2158
2159 err_code = EXTRACT_ERROR_CODE(info->nbsl);
2160 ec_ll = EXTRACT_LL_CODE(err_code);
2161 ec_tt = EXTRACT_TT_CODE(err_code);
2162
2163 amd64_mc_printk(mci, KERN_ERR,
2164 "GART TLB event: transaction type(%s), "
2165 "cache level(%s)\n", tt_msgs[ec_tt], ll_msgs[ec_ll]);
2166}
2167
2168static inline void amd64_decode_mem_cache_error(struct mem_ctl_info *mci,
2169 struct amd64_error_info_regs *info)
2170{
2171 u32 err_code;
2172 u32 ec_rrrr; /* error code memory transaction (4b) */
2173 u32 ec_tt; /* error code transaction type (2b) */
2174 u32 ec_ll; /* error code cache level (2b) */
2175
2176 err_code = EXTRACT_ERROR_CODE(info->nbsl);
2177 ec_ll = EXTRACT_LL_CODE(err_code);
2178 ec_tt = EXTRACT_TT_CODE(err_code);
2179 ec_rrrr = EXTRACT_RRRR_CODE(err_code);
2180
2181 amd64_mc_printk(mci, KERN_ERR,
2182 "cache hierarchy error: memory transaction type(%s), "
2183 "transaction type(%s), cache level(%s)\n",
2184 rrrr_msgs[ec_rrrr], tt_msgs[ec_tt], ll_msgs[ec_ll]);
2185}
2186
2187
2188/*
2189 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2190 * ADDRESS and process.
2191 */
2192static void amd64_handle_ce(struct mem_ctl_info *mci,
2193 struct amd64_error_info_regs *info)
2194{
2195 struct amd64_pvt *pvt = mci->pvt_info;
2196 u64 SystemAddress;
2197
2198 /* Ensure that the Error Address is VALID */
2199 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2200 amd64_mc_printk(mci, KERN_ERR,
2201 "HW has no ERROR_ADDRESS available\n");
2202 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2203 return;
2204 }
2205
2206 SystemAddress = extract_error_address(mci, info);
2207
2208 amd64_mc_printk(mci, KERN_ERR,
2209 "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
2210
2211 pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
2212}
2213
2214/* Handle any Un-correctable Errors (UEs) */
2215static void amd64_handle_ue(struct mem_ctl_info *mci,
2216 struct amd64_error_info_regs *info)
2217{
2218 int csrow;
2219 u64 SystemAddress;
2220 u32 page, offset;
2221 struct mem_ctl_info *log_mci, *src_mci = NULL;
2222
2223 log_mci = mci;
2224
2225 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2226 amd64_mc_printk(mci, KERN_CRIT,
2227 "HW has no ERROR_ADDRESS available\n");
2228 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2229 return;
2230 }
2231
2232 SystemAddress = extract_error_address(mci, info);
2233
2234 /*
2235 * Find out which node the error address belongs to. This may be
2236 * different from the node that detected the error.
2237 */
2238 src_mci = find_mc_by_sys_addr(mci, SystemAddress);
2239 if (!src_mci) {
2240 amd64_mc_printk(mci, KERN_CRIT,
2241 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2242 (unsigned long)SystemAddress);
2243 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2244 return;
2245 }
2246
2247 log_mci = src_mci;
2248
2249 csrow = sys_addr_to_csrow(log_mci, SystemAddress);
2250 if (csrow < 0) {
2251 amd64_mc_printk(mci, KERN_CRIT,
2252 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2253 (unsigned long)SystemAddress);
2254 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2255 } else {
2256 error_address_to_page_and_offset(SystemAddress, &page, &offset);
2257 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2258 }
2259}
2260
2261static void amd64_decode_bus_error(struct mem_ctl_info *mci,
2262 struct amd64_error_info_regs *info)
2263{
2264 u32 err_code, ext_ec;
2265 u32 ec_pp; /* error code participating processor (2p) */
2266 u32 ec_to; /* error code timed out (1b) */
2267 u32 ec_rrrr; /* error code memory transaction (4b) */
2268 u32 ec_ii; /* error code memory or I/O (2b) */
2269 u32 ec_ll; /* error code cache level (2b) */
2270
2271 ext_ec = EXTRACT_EXT_ERROR_CODE(info->nbsl);
2272 err_code = EXTRACT_ERROR_CODE(info->nbsl);
2273
2274 ec_ll = EXTRACT_LL_CODE(err_code);
2275 ec_ii = EXTRACT_II_CODE(err_code);
2276 ec_rrrr = EXTRACT_RRRR_CODE(err_code);
2277 ec_to = EXTRACT_TO_CODE(err_code);
2278 ec_pp = EXTRACT_PP_CODE(err_code);
2279
2280 amd64_mc_printk(mci, KERN_ERR,
2281 "BUS ERROR:\n"
2282 " time-out(%s) mem or i/o(%s)\n"
2283 " participating processor(%s)\n"
2284 " memory transaction type(%s)\n"
2285 " cache level(%s) Error Found by: %s\n",
2286 to_msgs[ec_to],
2287 ii_msgs[ec_ii],
2288 pp_msgs[ec_pp],
2289 rrrr_msgs[ec_rrrr],
2290 ll_msgs[ec_ll],
2291 (info->nbsh & K8_NBSH_ERR_SCRUBER) ?
2292 "Scrubber" : "Normal Operation");
2293
2294 /* If this was an 'observed' error, early out */
2295 if (ec_pp == K8_NBSL_PP_OBS)
2296 return; /* We aren't the node involved */
2297
2298 /* Parse out the extended error code for ECC events */
2299 switch (ext_ec) {
2300 /* F10 changed to one Extended ECC error code */
2301 case F10_NBSL_EXT_ERR_RES: /* Reserved field */
2302 case F10_NBSL_EXT_ERR_ECC: /* F10 ECC ext err code */
2303 break;
2304
2305 default:
2306 amd64_mc_printk(mci, KERN_ERR, "NOT ECC: no special error "
2307 "handling for this error\n");
2308 return;
2309 }
2310
2311 if (info->nbsh & K8_NBSH_CECC)
2312 amd64_handle_ce(mci, info);
2313 else if (info->nbsh & K8_NBSH_UECC)
2314 amd64_handle_ue(mci, info);
2315
2316 /*
2317 * If main error is CE then overflow must be CE. If main error is UE
2318 * then overflow is unknown. We'll call the overflow a CE - if
2319 * panic_on_ue is set then we're already panic'ed and won't arrive
2320 * here. Else, then apparently someone doesn't think that UE's are
2321 * catastrophic.
2322 */
2323 if (info->nbsh & K8_NBSH_OVERFLOW)
2324 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR
2325 "Error Overflow set");
2326}
2327
2328int amd64_process_error_info(struct mem_ctl_info *mci,
2329 struct amd64_error_info_regs *info,
2330 int handle_errors)
2331{
2332 struct amd64_pvt *pvt;
2333 struct amd64_error_info_regs *regs;
2334 u32 err_code, ext_ec;
2335 int gart_tlb_error = 0;
2336
2337 pvt = mci->pvt_info;
2338
2339 /* If caller doesn't want us to process the error, return */
2340 if (!handle_errors)
2341 return 1;
2342
2343 regs = info;
2344
2345 debugf1("NorthBridge ERROR: mci(0x%p)\n", mci);
2346 debugf1(" MC node(%d) Error-Address(0x%.8x-%.8x)\n",
2347 pvt->mc_node_id, regs->nbeah, regs->nbeal);
2348 debugf1(" nbsh(0x%.8x) nbsl(0x%.8x)\n",
2349 regs->nbsh, regs->nbsl);
2350 debugf1(" Valid Error=%s Overflow=%s\n",
2351 (regs->nbsh & K8_NBSH_VALID_BIT) ? "True" : "False",
2352 (regs->nbsh & K8_NBSH_OVERFLOW) ? "True" : "False");
2353 debugf1(" Err Uncorrected=%s MCA Error Reporting=%s\n",
2354 (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) ?
2355 "True" : "False",
2356 (regs->nbsh & K8_NBSH_ERR_ENABLE) ?
2357 "True" : "False");
2358 debugf1(" MiscErr Valid=%s ErrAddr Valid=%s PCC=%s\n",
2359 (regs->nbsh & K8_NBSH_MISC_ERR_VALID) ?
2360 "True" : "False",
2361 (regs->nbsh & K8_NBSH_VALID_ERROR_ADDR) ?
2362 "True" : "False",
2363 (regs->nbsh & K8_NBSH_PCC) ?
2364 "True" : "False");
2365 debugf1(" CECC=%s UECC=%s Found by Scruber=%s\n",
2366 (regs->nbsh & K8_NBSH_CECC) ?
2367 "True" : "False",
2368 (regs->nbsh & K8_NBSH_UECC) ?
2369 "True" : "False",
2370 (regs->nbsh & K8_NBSH_ERR_SCRUBER) ?
2371 "True" : "False");
2372 debugf1(" CORE0=%s CORE1=%s CORE2=%s CORE3=%s\n",
2373 (regs->nbsh & K8_NBSH_CORE0) ? "True" : "False",
2374 (regs->nbsh & K8_NBSH_CORE1) ? "True" : "False",
2375 (regs->nbsh & K8_NBSH_CORE2) ? "True" : "False",
2376 (regs->nbsh & K8_NBSH_CORE3) ? "True" : "False");
2377
2378
2379 err_code = EXTRACT_ERROR_CODE(regs->nbsl);
2380
2381 /* Determine which error type:
2382 * 1) GART errors - non-fatal, developmental events
2383 * 2) MEMORY errors
2384 * 3) BUS errors
2385 * 4) Unknown error
2386 */
2387 if (TEST_TLB_ERROR(err_code)) {
2388 /*
2389 * GART errors are intended to help graphics driver developers
2390 * to detect bad GART PTEs. It is recommended by AMD to disable
2391 * GART table walk error reporting by default[1] (currently
2392 * being disabled in mce_cpu_quirks()) and according to the
2393 * comment in mce_cpu_quirks(), such GART errors can be
2394 * incorrectly triggered. We may see these errors anyway and
2395 * unless requested by the user, they won't be reported.
2396 *
2397 * [1] section 13.10.1 on BIOS and Kernel Developers Guide for
2398 * AMD NPT family 0Fh processors
2399 */
2400 if (report_gart_errors == 0)
2401 return 1;
2402
2403 /*
2404 * Only if GART error reporting is requested should we generate
2405 * any logs.
2406 */
2407 gart_tlb_error = 1;
2408
2409 debugf1("GART TLB error\n");
2410 amd64_decode_gart_tlb_error(mci, info);
2411 } else if (TEST_MEM_ERROR(err_code)) {
2412 debugf1("Memory/Cache error\n");
2413 amd64_decode_mem_cache_error(mci, info);
2414 } else if (TEST_BUS_ERROR(err_code)) {
2415 debugf1("Bus (Link/DRAM) error\n");
2416 amd64_decode_bus_error(mci, info);
2417 } else {
2418 /* shouldn't reach here! */
2419 amd64_mc_printk(mci, KERN_WARNING,
2420 "%s(): unknown MCE error 0x%x\n", __func__,
2421 err_code);
2422 }
2423
2424 ext_ec = EXTRACT_EXT_ERROR_CODE(regs->nbsl);
2425 amd64_mc_printk(mci, KERN_ERR,
2426 "ExtErr=(0x%x) %s\n", ext_ec, ext_msgs[ext_ec]);
2427
2428 if (((ext_ec >= F10_NBSL_EXT_ERR_CRC &&
2429 ext_ec <= F10_NBSL_EXT_ERR_TGT) ||
2430 (ext_ec == F10_NBSL_EXT_ERR_RMW)) &&
2431 EXTRACT_LDT_LINK(info->nbsh)) {
2432
2433 amd64_mc_printk(mci, KERN_ERR,
2434 "Error on hypertransport link: %s\n",
2435 htlink_msgs[
2436 EXTRACT_LDT_LINK(info->nbsh)]);
2437 }
2438
2439 /*
2440 * Check the UE bit of the NB status high register, if set generate some
2441 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2442 * If it was a GART error, skip that process.
2443 */
2444 if (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) {
2445 amd64_mc_printk(mci, KERN_CRIT, "uncorrected error\n");
2446 if (!gart_tlb_error)
2447 edac_mc_handle_ue_no_info(mci, "UE bit is set\n");
2448 }
2449
2450 if (regs->nbsh & K8_NBSH_PCC)
2451 amd64_mc_printk(mci, KERN_CRIT,
2452 "PCC (processor context corrupt) set\n");
2453
2454 return 1;
2455}
2456EXPORT_SYMBOL_GPL(amd64_process_error_info);
2457
Doug Thompson0ec449e2009-04-27 19:41:25 +02002458/*
2459 * The main polling 'check' function, called FROM the edac core to perform the
2460 * error checking and if an error is encountered, error processing.
2461 */
2462static void amd64_check(struct mem_ctl_info *mci)
2463{
2464 struct amd64_error_info_regs info;
2465
2466 if (amd64_get_error_info(mci, &info))
2467 amd64_process_error_info(mci, &info, 1);
2468}
2469
2470/*
2471 * Input:
2472 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2473 * 2) AMD Family index value
2474 *
2475 * Ouput:
2476 * Upon return of 0, the following filled in:
2477 *
2478 * struct pvt->addr_f1_ctl
2479 * struct pvt->misc_f3_ctl
2480 *
2481 * Filled in with related device funcitions of 'dram_f2_ctl'
2482 * These devices are "reserved" via the pci_get_device()
2483 *
2484 * Upon return of 1 (error status):
2485 *
2486 * Nothing reserved
2487 */
2488static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2489{
2490 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2491
2492 /* Reserve the ADDRESS MAP Device */
2493 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2494 amd64_dev->addr_f1_ctl,
2495 pvt->dram_f2_ctl);
2496
2497 if (!pvt->addr_f1_ctl) {
2498 amd64_printk(KERN_ERR, "error address map device not found: "
2499 "vendor %x device 0x%x (broken BIOS?)\n",
2500 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2501 return 1;
2502 }
2503
2504 /* Reserve the MISC Device */
2505 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2506 amd64_dev->misc_f3_ctl,
2507 pvt->dram_f2_ctl);
2508
2509 if (!pvt->misc_f3_ctl) {
2510 pci_dev_put(pvt->addr_f1_ctl);
2511 pvt->addr_f1_ctl = NULL;
2512
2513 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2514 "vendor %x device 0x%x (broken BIOS?)\n",
2515 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2516 return 1;
2517 }
2518
2519 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2520 pci_name(pvt->addr_f1_ctl));
2521 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2522 pci_name(pvt->dram_f2_ctl));
2523 debugf1(" Misc device PCI Bus ID:\t%s\n",
2524 pci_name(pvt->misc_f3_ctl));
2525
2526 return 0;
2527}
2528
2529static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2530{
2531 pci_dev_put(pvt->addr_f1_ctl);
2532 pci_dev_put(pvt->misc_f3_ctl);
2533}
2534
2535/*
2536 * Retrieve the hardware registers of the memory controller (this includes the
2537 * 'Address Map' and 'Misc' device regs)
2538 */
2539static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2540{
2541 u64 msr_val;
2542 int dram, err = 0;
2543
2544 /*
2545 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2546 * those are Read-As-Zero
2547 */
2548 rdmsrl(MSR_K8_TOP_MEM1, msr_val);
2549 pvt->top_mem = msr_val >> 23;
2550 debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem);
2551
2552 /* check first whether TOP_MEM2 is enabled */
2553 rdmsrl(MSR_K8_SYSCFG, msr_val);
2554 if (msr_val & (1U << 21)) {
2555 rdmsrl(MSR_K8_TOP_MEM2, msr_val);
2556 pvt->top_mem2 = msr_val >> 23;
2557 debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2);
2558 } else
2559 debugf0(" TOP_MEM2 disabled.\n");
2560
2561 amd64_cpu_display_info(pvt);
2562
2563 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2564 if (err)
2565 goto err_reg;
2566
2567 if (pvt->ops->read_dram_ctl_register)
2568 pvt->ops->read_dram_ctl_register(pvt);
2569
2570 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2571 /*
2572 * Call CPU specific READ function to get the DRAM Base and
2573 * Limit values from the DCT.
2574 */
2575 pvt->ops->read_dram_base_limit(pvt, dram);
2576
2577 /*
2578 * Only print out debug info on rows with both R and W Enabled.
2579 * Normal processing, compiler should optimize this whole 'if'
2580 * debug output block away.
2581 */
2582 if (pvt->dram_rw_en[dram] != 0) {
2583 debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
2584 "DRAM_LIMIT: 0x%8.08x-%8.08x\n",
2585 dram,
2586 (u32)(pvt->dram_base[dram] >> 32),
2587 (u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
2588 (u32)(pvt->dram_limit[dram] >> 32),
2589 (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
2590 debugf1(" IntlvEn=%s %s %s "
2591 "IntlvSel=%d DstNode=%d\n",
2592 pvt->dram_IntlvEn[dram] ?
2593 "Enabled" : "Disabled",
2594 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2595 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2596 pvt->dram_IntlvSel[dram],
2597 pvt->dram_DstNode[dram]);
2598 }
2599 }
2600
2601 amd64_read_dct_base_mask(pvt);
2602
2603 err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2604 if (err)
2605 goto err_reg;
2606
2607 amd64_read_dbam_reg(pvt);
2608
2609 err = pci_read_config_dword(pvt->misc_f3_ctl,
2610 F10_ONLINE_SPARE, &pvt->online_spare);
2611 if (err)
2612 goto err_reg;
2613
2614 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2615 if (err)
2616 goto err_reg;
2617
2618 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2619 if (err)
2620 goto err_reg;
2621
2622 if (!dct_ganging_enabled(pvt)) {
2623 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
2624 &pvt->dclr1);
2625 if (err)
2626 goto err_reg;
2627
2628 err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
2629 &pvt->dchr1);
2630 if (err)
2631 goto err_reg;
2632 }
2633
2634 amd64_dump_misc_regs(pvt);
2635
2636err_reg:
2637 debugf0("Reading an MC register failed\n");
2638
2639}
2640
2641/*
2642 * NOTE: CPU Revision Dependent code
2643 *
2644 * Input:
2645 * @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
2646 * k8 private pointer to -->
2647 * DRAM Bank Address mapping register
2648 * node_id
2649 * DCL register where dual_channel_active is
2650 *
2651 * The DBAM register consists of 4 sets of 4 bits each definitions:
2652 *
2653 * Bits: CSROWs
2654 * 0-3 CSROWs 0 and 1
2655 * 4-7 CSROWs 2 and 3
2656 * 8-11 CSROWs 4 and 5
2657 * 12-15 CSROWs 6 and 7
2658 *
2659 * Values range from: 0 to 15
2660 * The meaning of the values depends on CPU revision and dual-channel state,
2661 * see relevant BKDG more info.
2662 *
2663 * The memory controller provides for total of only 8 CSROWs in its current
2664 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2665 * single channel or two (2) DIMMs in dual channel mode.
2666 *
2667 * The following code logic collapses the various tables for CSROW based on CPU
2668 * revision.
2669 *
2670 * Returns:
2671 * The number of PAGE_SIZE pages on the specified CSROW number it
2672 * encompasses
2673 *
2674 */
2675static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2676{
2677 u32 dram_map, nr_pages;
2678
2679 /*
2680 * The math on this doesn't look right on the surface because x/2*4 can
2681 * be simplified to x*2 but this expression makes use of the fact that
2682 * it is integral math where 1/2=0. This intermediate value becomes the
2683 * number of bits to shift the DBAM register to extract the proper CSROW
2684 * field.
2685 */
2686 dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2687
2688 nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
2689
2690 /*
2691 * If dual channel then double the memory size of single channel.
2692 * Channel count is 1 or 2
2693 */
2694 nr_pages <<= (pvt->channel_count - 1);
2695
2696 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
2697 debugf0(" nr_pages= %u channel-count = %d\n",
2698 nr_pages, pvt->channel_count);
2699
2700 return nr_pages;
2701}
2702
2703/*
2704 * Initialize the array of csrow attribute instances, based on the values
2705 * from pci config hardware registers.
2706 */
2707static int amd64_init_csrows(struct mem_ctl_info *mci)
2708{
2709 struct csrow_info *csrow;
2710 struct amd64_pvt *pvt;
2711 u64 input_addr_min, input_addr_max, sys_addr;
2712 int i, err = 0, empty = 1;
2713
2714 pvt = mci->pvt_info;
2715
2716 err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2717 if (err)
2718 debugf0("Reading K8_NBCFG failed\n");
2719
2720 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2721 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2722 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2723 );
2724
2725 for (i = 0; i < CHIPSELECT_COUNT; i++) {
2726 csrow = &mci->csrows[i];
2727
2728 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2729 debugf1("----CSROW %d EMPTY for node %d\n", i,
2730 pvt->mc_node_id);
2731 continue;
2732 }
2733
2734 debugf1("----CSROW %d VALID for MC node %d\n",
2735 i, pvt->mc_node_id);
2736
2737 empty = 0;
2738 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2739 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2740 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2741 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2742 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2743 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2744 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2745 /* 8 bytes of resolution */
2746
2747 csrow->mtype = amd64_determine_memory_type(pvt);
2748
2749 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2750 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2751 (unsigned long)input_addr_min,
2752 (unsigned long)input_addr_max);
2753 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2754 (unsigned long)sys_addr, csrow->page_mask);
2755 debugf1(" nr_pages: %u first_page: 0x%lx "
2756 "last_page: 0x%lx\n",
2757 (unsigned)csrow->nr_pages,
2758 csrow->first_page, csrow->last_page);
2759
2760 /*
2761 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2762 */
2763 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2764 csrow->edac_mode =
2765 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2766 EDAC_S4ECD4ED : EDAC_SECDED;
2767 else
2768 csrow->edac_mode = EDAC_NONE;
2769 }
2770
2771 return empty;
2772}
Doug Thompsond27bf6f2009-05-06 17:55:27 +02002773