Matt Evans | 0ca87f0 | 2011-07-20 15:51:00 +0000 | [diff] [blame^] | 1 | /* bpf_jit_comp.c: BPF JIT compiler for PPC64 |
| 2 | * |
| 3 | * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation |
| 4 | * |
| 5 | * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com) |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or |
| 8 | * modify it under the terms of the GNU General Public License |
| 9 | * as published by the Free Software Foundation; version 2 |
| 10 | * of the License. |
| 11 | */ |
| 12 | #include <linux/moduleloader.h> |
| 13 | #include <asm/cacheflush.h> |
| 14 | #include <linux/netdevice.h> |
| 15 | #include <linux/filter.h> |
| 16 | #include "bpf_jit.h" |
| 17 | |
| 18 | #ifndef __BIG_ENDIAN |
| 19 | /* There are endianness assumptions herein. */ |
| 20 | #error "Little-endian PPC not supported in BPF compiler" |
| 21 | #endif |
| 22 | |
| 23 | int bpf_jit_enable __read_mostly; |
| 24 | |
| 25 | |
| 26 | static inline void bpf_flush_icache(void *start, void *end) |
| 27 | { |
| 28 | smp_wmb(); |
| 29 | flush_icache_range((unsigned long)start, (unsigned long)end); |
| 30 | } |
| 31 | |
| 32 | static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image, |
| 33 | struct codegen_context *ctx) |
| 34 | { |
| 35 | int i; |
| 36 | const struct sock_filter *filter = fp->insns; |
| 37 | |
| 38 | if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) { |
| 39 | /* Make stackframe */ |
| 40 | if (ctx->seen & SEEN_DATAREF) { |
| 41 | /* If we call any helpers (for loads), save LR */ |
| 42 | EMIT(PPC_INST_MFLR | __PPC_RT(0)); |
| 43 | PPC_STD(0, 1, 16); |
| 44 | |
| 45 | /* Back up non-volatile regs. */ |
| 46 | PPC_STD(r_D, 1, -(8*(32-r_D))); |
| 47 | PPC_STD(r_HL, 1, -(8*(32-r_HL))); |
| 48 | } |
| 49 | if (ctx->seen & SEEN_MEM) { |
| 50 | /* |
| 51 | * Conditionally save regs r15-r31 as some will be used |
| 52 | * for M[] data. |
| 53 | */ |
| 54 | for (i = r_M; i < (r_M+16); i++) { |
| 55 | if (ctx->seen & (1 << (i-r_M))) |
| 56 | PPC_STD(i, 1, -(8*(32-i))); |
| 57 | } |
| 58 | } |
| 59 | EMIT(PPC_INST_STDU | __PPC_RS(1) | __PPC_RA(1) | |
| 60 | (-BPF_PPC_STACKFRAME & 0xfffc)); |
| 61 | } |
| 62 | |
| 63 | if (ctx->seen & SEEN_DATAREF) { |
| 64 | /* |
| 65 | * If this filter needs to access skb data, |
| 66 | * prepare r_D and r_HL: |
| 67 | * r_HL = skb->len - skb->data_len |
| 68 | * r_D = skb->data |
| 69 | */ |
| 70 | PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff, |
| 71 | data_len)); |
| 72 | PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len)); |
| 73 | PPC_SUB(r_HL, r_HL, r_scratch1); |
| 74 | PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data)); |
| 75 | } |
| 76 | |
| 77 | if (ctx->seen & SEEN_XREG) { |
| 78 | /* |
| 79 | * TODO: Could also detect whether first instr. sets X and |
| 80 | * avoid this (as below, with A). |
| 81 | */ |
| 82 | PPC_LI(r_X, 0); |
| 83 | } |
| 84 | |
| 85 | switch (filter[0].code) { |
| 86 | case BPF_S_RET_K: |
| 87 | case BPF_S_LD_W_LEN: |
| 88 | case BPF_S_ANC_PROTOCOL: |
| 89 | case BPF_S_ANC_IFINDEX: |
| 90 | case BPF_S_ANC_MARK: |
| 91 | case BPF_S_ANC_RXHASH: |
| 92 | case BPF_S_ANC_CPU: |
| 93 | case BPF_S_ANC_QUEUE: |
| 94 | case BPF_S_LD_W_ABS: |
| 95 | case BPF_S_LD_H_ABS: |
| 96 | case BPF_S_LD_B_ABS: |
| 97 | /* first instruction sets A register (or is RET 'constant') */ |
| 98 | break; |
| 99 | default: |
| 100 | /* make sure we dont leak kernel information to user */ |
| 101 | PPC_LI(r_A, 0); |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx) |
| 106 | { |
| 107 | int i; |
| 108 | |
| 109 | if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) { |
| 110 | PPC_ADDI(1, 1, BPF_PPC_STACKFRAME); |
| 111 | if (ctx->seen & SEEN_DATAREF) { |
| 112 | PPC_LD(0, 1, 16); |
| 113 | PPC_MTLR(0); |
| 114 | PPC_LD(r_D, 1, -(8*(32-r_D))); |
| 115 | PPC_LD(r_HL, 1, -(8*(32-r_HL))); |
| 116 | } |
| 117 | if (ctx->seen & SEEN_MEM) { |
| 118 | /* Restore any saved non-vol registers */ |
| 119 | for (i = r_M; i < (r_M+16); i++) { |
| 120 | if (ctx->seen & (1 << (i-r_M))) |
| 121 | PPC_LD(i, 1, -(8*(32-i))); |
| 122 | } |
| 123 | } |
| 124 | } |
| 125 | /* The RETs have left a return value in R3. */ |
| 126 | |
| 127 | PPC_BLR(); |
| 128 | } |
| 129 | |
| 130 | /* Assemble the body code between the prologue & epilogue. */ |
| 131 | static int bpf_jit_build_body(struct sk_filter *fp, u32 *image, |
| 132 | struct codegen_context *ctx, |
| 133 | unsigned int *addrs) |
| 134 | { |
| 135 | const struct sock_filter *filter = fp->insns; |
| 136 | int flen = fp->len; |
| 137 | u8 *func; |
| 138 | unsigned int true_cond; |
| 139 | int i; |
| 140 | |
| 141 | /* Start of epilogue code */ |
| 142 | unsigned int exit_addr = addrs[flen]; |
| 143 | |
| 144 | for (i = 0; i < flen; i++) { |
| 145 | unsigned int K = filter[i].k; |
| 146 | |
| 147 | /* |
| 148 | * addrs[] maps a BPF bytecode address into a real offset from |
| 149 | * the start of the body code. |
| 150 | */ |
| 151 | addrs[i] = ctx->idx * 4; |
| 152 | |
| 153 | switch (filter[i].code) { |
| 154 | /*** ALU ops ***/ |
| 155 | case BPF_S_ALU_ADD_X: /* A += X; */ |
| 156 | ctx->seen |= SEEN_XREG; |
| 157 | PPC_ADD(r_A, r_A, r_X); |
| 158 | break; |
| 159 | case BPF_S_ALU_ADD_K: /* A += K; */ |
| 160 | if (!K) |
| 161 | break; |
| 162 | PPC_ADDI(r_A, r_A, IMM_L(K)); |
| 163 | if (K >= 32768) |
| 164 | PPC_ADDIS(r_A, r_A, IMM_HA(K)); |
| 165 | break; |
| 166 | case BPF_S_ALU_SUB_X: /* A -= X; */ |
| 167 | ctx->seen |= SEEN_XREG; |
| 168 | PPC_SUB(r_A, r_A, r_X); |
| 169 | break; |
| 170 | case BPF_S_ALU_SUB_K: /* A -= K */ |
| 171 | if (!K) |
| 172 | break; |
| 173 | PPC_ADDI(r_A, r_A, IMM_L(-K)); |
| 174 | if (K >= 32768) |
| 175 | PPC_ADDIS(r_A, r_A, IMM_HA(-K)); |
| 176 | break; |
| 177 | case BPF_S_ALU_MUL_X: /* A *= X; */ |
| 178 | ctx->seen |= SEEN_XREG; |
| 179 | PPC_MUL(r_A, r_A, r_X); |
| 180 | break; |
| 181 | case BPF_S_ALU_MUL_K: /* A *= K */ |
| 182 | if (K < 32768) |
| 183 | PPC_MULI(r_A, r_A, K); |
| 184 | else { |
| 185 | PPC_LI32(r_scratch1, K); |
| 186 | PPC_MUL(r_A, r_A, r_scratch1); |
| 187 | } |
| 188 | break; |
| 189 | case BPF_S_ALU_DIV_X: /* A /= X; */ |
| 190 | ctx->seen |= SEEN_XREG; |
| 191 | PPC_CMPWI(r_X, 0); |
| 192 | if (ctx->pc_ret0 != -1) { |
| 193 | PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); |
| 194 | } else { |
| 195 | /* |
| 196 | * Exit, returning 0; first pass hits here |
| 197 | * (longer worst-case code size). |
| 198 | */ |
| 199 | PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); |
| 200 | PPC_LI(r_ret, 0); |
| 201 | PPC_JMP(exit_addr); |
| 202 | } |
| 203 | PPC_DIVWU(r_A, r_A, r_X); |
| 204 | break; |
| 205 | case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */ |
| 206 | PPC_LI32(r_scratch1, K); |
| 207 | /* Top 32 bits of 64bit result -> A */ |
| 208 | PPC_MULHWU(r_A, r_A, r_scratch1); |
| 209 | break; |
| 210 | case BPF_S_ALU_AND_X: |
| 211 | ctx->seen |= SEEN_XREG; |
| 212 | PPC_AND(r_A, r_A, r_X); |
| 213 | break; |
| 214 | case BPF_S_ALU_AND_K: |
| 215 | if (!IMM_H(K)) |
| 216 | PPC_ANDI(r_A, r_A, K); |
| 217 | else { |
| 218 | PPC_LI32(r_scratch1, K); |
| 219 | PPC_AND(r_A, r_A, r_scratch1); |
| 220 | } |
| 221 | break; |
| 222 | case BPF_S_ALU_OR_X: |
| 223 | ctx->seen |= SEEN_XREG; |
| 224 | PPC_OR(r_A, r_A, r_X); |
| 225 | break; |
| 226 | case BPF_S_ALU_OR_K: |
| 227 | if (IMM_L(K)) |
| 228 | PPC_ORI(r_A, r_A, IMM_L(K)); |
| 229 | if (K >= 65536) |
| 230 | PPC_ORIS(r_A, r_A, IMM_H(K)); |
| 231 | break; |
| 232 | case BPF_S_ALU_LSH_X: /* A <<= X; */ |
| 233 | ctx->seen |= SEEN_XREG; |
| 234 | PPC_SLW(r_A, r_A, r_X); |
| 235 | break; |
| 236 | case BPF_S_ALU_LSH_K: |
| 237 | if (K == 0) |
| 238 | break; |
| 239 | else |
| 240 | PPC_SLWI(r_A, r_A, K); |
| 241 | break; |
| 242 | case BPF_S_ALU_RSH_X: /* A >>= X; */ |
| 243 | ctx->seen |= SEEN_XREG; |
| 244 | PPC_SRW(r_A, r_A, r_X); |
| 245 | break; |
| 246 | case BPF_S_ALU_RSH_K: /* A >>= K; */ |
| 247 | if (K == 0) |
| 248 | break; |
| 249 | else |
| 250 | PPC_SRWI(r_A, r_A, K); |
| 251 | break; |
| 252 | case BPF_S_ALU_NEG: |
| 253 | PPC_NEG(r_A, r_A); |
| 254 | break; |
| 255 | case BPF_S_RET_K: |
| 256 | PPC_LI32(r_ret, K); |
| 257 | if (!K) { |
| 258 | if (ctx->pc_ret0 == -1) |
| 259 | ctx->pc_ret0 = i; |
| 260 | } |
| 261 | /* |
| 262 | * If this isn't the very last instruction, branch to |
| 263 | * the epilogue if we've stuff to clean up. Otherwise, |
| 264 | * if there's nothing to tidy, just return. If we /are/ |
| 265 | * the last instruction, we're about to fall through to |
| 266 | * the epilogue to return. |
| 267 | */ |
| 268 | if (i != flen - 1) { |
| 269 | /* |
| 270 | * Note: 'seen' is properly valid only on pass |
| 271 | * #2. Both parts of this conditional are the |
| 272 | * same instruction size though, meaning the |
| 273 | * first pass will still correctly determine the |
| 274 | * code size/addresses. |
| 275 | */ |
| 276 | if (ctx->seen) |
| 277 | PPC_JMP(exit_addr); |
| 278 | else |
| 279 | PPC_BLR(); |
| 280 | } |
| 281 | break; |
| 282 | case BPF_S_RET_A: |
| 283 | PPC_MR(r_ret, r_A); |
| 284 | if (i != flen - 1) { |
| 285 | if (ctx->seen) |
| 286 | PPC_JMP(exit_addr); |
| 287 | else |
| 288 | PPC_BLR(); |
| 289 | } |
| 290 | break; |
| 291 | case BPF_S_MISC_TAX: /* X = A */ |
| 292 | PPC_MR(r_X, r_A); |
| 293 | break; |
| 294 | case BPF_S_MISC_TXA: /* A = X */ |
| 295 | ctx->seen |= SEEN_XREG; |
| 296 | PPC_MR(r_A, r_X); |
| 297 | break; |
| 298 | |
| 299 | /*** Constant loads/M[] access ***/ |
| 300 | case BPF_S_LD_IMM: /* A = K */ |
| 301 | PPC_LI32(r_A, K); |
| 302 | break; |
| 303 | case BPF_S_LDX_IMM: /* X = K */ |
| 304 | PPC_LI32(r_X, K); |
| 305 | break; |
| 306 | case BPF_S_LD_MEM: /* A = mem[K] */ |
| 307 | PPC_MR(r_A, r_M + (K & 0xf)); |
| 308 | ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); |
| 309 | break; |
| 310 | case BPF_S_LDX_MEM: /* X = mem[K] */ |
| 311 | PPC_MR(r_X, r_M + (K & 0xf)); |
| 312 | ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); |
| 313 | break; |
| 314 | case BPF_S_ST: /* mem[K] = A */ |
| 315 | PPC_MR(r_M + (K & 0xf), r_A); |
| 316 | ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); |
| 317 | break; |
| 318 | case BPF_S_STX: /* mem[K] = X */ |
| 319 | PPC_MR(r_M + (K & 0xf), r_X); |
| 320 | ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf)); |
| 321 | break; |
| 322 | case BPF_S_LD_W_LEN: /* A = skb->len; */ |
| 323 | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4); |
| 324 | PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len)); |
| 325 | break; |
| 326 | case BPF_S_LDX_W_LEN: /* X = skb->len; */ |
| 327 | PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len)); |
| 328 | break; |
| 329 | |
| 330 | /*** Ancillary info loads ***/ |
| 331 | |
| 332 | /* None of the BPF_S_ANC* codes appear to be passed by |
| 333 | * sk_chk_filter(). The interpreter and the x86 BPF |
| 334 | * compiler implement them so we do too -- they may be |
| 335 | * planted in future. |
| 336 | */ |
| 337 | case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */ |
| 338 | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, |
| 339 | protocol) != 2); |
| 340 | PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, |
| 341 | protocol)); |
| 342 | /* ntohs is a NOP with BE loads. */ |
| 343 | break; |
| 344 | case BPF_S_ANC_IFINDEX: |
| 345 | PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff, |
| 346 | dev)); |
| 347 | PPC_CMPDI(r_scratch1, 0); |
| 348 | if (ctx->pc_ret0 != -1) { |
| 349 | PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); |
| 350 | } else { |
| 351 | /* Exit, returning 0; first pass hits here. */ |
| 352 | PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); |
| 353 | PPC_LI(r_ret, 0); |
| 354 | PPC_JMP(exit_addr); |
| 355 | } |
| 356 | BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, |
| 357 | ifindex) != 4); |
| 358 | PPC_LWZ_OFFS(r_A, r_scratch1, |
| 359 | offsetof(struct net_device, ifindex)); |
| 360 | break; |
| 361 | case BPF_S_ANC_MARK: |
| 362 | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); |
| 363 | PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, |
| 364 | mark)); |
| 365 | break; |
| 366 | case BPF_S_ANC_RXHASH: |
| 367 | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4); |
| 368 | PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, |
| 369 | rxhash)); |
| 370 | break; |
| 371 | case BPF_S_ANC_QUEUE: |
| 372 | BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, |
| 373 | queue_mapping) != 2); |
| 374 | PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, |
| 375 | queue_mapping)); |
| 376 | break; |
| 377 | case BPF_S_ANC_CPU: |
| 378 | #ifdef CONFIG_SMP |
| 379 | /* |
| 380 | * PACA ptr is r13: |
| 381 | * raw_smp_processor_id() = local_paca->paca_index |
| 382 | */ |
| 383 | BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct, |
| 384 | paca_index) != 2); |
| 385 | PPC_LHZ_OFFS(r_A, 13, |
| 386 | offsetof(struct paca_struct, paca_index)); |
| 387 | #else |
| 388 | PPC_LI(r_A, 0); |
| 389 | #endif |
| 390 | break; |
| 391 | |
| 392 | /*** Absolute loads from packet header/data ***/ |
| 393 | case BPF_S_LD_W_ABS: |
| 394 | func = sk_load_word; |
| 395 | goto common_load; |
| 396 | case BPF_S_LD_H_ABS: |
| 397 | func = sk_load_half; |
| 398 | goto common_load; |
| 399 | case BPF_S_LD_B_ABS: |
| 400 | func = sk_load_byte; |
| 401 | common_load: |
| 402 | /* |
| 403 | * Load from [K]. Reference with the (negative) |
| 404 | * SKF_NET_OFF/SKF_LL_OFF offsets is unsupported. |
| 405 | */ |
| 406 | ctx->seen |= SEEN_DATAREF; |
| 407 | if ((int)K < 0) |
| 408 | return -ENOTSUPP; |
| 409 | PPC_LI64(r_scratch1, func); |
| 410 | PPC_MTLR(r_scratch1); |
| 411 | PPC_LI32(r_addr, K); |
| 412 | PPC_BLRL(); |
| 413 | /* |
| 414 | * Helper returns 'lt' condition on error, and an |
| 415 | * appropriate return value in r3 |
| 416 | */ |
| 417 | PPC_BCC(COND_LT, exit_addr); |
| 418 | break; |
| 419 | |
| 420 | /*** Indirect loads from packet header/data ***/ |
| 421 | case BPF_S_LD_W_IND: |
| 422 | func = sk_load_word; |
| 423 | goto common_load_ind; |
| 424 | case BPF_S_LD_H_IND: |
| 425 | func = sk_load_half; |
| 426 | goto common_load_ind; |
| 427 | case BPF_S_LD_B_IND: |
| 428 | func = sk_load_byte; |
| 429 | common_load_ind: |
| 430 | /* |
| 431 | * Load from [X + K]. Negative offsets are tested for |
| 432 | * in the helper functions, and result in a 'ret 0'. |
| 433 | */ |
| 434 | ctx->seen |= SEEN_DATAREF | SEEN_XREG; |
| 435 | PPC_LI64(r_scratch1, func); |
| 436 | PPC_MTLR(r_scratch1); |
| 437 | PPC_ADDI(r_addr, r_X, IMM_L(K)); |
| 438 | if (K >= 32768) |
| 439 | PPC_ADDIS(r_addr, r_addr, IMM_HA(K)); |
| 440 | PPC_BLRL(); |
| 441 | /* If error, cr0.LT set */ |
| 442 | PPC_BCC(COND_LT, exit_addr); |
| 443 | break; |
| 444 | |
| 445 | case BPF_S_LDX_B_MSH: |
| 446 | /* |
| 447 | * x86 version drops packet (RET 0) when K<0, whereas |
| 448 | * interpreter does allow K<0 (__load_pointer, special |
| 449 | * ancillary data). common_load returns ENOTSUPP if K<0, |
| 450 | * so we fall back to interpreter & filter works. |
| 451 | */ |
| 452 | func = sk_load_byte_msh; |
| 453 | goto common_load; |
| 454 | break; |
| 455 | |
| 456 | /*** Jump and branches ***/ |
| 457 | case BPF_S_JMP_JA: |
| 458 | if (K != 0) |
| 459 | PPC_JMP(addrs[i + 1 + K]); |
| 460 | break; |
| 461 | |
| 462 | case BPF_S_JMP_JGT_K: |
| 463 | case BPF_S_JMP_JGT_X: |
| 464 | true_cond = COND_GT; |
| 465 | goto cond_branch; |
| 466 | case BPF_S_JMP_JGE_K: |
| 467 | case BPF_S_JMP_JGE_X: |
| 468 | true_cond = COND_GE; |
| 469 | goto cond_branch; |
| 470 | case BPF_S_JMP_JEQ_K: |
| 471 | case BPF_S_JMP_JEQ_X: |
| 472 | true_cond = COND_EQ; |
| 473 | goto cond_branch; |
| 474 | case BPF_S_JMP_JSET_K: |
| 475 | case BPF_S_JMP_JSET_X: |
| 476 | true_cond = COND_NE; |
| 477 | /* Fall through */ |
| 478 | cond_branch: |
| 479 | /* same targets, can avoid doing the test :) */ |
| 480 | if (filter[i].jt == filter[i].jf) { |
| 481 | if (filter[i].jt > 0) |
| 482 | PPC_JMP(addrs[i + 1 + filter[i].jt]); |
| 483 | break; |
| 484 | } |
| 485 | |
| 486 | switch (filter[i].code) { |
| 487 | case BPF_S_JMP_JGT_X: |
| 488 | case BPF_S_JMP_JGE_X: |
| 489 | case BPF_S_JMP_JEQ_X: |
| 490 | ctx->seen |= SEEN_XREG; |
| 491 | PPC_CMPLW(r_A, r_X); |
| 492 | break; |
| 493 | case BPF_S_JMP_JSET_X: |
| 494 | ctx->seen |= SEEN_XREG; |
| 495 | PPC_AND_DOT(r_scratch1, r_A, r_X); |
| 496 | break; |
| 497 | case BPF_S_JMP_JEQ_K: |
| 498 | case BPF_S_JMP_JGT_K: |
| 499 | case BPF_S_JMP_JGE_K: |
| 500 | if (K < 32768) |
| 501 | PPC_CMPLWI(r_A, K); |
| 502 | else { |
| 503 | PPC_LI32(r_scratch1, K); |
| 504 | PPC_CMPLW(r_A, r_scratch1); |
| 505 | } |
| 506 | break; |
| 507 | case BPF_S_JMP_JSET_K: |
| 508 | if (K < 32768) |
| 509 | /* PPC_ANDI is /only/ dot-form */ |
| 510 | PPC_ANDI(r_scratch1, r_A, K); |
| 511 | else { |
| 512 | PPC_LI32(r_scratch1, K); |
| 513 | PPC_AND_DOT(r_scratch1, r_A, |
| 514 | r_scratch1); |
| 515 | } |
| 516 | break; |
| 517 | } |
| 518 | /* Sometimes branches are constructed "backward", with |
| 519 | * the false path being the branch and true path being |
| 520 | * a fallthrough to the next instruction. |
| 521 | */ |
| 522 | if (filter[i].jt == 0) |
| 523 | /* Swap the sense of the branch */ |
| 524 | PPC_BCC(true_cond ^ COND_CMP_TRUE, |
| 525 | addrs[i + 1 + filter[i].jf]); |
| 526 | else { |
| 527 | PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]); |
| 528 | if (filter[i].jf != 0) |
| 529 | PPC_JMP(addrs[i + 1 + filter[i].jf]); |
| 530 | } |
| 531 | break; |
| 532 | default: |
| 533 | /* The filter contains something cruel & unusual. |
| 534 | * We don't handle it, but also there shouldn't be |
| 535 | * anything missing from our list. |
| 536 | */ |
| 537 | if (printk_ratelimit()) |
| 538 | pr_err("BPF filter opcode %04x (@%d) unsupported\n", |
| 539 | filter[i].code, i); |
| 540 | return -ENOTSUPP; |
| 541 | } |
| 542 | |
| 543 | } |
| 544 | /* Set end-of-body-code address for exit. */ |
| 545 | addrs[i] = ctx->idx * 4; |
| 546 | |
| 547 | return 0; |
| 548 | } |
| 549 | |
| 550 | void bpf_jit_compile(struct sk_filter *fp) |
| 551 | { |
| 552 | unsigned int proglen; |
| 553 | unsigned int alloclen; |
| 554 | u32 *image = NULL; |
| 555 | u32 *code_base; |
| 556 | unsigned int *addrs; |
| 557 | struct codegen_context cgctx; |
| 558 | int pass; |
| 559 | int flen = fp->len; |
| 560 | |
| 561 | if (!bpf_jit_enable) |
| 562 | return; |
| 563 | |
| 564 | addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL); |
| 565 | if (addrs == NULL) |
| 566 | return; |
| 567 | |
| 568 | /* |
| 569 | * There are multiple assembly passes as the generated code will change |
| 570 | * size as it settles down, figuring out the max branch offsets/exit |
| 571 | * paths required. |
| 572 | * |
| 573 | * The range of standard conditional branches is +/- 32Kbytes. Since |
| 574 | * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to |
| 575 | * finish with 8 bytes/instruction. Not feasible, so long jumps are |
| 576 | * used, distinct from short branches. |
| 577 | * |
| 578 | * Current: |
| 579 | * |
| 580 | * For now, both branch types assemble to 2 words (short branches padded |
| 581 | * with a NOP); this is less efficient, but assembly will always complete |
| 582 | * after exactly 3 passes: |
| 583 | * |
| 584 | * First pass: No code buffer; Program is "faux-generated" -- no code |
| 585 | * emitted but maximum size of output determined (and addrs[] filled |
| 586 | * in). Also, we note whether we use M[], whether we use skb data, etc. |
| 587 | * All generation choices assumed to be 'worst-case', e.g. branches all |
| 588 | * far (2 instructions), return path code reduction not available, etc. |
| 589 | * |
| 590 | * Second pass: Code buffer allocated with size determined previously. |
| 591 | * Prologue generated to support features we have seen used. Exit paths |
| 592 | * determined and addrs[] is filled in again, as code may be slightly |
| 593 | * smaller as a result. |
| 594 | * |
| 595 | * Third pass: Code generated 'for real', and branch destinations |
| 596 | * determined from now-accurate addrs[] map. |
| 597 | * |
| 598 | * Ideal: |
| 599 | * |
| 600 | * If we optimise this, near branches will be shorter. On the |
| 601 | * first assembly pass, we should err on the side of caution and |
| 602 | * generate the biggest code. On subsequent passes, branches will be |
| 603 | * generated short or long and code size will reduce. With smaller |
| 604 | * code, more branches may fall into the short category, and code will |
| 605 | * reduce more. |
| 606 | * |
| 607 | * Finally, if we see one pass generate code the same size as the |
| 608 | * previous pass we have converged and should now generate code for |
| 609 | * real. Allocating at the end will also save the memory that would |
| 610 | * otherwise be wasted by the (small) current code shrinkage. |
| 611 | * Preferably, we should do a small number of passes (e.g. 5) and if we |
| 612 | * haven't converged by then, get impatient and force code to generate |
| 613 | * as-is, even if the odd branch would be left long. The chances of a |
| 614 | * long jump are tiny with all but the most enormous of BPF filter |
| 615 | * inputs, so we should usually converge on the third pass. |
| 616 | */ |
| 617 | |
| 618 | cgctx.idx = 0; |
| 619 | cgctx.seen = 0; |
| 620 | cgctx.pc_ret0 = -1; |
| 621 | /* Scouting faux-generate pass 0 */ |
| 622 | if (bpf_jit_build_body(fp, 0, &cgctx, addrs)) |
| 623 | /* We hit something illegal or unsupported. */ |
| 624 | goto out; |
| 625 | |
| 626 | /* |
| 627 | * Pretend to build prologue, given the features we've seen. This will |
| 628 | * update ctgtx.idx as it pretends to output instructions, then we can |
| 629 | * calculate total size from idx. |
| 630 | */ |
| 631 | bpf_jit_build_prologue(fp, 0, &cgctx); |
| 632 | bpf_jit_build_epilogue(0, &cgctx); |
| 633 | |
| 634 | proglen = cgctx.idx * 4; |
| 635 | alloclen = proglen + FUNCTION_DESCR_SIZE; |
| 636 | image = module_alloc(max_t(unsigned int, alloclen, |
| 637 | sizeof(struct work_struct))); |
| 638 | if (!image) |
| 639 | goto out; |
| 640 | |
| 641 | code_base = image + (FUNCTION_DESCR_SIZE/4); |
| 642 | |
| 643 | /* Code generation passes 1-2 */ |
| 644 | for (pass = 1; pass < 3; pass++) { |
| 645 | /* Now build the prologue, body code & epilogue for real. */ |
| 646 | cgctx.idx = 0; |
| 647 | bpf_jit_build_prologue(fp, code_base, &cgctx); |
| 648 | bpf_jit_build_body(fp, code_base, &cgctx, addrs); |
| 649 | bpf_jit_build_epilogue(code_base, &cgctx); |
| 650 | |
| 651 | if (bpf_jit_enable > 1) |
| 652 | pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass, |
| 653 | proglen - (cgctx.idx * 4), cgctx.seen); |
| 654 | } |
| 655 | |
| 656 | if (bpf_jit_enable > 1) |
| 657 | pr_info("flen=%d proglen=%u pass=%d image=%p\n", |
| 658 | flen, proglen, pass, image); |
| 659 | |
| 660 | if (image) { |
| 661 | if (bpf_jit_enable > 1) |
| 662 | print_hex_dump(KERN_ERR, "JIT code: ", |
| 663 | DUMP_PREFIX_ADDRESS, |
| 664 | 16, 1, code_base, |
| 665 | proglen, false); |
| 666 | |
| 667 | bpf_flush_icache(code_base, code_base + (proglen/4)); |
| 668 | /* Function descriptor nastiness: Address + TOC */ |
| 669 | ((u64 *)image)[0] = (u64)code_base; |
| 670 | ((u64 *)image)[1] = local_paca->kernel_toc; |
| 671 | fp->bpf_func = (void *)image; |
| 672 | } |
| 673 | out: |
| 674 | kfree(addrs); |
| 675 | return; |
| 676 | } |
| 677 | |
| 678 | static void jit_free_defer(struct work_struct *arg) |
| 679 | { |
| 680 | module_free(NULL, arg); |
| 681 | } |
| 682 | |
| 683 | /* run from softirq, we must use a work_struct to call |
| 684 | * module_free() from process context |
| 685 | */ |
| 686 | void bpf_jit_free(struct sk_filter *fp) |
| 687 | { |
| 688 | if (fp->bpf_func != sk_run_filter) { |
| 689 | struct work_struct *work = (struct work_struct *)fp->bpf_func; |
| 690 | |
| 691 | INIT_WORK(work, jit_free_defer); |
| 692 | schedule_work(work); |
| 693 | } |
| 694 | } |