Tejun Heo | 0a268db | 2016-12-27 14:49:06 -0500 | [diff] [blame^] | 1 | #include "cgroup-internal.h" |
| 2 | |
| 3 | #include <linux/kmod.h> |
| 4 | #include <linux/sort.h> |
| 5 | #include <linux/mm.h> |
| 6 | #include <linux/slab.h> |
| 7 | #include <linux/vmalloc.h> |
| 8 | #include <linux/delayacct.h> |
| 9 | #include <linux/pid_namespace.h> |
| 10 | #include <linux/cgroupstats.h> |
| 11 | |
| 12 | #include <trace/events/cgroup.h> |
| 13 | |
| 14 | /* |
| 15 | * pidlists linger the following amount before being destroyed. The goal |
| 16 | * is avoiding frequent destruction in the middle of consecutive read calls |
| 17 | * Expiring in the middle is a performance problem not a correctness one. |
| 18 | * 1 sec should be enough. |
| 19 | */ |
| 20 | #define CGROUP_PIDLIST_DESTROY_DELAY HZ |
| 21 | |
| 22 | /* Controllers blocked by the commandline in v1 */ |
| 23 | static u16 cgroup_no_v1_mask; |
| 24 | |
| 25 | /* |
| 26 | * pidlist destructions need to be flushed on cgroup destruction. Use a |
| 27 | * separate workqueue as flush domain. |
| 28 | */ |
| 29 | static struct workqueue_struct *cgroup_pidlist_destroy_wq; |
| 30 | |
| 31 | /* |
| 32 | * Protects cgroup_subsys->release_agent_path. Modifying it also requires |
| 33 | * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. |
| 34 | */ |
| 35 | DEFINE_SPINLOCK(release_agent_path_lock); |
| 36 | |
| 37 | bool cgroup_ssid_no_v1(int ssid) |
| 38 | { |
| 39 | return cgroup_no_v1_mask & (1 << ssid); |
| 40 | } |
| 41 | |
| 42 | /** |
| 43 | * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' |
| 44 | * @from: attach to all cgroups of a given task |
| 45 | * @tsk: the task to be attached |
| 46 | */ |
| 47 | int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) |
| 48 | { |
| 49 | struct cgroup_root *root; |
| 50 | int retval = 0; |
| 51 | |
| 52 | mutex_lock(&cgroup_mutex); |
| 53 | percpu_down_write(&cgroup_threadgroup_rwsem); |
| 54 | for_each_root(root) { |
| 55 | struct cgroup *from_cgrp; |
| 56 | |
| 57 | if (root == &cgrp_dfl_root) |
| 58 | continue; |
| 59 | |
| 60 | spin_lock_irq(&css_set_lock); |
| 61 | from_cgrp = task_cgroup_from_root(from, root); |
| 62 | spin_unlock_irq(&css_set_lock); |
| 63 | |
| 64 | retval = cgroup_attach_task(from_cgrp, tsk, false); |
| 65 | if (retval) |
| 66 | break; |
| 67 | } |
| 68 | percpu_up_write(&cgroup_threadgroup_rwsem); |
| 69 | mutex_unlock(&cgroup_mutex); |
| 70 | |
| 71 | return retval; |
| 72 | } |
| 73 | EXPORT_SYMBOL_GPL(cgroup_attach_task_all); |
| 74 | |
| 75 | /** |
| 76 | * cgroup_trasnsfer_tasks - move tasks from one cgroup to another |
| 77 | * @to: cgroup to which the tasks will be moved |
| 78 | * @from: cgroup in which the tasks currently reside |
| 79 | * |
| 80 | * Locking rules between cgroup_post_fork() and the migration path |
| 81 | * guarantee that, if a task is forking while being migrated, the new child |
| 82 | * is guaranteed to be either visible in the source cgroup after the |
| 83 | * parent's migration is complete or put into the target cgroup. No task |
| 84 | * can slip out of migration through forking. |
| 85 | */ |
| 86 | int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) |
| 87 | { |
| 88 | LIST_HEAD(preloaded_csets); |
| 89 | struct cgrp_cset_link *link; |
| 90 | struct css_task_iter it; |
| 91 | struct task_struct *task; |
| 92 | int ret; |
| 93 | |
| 94 | if (cgroup_on_dfl(to)) |
| 95 | return -EINVAL; |
| 96 | |
| 97 | if (!cgroup_may_migrate_to(to)) |
| 98 | return -EBUSY; |
| 99 | |
| 100 | mutex_lock(&cgroup_mutex); |
| 101 | |
| 102 | percpu_down_write(&cgroup_threadgroup_rwsem); |
| 103 | |
| 104 | /* all tasks in @from are being moved, all csets are source */ |
| 105 | spin_lock_irq(&css_set_lock); |
| 106 | list_for_each_entry(link, &from->cset_links, cset_link) |
| 107 | cgroup_migrate_add_src(link->cset, to, &preloaded_csets); |
| 108 | spin_unlock_irq(&css_set_lock); |
| 109 | |
| 110 | ret = cgroup_migrate_prepare_dst(&preloaded_csets); |
| 111 | if (ret) |
| 112 | goto out_err; |
| 113 | |
| 114 | /* |
| 115 | * Migrate tasks one-by-one until @from is empty. This fails iff |
| 116 | * ->can_attach() fails. |
| 117 | */ |
| 118 | do { |
| 119 | css_task_iter_start(&from->self, &it); |
| 120 | task = css_task_iter_next(&it); |
| 121 | if (task) |
| 122 | get_task_struct(task); |
| 123 | css_task_iter_end(&it); |
| 124 | |
| 125 | if (task) { |
| 126 | ret = cgroup_migrate(task, false, to->root); |
| 127 | if (!ret) |
| 128 | trace_cgroup_transfer_tasks(to, task, false); |
| 129 | put_task_struct(task); |
| 130 | } |
| 131 | } while (task && !ret); |
| 132 | out_err: |
| 133 | cgroup_migrate_finish(&preloaded_csets); |
| 134 | percpu_up_write(&cgroup_threadgroup_rwsem); |
| 135 | mutex_unlock(&cgroup_mutex); |
| 136 | return ret; |
| 137 | } |
| 138 | |
| 139 | /* |
| 140 | * Stuff for reading the 'tasks'/'procs' files. |
| 141 | * |
| 142 | * Reading this file can return large amounts of data if a cgroup has |
| 143 | * *lots* of attached tasks. So it may need several calls to read(), |
| 144 | * but we cannot guarantee that the information we produce is correct |
| 145 | * unless we produce it entirely atomically. |
| 146 | * |
| 147 | */ |
| 148 | |
| 149 | /* which pidlist file are we talking about? */ |
| 150 | enum cgroup_filetype { |
| 151 | CGROUP_FILE_PROCS, |
| 152 | CGROUP_FILE_TASKS, |
| 153 | }; |
| 154 | |
| 155 | /* |
| 156 | * A pidlist is a list of pids that virtually represents the contents of one |
| 157 | * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, |
| 158 | * a pair (one each for procs, tasks) for each pid namespace that's relevant |
| 159 | * to the cgroup. |
| 160 | */ |
| 161 | struct cgroup_pidlist { |
| 162 | /* |
| 163 | * used to find which pidlist is wanted. doesn't change as long as |
| 164 | * this particular list stays in the list. |
| 165 | */ |
| 166 | struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; |
| 167 | /* array of xids */ |
| 168 | pid_t *list; |
| 169 | /* how many elements the above list has */ |
| 170 | int length; |
| 171 | /* each of these stored in a list by its cgroup */ |
| 172 | struct list_head links; |
| 173 | /* pointer to the cgroup we belong to, for list removal purposes */ |
| 174 | struct cgroup *owner; |
| 175 | /* for delayed destruction */ |
| 176 | struct delayed_work destroy_dwork; |
| 177 | }; |
| 178 | |
| 179 | /* |
| 180 | * The following two functions "fix" the issue where there are more pids |
| 181 | * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. |
| 182 | * TODO: replace with a kernel-wide solution to this problem |
| 183 | */ |
| 184 | #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) |
| 185 | static void *pidlist_allocate(int count) |
| 186 | { |
| 187 | if (PIDLIST_TOO_LARGE(count)) |
| 188 | return vmalloc(count * sizeof(pid_t)); |
| 189 | else |
| 190 | return kmalloc(count * sizeof(pid_t), GFP_KERNEL); |
| 191 | } |
| 192 | |
| 193 | static void pidlist_free(void *p) |
| 194 | { |
| 195 | kvfree(p); |
| 196 | } |
| 197 | |
| 198 | /* |
| 199 | * Used to destroy all pidlists lingering waiting for destroy timer. None |
| 200 | * should be left afterwards. |
| 201 | */ |
| 202 | void cgroup_pidlist_destroy_all(struct cgroup *cgrp) |
| 203 | { |
| 204 | struct cgroup_pidlist *l, *tmp_l; |
| 205 | |
| 206 | mutex_lock(&cgrp->pidlist_mutex); |
| 207 | list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) |
| 208 | mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); |
| 209 | mutex_unlock(&cgrp->pidlist_mutex); |
| 210 | |
| 211 | flush_workqueue(cgroup_pidlist_destroy_wq); |
| 212 | BUG_ON(!list_empty(&cgrp->pidlists)); |
| 213 | } |
| 214 | |
| 215 | static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) |
| 216 | { |
| 217 | struct delayed_work *dwork = to_delayed_work(work); |
| 218 | struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, |
| 219 | destroy_dwork); |
| 220 | struct cgroup_pidlist *tofree = NULL; |
| 221 | |
| 222 | mutex_lock(&l->owner->pidlist_mutex); |
| 223 | |
| 224 | /* |
| 225 | * Destroy iff we didn't get queued again. The state won't change |
| 226 | * as destroy_dwork can only be queued while locked. |
| 227 | */ |
| 228 | if (!delayed_work_pending(dwork)) { |
| 229 | list_del(&l->links); |
| 230 | pidlist_free(l->list); |
| 231 | put_pid_ns(l->key.ns); |
| 232 | tofree = l; |
| 233 | } |
| 234 | |
| 235 | mutex_unlock(&l->owner->pidlist_mutex); |
| 236 | kfree(tofree); |
| 237 | } |
| 238 | |
| 239 | /* |
| 240 | * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries |
| 241 | * Returns the number of unique elements. |
| 242 | */ |
| 243 | static int pidlist_uniq(pid_t *list, int length) |
| 244 | { |
| 245 | int src, dest = 1; |
| 246 | |
| 247 | /* |
| 248 | * we presume the 0th element is unique, so i starts at 1. trivial |
| 249 | * edge cases first; no work needs to be done for either |
| 250 | */ |
| 251 | if (length == 0 || length == 1) |
| 252 | return length; |
| 253 | /* src and dest walk down the list; dest counts unique elements */ |
| 254 | for (src = 1; src < length; src++) { |
| 255 | /* find next unique element */ |
| 256 | while (list[src] == list[src-1]) { |
| 257 | src++; |
| 258 | if (src == length) |
| 259 | goto after; |
| 260 | } |
| 261 | /* dest always points to where the next unique element goes */ |
| 262 | list[dest] = list[src]; |
| 263 | dest++; |
| 264 | } |
| 265 | after: |
| 266 | return dest; |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * The two pid files - task and cgroup.procs - guaranteed that the result |
| 271 | * is sorted, which forced this whole pidlist fiasco. As pid order is |
| 272 | * different per namespace, each namespace needs differently sorted list, |
| 273 | * making it impossible to use, for example, single rbtree of member tasks |
| 274 | * sorted by task pointer. As pidlists can be fairly large, allocating one |
| 275 | * per open file is dangerous, so cgroup had to implement shared pool of |
| 276 | * pidlists keyed by cgroup and namespace. |
| 277 | */ |
| 278 | static int cmppid(const void *a, const void *b) |
| 279 | { |
| 280 | return *(pid_t *)a - *(pid_t *)b; |
| 281 | } |
| 282 | |
| 283 | static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, |
| 284 | enum cgroup_filetype type) |
| 285 | { |
| 286 | struct cgroup_pidlist *l; |
| 287 | /* don't need task_nsproxy() if we're looking at ourself */ |
| 288 | struct pid_namespace *ns = task_active_pid_ns(current); |
| 289 | |
| 290 | lockdep_assert_held(&cgrp->pidlist_mutex); |
| 291 | |
| 292 | list_for_each_entry(l, &cgrp->pidlists, links) |
| 293 | if (l->key.type == type && l->key.ns == ns) |
| 294 | return l; |
| 295 | return NULL; |
| 296 | } |
| 297 | |
| 298 | /* |
| 299 | * find the appropriate pidlist for our purpose (given procs vs tasks) |
| 300 | * returns with the lock on that pidlist already held, and takes care |
| 301 | * of the use count, or returns NULL with no locks held if we're out of |
| 302 | * memory. |
| 303 | */ |
| 304 | static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, |
| 305 | enum cgroup_filetype type) |
| 306 | { |
| 307 | struct cgroup_pidlist *l; |
| 308 | |
| 309 | lockdep_assert_held(&cgrp->pidlist_mutex); |
| 310 | |
| 311 | l = cgroup_pidlist_find(cgrp, type); |
| 312 | if (l) |
| 313 | return l; |
| 314 | |
| 315 | /* entry not found; create a new one */ |
| 316 | l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); |
| 317 | if (!l) |
| 318 | return l; |
| 319 | |
| 320 | INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); |
| 321 | l->key.type = type; |
| 322 | /* don't need task_nsproxy() if we're looking at ourself */ |
| 323 | l->key.ns = get_pid_ns(task_active_pid_ns(current)); |
| 324 | l->owner = cgrp; |
| 325 | list_add(&l->links, &cgrp->pidlists); |
| 326 | return l; |
| 327 | } |
| 328 | |
| 329 | /** |
| 330 | * cgroup_task_count - count the number of tasks in a cgroup. |
| 331 | * @cgrp: the cgroup in question |
| 332 | * |
| 333 | * Return the number of tasks in the cgroup. The returned number can be |
| 334 | * higher than the actual number of tasks due to css_set references from |
| 335 | * namespace roots and temporary usages. |
| 336 | */ |
| 337 | static int cgroup_task_count(const struct cgroup *cgrp) |
| 338 | { |
| 339 | int count = 0; |
| 340 | struct cgrp_cset_link *link; |
| 341 | |
| 342 | spin_lock_irq(&css_set_lock); |
| 343 | list_for_each_entry(link, &cgrp->cset_links, cset_link) |
| 344 | count += atomic_read(&link->cset->refcount); |
| 345 | spin_unlock_irq(&css_set_lock); |
| 346 | return count; |
| 347 | } |
| 348 | |
| 349 | /* |
| 350 | * Load a cgroup's pidarray with either procs' tgids or tasks' pids |
| 351 | */ |
| 352 | static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, |
| 353 | struct cgroup_pidlist **lp) |
| 354 | { |
| 355 | pid_t *array; |
| 356 | int length; |
| 357 | int pid, n = 0; /* used for populating the array */ |
| 358 | struct css_task_iter it; |
| 359 | struct task_struct *tsk; |
| 360 | struct cgroup_pidlist *l; |
| 361 | |
| 362 | lockdep_assert_held(&cgrp->pidlist_mutex); |
| 363 | |
| 364 | /* |
| 365 | * If cgroup gets more users after we read count, we won't have |
| 366 | * enough space - tough. This race is indistinguishable to the |
| 367 | * caller from the case that the additional cgroup users didn't |
| 368 | * show up until sometime later on. |
| 369 | */ |
| 370 | length = cgroup_task_count(cgrp); |
| 371 | array = pidlist_allocate(length); |
| 372 | if (!array) |
| 373 | return -ENOMEM; |
| 374 | /* now, populate the array */ |
| 375 | css_task_iter_start(&cgrp->self, &it); |
| 376 | while ((tsk = css_task_iter_next(&it))) { |
| 377 | if (unlikely(n == length)) |
| 378 | break; |
| 379 | /* get tgid or pid for procs or tasks file respectively */ |
| 380 | if (type == CGROUP_FILE_PROCS) |
| 381 | pid = task_tgid_vnr(tsk); |
| 382 | else |
| 383 | pid = task_pid_vnr(tsk); |
| 384 | if (pid > 0) /* make sure to only use valid results */ |
| 385 | array[n++] = pid; |
| 386 | } |
| 387 | css_task_iter_end(&it); |
| 388 | length = n; |
| 389 | /* now sort & (if procs) strip out duplicates */ |
| 390 | sort(array, length, sizeof(pid_t), cmppid, NULL); |
| 391 | if (type == CGROUP_FILE_PROCS) |
| 392 | length = pidlist_uniq(array, length); |
| 393 | |
| 394 | l = cgroup_pidlist_find_create(cgrp, type); |
| 395 | if (!l) { |
| 396 | pidlist_free(array); |
| 397 | return -ENOMEM; |
| 398 | } |
| 399 | |
| 400 | /* store array, freeing old if necessary */ |
| 401 | pidlist_free(l->list); |
| 402 | l->list = array; |
| 403 | l->length = length; |
| 404 | *lp = l; |
| 405 | return 0; |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * seq_file methods for the tasks/procs files. The seq_file position is the |
| 410 | * next pid to display; the seq_file iterator is a pointer to the pid |
| 411 | * in the cgroup->l->list array. |
| 412 | */ |
| 413 | |
| 414 | static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) |
| 415 | { |
| 416 | /* |
| 417 | * Initially we receive a position value that corresponds to |
| 418 | * one more than the last pid shown (or 0 on the first call or |
| 419 | * after a seek to the start). Use a binary-search to find the |
| 420 | * next pid to display, if any |
| 421 | */ |
| 422 | struct kernfs_open_file *of = s->private; |
| 423 | struct cgroup *cgrp = seq_css(s)->cgroup; |
| 424 | struct cgroup_pidlist *l; |
| 425 | enum cgroup_filetype type = seq_cft(s)->private; |
| 426 | int index = 0, pid = *pos; |
| 427 | int *iter, ret; |
| 428 | |
| 429 | mutex_lock(&cgrp->pidlist_mutex); |
| 430 | |
| 431 | /* |
| 432 | * !NULL @of->priv indicates that this isn't the first start() |
| 433 | * after open. If the matching pidlist is around, we can use that. |
| 434 | * Look for it. Note that @of->priv can't be used directly. It |
| 435 | * could already have been destroyed. |
| 436 | */ |
| 437 | if (of->priv) |
| 438 | of->priv = cgroup_pidlist_find(cgrp, type); |
| 439 | |
| 440 | /* |
| 441 | * Either this is the first start() after open or the matching |
| 442 | * pidlist has been destroyed inbetween. Create a new one. |
| 443 | */ |
| 444 | if (!of->priv) { |
| 445 | ret = pidlist_array_load(cgrp, type, |
| 446 | (struct cgroup_pidlist **)&of->priv); |
| 447 | if (ret) |
| 448 | return ERR_PTR(ret); |
| 449 | } |
| 450 | l = of->priv; |
| 451 | |
| 452 | if (pid) { |
| 453 | int end = l->length; |
| 454 | |
| 455 | while (index < end) { |
| 456 | int mid = (index + end) / 2; |
| 457 | if (l->list[mid] == pid) { |
| 458 | index = mid; |
| 459 | break; |
| 460 | } else if (l->list[mid] <= pid) |
| 461 | index = mid + 1; |
| 462 | else |
| 463 | end = mid; |
| 464 | } |
| 465 | } |
| 466 | /* If we're off the end of the array, we're done */ |
| 467 | if (index >= l->length) |
| 468 | return NULL; |
| 469 | /* Update the abstract position to be the actual pid that we found */ |
| 470 | iter = l->list + index; |
| 471 | *pos = *iter; |
| 472 | return iter; |
| 473 | } |
| 474 | |
| 475 | static void cgroup_pidlist_stop(struct seq_file *s, void *v) |
| 476 | { |
| 477 | struct kernfs_open_file *of = s->private; |
| 478 | struct cgroup_pidlist *l = of->priv; |
| 479 | |
| 480 | if (l) |
| 481 | mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, |
| 482 | CGROUP_PIDLIST_DESTROY_DELAY); |
| 483 | mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); |
| 484 | } |
| 485 | |
| 486 | static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) |
| 487 | { |
| 488 | struct kernfs_open_file *of = s->private; |
| 489 | struct cgroup_pidlist *l = of->priv; |
| 490 | pid_t *p = v; |
| 491 | pid_t *end = l->list + l->length; |
| 492 | /* |
| 493 | * Advance to the next pid in the array. If this goes off the |
| 494 | * end, we're done |
| 495 | */ |
| 496 | p++; |
| 497 | if (p >= end) { |
| 498 | return NULL; |
| 499 | } else { |
| 500 | *pos = *p; |
| 501 | return p; |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | static int cgroup_pidlist_show(struct seq_file *s, void *v) |
| 506 | { |
| 507 | seq_printf(s, "%d\n", *(int *)v); |
| 508 | |
| 509 | return 0; |
| 510 | } |
| 511 | |
| 512 | static ssize_t cgroup_tasks_write(struct kernfs_open_file *of, |
| 513 | char *buf, size_t nbytes, loff_t off) |
| 514 | { |
| 515 | return __cgroup_procs_write(of, buf, nbytes, off, false); |
| 516 | } |
| 517 | |
| 518 | static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, |
| 519 | char *buf, size_t nbytes, loff_t off) |
| 520 | { |
| 521 | struct cgroup *cgrp; |
| 522 | |
| 523 | BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); |
| 524 | |
| 525 | cgrp = cgroup_kn_lock_live(of->kn, false); |
| 526 | if (!cgrp) |
| 527 | return -ENODEV; |
| 528 | spin_lock(&release_agent_path_lock); |
| 529 | strlcpy(cgrp->root->release_agent_path, strstrip(buf), |
| 530 | sizeof(cgrp->root->release_agent_path)); |
| 531 | spin_unlock(&release_agent_path_lock); |
| 532 | cgroup_kn_unlock(of->kn); |
| 533 | return nbytes; |
| 534 | } |
| 535 | |
| 536 | static int cgroup_release_agent_show(struct seq_file *seq, void *v) |
| 537 | { |
| 538 | struct cgroup *cgrp = seq_css(seq)->cgroup; |
| 539 | |
| 540 | spin_lock(&release_agent_path_lock); |
| 541 | seq_puts(seq, cgrp->root->release_agent_path); |
| 542 | spin_unlock(&release_agent_path_lock); |
| 543 | seq_putc(seq, '\n'); |
| 544 | return 0; |
| 545 | } |
| 546 | |
| 547 | static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) |
| 548 | { |
| 549 | seq_puts(seq, "0\n"); |
| 550 | return 0; |
| 551 | } |
| 552 | |
| 553 | static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, |
| 554 | struct cftype *cft) |
| 555 | { |
| 556 | return notify_on_release(css->cgroup); |
| 557 | } |
| 558 | |
| 559 | static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, |
| 560 | struct cftype *cft, u64 val) |
| 561 | { |
| 562 | if (val) |
| 563 | set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); |
| 564 | else |
| 565 | clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); |
| 566 | return 0; |
| 567 | } |
| 568 | |
| 569 | static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, |
| 570 | struct cftype *cft) |
| 571 | { |
| 572 | return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); |
| 573 | } |
| 574 | |
| 575 | static int cgroup_clone_children_write(struct cgroup_subsys_state *css, |
| 576 | struct cftype *cft, u64 val) |
| 577 | { |
| 578 | if (val) |
| 579 | set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); |
| 580 | else |
| 581 | clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); |
| 582 | return 0; |
| 583 | } |
| 584 | |
| 585 | /* cgroup core interface files for the legacy hierarchies */ |
| 586 | struct cftype cgroup_legacy_base_files[] = { |
| 587 | { |
| 588 | .name = "cgroup.procs", |
| 589 | .seq_start = cgroup_pidlist_start, |
| 590 | .seq_next = cgroup_pidlist_next, |
| 591 | .seq_stop = cgroup_pidlist_stop, |
| 592 | .seq_show = cgroup_pidlist_show, |
| 593 | .private = CGROUP_FILE_PROCS, |
| 594 | .write = cgroup_procs_write, |
| 595 | }, |
| 596 | { |
| 597 | .name = "cgroup.clone_children", |
| 598 | .read_u64 = cgroup_clone_children_read, |
| 599 | .write_u64 = cgroup_clone_children_write, |
| 600 | }, |
| 601 | { |
| 602 | .name = "cgroup.sane_behavior", |
| 603 | .flags = CFTYPE_ONLY_ON_ROOT, |
| 604 | .seq_show = cgroup_sane_behavior_show, |
| 605 | }, |
| 606 | { |
| 607 | .name = "tasks", |
| 608 | .seq_start = cgroup_pidlist_start, |
| 609 | .seq_next = cgroup_pidlist_next, |
| 610 | .seq_stop = cgroup_pidlist_stop, |
| 611 | .seq_show = cgroup_pidlist_show, |
| 612 | .private = CGROUP_FILE_TASKS, |
| 613 | .write = cgroup_tasks_write, |
| 614 | }, |
| 615 | { |
| 616 | .name = "notify_on_release", |
| 617 | .read_u64 = cgroup_read_notify_on_release, |
| 618 | .write_u64 = cgroup_write_notify_on_release, |
| 619 | }, |
| 620 | { |
| 621 | .name = "release_agent", |
| 622 | .flags = CFTYPE_ONLY_ON_ROOT, |
| 623 | .seq_show = cgroup_release_agent_show, |
| 624 | .write = cgroup_release_agent_write, |
| 625 | .max_write_len = PATH_MAX - 1, |
| 626 | }, |
| 627 | { } /* terminate */ |
| 628 | }; |
| 629 | |
| 630 | /* Display information about each subsystem and each hierarchy */ |
| 631 | static int proc_cgroupstats_show(struct seq_file *m, void *v) |
| 632 | { |
| 633 | struct cgroup_subsys *ss; |
| 634 | int i; |
| 635 | |
| 636 | seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); |
| 637 | /* |
| 638 | * ideally we don't want subsystems moving around while we do this. |
| 639 | * cgroup_mutex is also necessary to guarantee an atomic snapshot of |
| 640 | * subsys/hierarchy state. |
| 641 | */ |
| 642 | mutex_lock(&cgroup_mutex); |
| 643 | |
| 644 | for_each_subsys(ss, i) |
| 645 | seq_printf(m, "%s\t%d\t%d\t%d\n", |
| 646 | ss->legacy_name, ss->root->hierarchy_id, |
| 647 | atomic_read(&ss->root->nr_cgrps), |
| 648 | cgroup_ssid_enabled(i)); |
| 649 | |
| 650 | mutex_unlock(&cgroup_mutex); |
| 651 | return 0; |
| 652 | } |
| 653 | |
| 654 | static int cgroupstats_open(struct inode *inode, struct file *file) |
| 655 | { |
| 656 | return single_open(file, proc_cgroupstats_show, NULL); |
| 657 | } |
| 658 | |
| 659 | const struct file_operations proc_cgroupstats_operations = { |
| 660 | .open = cgroupstats_open, |
| 661 | .read = seq_read, |
| 662 | .llseek = seq_lseek, |
| 663 | .release = single_release, |
| 664 | }; |
| 665 | |
| 666 | /** |
| 667 | * cgroupstats_build - build and fill cgroupstats |
| 668 | * @stats: cgroupstats to fill information into |
| 669 | * @dentry: A dentry entry belonging to the cgroup for which stats have |
| 670 | * been requested. |
| 671 | * |
| 672 | * Build and fill cgroupstats so that taskstats can export it to user |
| 673 | * space. |
| 674 | */ |
| 675 | int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) |
| 676 | { |
| 677 | struct kernfs_node *kn = kernfs_node_from_dentry(dentry); |
| 678 | struct cgroup *cgrp; |
| 679 | struct css_task_iter it; |
| 680 | struct task_struct *tsk; |
| 681 | |
| 682 | /* it should be kernfs_node belonging to cgroupfs and is a directory */ |
| 683 | if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || |
| 684 | kernfs_type(kn) != KERNFS_DIR) |
| 685 | return -EINVAL; |
| 686 | |
| 687 | mutex_lock(&cgroup_mutex); |
| 688 | |
| 689 | /* |
| 690 | * We aren't being called from kernfs and there's no guarantee on |
| 691 | * @kn->priv's validity. For this and css_tryget_online_from_dir(), |
| 692 | * @kn->priv is RCU safe. Let's do the RCU dancing. |
| 693 | */ |
| 694 | rcu_read_lock(); |
| 695 | cgrp = rcu_dereference(kn->priv); |
| 696 | if (!cgrp || cgroup_is_dead(cgrp)) { |
| 697 | rcu_read_unlock(); |
| 698 | mutex_unlock(&cgroup_mutex); |
| 699 | return -ENOENT; |
| 700 | } |
| 701 | rcu_read_unlock(); |
| 702 | |
| 703 | css_task_iter_start(&cgrp->self, &it); |
| 704 | while ((tsk = css_task_iter_next(&it))) { |
| 705 | switch (tsk->state) { |
| 706 | case TASK_RUNNING: |
| 707 | stats->nr_running++; |
| 708 | break; |
| 709 | case TASK_INTERRUPTIBLE: |
| 710 | stats->nr_sleeping++; |
| 711 | break; |
| 712 | case TASK_UNINTERRUPTIBLE: |
| 713 | stats->nr_uninterruptible++; |
| 714 | break; |
| 715 | case TASK_STOPPED: |
| 716 | stats->nr_stopped++; |
| 717 | break; |
| 718 | default: |
| 719 | if (delayacct_is_task_waiting_on_io(tsk)) |
| 720 | stats->nr_io_wait++; |
| 721 | break; |
| 722 | } |
| 723 | } |
| 724 | css_task_iter_end(&it); |
| 725 | |
| 726 | mutex_unlock(&cgroup_mutex); |
| 727 | return 0; |
| 728 | } |
| 729 | |
| 730 | void check_for_release(struct cgroup *cgrp) |
| 731 | { |
| 732 | if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && |
| 733 | !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) |
| 734 | schedule_work(&cgrp->release_agent_work); |
| 735 | } |
| 736 | |
| 737 | /* |
| 738 | * Notify userspace when a cgroup is released, by running the |
| 739 | * configured release agent with the name of the cgroup (path |
| 740 | * relative to the root of cgroup file system) as the argument. |
| 741 | * |
| 742 | * Most likely, this user command will try to rmdir this cgroup. |
| 743 | * |
| 744 | * This races with the possibility that some other task will be |
| 745 | * attached to this cgroup before it is removed, or that some other |
| 746 | * user task will 'mkdir' a child cgroup of this cgroup. That's ok. |
| 747 | * The presumed 'rmdir' will fail quietly if this cgroup is no longer |
| 748 | * unused, and this cgroup will be reprieved from its death sentence, |
| 749 | * to continue to serve a useful existence. Next time it's released, |
| 750 | * we will get notified again, if it still has 'notify_on_release' set. |
| 751 | * |
| 752 | * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which |
| 753 | * means only wait until the task is successfully execve()'d. The |
| 754 | * separate release agent task is forked by call_usermodehelper(), |
| 755 | * then control in this thread returns here, without waiting for the |
| 756 | * release agent task. We don't bother to wait because the caller of |
| 757 | * this routine has no use for the exit status of the release agent |
| 758 | * task, so no sense holding our caller up for that. |
| 759 | */ |
| 760 | void cgroup_release_agent(struct work_struct *work) |
| 761 | { |
| 762 | struct cgroup *cgrp = |
| 763 | container_of(work, struct cgroup, release_agent_work); |
| 764 | char *pathbuf = NULL, *agentbuf = NULL; |
| 765 | char *argv[3], *envp[3]; |
| 766 | int ret; |
| 767 | |
| 768 | mutex_lock(&cgroup_mutex); |
| 769 | |
| 770 | pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); |
| 771 | agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); |
| 772 | if (!pathbuf || !agentbuf) |
| 773 | goto out; |
| 774 | |
| 775 | spin_lock_irq(&css_set_lock); |
| 776 | ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); |
| 777 | spin_unlock_irq(&css_set_lock); |
| 778 | if (ret < 0 || ret >= PATH_MAX) |
| 779 | goto out; |
| 780 | |
| 781 | argv[0] = agentbuf; |
| 782 | argv[1] = pathbuf; |
| 783 | argv[2] = NULL; |
| 784 | |
| 785 | /* minimal command environment */ |
| 786 | envp[0] = "HOME=/"; |
| 787 | envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; |
| 788 | envp[2] = NULL; |
| 789 | |
| 790 | mutex_unlock(&cgroup_mutex); |
| 791 | call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); |
| 792 | goto out_free; |
| 793 | out: |
| 794 | mutex_unlock(&cgroup_mutex); |
| 795 | out_free: |
| 796 | kfree(agentbuf); |
| 797 | kfree(pathbuf); |
| 798 | } |
| 799 | |
| 800 | /* |
| 801 | * cgroup_rename - Only allow simple rename of directories in place. |
| 802 | */ |
| 803 | int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, |
| 804 | const char *new_name_str) |
| 805 | { |
| 806 | struct cgroup *cgrp = kn->priv; |
| 807 | int ret; |
| 808 | |
| 809 | if (kernfs_type(kn) != KERNFS_DIR) |
| 810 | return -ENOTDIR; |
| 811 | if (kn->parent != new_parent) |
| 812 | return -EIO; |
| 813 | |
| 814 | /* |
| 815 | * This isn't a proper migration and its usefulness is very |
| 816 | * limited. Disallow on the default hierarchy. |
| 817 | */ |
| 818 | if (cgroup_on_dfl(cgrp)) |
| 819 | return -EPERM; |
| 820 | |
| 821 | /* |
| 822 | * We're gonna grab cgroup_mutex which nests outside kernfs |
| 823 | * active_ref. kernfs_rename() doesn't require active_ref |
| 824 | * protection. Break them before grabbing cgroup_mutex. |
| 825 | */ |
| 826 | kernfs_break_active_protection(new_parent); |
| 827 | kernfs_break_active_protection(kn); |
| 828 | |
| 829 | mutex_lock(&cgroup_mutex); |
| 830 | |
| 831 | ret = kernfs_rename(kn, new_parent, new_name_str); |
| 832 | if (!ret) |
| 833 | trace_cgroup_rename(cgrp); |
| 834 | |
| 835 | mutex_unlock(&cgroup_mutex); |
| 836 | |
| 837 | kernfs_unbreak_active_protection(kn); |
| 838 | kernfs_unbreak_active_protection(new_parent); |
| 839 | return ret; |
| 840 | } |
| 841 | |
| 842 | static int __init cgroup1_wq_init(void) |
| 843 | { |
| 844 | /* |
| 845 | * Used to destroy pidlists and separate to serve as flush domain. |
| 846 | * Cap @max_active to 1 too. |
| 847 | */ |
| 848 | cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", |
| 849 | 0, 1); |
| 850 | BUG_ON(!cgroup_pidlist_destroy_wq); |
| 851 | return 0; |
| 852 | } |
| 853 | core_initcall(cgroup1_wq_init); |
| 854 | |
| 855 | static int __init cgroup_no_v1(char *str) |
| 856 | { |
| 857 | struct cgroup_subsys *ss; |
| 858 | char *token; |
| 859 | int i; |
| 860 | |
| 861 | while ((token = strsep(&str, ",")) != NULL) { |
| 862 | if (!*token) |
| 863 | continue; |
| 864 | |
| 865 | if (!strcmp(token, "all")) { |
| 866 | cgroup_no_v1_mask = U16_MAX; |
| 867 | break; |
| 868 | } |
| 869 | |
| 870 | for_each_subsys(ss, i) { |
| 871 | if (strcmp(token, ss->name) && |
| 872 | strcmp(token, ss->legacy_name)) |
| 873 | continue; |
| 874 | |
| 875 | cgroup_no_v1_mask |= 1 << i; |
| 876 | } |
| 877 | } |
| 878 | return 1; |
| 879 | } |
| 880 | __setup("cgroup_no_v1=", cgroup_no_v1); |
| 881 | |
| 882 | |
| 883 | #ifdef CONFIG_CGROUP_DEBUG |
| 884 | static struct cgroup_subsys_state * |
| 885 | debug_css_alloc(struct cgroup_subsys_state *parent_css) |
| 886 | { |
| 887 | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); |
| 888 | |
| 889 | if (!css) |
| 890 | return ERR_PTR(-ENOMEM); |
| 891 | |
| 892 | return css; |
| 893 | } |
| 894 | |
| 895 | static void debug_css_free(struct cgroup_subsys_state *css) |
| 896 | { |
| 897 | kfree(css); |
| 898 | } |
| 899 | |
| 900 | static u64 debug_taskcount_read(struct cgroup_subsys_state *css, |
| 901 | struct cftype *cft) |
| 902 | { |
| 903 | return cgroup_task_count(css->cgroup); |
| 904 | } |
| 905 | |
| 906 | static u64 current_css_set_read(struct cgroup_subsys_state *css, |
| 907 | struct cftype *cft) |
| 908 | { |
| 909 | return (u64)(unsigned long)current->cgroups; |
| 910 | } |
| 911 | |
| 912 | static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css, |
| 913 | struct cftype *cft) |
| 914 | { |
| 915 | u64 count; |
| 916 | |
| 917 | rcu_read_lock(); |
| 918 | count = atomic_read(&task_css_set(current)->refcount); |
| 919 | rcu_read_unlock(); |
| 920 | return count; |
| 921 | } |
| 922 | |
| 923 | static int current_css_set_cg_links_read(struct seq_file *seq, void *v) |
| 924 | { |
| 925 | struct cgrp_cset_link *link; |
| 926 | struct css_set *cset; |
| 927 | char *name_buf; |
| 928 | |
| 929 | name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL); |
| 930 | if (!name_buf) |
| 931 | return -ENOMEM; |
| 932 | |
| 933 | spin_lock_irq(&css_set_lock); |
| 934 | rcu_read_lock(); |
| 935 | cset = rcu_dereference(current->cgroups); |
| 936 | list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { |
| 937 | struct cgroup *c = link->cgrp; |
| 938 | |
| 939 | cgroup_name(c, name_buf, NAME_MAX + 1); |
| 940 | seq_printf(seq, "Root %d group %s\n", |
| 941 | c->root->hierarchy_id, name_buf); |
| 942 | } |
| 943 | rcu_read_unlock(); |
| 944 | spin_unlock_irq(&css_set_lock); |
| 945 | kfree(name_buf); |
| 946 | return 0; |
| 947 | } |
| 948 | |
| 949 | #define MAX_TASKS_SHOWN_PER_CSS 25 |
| 950 | static int cgroup_css_links_read(struct seq_file *seq, void *v) |
| 951 | { |
| 952 | struct cgroup_subsys_state *css = seq_css(seq); |
| 953 | struct cgrp_cset_link *link; |
| 954 | |
| 955 | spin_lock_irq(&css_set_lock); |
| 956 | list_for_each_entry(link, &css->cgroup->cset_links, cset_link) { |
| 957 | struct css_set *cset = link->cset; |
| 958 | struct task_struct *task; |
| 959 | int count = 0; |
| 960 | |
| 961 | seq_printf(seq, "css_set %p\n", cset); |
| 962 | |
| 963 | list_for_each_entry(task, &cset->tasks, cg_list) { |
| 964 | if (count++ > MAX_TASKS_SHOWN_PER_CSS) |
| 965 | goto overflow; |
| 966 | seq_printf(seq, " task %d\n", task_pid_vnr(task)); |
| 967 | } |
| 968 | |
| 969 | list_for_each_entry(task, &cset->mg_tasks, cg_list) { |
| 970 | if (count++ > MAX_TASKS_SHOWN_PER_CSS) |
| 971 | goto overflow; |
| 972 | seq_printf(seq, " task %d\n", task_pid_vnr(task)); |
| 973 | } |
| 974 | continue; |
| 975 | overflow: |
| 976 | seq_puts(seq, " ...\n"); |
| 977 | } |
| 978 | spin_unlock_irq(&css_set_lock); |
| 979 | return 0; |
| 980 | } |
| 981 | |
| 982 | static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft) |
| 983 | { |
| 984 | return (!cgroup_is_populated(css->cgroup) && |
| 985 | !css_has_online_children(&css->cgroup->self)); |
| 986 | } |
| 987 | |
| 988 | static struct cftype debug_files[] = { |
| 989 | { |
| 990 | .name = "taskcount", |
| 991 | .read_u64 = debug_taskcount_read, |
| 992 | }, |
| 993 | |
| 994 | { |
| 995 | .name = "current_css_set", |
| 996 | .read_u64 = current_css_set_read, |
| 997 | }, |
| 998 | |
| 999 | { |
| 1000 | .name = "current_css_set_refcount", |
| 1001 | .read_u64 = current_css_set_refcount_read, |
| 1002 | }, |
| 1003 | |
| 1004 | { |
| 1005 | .name = "current_css_set_cg_links", |
| 1006 | .seq_show = current_css_set_cg_links_read, |
| 1007 | }, |
| 1008 | |
| 1009 | { |
| 1010 | .name = "cgroup_css_links", |
| 1011 | .seq_show = cgroup_css_links_read, |
| 1012 | }, |
| 1013 | |
| 1014 | { |
| 1015 | .name = "releasable", |
| 1016 | .read_u64 = releasable_read, |
| 1017 | }, |
| 1018 | |
| 1019 | { } /* terminate */ |
| 1020 | }; |
| 1021 | |
| 1022 | struct cgroup_subsys debug_cgrp_subsys = { |
| 1023 | .css_alloc = debug_css_alloc, |
| 1024 | .css_free = debug_css_free, |
| 1025 | .legacy_cftypes = debug_files, |
| 1026 | }; |
| 1027 | #endif /* CONFIG_CGROUP_DEBUG */ |