blob: 7af745a46f917b214e924f08f958e140d45297a2 [file] [log] [blame]
Tejun Heo0a268db2016-12-27 14:49:06 -05001#include "cgroup-internal.h"
2
3#include <linux/kmod.h>
4#include <linux/sort.h>
5#include <linux/mm.h>
6#include <linux/slab.h>
7#include <linux/vmalloc.h>
8#include <linux/delayacct.h>
9#include <linux/pid_namespace.h>
10#include <linux/cgroupstats.h>
11
12#include <trace/events/cgroup.h>
13
14/*
15 * pidlists linger the following amount before being destroyed. The goal
16 * is avoiding frequent destruction in the middle of consecutive read calls
17 * Expiring in the middle is a performance problem not a correctness one.
18 * 1 sec should be enough.
19 */
20#define CGROUP_PIDLIST_DESTROY_DELAY HZ
21
22/* Controllers blocked by the commandline in v1 */
23static u16 cgroup_no_v1_mask;
24
25/*
26 * pidlist destructions need to be flushed on cgroup destruction. Use a
27 * separate workqueue as flush domain.
28 */
29static struct workqueue_struct *cgroup_pidlist_destroy_wq;
30
31/*
32 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
33 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
34 */
35DEFINE_SPINLOCK(release_agent_path_lock);
36
37bool cgroup_ssid_no_v1(int ssid)
38{
39 return cgroup_no_v1_mask & (1 << ssid);
40}
41
42/**
43 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
44 * @from: attach to all cgroups of a given task
45 * @tsk: the task to be attached
46 */
47int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
48{
49 struct cgroup_root *root;
50 int retval = 0;
51
52 mutex_lock(&cgroup_mutex);
53 percpu_down_write(&cgroup_threadgroup_rwsem);
54 for_each_root(root) {
55 struct cgroup *from_cgrp;
56
57 if (root == &cgrp_dfl_root)
58 continue;
59
60 spin_lock_irq(&css_set_lock);
61 from_cgrp = task_cgroup_from_root(from, root);
62 spin_unlock_irq(&css_set_lock);
63
64 retval = cgroup_attach_task(from_cgrp, tsk, false);
65 if (retval)
66 break;
67 }
68 percpu_up_write(&cgroup_threadgroup_rwsem);
69 mutex_unlock(&cgroup_mutex);
70
71 return retval;
72}
73EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
74
75/**
76 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
77 * @to: cgroup to which the tasks will be moved
78 * @from: cgroup in which the tasks currently reside
79 *
80 * Locking rules between cgroup_post_fork() and the migration path
81 * guarantee that, if a task is forking while being migrated, the new child
82 * is guaranteed to be either visible in the source cgroup after the
83 * parent's migration is complete or put into the target cgroup. No task
84 * can slip out of migration through forking.
85 */
86int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
87{
88 LIST_HEAD(preloaded_csets);
89 struct cgrp_cset_link *link;
90 struct css_task_iter it;
91 struct task_struct *task;
92 int ret;
93
94 if (cgroup_on_dfl(to))
95 return -EINVAL;
96
97 if (!cgroup_may_migrate_to(to))
98 return -EBUSY;
99
100 mutex_lock(&cgroup_mutex);
101
102 percpu_down_write(&cgroup_threadgroup_rwsem);
103
104 /* all tasks in @from are being moved, all csets are source */
105 spin_lock_irq(&css_set_lock);
106 list_for_each_entry(link, &from->cset_links, cset_link)
107 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
108 spin_unlock_irq(&css_set_lock);
109
110 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
111 if (ret)
112 goto out_err;
113
114 /*
115 * Migrate tasks one-by-one until @from is empty. This fails iff
116 * ->can_attach() fails.
117 */
118 do {
119 css_task_iter_start(&from->self, &it);
120 task = css_task_iter_next(&it);
121 if (task)
122 get_task_struct(task);
123 css_task_iter_end(&it);
124
125 if (task) {
126 ret = cgroup_migrate(task, false, to->root);
127 if (!ret)
128 trace_cgroup_transfer_tasks(to, task, false);
129 put_task_struct(task);
130 }
131 } while (task && !ret);
132out_err:
133 cgroup_migrate_finish(&preloaded_csets);
134 percpu_up_write(&cgroup_threadgroup_rwsem);
135 mutex_unlock(&cgroup_mutex);
136 return ret;
137}
138
139/*
140 * Stuff for reading the 'tasks'/'procs' files.
141 *
142 * Reading this file can return large amounts of data if a cgroup has
143 * *lots* of attached tasks. So it may need several calls to read(),
144 * but we cannot guarantee that the information we produce is correct
145 * unless we produce it entirely atomically.
146 *
147 */
148
149/* which pidlist file are we talking about? */
150enum cgroup_filetype {
151 CGROUP_FILE_PROCS,
152 CGROUP_FILE_TASKS,
153};
154
155/*
156 * A pidlist is a list of pids that virtually represents the contents of one
157 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
158 * a pair (one each for procs, tasks) for each pid namespace that's relevant
159 * to the cgroup.
160 */
161struct cgroup_pidlist {
162 /*
163 * used to find which pidlist is wanted. doesn't change as long as
164 * this particular list stays in the list.
165 */
166 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
167 /* array of xids */
168 pid_t *list;
169 /* how many elements the above list has */
170 int length;
171 /* each of these stored in a list by its cgroup */
172 struct list_head links;
173 /* pointer to the cgroup we belong to, for list removal purposes */
174 struct cgroup *owner;
175 /* for delayed destruction */
176 struct delayed_work destroy_dwork;
177};
178
179/*
180 * The following two functions "fix" the issue where there are more pids
181 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
182 * TODO: replace with a kernel-wide solution to this problem
183 */
184#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
185static void *pidlist_allocate(int count)
186{
187 if (PIDLIST_TOO_LARGE(count))
188 return vmalloc(count * sizeof(pid_t));
189 else
190 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
191}
192
193static void pidlist_free(void *p)
194{
195 kvfree(p);
196}
197
198/*
199 * Used to destroy all pidlists lingering waiting for destroy timer. None
200 * should be left afterwards.
201 */
202void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
203{
204 struct cgroup_pidlist *l, *tmp_l;
205
206 mutex_lock(&cgrp->pidlist_mutex);
207 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
208 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
209 mutex_unlock(&cgrp->pidlist_mutex);
210
211 flush_workqueue(cgroup_pidlist_destroy_wq);
212 BUG_ON(!list_empty(&cgrp->pidlists));
213}
214
215static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
216{
217 struct delayed_work *dwork = to_delayed_work(work);
218 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
219 destroy_dwork);
220 struct cgroup_pidlist *tofree = NULL;
221
222 mutex_lock(&l->owner->pidlist_mutex);
223
224 /*
225 * Destroy iff we didn't get queued again. The state won't change
226 * as destroy_dwork can only be queued while locked.
227 */
228 if (!delayed_work_pending(dwork)) {
229 list_del(&l->links);
230 pidlist_free(l->list);
231 put_pid_ns(l->key.ns);
232 tofree = l;
233 }
234
235 mutex_unlock(&l->owner->pidlist_mutex);
236 kfree(tofree);
237}
238
239/*
240 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
241 * Returns the number of unique elements.
242 */
243static int pidlist_uniq(pid_t *list, int length)
244{
245 int src, dest = 1;
246
247 /*
248 * we presume the 0th element is unique, so i starts at 1. trivial
249 * edge cases first; no work needs to be done for either
250 */
251 if (length == 0 || length == 1)
252 return length;
253 /* src and dest walk down the list; dest counts unique elements */
254 for (src = 1; src < length; src++) {
255 /* find next unique element */
256 while (list[src] == list[src-1]) {
257 src++;
258 if (src == length)
259 goto after;
260 }
261 /* dest always points to where the next unique element goes */
262 list[dest] = list[src];
263 dest++;
264 }
265after:
266 return dest;
267}
268
269/*
270 * The two pid files - task and cgroup.procs - guaranteed that the result
271 * is sorted, which forced this whole pidlist fiasco. As pid order is
272 * different per namespace, each namespace needs differently sorted list,
273 * making it impossible to use, for example, single rbtree of member tasks
274 * sorted by task pointer. As pidlists can be fairly large, allocating one
275 * per open file is dangerous, so cgroup had to implement shared pool of
276 * pidlists keyed by cgroup and namespace.
277 */
278static int cmppid(const void *a, const void *b)
279{
280 return *(pid_t *)a - *(pid_t *)b;
281}
282
283static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
284 enum cgroup_filetype type)
285{
286 struct cgroup_pidlist *l;
287 /* don't need task_nsproxy() if we're looking at ourself */
288 struct pid_namespace *ns = task_active_pid_ns(current);
289
290 lockdep_assert_held(&cgrp->pidlist_mutex);
291
292 list_for_each_entry(l, &cgrp->pidlists, links)
293 if (l->key.type == type && l->key.ns == ns)
294 return l;
295 return NULL;
296}
297
298/*
299 * find the appropriate pidlist for our purpose (given procs vs tasks)
300 * returns with the lock on that pidlist already held, and takes care
301 * of the use count, or returns NULL with no locks held if we're out of
302 * memory.
303 */
304static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
305 enum cgroup_filetype type)
306{
307 struct cgroup_pidlist *l;
308
309 lockdep_assert_held(&cgrp->pidlist_mutex);
310
311 l = cgroup_pidlist_find(cgrp, type);
312 if (l)
313 return l;
314
315 /* entry not found; create a new one */
316 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
317 if (!l)
318 return l;
319
320 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
321 l->key.type = type;
322 /* don't need task_nsproxy() if we're looking at ourself */
323 l->key.ns = get_pid_ns(task_active_pid_ns(current));
324 l->owner = cgrp;
325 list_add(&l->links, &cgrp->pidlists);
326 return l;
327}
328
329/**
330 * cgroup_task_count - count the number of tasks in a cgroup.
331 * @cgrp: the cgroup in question
332 *
333 * Return the number of tasks in the cgroup. The returned number can be
334 * higher than the actual number of tasks due to css_set references from
335 * namespace roots and temporary usages.
336 */
337static int cgroup_task_count(const struct cgroup *cgrp)
338{
339 int count = 0;
340 struct cgrp_cset_link *link;
341
342 spin_lock_irq(&css_set_lock);
343 list_for_each_entry(link, &cgrp->cset_links, cset_link)
344 count += atomic_read(&link->cset->refcount);
345 spin_unlock_irq(&css_set_lock);
346 return count;
347}
348
349/*
350 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
351 */
352static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
353 struct cgroup_pidlist **lp)
354{
355 pid_t *array;
356 int length;
357 int pid, n = 0; /* used for populating the array */
358 struct css_task_iter it;
359 struct task_struct *tsk;
360 struct cgroup_pidlist *l;
361
362 lockdep_assert_held(&cgrp->pidlist_mutex);
363
364 /*
365 * If cgroup gets more users after we read count, we won't have
366 * enough space - tough. This race is indistinguishable to the
367 * caller from the case that the additional cgroup users didn't
368 * show up until sometime later on.
369 */
370 length = cgroup_task_count(cgrp);
371 array = pidlist_allocate(length);
372 if (!array)
373 return -ENOMEM;
374 /* now, populate the array */
375 css_task_iter_start(&cgrp->self, &it);
376 while ((tsk = css_task_iter_next(&it))) {
377 if (unlikely(n == length))
378 break;
379 /* get tgid or pid for procs or tasks file respectively */
380 if (type == CGROUP_FILE_PROCS)
381 pid = task_tgid_vnr(tsk);
382 else
383 pid = task_pid_vnr(tsk);
384 if (pid > 0) /* make sure to only use valid results */
385 array[n++] = pid;
386 }
387 css_task_iter_end(&it);
388 length = n;
389 /* now sort & (if procs) strip out duplicates */
390 sort(array, length, sizeof(pid_t), cmppid, NULL);
391 if (type == CGROUP_FILE_PROCS)
392 length = pidlist_uniq(array, length);
393
394 l = cgroup_pidlist_find_create(cgrp, type);
395 if (!l) {
396 pidlist_free(array);
397 return -ENOMEM;
398 }
399
400 /* store array, freeing old if necessary */
401 pidlist_free(l->list);
402 l->list = array;
403 l->length = length;
404 *lp = l;
405 return 0;
406}
407
408/*
409 * seq_file methods for the tasks/procs files. The seq_file position is the
410 * next pid to display; the seq_file iterator is a pointer to the pid
411 * in the cgroup->l->list array.
412 */
413
414static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
415{
416 /*
417 * Initially we receive a position value that corresponds to
418 * one more than the last pid shown (or 0 on the first call or
419 * after a seek to the start). Use a binary-search to find the
420 * next pid to display, if any
421 */
422 struct kernfs_open_file *of = s->private;
423 struct cgroup *cgrp = seq_css(s)->cgroup;
424 struct cgroup_pidlist *l;
425 enum cgroup_filetype type = seq_cft(s)->private;
426 int index = 0, pid = *pos;
427 int *iter, ret;
428
429 mutex_lock(&cgrp->pidlist_mutex);
430
431 /*
432 * !NULL @of->priv indicates that this isn't the first start()
433 * after open. If the matching pidlist is around, we can use that.
434 * Look for it. Note that @of->priv can't be used directly. It
435 * could already have been destroyed.
436 */
437 if (of->priv)
438 of->priv = cgroup_pidlist_find(cgrp, type);
439
440 /*
441 * Either this is the first start() after open or the matching
442 * pidlist has been destroyed inbetween. Create a new one.
443 */
444 if (!of->priv) {
445 ret = pidlist_array_load(cgrp, type,
446 (struct cgroup_pidlist **)&of->priv);
447 if (ret)
448 return ERR_PTR(ret);
449 }
450 l = of->priv;
451
452 if (pid) {
453 int end = l->length;
454
455 while (index < end) {
456 int mid = (index + end) / 2;
457 if (l->list[mid] == pid) {
458 index = mid;
459 break;
460 } else if (l->list[mid] <= pid)
461 index = mid + 1;
462 else
463 end = mid;
464 }
465 }
466 /* If we're off the end of the array, we're done */
467 if (index >= l->length)
468 return NULL;
469 /* Update the abstract position to be the actual pid that we found */
470 iter = l->list + index;
471 *pos = *iter;
472 return iter;
473}
474
475static void cgroup_pidlist_stop(struct seq_file *s, void *v)
476{
477 struct kernfs_open_file *of = s->private;
478 struct cgroup_pidlist *l = of->priv;
479
480 if (l)
481 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
482 CGROUP_PIDLIST_DESTROY_DELAY);
483 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
484}
485
486static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
487{
488 struct kernfs_open_file *of = s->private;
489 struct cgroup_pidlist *l = of->priv;
490 pid_t *p = v;
491 pid_t *end = l->list + l->length;
492 /*
493 * Advance to the next pid in the array. If this goes off the
494 * end, we're done
495 */
496 p++;
497 if (p >= end) {
498 return NULL;
499 } else {
500 *pos = *p;
501 return p;
502 }
503}
504
505static int cgroup_pidlist_show(struct seq_file *s, void *v)
506{
507 seq_printf(s, "%d\n", *(int *)v);
508
509 return 0;
510}
511
512static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
513 char *buf, size_t nbytes, loff_t off)
514{
515 return __cgroup_procs_write(of, buf, nbytes, off, false);
516}
517
518static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
519 char *buf, size_t nbytes, loff_t off)
520{
521 struct cgroup *cgrp;
522
523 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
524
525 cgrp = cgroup_kn_lock_live(of->kn, false);
526 if (!cgrp)
527 return -ENODEV;
528 spin_lock(&release_agent_path_lock);
529 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
530 sizeof(cgrp->root->release_agent_path));
531 spin_unlock(&release_agent_path_lock);
532 cgroup_kn_unlock(of->kn);
533 return nbytes;
534}
535
536static int cgroup_release_agent_show(struct seq_file *seq, void *v)
537{
538 struct cgroup *cgrp = seq_css(seq)->cgroup;
539
540 spin_lock(&release_agent_path_lock);
541 seq_puts(seq, cgrp->root->release_agent_path);
542 spin_unlock(&release_agent_path_lock);
543 seq_putc(seq, '\n');
544 return 0;
545}
546
547static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
548{
549 seq_puts(seq, "0\n");
550 return 0;
551}
552
553static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
554 struct cftype *cft)
555{
556 return notify_on_release(css->cgroup);
557}
558
559static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
560 struct cftype *cft, u64 val)
561{
562 if (val)
563 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
564 else
565 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
566 return 0;
567}
568
569static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
570 struct cftype *cft)
571{
572 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
573}
574
575static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
576 struct cftype *cft, u64 val)
577{
578 if (val)
579 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
580 else
581 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
582 return 0;
583}
584
585/* cgroup core interface files for the legacy hierarchies */
586struct cftype cgroup_legacy_base_files[] = {
587 {
588 .name = "cgroup.procs",
589 .seq_start = cgroup_pidlist_start,
590 .seq_next = cgroup_pidlist_next,
591 .seq_stop = cgroup_pidlist_stop,
592 .seq_show = cgroup_pidlist_show,
593 .private = CGROUP_FILE_PROCS,
594 .write = cgroup_procs_write,
595 },
596 {
597 .name = "cgroup.clone_children",
598 .read_u64 = cgroup_clone_children_read,
599 .write_u64 = cgroup_clone_children_write,
600 },
601 {
602 .name = "cgroup.sane_behavior",
603 .flags = CFTYPE_ONLY_ON_ROOT,
604 .seq_show = cgroup_sane_behavior_show,
605 },
606 {
607 .name = "tasks",
608 .seq_start = cgroup_pidlist_start,
609 .seq_next = cgroup_pidlist_next,
610 .seq_stop = cgroup_pidlist_stop,
611 .seq_show = cgroup_pidlist_show,
612 .private = CGROUP_FILE_TASKS,
613 .write = cgroup_tasks_write,
614 },
615 {
616 .name = "notify_on_release",
617 .read_u64 = cgroup_read_notify_on_release,
618 .write_u64 = cgroup_write_notify_on_release,
619 },
620 {
621 .name = "release_agent",
622 .flags = CFTYPE_ONLY_ON_ROOT,
623 .seq_show = cgroup_release_agent_show,
624 .write = cgroup_release_agent_write,
625 .max_write_len = PATH_MAX - 1,
626 },
627 { } /* terminate */
628};
629
630/* Display information about each subsystem and each hierarchy */
631static int proc_cgroupstats_show(struct seq_file *m, void *v)
632{
633 struct cgroup_subsys *ss;
634 int i;
635
636 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
637 /*
638 * ideally we don't want subsystems moving around while we do this.
639 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
640 * subsys/hierarchy state.
641 */
642 mutex_lock(&cgroup_mutex);
643
644 for_each_subsys(ss, i)
645 seq_printf(m, "%s\t%d\t%d\t%d\n",
646 ss->legacy_name, ss->root->hierarchy_id,
647 atomic_read(&ss->root->nr_cgrps),
648 cgroup_ssid_enabled(i));
649
650 mutex_unlock(&cgroup_mutex);
651 return 0;
652}
653
654static int cgroupstats_open(struct inode *inode, struct file *file)
655{
656 return single_open(file, proc_cgroupstats_show, NULL);
657}
658
659const struct file_operations proc_cgroupstats_operations = {
660 .open = cgroupstats_open,
661 .read = seq_read,
662 .llseek = seq_lseek,
663 .release = single_release,
664};
665
666/**
667 * cgroupstats_build - build and fill cgroupstats
668 * @stats: cgroupstats to fill information into
669 * @dentry: A dentry entry belonging to the cgroup for which stats have
670 * been requested.
671 *
672 * Build and fill cgroupstats so that taskstats can export it to user
673 * space.
674 */
675int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
676{
677 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
678 struct cgroup *cgrp;
679 struct css_task_iter it;
680 struct task_struct *tsk;
681
682 /* it should be kernfs_node belonging to cgroupfs and is a directory */
683 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
684 kernfs_type(kn) != KERNFS_DIR)
685 return -EINVAL;
686
687 mutex_lock(&cgroup_mutex);
688
689 /*
690 * We aren't being called from kernfs and there's no guarantee on
691 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
692 * @kn->priv is RCU safe. Let's do the RCU dancing.
693 */
694 rcu_read_lock();
695 cgrp = rcu_dereference(kn->priv);
696 if (!cgrp || cgroup_is_dead(cgrp)) {
697 rcu_read_unlock();
698 mutex_unlock(&cgroup_mutex);
699 return -ENOENT;
700 }
701 rcu_read_unlock();
702
703 css_task_iter_start(&cgrp->self, &it);
704 while ((tsk = css_task_iter_next(&it))) {
705 switch (tsk->state) {
706 case TASK_RUNNING:
707 stats->nr_running++;
708 break;
709 case TASK_INTERRUPTIBLE:
710 stats->nr_sleeping++;
711 break;
712 case TASK_UNINTERRUPTIBLE:
713 stats->nr_uninterruptible++;
714 break;
715 case TASK_STOPPED:
716 stats->nr_stopped++;
717 break;
718 default:
719 if (delayacct_is_task_waiting_on_io(tsk))
720 stats->nr_io_wait++;
721 break;
722 }
723 }
724 css_task_iter_end(&it);
725
726 mutex_unlock(&cgroup_mutex);
727 return 0;
728}
729
730void check_for_release(struct cgroup *cgrp)
731{
732 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
733 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
734 schedule_work(&cgrp->release_agent_work);
735}
736
737/*
738 * Notify userspace when a cgroup is released, by running the
739 * configured release agent with the name of the cgroup (path
740 * relative to the root of cgroup file system) as the argument.
741 *
742 * Most likely, this user command will try to rmdir this cgroup.
743 *
744 * This races with the possibility that some other task will be
745 * attached to this cgroup before it is removed, or that some other
746 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
747 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
748 * unused, and this cgroup will be reprieved from its death sentence,
749 * to continue to serve a useful existence. Next time it's released,
750 * we will get notified again, if it still has 'notify_on_release' set.
751 *
752 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
753 * means only wait until the task is successfully execve()'d. The
754 * separate release agent task is forked by call_usermodehelper(),
755 * then control in this thread returns here, without waiting for the
756 * release agent task. We don't bother to wait because the caller of
757 * this routine has no use for the exit status of the release agent
758 * task, so no sense holding our caller up for that.
759 */
760void cgroup_release_agent(struct work_struct *work)
761{
762 struct cgroup *cgrp =
763 container_of(work, struct cgroup, release_agent_work);
764 char *pathbuf = NULL, *agentbuf = NULL;
765 char *argv[3], *envp[3];
766 int ret;
767
768 mutex_lock(&cgroup_mutex);
769
770 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
771 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
772 if (!pathbuf || !agentbuf)
773 goto out;
774
775 spin_lock_irq(&css_set_lock);
776 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
777 spin_unlock_irq(&css_set_lock);
778 if (ret < 0 || ret >= PATH_MAX)
779 goto out;
780
781 argv[0] = agentbuf;
782 argv[1] = pathbuf;
783 argv[2] = NULL;
784
785 /* minimal command environment */
786 envp[0] = "HOME=/";
787 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
788 envp[2] = NULL;
789
790 mutex_unlock(&cgroup_mutex);
791 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
792 goto out_free;
793out:
794 mutex_unlock(&cgroup_mutex);
795out_free:
796 kfree(agentbuf);
797 kfree(pathbuf);
798}
799
800/*
801 * cgroup_rename - Only allow simple rename of directories in place.
802 */
803int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
804 const char *new_name_str)
805{
806 struct cgroup *cgrp = kn->priv;
807 int ret;
808
809 if (kernfs_type(kn) != KERNFS_DIR)
810 return -ENOTDIR;
811 if (kn->parent != new_parent)
812 return -EIO;
813
814 /*
815 * This isn't a proper migration and its usefulness is very
816 * limited. Disallow on the default hierarchy.
817 */
818 if (cgroup_on_dfl(cgrp))
819 return -EPERM;
820
821 /*
822 * We're gonna grab cgroup_mutex which nests outside kernfs
823 * active_ref. kernfs_rename() doesn't require active_ref
824 * protection. Break them before grabbing cgroup_mutex.
825 */
826 kernfs_break_active_protection(new_parent);
827 kernfs_break_active_protection(kn);
828
829 mutex_lock(&cgroup_mutex);
830
831 ret = kernfs_rename(kn, new_parent, new_name_str);
832 if (!ret)
833 trace_cgroup_rename(cgrp);
834
835 mutex_unlock(&cgroup_mutex);
836
837 kernfs_unbreak_active_protection(kn);
838 kernfs_unbreak_active_protection(new_parent);
839 return ret;
840}
841
842static int __init cgroup1_wq_init(void)
843{
844 /*
845 * Used to destroy pidlists and separate to serve as flush domain.
846 * Cap @max_active to 1 too.
847 */
848 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
849 0, 1);
850 BUG_ON(!cgroup_pidlist_destroy_wq);
851 return 0;
852}
853core_initcall(cgroup1_wq_init);
854
855static int __init cgroup_no_v1(char *str)
856{
857 struct cgroup_subsys *ss;
858 char *token;
859 int i;
860
861 while ((token = strsep(&str, ",")) != NULL) {
862 if (!*token)
863 continue;
864
865 if (!strcmp(token, "all")) {
866 cgroup_no_v1_mask = U16_MAX;
867 break;
868 }
869
870 for_each_subsys(ss, i) {
871 if (strcmp(token, ss->name) &&
872 strcmp(token, ss->legacy_name))
873 continue;
874
875 cgroup_no_v1_mask |= 1 << i;
876 }
877 }
878 return 1;
879}
880__setup("cgroup_no_v1=", cgroup_no_v1);
881
882
883#ifdef CONFIG_CGROUP_DEBUG
884static struct cgroup_subsys_state *
885debug_css_alloc(struct cgroup_subsys_state *parent_css)
886{
887 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
888
889 if (!css)
890 return ERR_PTR(-ENOMEM);
891
892 return css;
893}
894
895static void debug_css_free(struct cgroup_subsys_state *css)
896{
897 kfree(css);
898}
899
900static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
901 struct cftype *cft)
902{
903 return cgroup_task_count(css->cgroup);
904}
905
906static u64 current_css_set_read(struct cgroup_subsys_state *css,
907 struct cftype *cft)
908{
909 return (u64)(unsigned long)current->cgroups;
910}
911
912static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
913 struct cftype *cft)
914{
915 u64 count;
916
917 rcu_read_lock();
918 count = atomic_read(&task_css_set(current)->refcount);
919 rcu_read_unlock();
920 return count;
921}
922
923static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
924{
925 struct cgrp_cset_link *link;
926 struct css_set *cset;
927 char *name_buf;
928
929 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
930 if (!name_buf)
931 return -ENOMEM;
932
933 spin_lock_irq(&css_set_lock);
934 rcu_read_lock();
935 cset = rcu_dereference(current->cgroups);
936 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
937 struct cgroup *c = link->cgrp;
938
939 cgroup_name(c, name_buf, NAME_MAX + 1);
940 seq_printf(seq, "Root %d group %s\n",
941 c->root->hierarchy_id, name_buf);
942 }
943 rcu_read_unlock();
944 spin_unlock_irq(&css_set_lock);
945 kfree(name_buf);
946 return 0;
947}
948
949#define MAX_TASKS_SHOWN_PER_CSS 25
950static int cgroup_css_links_read(struct seq_file *seq, void *v)
951{
952 struct cgroup_subsys_state *css = seq_css(seq);
953 struct cgrp_cset_link *link;
954
955 spin_lock_irq(&css_set_lock);
956 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
957 struct css_set *cset = link->cset;
958 struct task_struct *task;
959 int count = 0;
960
961 seq_printf(seq, "css_set %p\n", cset);
962
963 list_for_each_entry(task, &cset->tasks, cg_list) {
964 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
965 goto overflow;
966 seq_printf(seq, " task %d\n", task_pid_vnr(task));
967 }
968
969 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
970 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
971 goto overflow;
972 seq_printf(seq, " task %d\n", task_pid_vnr(task));
973 }
974 continue;
975 overflow:
976 seq_puts(seq, " ...\n");
977 }
978 spin_unlock_irq(&css_set_lock);
979 return 0;
980}
981
982static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
983{
984 return (!cgroup_is_populated(css->cgroup) &&
985 !css_has_online_children(&css->cgroup->self));
986}
987
988static struct cftype debug_files[] = {
989 {
990 .name = "taskcount",
991 .read_u64 = debug_taskcount_read,
992 },
993
994 {
995 .name = "current_css_set",
996 .read_u64 = current_css_set_read,
997 },
998
999 {
1000 .name = "current_css_set_refcount",
1001 .read_u64 = current_css_set_refcount_read,
1002 },
1003
1004 {
1005 .name = "current_css_set_cg_links",
1006 .seq_show = current_css_set_cg_links_read,
1007 },
1008
1009 {
1010 .name = "cgroup_css_links",
1011 .seq_show = cgroup_css_links_read,
1012 },
1013
1014 {
1015 .name = "releasable",
1016 .read_u64 = releasable_read,
1017 },
1018
1019 { } /* terminate */
1020};
1021
1022struct cgroup_subsys debug_cgrp_subsys = {
1023 .css_alloc = debug_css_alloc,
1024 .css_free = debug_css_free,
1025 .legacy_cftypes = debug_files,
1026};
1027#endif /* CONFIG_CGROUP_DEBUG */