Naresh Kumar Inna | a3667aa | 2012-11-15 22:41:18 +0530 | [diff] [blame] | 1 | /* |
| 2 | * This file is part of the Chelsio FCoE driver for Linux. |
| 3 | * |
| 4 | * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved. |
| 5 | * |
| 6 | * This software is available to you under a choice of one of two |
| 7 | * licenses. You may choose to be licensed under the terms of the GNU |
| 8 | * General Public License (GPL) Version 2, available from the file |
| 9 | * COPYING in the main directory of this source tree, or the |
| 10 | * OpenIB.org BSD license below: |
| 11 | * |
| 12 | * Redistribution and use in source and binary forms, with or |
| 13 | * without modification, are permitted provided that the following |
| 14 | * conditions are met: |
| 15 | * |
| 16 | * - Redistributions of source code must retain the above |
| 17 | * copyright notice, this list of conditions and the following |
| 18 | * disclaimer. |
| 19 | * |
| 20 | * - Redistributions in binary form must reproduce the above |
| 21 | * copyright notice, this list of conditions and the following |
| 22 | * disclaimer in the documentation and/or other materials |
| 23 | * provided with the distribution. |
| 24 | * |
| 25 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 26 | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 27 | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 28 | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| 29 | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| 30 | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 31 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 32 | * SOFTWARE. |
| 33 | */ |
| 34 | |
| 35 | #include <linux/pci.h> |
| 36 | #include <linux/pci_regs.h> |
| 37 | #include <linux/firmware.h> |
| 38 | #include <linux/stddef.h> |
| 39 | #include <linux/delay.h> |
| 40 | #include <linux/string.h> |
| 41 | #include <linux/compiler.h> |
| 42 | #include <linux/jiffies.h> |
| 43 | #include <linux/kernel.h> |
| 44 | #include <linux/log2.h> |
| 45 | |
| 46 | #include "csio_hw.h" |
| 47 | #include "csio_lnode.h" |
| 48 | #include "csio_rnode.h" |
| 49 | |
| 50 | int csio_force_master; |
| 51 | int csio_dbg_level = 0xFEFF; |
| 52 | unsigned int csio_port_mask = 0xf; |
| 53 | |
| 54 | /* Default FW event queue entries. */ |
| 55 | static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE; |
| 56 | |
| 57 | /* Default MSI param level */ |
| 58 | int csio_msi = 2; |
| 59 | |
| 60 | /* FCoE function instances */ |
| 61 | static int dev_num; |
| 62 | |
| 63 | /* FCoE Adapter types & its description */ |
| 64 | static const struct csio_adap_desc csio_fcoe_adapters[] = { |
| 65 | {"T440-Dbg 10G", "Chelsio T440-Dbg 10G [FCoE]"}, |
| 66 | {"T420-CR 10G", "Chelsio T420-CR 10G [FCoE]"}, |
| 67 | {"T422-CR 10G/1G", "Chelsio T422-CR 10G/1G [FCoE]"}, |
| 68 | {"T440-CR 10G", "Chelsio T440-CR 10G [FCoE]"}, |
| 69 | {"T420-BCH 10G", "Chelsio T420-BCH 10G [FCoE]"}, |
| 70 | {"T440-BCH 10G", "Chelsio T440-BCH 10G [FCoE]"}, |
| 71 | {"T440-CH 10G", "Chelsio T440-CH 10G [FCoE]"}, |
| 72 | {"T420-SO 10G", "Chelsio T420-SO 10G [FCoE]"}, |
| 73 | {"T420-CX4 10G", "Chelsio T420-CX4 10G [FCoE]"}, |
| 74 | {"T420-BT 10G", "Chelsio T420-BT 10G [FCoE]"}, |
| 75 | {"T404-BT 1G", "Chelsio T404-BT 1G [FCoE]"}, |
| 76 | {"B420-SR 10G", "Chelsio B420-SR 10G [FCoE]"}, |
| 77 | {"B404-BT 1G", "Chelsio B404-BT 1G [FCoE]"}, |
| 78 | {"T480-CR 10G", "Chelsio T480-CR 10G [FCoE]"}, |
| 79 | {"T440-LP-CR 10G", "Chelsio T440-LP-CR 10G [FCoE]"}, |
| 80 | {"T4 FPGA", "Chelsio T4 FPGA [FCoE]"} |
| 81 | }; |
| 82 | |
| 83 | static void csio_mgmtm_cleanup(struct csio_mgmtm *); |
| 84 | static void csio_hw_mbm_cleanup(struct csio_hw *); |
| 85 | |
| 86 | /* State machine forward declarations */ |
| 87 | static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev); |
| 88 | static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev); |
| 89 | static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev); |
| 90 | static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev); |
| 91 | static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev); |
| 92 | static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev); |
| 93 | static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev); |
| 94 | static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev); |
| 95 | static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev); |
| 96 | |
| 97 | static void csio_hw_initialize(struct csio_hw *hw); |
| 98 | static void csio_evtq_stop(struct csio_hw *hw); |
| 99 | static void csio_evtq_start(struct csio_hw *hw); |
| 100 | |
| 101 | int csio_is_hw_ready(struct csio_hw *hw) |
| 102 | { |
| 103 | return csio_match_state(hw, csio_hws_ready); |
| 104 | } |
| 105 | |
| 106 | int csio_is_hw_removing(struct csio_hw *hw) |
| 107 | { |
| 108 | return csio_match_state(hw, csio_hws_removing); |
| 109 | } |
| 110 | |
| 111 | |
| 112 | /* |
| 113 | * csio_hw_wait_op_done_val - wait until an operation is completed |
| 114 | * @hw: the HW module |
| 115 | * @reg: the register to check for completion |
| 116 | * @mask: a single-bit field within @reg that indicates completion |
| 117 | * @polarity: the value of the field when the operation is completed |
| 118 | * @attempts: number of check iterations |
| 119 | * @delay: delay in usecs between iterations |
| 120 | * @valp: where to store the value of the register at completion time |
| 121 | * |
| 122 | * Wait until an operation is completed by checking a bit in a register |
| 123 | * up to @attempts times. If @valp is not NULL the value of the register |
| 124 | * at the time it indicated completion is stored there. Returns 0 if the |
| 125 | * operation completes and -EAGAIN otherwise. |
| 126 | */ |
| 127 | static int |
| 128 | csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask, |
| 129 | int polarity, int attempts, int delay, uint32_t *valp) |
| 130 | { |
| 131 | uint32_t val; |
| 132 | while (1) { |
| 133 | val = csio_rd_reg32(hw, reg); |
| 134 | |
| 135 | if (!!(val & mask) == polarity) { |
| 136 | if (valp) |
| 137 | *valp = val; |
| 138 | return 0; |
| 139 | } |
| 140 | |
| 141 | if (--attempts == 0) |
| 142 | return -EAGAIN; |
| 143 | if (delay) |
| 144 | udelay(delay); |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | void |
| 149 | csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask, |
| 150 | uint32_t value) |
| 151 | { |
| 152 | uint32_t val = csio_rd_reg32(hw, reg) & ~mask; |
| 153 | |
| 154 | csio_wr_reg32(hw, val | value, reg); |
| 155 | /* Flush */ |
| 156 | csio_rd_reg32(hw, reg); |
| 157 | |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | * csio_hw_mc_read - read from MC through backdoor accesses |
| 162 | * @hw: the hw module |
| 163 | * @addr: address of first byte requested |
| 164 | * @data: 64 bytes of data containing the requested address |
| 165 | * @ecc: where to store the corresponding 64-bit ECC word |
| 166 | * |
| 167 | * Read 64 bytes of data from MC starting at a 64-byte-aligned address |
| 168 | * that covers the requested address @addr. If @parity is not %NULL it |
| 169 | * is assigned the 64-bit ECC word for the read data. |
| 170 | */ |
| 171 | int |
Naresh Kumar Inna | 5036f0a | 2012-11-20 18:15:40 +0530 | [diff] [blame] | 172 | csio_hw_mc_read(struct csio_hw *hw, uint32_t addr, __be32 *data, |
Naresh Kumar Inna | a3667aa | 2012-11-15 22:41:18 +0530 | [diff] [blame] | 173 | uint64_t *ecc) |
| 174 | { |
| 175 | int i; |
| 176 | |
| 177 | if (csio_rd_reg32(hw, MC_BIST_CMD) & START_BIST) |
| 178 | return -EBUSY; |
| 179 | csio_wr_reg32(hw, addr & ~0x3fU, MC_BIST_CMD_ADDR); |
| 180 | csio_wr_reg32(hw, 64, MC_BIST_CMD_LEN); |
| 181 | csio_wr_reg32(hw, 0xc, MC_BIST_DATA_PATTERN); |
| 182 | csio_wr_reg32(hw, BIST_OPCODE(1) | START_BIST | BIST_CMD_GAP(1), |
| 183 | MC_BIST_CMD); |
| 184 | i = csio_hw_wait_op_done_val(hw, MC_BIST_CMD, START_BIST, |
| 185 | 0, 10, 1, NULL); |
| 186 | if (i) |
| 187 | return i; |
| 188 | |
| 189 | #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i) |
| 190 | |
| 191 | for (i = 15; i >= 0; i--) |
| 192 | *data++ = htonl(csio_rd_reg32(hw, MC_DATA(i))); |
| 193 | if (ecc) |
| 194 | *ecc = csio_rd_reg64(hw, MC_DATA(16)); |
| 195 | #undef MC_DATA |
| 196 | return 0; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | * csio_hw_edc_read - read from EDC through backdoor accesses |
| 201 | * @hw: the hw module |
| 202 | * @idx: which EDC to access |
| 203 | * @addr: address of first byte requested |
| 204 | * @data: 64 bytes of data containing the requested address |
| 205 | * @ecc: where to store the corresponding 64-bit ECC word |
| 206 | * |
| 207 | * Read 64 bytes of data from EDC starting at a 64-byte-aligned address |
| 208 | * that covers the requested address @addr. If @parity is not %NULL it |
| 209 | * is assigned the 64-bit ECC word for the read data. |
| 210 | */ |
| 211 | int |
Naresh Kumar Inna | 5036f0a | 2012-11-20 18:15:40 +0530 | [diff] [blame] | 212 | csio_hw_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data, |
Naresh Kumar Inna | a3667aa | 2012-11-15 22:41:18 +0530 | [diff] [blame] | 213 | uint64_t *ecc) |
| 214 | { |
| 215 | int i; |
| 216 | |
| 217 | idx *= EDC_STRIDE; |
| 218 | if (csio_rd_reg32(hw, EDC_BIST_CMD + idx) & START_BIST) |
| 219 | return -EBUSY; |
| 220 | csio_wr_reg32(hw, addr & ~0x3fU, EDC_BIST_CMD_ADDR + idx); |
| 221 | csio_wr_reg32(hw, 64, EDC_BIST_CMD_LEN + idx); |
| 222 | csio_wr_reg32(hw, 0xc, EDC_BIST_DATA_PATTERN + idx); |
| 223 | csio_wr_reg32(hw, BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST, |
| 224 | EDC_BIST_CMD + idx); |
| 225 | i = csio_hw_wait_op_done_val(hw, EDC_BIST_CMD + idx, START_BIST, |
| 226 | 0, 10, 1, NULL); |
| 227 | if (i) |
| 228 | return i; |
| 229 | |
| 230 | #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx) |
| 231 | |
| 232 | for (i = 15; i >= 0; i--) |
| 233 | *data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i))); |
| 234 | if (ecc) |
| 235 | *ecc = csio_rd_reg64(hw, EDC_DATA(16)); |
| 236 | #undef EDC_DATA |
| 237 | return 0; |
| 238 | } |
| 239 | |
| 240 | /* |
| 241 | * csio_mem_win_rw - read/write memory through PCIE memory window |
| 242 | * @hw: the adapter |
| 243 | * @addr: address of first byte requested |
| 244 | * @data: MEMWIN0_APERTURE bytes of data containing the requested address |
| 245 | * @dir: direction of transfer 1 => read, 0 => write |
| 246 | * |
| 247 | * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a |
| 248 | * MEMWIN0_APERTURE-byte-aligned address that covers the requested |
| 249 | * address @addr. |
| 250 | */ |
| 251 | static int |
Naresh Kumar Inna | 5036f0a | 2012-11-20 18:15:40 +0530 | [diff] [blame] | 252 | csio_mem_win_rw(struct csio_hw *hw, u32 addr, u32 *data, int dir) |
Naresh Kumar Inna | a3667aa | 2012-11-15 22:41:18 +0530 | [diff] [blame] | 253 | { |
| 254 | int i; |
| 255 | |
| 256 | /* |
| 257 | * Setup offset into PCIE memory window. Address must be a |
| 258 | * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to |
| 259 | * ensure that changes propagate before we attempt to use the new |
| 260 | * values.) |
| 261 | */ |
| 262 | csio_wr_reg32(hw, addr & ~(MEMWIN0_APERTURE - 1), |
| 263 | PCIE_MEM_ACCESS_OFFSET); |
| 264 | csio_rd_reg32(hw, PCIE_MEM_ACCESS_OFFSET); |
| 265 | |
| 266 | /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */ |
| 267 | for (i = 0; i < MEMWIN0_APERTURE; i = i + sizeof(__be32)) { |
| 268 | if (dir) |
| 269 | *data++ = csio_rd_reg32(hw, (MEMWIN0_BASE + i)); |
| 270 | else |
| 271 | csio_wr_reg32(hw, *data++, (MEMWIN0_BASE + i)); |
| 272 | } |
| 273 | |
| 274 | return 0; |
| 275 | } |
| 276 | |
| 277 | /* |
| 278 | * csio_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window |
| 279 | * @hw: the csio_hw |
| 280 | * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC |
| 281 | * @addr: address within indicated memory type |
| 282 | * @len: amount of memory to transfer |
| 283 | * @buf: host memory buffer |
| 284 | * @dir: direction of transfer 1 => read, 0 => write |
| 285 | * |
| 286 | * Reads/writes an [almost] arbitrary memory region in the firmware: the |
| 287 | * firmware memory address, length and host buffer must be aligned on |
| 288 | * 32-bit boudaries. The memory is transferred as a raw byte sequence |
| 289 | * from/to the firmware's memory. If this memory contains data |
| 290 | * structures which contain multi-byte integers, it's the callers |
| 291 | * responsibility to perform appropriate byte order conversions. |
| 292 | */ |
| 293 | static int |
| 294 | csio_memory_rw(struct csio_hw *hw, int mtype, u32 addr, u32 len, |
| 295 | uint32_t *buf, int dir) |
| 296 | { |
| 297 | uint32_t pos, start, end, offset, memoffset; |
| 298 | int ret; |
Naresh Kumar Inna | 5036f0a | 2012-11-20 18:15:40 +0530 | [diff] [blame] | 299 | uint32_t *data; |
Naresh Kumar Inna | a3667aa | 2012-11-15 22:41:18 +0530 | [diff] [blame] | 300 | |
| 301 | /* |
| 302 | * Argument sanity checks ... |
| 303 | */ |
| 304 | if ((addr & 0x3) || (len & 0x3)) |
| 305 | return -EINVAL; |
| 306 | |
| 307 | data = kzalloc(MEMWIN0_APERTURE, GFP_KERNEL); |
| 308 | if (!data) |
| 309 | return -ENOMEM; |
| 310 | |
| 311 | /* Offset into the region of memory which is being accessed |
| 312 | * MEM_EDC0 = 0 |
| 313 | * MEM_EDC1 = 1 |
| 314 | * MEM_MC = 2 |
| 315 | */ |
| 316 | memoffset = (mtype * (5 * 1024 * 1024)); |
| 317 | |
| 318 | /* Determine the PCIE_MEM_ACCESS_OFFSET */ |
| 319 | addr = addr + memoffset; |
| 320 | |
| 321 | /* |
| 322 | * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes |
| 323 | * at a time so we need to round down the start and round up the end. |
| 324 | * We'll start copying out of the first line at (addr - start) a word |
| 325 | * at a time. |
| 326 | */ |
| 327 | start = addr & ~(MEMWIN0_APERTURE-1); |
| 328 | end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1); |
| 329 | offset = (addr - start)/sizeof(__be32); |
| 330 | |
| 331 | for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) { |
| 332 | /* |
| 333 | * If we're writing, copy the data from the caller's memory |
| 334 | * buffer |
| 335 | */ |
| 336 | if (!dir) { |
| 337 | /* |
| 338 | * If we're doing a partial write, then we need to do |
| 339 | * a read-modify-write ... |
| 340 | */ |
| 341 | if (offset || len < MEMWIN0_APERTURE) { |
| 342 | ret = csio_mem_win_rw(hw, pos, data, 1); |
| 343 | if (ret) { |
| 344 | kfree(data); |
| 345 | return ret; |
| 346 | } |
| 347 | } |
| 348 | while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) && |
| 349 | len > 0) { |
| 350 | data[offset++] = *buf++; |
| 351 | len -= sizeof(__be32); |
| 352 | } |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * Transfer a block of memory and bail if there's an error. |
| 357 | */ |
| 358 | ret = csio_mem_win_rw(hw, pos, data, dir); |
| 359 | if (ret) { |
| 360 | kfree(data); |
| 361 | return ret; |
| 362 | } |
| 363 | |
| 364 | /* |
| 365 | * If we're reading, copy the data into the caller's memory |
| 366 | * buffer. |
| 367 | */ |
| 368 | if (dir) |
| 369 | while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) && |
| 370 | len > 0) { |
| 371 | *buf++ = data[offset++]; |
| 372 | len -= sizeof(__be32); |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | kfree(data); |
| 377 | |
| 378 | return 0; |
| 379 | } |
| 380 | |
| 381 | static int |
Naresh Kumar Inna | 5036f0a | 2012-11-20 18:15:40 +0530 | [diff] [blame] | 382 | csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf) |
Naresh Kumar Inna | a3667aa | 2012-11-15 22:41:18 +0530 | [diff] [blame] | 383 | { |
| 384 | return csio_memory_rw(hw, mtype, addr, len, buf, 0); |
| 385 | } |
| 386 | |
| 387 | /* |
| 388 | * EEPROM reads take a few tens of us while writes can take a bit over 5 ms. |
| 389 | */ |
| 390 | #define EEPROM_MAX_RD_POLL 40 |
| 391 | #define EEPROM_MAX_WR_POLL 6 |
| 392 | #define EEPROM_STAT_ADDR 0x7bfc |
| 393 | #define VPD_BASE 0x400 |
| 394 | #define VPD_BASE_OLD 0 |
| 395 | #define VPD_LEN 512 |
| 396 | #define VPD_INFO_FLD_HDR_SIZE 3 |
| 397 | |
| 398 | /* |
| 399 | * csio_hw_seeprom_read - read a serial EEPROM location |
| 400 | * @hw: hw to read |
| 401 | * @addr: EEPROM virtual address |
| 402 | * @data: where to store the read data |
| 403 | * |
| 404 | * Read a 32-bit word from a location in serial EEPROM using the card's PCI |
| 405 | * VPD capability. Note that this function must be called with a virtual |
| 406 | * address. |
| 407 | */ |
| 408 | static int |
| 409 | csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data) |
| 410 | { |
| 411 | uint16_t val = 0; |
| 412 | int attempts = EEPROM_MAX_RD_POLL; |
| 413 | uint32_t base = hw->params.pci.vpd_cap_addr; |
| 414 | |
| 415 | if (addr >= EEPROMVSIZE || (addr & 3)) |
| 416 | return -EINVAL; |
| 417 | |
| 418 | pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr); |
| 419 | |
| 420 | do { |
| 421 | udelay(10); |
| 422 | pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val); |
| 423 | } while (!(val & PCI_VPD_ADDR_F) && --attempts); |
| 424 | |
| 425 | if (!(val & PCI_VPD_ADDR_F)) { |
| 426 | csio_err(hw, "reading EEPROM address 0x%x failed\n", addr); |
| 427 | return -EINVAL; |
| 428 | } |
| 429 | |
| 430 | pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data); |
| 431 | *data = le32_to_cpu(*data); |
Naresh Kumar Inna | 5036f0a | 2012-11-20 18:15:40 +0530 | [diff] [blame] | 432 | |
Naresh Kumar Inna | a3667aa | 2012-11-15 22:41:18 +0530 | [diff] [blame] | 433 | return 0; |
| 434 | } |
| 435 | |
| 436 | /* |
| 437 | * Partial EEPROM Vital Product Data structure. Includes only the ID and |
| 438 | * VPD-R sections. |
| 439 | */ |
| 440 | struct t4_vpd_hdr { |
| 441 | u8 id_tag; |
| 442 | u8 id_len[2]; |
| 443 | u8 id_data[ID_LEN]; |
| 444 | u8 vpdr_tag; |
| 445 | u8 vpdr_len[2]; |
| 446 | }; |
| 447 | |
| 448 | /* |
| 449 | * csio_hw_get_vpd_keyword_val - Locates an information field keyword in |
| 450 | * the VPD |
| 451 | * @v: Pointer to buffered vpd data structure |
| 452 | * @kw: The keyword to search for |
| 453 | * |
| 454 | * Returns the value of the information field keyword or |
| 455 | * -EINVAL otherwise. |
| 456 | */ |
| 457 | static int |
| 458 | csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw) |
| 459 | { |
| 460 | int32_t i; |
| 461 | int32_t offset , len; |
| 462 | const uint8_t *buf = &v->id_tag; |
| 463 | const uint8_t *vpdr_len = &v->vpdr_tag; |
| 464 | offset = sizeof(struct t4_vpd_hdr); |
| 465 | len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8); |
| 466 | |
| 467 | if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) |
| 468 | return -EINVAL; |
| 469 | |
| 470 | for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) { |
| 471 | if (memcmp(buf + i , kw, 2) == 0) { |
| 472 | i += VPD_INFO_FLD_HDR_SIZE; |
| 473 | return i; |
| 474 | } |
| 475 | |
| 476 | i += VPD_INFO_FLD_HDR_SIZE + buf[i+2]; |
| 477 | } |
| 478 | |
| 479 | return -EINVAL; |
| 480 | } |
| 481 | |
| 482 | static int |
| 483 | csio_pci_capability(struct pci_dev *pdev, int cap, int *pos) |
| 484 | { |
| 485 | *pos = pci_find_capability(pdev, cap); |
| 486 | if (*pos) |
| 487 | return 0; |
| 488 | |
| 489 | return -1; |
| 490 | } |
| 491 | |
| 492 | /* |
| 493 | * csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM |
| 494 | * @hw: HW module |
| 495 | * @p: where to store the parameters |
| 496 | * |
| 497 | * Reads card parameters stored in VPD EEPROM. |
| 498 | */ |
| 499 | static int |
| 500 | csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p) |
| 501 | { |
| 502 | int i, ret, ec, sn, addr; |
| 503 | uint8_t *vpd, csum; |
| 504 | const struct t4_vpd_hdr *v; |
| 505 | /* To get around compilation warning from strstrip */ |
| 506 | char *s; |
| 507 | |
| 508 | if (csio_is_valid_vpd(hw)) |
| 509 | return 0; |
| 510 | |
| 511 | ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD, |
| 512 | &hw->params.pci.vpd_cap_addr); |
| 513 | if (ret) |
| 514 | return -EINVAL; |
| 515 | |
| 516 | vpd = kzalloc(VPD_LEN, GFP_ATOMIC); |
| 517 | if (vpd == NULL) |
| 518 | return -ENOMEM; |
| 519 | |
| 520 | /* |
| 521 | * Card information normally starts at VPD_BASE but early cards had |
| 522 | * it at 0. |
| 523 | */ |
| 524 | ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd)); |
| 525 | addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD; |
| 526 | |
| 527 | for (i = 0; i < VPD_LEN; i += 4) { |
| 528 | ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i)); |
| 529 | if (ret) { |
| 530 | kfree(vpd); |
| 531 | return ret; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | /* Reset the VPD flag! */ |
| 536 | hw->flags &= (~CSIO_HWF_VPD_VALID); |
| 537 | |
| 538 | v = (const struct t4_vpd_hdr *)vpd; |
| 539 | |
| 540 | #define FIND_VPD_KW(var, name) do { \ |
| 541 | var = csio_hw_get_vpd_keyword_val(v, name); \ |
| 542 | if (var < 0) { \ |
| 543 | csio_err(hw, "missing VPD keyword " name "\n"); \ |
| 544 | kfree(vpd); \ |
| 545 | return -EINVAL; \ |
| 546 | } \ |
| 547 | } while (0) |
| 548 | |
| 549 | FIND_VPD_KW(i, "RV"); |
| 550 | for (csum = 0; i >= 0; i--) |
| 551 | csum += vpd[i]; |
| 552 | |
| 553 | if (csum) { |
| 554 | csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum); |
| 555 | kfree(vpd); |
| 556 | return -EINVAL; |
| 557 | } |
| 558 | FIND_VPD_KW(ec, "EC"); |
| 559 | FIND_VPD_KW(sn, "SN"); |
| 560 | #undef FIND_VPD_KW |
| 561 | |
| 562 | memcpy(p->id, v->id_data, ID_LEN); |
| 563 | s = strstrip(p->id); |
| 564 | memcpy(p->ec, vpd + ec, EC_LEN); |
| 565 | s = strstrip(p->ec); |
| 566 | i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2]; |
| 567 | memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); |
| 568 | s = strstrip(p->sn); |
| 569 | |
| 570 | csio_valid_vpd_copied(hw); |
| 571 | |
| 572 | kfree(vpd); |
| 573 | return 0; |
| 574 | } |
| 575 | |
| 576 | /* |
| 577 | * csio_hw_sf1_read - read data from the serial flash |
| 578 | * @hw: the HW module |
| 579 | * @byte_cnt: number of bytes to read |
| 580 | * @cont: whether another operation will be chained |
| 581 | * @lock: whether to lock SF for PL access only |
| 582 | * @valp: where to store the read data |
| 583 | * |
| 584 | * Reads up to 4 bytes of data from the serial flash. The location of |
| 585 | * the read needs to be specified prior to calling this by issuing the |
| 586 | * appropriate commands to the serial flash. |
| 587 | */ |
| 588 | static int |
| 589 | csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont, |
| 590 | int32_t lock, uint32_t *valp) |
| 591 | { |
| 592 | int ret; |
| 593 | |
| 594 | if (!byte_cnt || byte_cnt > 4) |
| 595 | return -EINVAL; |
| 596 | if (csio_rd_reg32(hw, SF_OP) & SF_BUSY) |
| 597 | return -EBUSY; |
| 598 | |
| 599 | cont = cont ? SF_CONT : 0; |
| 600 | lock = lock ? SF_LOCK : 0; |
| 601 | |
| 602 | csio_wr_reg32(hw, lock | cont | BYTECNT(byte_cnt - 1), SF_OP); |
| 603 | ret = csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, |
| 604 | 10, NULL); |
| 605 | if (!ret) |
| 606 | *valp = csio_rd_reg32(hw, SF_DATA); |
| 607 | return ret; |
| 608 | } |
| 609 | |
| 610 | /* |
| 611 | * csio_hw_sf1_write - write data to the serial flash |
| 612 | * @hw: the HW module |
| 613 | * @byte_cnt: number of bytes to write |
| 614 | * @cont: whether another operation will be chained |
| 615 | * @lock: whether to lock SF for PL access only |
| 616 | * @val: value to write |
| 617 | * |
| 618 | * Writes up to 4 bytes of data to the serial flash. The location of |
| 619 | * the write needs to be specified prior to calling this by issuing the |
| 620 | * appropriate commands to the serial flash. |
| 621 | */ |
| 622 | static int |
| 623 | csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont, |
| 624 | int32_t lock, uint32_t val) |
| 625 | { |
| 626 | if (!byte_cnt || byte_cnt > 4) |
| 627 | return -EINVAL; |
| 628 | if (csio_rd_reg32(hw, SF_OP) & SF_BUSY) |
| 629 | return -EBUSY; |
| 630 | |
| 631 | cont = cont ? SF_CONT : 0; |
| 632 | lock = lock ? SF_LOCK : 0; |
| 633 | |
| 634 | csio_wr_reg32(hw, val, SF_DATA); |
| 635 | csio_wr_reg32(hw, cont | BYTECNT(byte_cnt - 1) | OP_WR | lock, SF_OP); |
| 636 | |
| 637 | return csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, |
| 638 | 10, NULL); |
| 639 | } |
| 640 | |
| 641 | /* |
| 642 | * csio_hw_flash_wait_op - wait for a flash operation to complete |
| 643 | * @hw: the HW module |
| 644 | * @attempts: max number of polls of the status register |
| 645 | * @delay: delay between polls in ms |
| 646 | * |
| 647 | * Wait for a flash operation to complete by polling the status register. |
| 648 | */ |
| 649 | static int |
| 650 | csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay) |
| 651 | { |
| 652 | int ret; |
| 653 | uint32_t status; |
| 654 | |
| 655 | while (1) { |
| 656 | ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS); |
| 657 | if (ret != 0) |
| 658 | return ret; |
| 659 | |
| 660 | ret = csio_hw_sf1_read(hw, 1, 0, 1, &status); |
| 661 | if (ret != 0) |
| 662 | return ret; |
| 663 | |
| 664 | if (!(status & 1)) |
| 665 | return 0; |
| 666 | if (--attempts == 0) |
| 667 | return -EAGAIN; |
| 668 | if (delay) |
| 669 | msleep(delay); |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | /* |
| 674 | * csio_hw_read_flash - read words from serial flash |
| 675 | * @hw: the HW module |
| 676 | * @addr: the start address for the read |
| 677 | * @nwords: how many 32-bit words to read |
| 678 | * @data: where to store the read data |
| 679 | * @byte_oriented: whether to store data as bytes or as words |
| 680 | * |
| 681 | * Read the specified number of 32-bit words from the serial flash. |
| 682 | * If @byte_oriented is set the read data is stored as a byte array |
| 683 | * (i.e., big-endian), otherwise as 32-bit words in the platform's |
| 684 | * natural endianess. |
| 685 | */ |
| 686 | static int |
| 687 | csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords, |
| 688 | uint32_t *data, int32_t byte_oriented) |
| 689 | { |
| 690 | int ret; |
| 691 | |
| 692 | if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3)) |
| 693 | return -EINVAL; |
| 694 | |
| 695 | addr = swab32(addr) | SF_RD_DATA_FAST; |
| 696 | |
| 697 | ret = csio_hw_sf1_write(hw, 4, 1, 0, addr); |
| 698 | if (ret != 0) |
| 699 | return ret; |
| 700 | |
| 701 | ret = csio_hw_sf1_read(hw, 1, 1, 0, data); |
| 702 | if (ret != 0) |
| 703 | return ret; |
| 704 | |
| 705 | for ( ; nwords; nwords--, data++) { |
| 706 | ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data); |
| 707 | if (nwords == 1) |
| 708 | csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */ |
| 709 | if (ret) |
| 710 | return ret; |
| 711 | if (byte_oriented) |
| 712 | *data = htonl(*data); |
| 713 | } |
| 714 | return 0; |
| 715 | } |
| 716 | |
| 717 | /* |
| 718 | * csio_hw_write_flash - write up to a page of data to the serial flash |
| 719 | * @hw: the hw |
| 720 | * @addr: the start address to write |
| 721 | * @n: length of data to write in bytes |
| 722 | * @data: the data to write |
| 723 | * |
| 724 | * Writes up to a page of data (256 bytes) to the serial flash starting |
| 725 | * at the given address. All the data must be written to the same page. |
| 726 | */ |
| 727 | static int |
| 728 | csio_hw_write_flash(struct csio_hw *hw, uint32_t addr, |
| 729 | uint32_t n, const uint8_t *data) |
| 730 | { |
| 731 | int ret = -EINVAL; |
| 732 | uint32_t buf[64]; |
| 733 | uint32_t i, c, left, val, offset = addr & 0xff; |
| 734 | |
| 735 | if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE) |
| 736 | return -EINVAL; |
| 737 | |
| 738 | val = swab32(addr) | SF_PROG_PAGE; |
| 739 | |
| 740 | ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE); |
| 741 | if (ret != 0) |
| 742 | goto unlock; |
| 743 | |
| 744 | ret = csio_hw_sf1_write(hw, 4, 1, 1, val); |
| 745 | if (ret != 0) |
| 746 | goto unlock; |
| 747 | |
| 748 | for (left = n; left; left -= c) { |
| 749 | c = min(left, 4U); |
| 750 | for (val = 0, i = 0; i < c; ++i) |
| 751 | val = (val << 8) + *data++; |
| 752 | |
| 753 | ret = csio_hw_sf1_write(hw, c, c != left, 1, val); |
| 754 | if (ret) |
| 755 | goto unlock; |
| 756 | } |
| 757 | ret = csio_hw_flash_wait_op(hw, 8, 1); |
| 758 | if (ret) |
| 759 | goto unlock; |
| 760 | |
| 761 | csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */ |
| 762 | |
| 763 | /* Read the page to verify the write succeeded */ |
| 764 | ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); |
| 765 | if (ret) |
| 766 | return ret; |
| 767 | |
| 768 | if (memcmp(data - n, (uint8_t *)buf + offset, n)) { |
| 769 | csio_err(hw, |
| 770 | "failed to correctly write the flash page at %#x\n", |
| 771 | addr); |
| 772 | return -EINVAL; |
| 773 | } |
| 774 | |
| 775 | return 0; |
| 776 | |
| 777 | unlock: |
| 778 | csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */ |
| 779 | return ret; |
| 780 | } |
| 781 | |
| 782 | /* |
| 783 | * csio_hw_flash_erase_sectors - erase a range of flash sectors |
| 784 | * @hw: the HW module |
| 785 | * @start: the first sector to erase |
| 786 | * @end: the last sector to erase |
| 787 | * |
| 788 | * Erases the sectors in the given inclusive range. |
| 789 | */ |
| 790 | static int |
| 791 | csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end) |
| 792 | { |
| 793 | int ret = 0; |
| 794 | |
| 795 | while (start <= end) { |
| 796 | |
| 797 | ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE); |
| 798 | if (ret != 0) |
| 799 | goto out; |
| 800 | |
| 801 | ret = csio_hw_sf1_write(hw, 4, 0, 1, |
| 802 | SF_ERASE_SECTOR | (start << 8)); |
| 803 | if (ret != 0) |
| 804 | goto out; |
| 805 | |
| 806 | ret = csio_hw_flash_wait_op(hw, 14, 500); |
| 807 | if (ret != 0) |
| 808 | goto out; |
| 809 | |
| 810 | start++; |
| 811 | } |
| 812 | out: |
| 813 | if (ret) |
| 814 | csio_err(hw, "erase of flash sector %d failed, error %d\n", |
| 815 | start, ret); |
| 816 | csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */ |
| 817 | return 0; |
| 818 | } |
| 819 | |
| 820 | /* |
| 821 | * csio_hw_flash_cfg_addr - return the address of the flash |
| 822 | * configuration file |
| 823 | * @hw: the HW module |
| 824 | * |
| 825 | * Return the address within the flash where the Firmware Configuration |
| 826 | * File is stored. |
| 827 | */ |
| 828 | static unsigned int |
| 829 | csio_hw_flash_cfg_addr(struct csio_hw *hw) |
| 830 | { |
| 831 | if (hw->params.sf_size == 0x100000) |
| 832 | return FPGA_FLASH_CFG_OFFSET; |
| 833 | else |
| 834 | return FLASH_CFG_OFFSET; |
| 835 | } |
| 836 | |
| 837 | static void |
| 838 | csio_hw_print_fw_version(struct csio_hw *hw, char *str) |
| 839 | { |
| 840 | csio_info(hw, "%s: %u.%u.%u.%u\n", str, |
| 841 | FW_HDR_FW_VER_MAJOR_GET(hw->fwrev), |
| 842 | FW_HDR_FW_VER_MINOR_GET(hw->fwrev), |
| 843 | FW_HDR_FW_VER_MICRO_GET(hw->fwrev), |
| 844 | FW_HDR_FW_VER_BUILD_GET(hw->fwrev)); |
| 845 | } |
| 846 | |
| 847 | /* |
| 848 | * csio_hw_get_fw_version - read the firmware version |
| 849 | * @hw: HW module |
| 850 | * @vers: where to place the version |
| 851 | * |
| 852 | * Reads the FW version from flash. |
| 853 | */ |
| 854 | static int |
| 855 | csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers) |
| 856 | { |
| 857 | return csio_hw_read_flash(hw, FW_IMG_START + |
| 858 | offsetof(struct fw_hdr, fw_ver), 1, |
| 859 | vers, 0); |
| 860 | } |
| 861 | |
| 862 | /* |
| 863 | * csio_hw_get_tp_version - read the TP microcode version |
| 864 | * @hw: HW module |
| 865 | * @vers: where to place the version |
| 866 | * |
| 867 | * Reads the TP microcode version from flash. |
| 868 | */ |
| 869 | static int |
| 870 | csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers) |
| 871 | { |
| 872 | return csio_hw_read_flash(hw, FLASH_FW_START + |
| 873 | offsetof(struct fw_hdr, tp_microcode_ver), 1, |
| 874 | vers, 0); |
| 875 | } |
| 876 | |
| 877 | /* |
| 878 | * csio_hw_check_fw_version - check if the FW is compatible with |
| 879 | * this driver |
| 880 | * @hw: HW module |
| 881 | * |
| 882 | * Checks if an adapter's FW is compatible with the driver. Returns 0 |
| 883 | * if there's exact match, a negative error if the version could not be |
| 884 | * read or there's a major/minor version mismatch/minor. |
| 885 | */ |
| 886 | static int |
| 887 | csio_hw_check_fw_version(struct csio_hw *hw) |
| 888 | { |
| 889 | int ret, major, minor, micro; |
| 890 | |
| 891 | ret = csio_hw_get_fw_version(hw, &hw->fwrev); |
| 892 | if (!ret) |
| 893 | ret = csio_hw_get_tp_version(hw, &hw->tp_vers); |
| 894 | if (ret) |
| 895 | return ret; |
| 896 | |
| 897 | major = FW_HDR_FW_VER_MAJOR_GET(hw->fwrev); |
| 898 | minor = FW_HDR_FW_VER_MINOR_GET(hw->fwrev); |
| 899 | micro = FW_HDR_FW_VER_MICRO_GET(hw->fwrev); |
| 900 | |
| 901 | if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */ |
| 902 | csio_err(hw, "card FW has major version %u, driver wants %u\n", |
| 903 | major, FW_VERSION_MAJOR); |
| 904 | return -EINVAL; |
| 905 | } |
| 906 | |
| 907 | if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO) |
| 908 | return 0; /* perfect match */ |
| 909 | |
| 910 | /* Minor/micro version mismatch */ |
| 911 | return -EINVAL; |
| 912 | } |
| 913 | |
| 914 | /* |
| 915 | * csio_hw_fw_dload - download firmware. |
| 916 | * @hw: HW module |
| 917 | * @fw_data: firmware image to write. |
| 918 | * @size: image size |
| 919 | * |
| 920 | * Write the supplied firmware image to the card's serial flash. |
| 921 | */ |
| 922 | static int |
| 923 | csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size) |
| 924 | { |
| 925 | uint32_t csum; |
| 926 | int32_t addr; |
| 927 | int ret; |
| 928 | uint32_t i; |
| 929 | uint8_t first_page[SF_PAGE_SIZE]; |
Naresh Kumar Inna | 5036f0a | 2012-11-20 18:15:40 +0530 | [diff] [blame] | 930 | const __be32 *p = (const __be32 *)fw_data; |
Naresh Kumar Inna | a3667aa | 2012-11-15 22:41:18 +0530 | [diff] [blame] | 931 | struct fw_hdr *hdr = (struct fw_hdr *)fw_data; |
| 932 | uint32_t sf_sec_size; |
| 933 | |
| 934 | if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) { |
| 935 | csio_err(hw, "Serial Flash data invalid\n"); |
| 936 | return -EINVAL; |
| 937 | } |
| 938 | |
| 939 | if (!size) { |
| 940 | csio_err(hw, "FW image has no data\n"); |
| 941 | return -EINVAL; |
| 942 | } |
| 943 | |
| 944 | if (size & 511) { |
| 945 | csio_err(hw, "FW image size not multiple of 512 bytes\n"); |
| 946 | return -EINVAL; |
| 947 | } |
| 948 | |
| 949 | if (ntohs(hdr->len512) * 512 != size) { |
| 950 | csio_err(hw, "FW image size differs from size in FW header\n"); |
| 951 | return -EINVAL; |
| 952 | } |
| 953 | |
| 954 | if (size > FW_MAX_SIZE) { |
| 955 | csio_err(hw, "FW image too large, max is %u bytes\n", |
| 956 | FW_MAX_SIZE); |
| 957 | return -EINVAL; |
| 958 | } |
| 959 | |
| 960 | for (csum = 0, i = 0; i < size / sizeof(csum); i++) |
| 961 | csum += ntohl(p[i]); |
| 962 | |
| 963 | if (csum != 0xffffffff) { |
| 964 | csio_err(hw, "corrupted firmware image, checksum %#x\n", csum); |
| 965 | return -EINVAL; |
| 966 | } |
| 967 | |
| 968 | sf_sec_size = hw->params.sf_size / hw->params.sf_nsec; |
| 969 | i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ |
| 970 | |
| 971 | csio_dbg(hw, "Erasing sectors... start:%d end:%d\n", |
| 972 | FW_START_SEC, FW_START_SEC + i - 1); |
| 973 | |
| 974 | ret = csio_hw_flash_erase_sectors(hw, FW_START_SEC, |
| 975 | FW_START_SEC + i - 1); |
| 976 | if (ret) { |
| 977 | csio_err(hw, "Flash Erase failed\n"); |
| 978 | goto out; |
| 979 | } |
| 980 | |
| 981 | /* |
| 982 | * We write the correct version at the end so the driver can see a bad |
| 983 | * version if the FW write fails. Start by writing a copy of the |
| 984 | * first page with a bad version. |
| 985 | */ |
| 986 | memcpy(first_page, fw_data, SF_PAGE_SIZE); |
| 987 | ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff); |
| 988 | ret = csio_hw_write_flash(hw, FW_IMG_START, SF_PAGE_SIZE, first_page); |
| 989 | if (ret) |
| 990 | goto out; |
| 991 | |
| 992 | csio_dbg(hw, "Writing Flash .. start:%d end:%d\n", |
| 993 | FW_IMG_START, FW_IMG_START + size); |
| 994 | |
| 995 | addr = FW_IMG_START; |
| 996 | for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { |
| 997 | addr += SF_PAGE_SIZE; |
| 998 | fw_data += SF_PAGE_SIZE; |
| 999 | ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data); |
| 1000 | if (ret) |
| 1001 | goto out; |
| 1002 | } |
| 1003 | |
| 1004 | ret = csio_hw_write_flash(hw, |
| 1005 | FW_IMG_START + |
| 1006 | offsetof(struct fw_hdr, fw_ver), |
| 1007 | sizeof(hdr->fw_ver), |
| 1008 | (const uint8_t *)&hdr->fw_ver); |
| 1009 | |
| 1010 | out: |
| 1011 | if (ret) |
| 1012 | csio_err(hw, "firmware download failed, error %d\n", ret); |
| 1013 | return ret; |
| 1014 | } |
| 1015 | |
| 1016 | static int |
| 1017 | csio_hw_get_flash_params(struct csio_hw *hw) |
| 1018 | { |
| 1019 | int ret; |
| 1020 | uint32_t info = 0; |
| 1021 | |
| 1022 | ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID); |
| 1023 | if (!ret) |
| 1024 | ret = csio_hw_sf1_read(hw, 3, 0, 1, &info); |
| 1025 | csio_wr_reg32(hw, 0, SF_OP); /* unlock SF */ |
| 1026 | if (ret != 0) |
| 1027 | return ret; |
| 1028 | |
| 1029 | if ((info & 0xff) != 0x20) /* not a Numonix flash */ |
| 1030 | return -EINVAL; |
| 1031 | info >>= 16; /* log2 of size */ |
| 1032 | if (info >= 0x14 && info < 0x18) |
| 1033 | hw->params.sf_nsec = 1 << (info - 16); |
| 1034 | else if (info == 0x18) |
| 1035 | hw->params.sf_nsec = 64; |
| 1036 | else |
| 1037 | return -EINVAL; |
| 1038 | hw->params.sf_size = 1 << info; |
| 1039 | |
| 1040 | return 0; |
| 1041 | } |
| 1042 | |
| 1043 | static void |
| 1044 | csio_set_pcie_completion_timeout(struct csio_hw *hw, u8 range) |
| 1045 | { |
| 1046 | uint16_t val; |
| 1047 | uint32_t pcie_cap; |
| 1048 | |
| 1049 | if (!csio_pci_capability(hw->pdev, PCI_CAP_ID_EXP, &pcie_cap)) { |
| 1050 | pci_read_config_word(hw->pdev, |
| 1051 | pcie_cap + PCI_EXP_DEVCTL2, &val); |
| 1052 | val &= 0xfff0; |
| 1053 | val |= range ; |
| 1054 | pci_write_config_word(hw->pdev, |
| 1055 | pcie_cap + PCI_EXP_DEVCTL2, val); |
| 1056 | } |
| 1057 | } |
| 1058 | |
| 1059 | |
| 1060 | /* |
| 1061 | * Return the specified PCI-E Configuration Space register from our Physical |
| 1062 | * Function. We try first via a Firmware LDST Command since we prefer to let |
| 1063 | * the firmware own all of these registers, but if that fails we go for it |
| 1064 | * directly ourselves. |
| 1065 | */ |
| 1066 | static uint32_t |
| 1067 | csio_read_pcie_cfg4(struct csio_hw *hw, int reg) |
| 1068 | { |
| 1069 | u32 val = 0; |
| 1070 | struct csio_mb *mbp; |
| 1071 | int rv; |
| 1072 | struct fw_ldst_cmd *ldst_cmd; |
| 1073 | |
| 1074 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 1075 | if (!mbp) { |
| 1076 | CSIO_INC_STATS(hw, n_err_nomem); |
| 1077 | pci_read_config_dword(hw->pdev, reg, &val); |
| 1078 | return val; |
| 1079 | } |
| 1080 | |
| 1081 | csio_mb_ldst(hw, mbp, CSIO_MB_DEFAULT_TMO, reg); |
| 1082 | |
| 1083 | rv = csio_mb_issue(hw, mbp); |
| 1084 | |
| 1085 | /* |
| 1086 | * If the LDST Command suucceeded, exctract the returned register |
| 1087 | * value. Otherwise read it directly ourself. |
| 1088 | */ |
| 1089 | if (rv == 0) { |
| 1090 | ldst_cmd = (struct fw_ldst_cmd *)(mbp->mb); |
| 1091 | val = ntohl(ldst_cmd->u.pcie.data[0]); |
| 1092 | } else |
| 1093 | pci_read_config_dword(hw->pdev, reg, &val); |
| 1094 | |
| 1095 | mempool_free(mbp, hw->mb_mempool); |
| 1096 | |
| 1097 | return val; |
| 1098 | } /* csio_read_pcie_cfg4 */ |
| 1099 | |
| 1100 | static int |
| 1101 | csio_hw_set_mem_win(struct csio_hw *hw) |
| 1102 | { |
| 1103 | u32 bar0; |
| 1104 | |
| 1105 | /* |
| 1106 | * Truncation intentional: we only read the bottom 32-bits of the |
| 1107 | * 64-bit BAR0/BAR1 ... We use the hardware backdoor mechanism to |
| 1108 | * read BAR0 instead of using pci_resource_start() because we could be |
| 1109 | * operating from within a Virtual Machine which is trapping our |
| 1110 | * accesses to our Configuration Space and we need to set up the PCI-E |
| 1111 | * Memory Window decoders with the actual addresses which will be |
| 1112 | * coming across the PCI-E link. |
| 1113 | */ |
| 1114 | bar0 = csio_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0); |
| 1115 | bar0 &= PCI_BASE_ADDRESS_MEM_MASK; |
| 1116 | |
| 1117 | /* |
| 1118 | * Set up memory window for accessing adapter memory ranges. (Read |
| 1119 | * back MA register to ensure that changes propagate before we attempt |
| 1120 | * to use the new values.) |
| 1121 | */ |
| 1122 | csio_wr_reg32(hw, (bar0 + MEMWIN0_BASE) | BIR(0) | |
| 1123 | WINDOW(ilog2(MEMWIN0_APERTURE) - 10), |
| 1124 | PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0)); |
| 1125 | csio_wr_reg32(hw, (bar0 + MEMWIN1_BASE) | BIR(0) | |
| 1126 | WINDOW(ilog2(MEMWIN1_APERTURE) - 10), |
| 1127 | PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1)); |
| 1128 | csio_wr_reg32(hw, (bar0 + MEMWIN2_BASE) | BIR(0) | |
| 1129 | WINDOW(ilog2(MEMWIN2_APERTURE) - 10), |
| 1130 | PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2)); |
| 1131 | csio_rd_reg32(hw, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2)); |
| 1132 | return 0; |
| 1133 | } /* csio_hw_set_mem_win */ |
| 1134 | |
| 1135 | |
| 1136 | |
| 1137 | /*****************************************************************************/ |
| 1138 | /* HW State machine assists */ |
| 1139 | /*****************************************************************************/ |
| 1140 | |
| 1141 | static int |
| 1142 | csio_hw_dev_ready(struct csio_hw *hw) |
| 1143 | { |
| 1144 | uint32_t reg; |
| 1145 | int cnt = 6; |
| 1146 | |
| 1147 | while (((reg = csio_rd_reg32(hw, PL_WHOAMI)) == 0xFFFFFFFF) && |
| 1148 | (--cnt != 0)) |
| 1149 | mdelay(100); |
| 1150 | |
| 1151 | if ((cnt == 0) && (((int32_t)(SOURCEPF_GET(reg)) < 0) || |
| 1152 | (SOURCEPF_GET(reg) >= CSIO_MAX_PFN))) { |
| 1153 | csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt); |
| 1154 | return -EIO; |
| 1155 | } |
| 1156 | |
| 1157 | hw->pfn = SOURCEPF_GET(reg); |
| 1158 | |
| 1159 | return 0; |
| 1160 | } |
| 1161 | |
| 1162 | /* |
| 1163 | * csio_do_hello - Perform the HELLO FW Mailbox command and process response. |
| 1164 | * @hw: HW module |
| 1165 | * @state: Device state |
| 1166 | * |
| 1167 | * FW_HELLO_CMD has to be polled for completion. |
| 1168 | */ |
| 1169 | static int |
| 1170 | csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state) |
| 1171 | { |
| 1172 | struct csio_mb *mbp; |
| 1173 | int rv = 0; |
| 1174 | enum csio_dev_master master; |
| 1175 | enum fw_retval retval; |
| 1176 | uint8_t mpfn; |
| 1177 | char state_str[16]; |
| 1178 | int retries = FW_CMD_HELLO_RETRIES; |
| 1179 | |
| 1180 | memset(state_str, 0, sizeof(state_str)); |
| 1181 | |
| 1182 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 1183 | if (!mbp) { |
| 1184 | rv = -ENOMEM; |
| 1185 | CSIO_INC_STATS(hw, n_err_nomem); |
| 1186 | goto out; |
| 1187 | } |
| 1188 | |
| 1189 | master = csio_force_master ? CSIO_MASTER_MUST : CSIO_MASTER_MAY; |
| 1190 | |
| 1191 | retry: |
| 1192 | csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, |
| 1193 | hw->pfn, master, NULL); |
| 1194 | |
| 1195 | rv = csio_mb_issue(hw, mbp); |
| 1196 | if (rv) { |
| 1197 | csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv); |
| 1198 | goto out_free_mb; |
| 1199 | } |
| 1200 | |
| 1201 | csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn); |
| 1202 | if (retval != FW_SUCCESS) { |
| 1203 | csio_err(hw, "HELLO cmd failed with ret: %d\n", retval); |
| 1204 | rv = -EINVAL; |
| 1205 | goto out_free_mb; |
| 1206 | } |
| 1207 | |
| 1208 | /* Firmware has designated us to be master */ |
| 1209 | if (hw->pfn == mpfn) { |
| 1210 | hw->flags |= CSIO_HWF_MASTER; |
| 1211 | } else if (*state == CSIO_DEV_STATE_UNINIT) { |
| 1212 | /* |
| 1213 | * If we're not the Master PF then we need to wait around for |
| 1214 | * the Master PF Driver to finish setting up the adapter. |
| 1215 | * |
| 1216 | * Note that we also do this wait if we're a non-Master-capable |
| 1217 | * PF and there is no current Master PF; a Master PF may show up |
| 1218 | * momentarily and we wouldn't want to fail pointlessly. (This |
| 1219 | * can happen when an OS loads lots of different drivers rapidly |
| 1220 | * at the same time). In this case, the Master PF returned by |
| 1221 | * the firmware will be PCIE_FW_MASTER_MASK so the test below |
| 1222 | * will work ... |
| 1223 | */ |
| 1224 | |
| 1225 | int waiting = FW_CMD_HELLO_TIMEOUT; |
| 1226 | |
| 1227 | /* |
| 1228 | * Wait for the firmware to either indicate an error or |
| 1229 | * initialized state. If we see either of these we bail out |
| 1230 | * and report the issue to the caller. If we exhaust the |
| 1231 | * "hello timeout" and we haven't exhausted our retries, try |
| 1232 | * again. Otherwise bail with a timeout error. |
| 1233 | */ |
| 1234 | for (;;) { |
| 1235 | uint32_t pcie_fw; |
| 1236 | |
| 1237 | msleep(50); |
| 1238 | waiting -= 50; |
| 1239 | |
| 1240 | /* |
| 1241 | * If neither Error nor Initialialized are indicated |
| 1242 | * by the firmware keep waiting till we exaust our |
| 1243 | * timeout ... and then retry if we haven't exhausted |
| 1244 | * our retries ... |
| 1245 | */ |
| 1246 | pcie_fw = csio_rd_reg32(hw, PCIE_FW); |
| 1247 | if (!(pcie_fw & (PCIE_FW_ERR|PCIE_FW_INIT))) { |
| 1248 | if (waiting <= 0) { |
| 1249 | if (retries-- > 0) |
| 1250 | goto retry; |
| 1251 | |
| 1252 | rv = -ETIMEDOUT; |
| 1253 | break; |
| 1254 | } |
| 1255 | continue; |
| 1256 | } |
| 1257 | |
| 1258 | /* |
| 1259 | * We either have an Error or Initialized condition |
| 1260 | * report errors preferentially. |
| 1261 | */ |
| 1262 | if (state) { |
| 1263 | if (pcie_fw & PCIE_FW_ERR) { |
| 1264 | *state = CSIO_DEV_STATE_ERR; |
| 1265 | rv = -ETIMEDOUT; |
| 1266 | } else if (pcie_fw & PCIE_FW_INIT) |
| 1267 | *state = CSIO_DEV_STATE_INIT; |
| 1268 | } |
| 1269 | |
| 1270 | /* |
| 1271 | * If we arrived before a Master PF was selected and |
| 1272 | * there's not a valid Master PF, grab its identity |
| 1273 | * for our caller. |
| 1274 | */ |
| 1275 | if (mpfn == PCIE_FW_MASTER_MASK && |
| 1276 | (pcie_fw & PCIE_FW_MASTER_VLD)) |
| 1277 | mpfn = PCIE_FW_MASTER_GET(pcie_fw); |
| 1278 | break; |
| 1279 | } |
| 1280 | hw->flags &= ~CSIO_HWF_MASTER; |
| 1281 | } |
| 1282 | |
| 1283 | switch (*state) { |
| 1284 | case CSIO_DEV_STATE_UNINIT: |
| 1285 | strcpy(state_str, "Initializing"); |
| 1286 | break; |
| 1287 | case CSIO_DEV_STATE_INIT: |
| 1288 | strcpy(state_str, "Initialized"); |
| 1289 | break; |
| 1290 | case CSIO_DEV_STATE_ERR: |
| 1291 | strcpy(state_str, "Error"); |
| 1292 | break; |
| 1293 | default: |
| 1294 | strcpy(state_str, "Unknown"); |
| 1295 | break; |
| 1296 | } |
| 1297 | |
| 1298 | if (hw->pfn == mpfn) |
| 1299 | csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n", |
| 1300 | hw->pfn, state_str); |
| 1301 | else |
| 1302 | csio_info(hw, |
| 1303 | "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n", |
| 1304 | hw->pfn, mpfn, state_str); |
| 1305 | |
| 1306 | out_free_mb: |
| 1307 | mempool_free(mbp, hw->mb_mempool); |
| 1308 | out: |
| 1309 | return rv; |
| 1310 | } |
| 1311 | |
| 1312 | /* |
| 1313 | * csio_do_bye - Perform the BYE FW Mailbox command and process response. |
| 1314 | * @hw: HW module |
| 1315 | * |
| 1316 | */ |
| 1317 | static int |
| 1318 | csio_do_bye(struct csio_hw *hw) |
| 1319 | { |
| 1320 | struct csio_mb *mbp; |
| 1321 | enum fw_retval retval; |
| 1322 | |
| 1323 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 1324 | if (!mbp) { |
| 1325 | CSIO_INC_STATS(hw, n_err_nomem); |
| 1326 | return -ENOMEM; |
| 1327 | } |
| 1328 | |
| 1329 | csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL); |
| 1330 | |
| 1331 | if (csio_mb_issue(hw, mbp)) { |
| 1332 | csio_err(hw, "Issue of BYE command failed\n"); |
| 1333 | mempool_free(mbp, hw->mb_mempool); |
| 1334 | return -EINVAL; |
| 1335 | } |
| 1336 | |
| 1337 | retval = csio_mb_fw_retval(mbp); |
| 1338 | if (retval != FW_SUCCESS) { |
| 1339 | mempool_free(mbp, hw->mb_mempool); |
| 1340 | return -EINVAL; |
| 1341 | } |
| 1342 | |
| 1343 | mempool_free(mbp, hw->mb_mempool); |
| 1344 | |
| 1345 | return 0; |
| 1346 | } |
| 1347 | |
| 1348 | /* |
| 1349 | * csio_do_reset- Perform the device reset. |
| 1350 | * @hw: HW module |
| 1351 | * @fw_rst: FW reset |
| 1352 | * |
| 1353 | * If fw_rst is set, issues FW reset mbox cmd otherwise |
| 1354 | * does PIO reset. |
| 1355 | * Performs reset of the function. |
| 1356 | */ |
| 1357 | static int |
| 1358 | csio_do_reset(struct csio_hw *hw, bool fw_rst) |
| 1359 | { |
| 1360 | struct csio_mb *mbp; |
| 1361 | enum fw_retval retval; |
| 1362 | |
| 1363 | if (!fw_rst) { |
| 1364 | /* PIO reset */ |
| 1365 | csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST); |
| 1366 | mdelay(2000); |
| 1367 | return 0; |
| 1368 | } |
| 1369 | |
| 1370 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 1371 | if (!mbp) { |
| 1372 | CSIO_INC_STATS(hw, n_err_nomem); |
| 1373 | return -ENOMEM; |
| 1374 | } |
| 1375 | |
| 1376 | csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO, |
| 1377 | PIORSTMODE | PIORST, 0, NULL); |
| 1378 | |
| 1379 | if (csio_mb_issue(hw, mbp)) { |
| 1380 | csio_err(hw, "Issue of RESET command failed.n"); |
| 1381 | mempool_free(mbp, hw->mb_mempool); |
| 1382 | return -EINVAL; |
| 1383 | } |
| 1384 | |
| 1385 | retval = csio_mb_fw_retval(mbp); |
| 1386 | if (retval != FW_SUCCESS) { |
| 1387 | csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval); |
| 1388 | mempool_free(mbp, hw->mb_mempool); |
| 1389 | return -EINVAL; |
| 1390 | } |
| 1391 | |
| 1392 | mempool_free(mbp, hw->mb_mempool); |
| 1393 | |
| 1394 | return 0; |
| 1395 | } |
| 1396 | |
| 1397 | static int |
| 1398 | csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp) |
| 1399 | { |
| 1400 | struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb; |
| 1401 | uint16_t caps; |
| 1402 | |
| 1403 | caps = ntohs(rsp->fcoecaps); |
| 1404 | |
| 1405 | if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) { |
| 1406 | csio_err(hw, "No FCoE Initiator capability in the firmware.\n"); |
| 1407 | return -EINVAL; |
| 1408 | } |
| 1409 | |
| 1410 | if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) { |
| 1411 | csio_err(hw, "No FCoE Control Offload capability\n"); |
| 1412 | return -EINVAL; |
| 1413 | } |
| 1414 | |
| 1415 | return 0; |
| 1416 | } |
| 1417 | |
| 1418 | /* |
| 1419 | * csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET |
| 1420 | * @hw: the HW module |
| 1421 | * @mbox: mailbox to use for the FW RESET command (if desired) |
| 1422 | * @force: force uP into RESET even if FW RESET command fails |
| 1423 | * |
| 1424 | * Issues a RESET command to firmware (if desired) with a HALT indication |
| 1425 | * and then puts the microprocessor into RESET state. The RESET command |
| 1426 | * will only be issued if a legitimate mailbox is provided (mbox <= |
| 1427 | * PCIE_FW_MASTER_MASK). |
| 1428 | * |
| 1429 | * This is generally used in order for the host to safely manipulate the |
| 1430 | * adapter without fear of conflicting with whatever the firmware might |
| 1431 | * be doing. The only way out of this state is to RESTART the firmware |
| 1432 | * ... |
| 1433 | */ |
| 1434 | static int |
| 1435 | csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force) |
| 1436 | { |
| 1437 | enum fw_retval retval = 0; |
| 1438 | |
| 1439 | /* |
| 1440 | * If a legitimate mailbox is provided, issue a RESET command |
| 1441 | * with a HALT indication. |
| 1442 | */ |
| 1443 | if (mbox <= PCIE_FW_MASTER_MASK) { |
| 1444 | struct csio_mb *mbp; |
| 1445 | |
| 1446 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 1447 | if (!mbp) { |
| 1448 | CSIO_INC_STATS(hw, n_err_nomem); |
| 1449 | return -ENOMEM; |
| 1450 | } |
| 1451 | |
| 1452 | csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO, |
| 1453 | PIORSTMODE | PIORST, FW_RESET_CMD_HALT(1), |
| 1454 | NULL); |
| 1455 | |
| 1456 | if (csio_mb_issue(hw, mbp)) { |
| 1457 | csio_err(hw, "Issue of RESET command failed!\n"); |
| 1458 | mempool_free(mbp, hw->mb_mempool); |
| 1459 | return -EINVAL; |
| 1460 | } |
| 1461 | |
| 1462 | retval = csio_mb_fw_retval(mbp); |
| 1463 | mempool_free(mbp, hw->mb_mempool); |
| 1464 | } |
| 1465 | |
| 1466 | /* |
| 1467 | * Normally we won't complete the operation if the firmware RESET |
| 1468 | * command fails but if our caller insists we'll go ahead and put the |
| 1469 | * uP into RESET. This can be useful if the firmware is hung or even |
| 1470 | * missing ... We'll have to take the risk of putting the uP into |
| 1471 | * RESET without the cooperation of firmware in that case. |
| 1472 | * |
| 1473 | * We also force the firmware's HALT flag to be on in case we bypassed |
| 1474 | * the firmware RESET command above or we're dealing with old firmware |
| 1475 | * which doesn't have the HALT capability. This will serve as a flag |
| 1476 | * for the incoming firmware to know that it's coming out of a HALT |
| 1477 | * rather than a RESET ... if it's new enough to understand that ... |
| 1478 | */ |
| 1479 | if (retval == 0 || force) { |
| 1480 | csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, UPCRST); |
| 1481 | csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, PCIE_FW_HALT); |
| 1482 | } |
| 1483 | |
| 1484 | /* |
| 1485 | * And we always return the result of the firmware RESET command |
| 1486 | * even when we force the uP into RESET ... |
| 1487 | */ |
| 1488 | return retval ? -EINVAL : 0; |
| 1489 | } |
| 1490 | |
| 1491 | /* |
| 1492 | * csio_hw_fw_restart - restart the firmware by taking the uP out of RESET |
| 1493 | * @hw: the HW module |
| 1494 | * @reset: if we want to do a RESET to restart things |
| 1495 | * |
| 1496 | * Restart firmware previously halted by csio_hw_fw_halt(). On successful |
| 1497 | * return the previous PF Master remains as the new PF Master and there |
| 1498 | * is no need to issue a new HELLO command, etc. |
| 1499 | * |
| 1500 | * We do this in two ways: |
| 1501 | * |
| 1502 | * 1. If we're dealing with newer firmware we'll simply want to take |
| 1503 | * the chip's microprocessor out of RESET. This will cause the |
| 1504 | * firmware to start up from its start vector. And then we'll loop |
| 1505 | * until the firmware indicates it's started again (PCIE_FW.HALT |
| 1506 | * reset to 0) or we timeout. |
| 1507 | * |
| 1508 | * 2. If we're dealing with older firmware then we'll need to RESET |
| 1509 | * the chip since older firmware won't recognize the PCIE_FW.HALT |
| 1510 | * flag and automatically RESET itself on startup. |
| 1511 | */ |
| 1512 | static int |
| 1513 | csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset) |
| 1514 | { |
| 1515 | if (reset) { |
| 1516 | /* |
| 1517 | * Since we're directing the RESET instead of the firmware |
| 1518 | * doing it automatically, we need to clear the PCIE_FW.HALT |
| 1519 | * bit. |
| 1520 | */ |
| 1521 | csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, 0); |
| 1522 | |
| 1523 | /* |
| 1524 | * If we've been given a valid mailbox, first try to get the |
| 1525 | * firmware to do the RESET. If that works, great and we can |
| 1526 | * return success. Otherwise, if we haven't been given a |
| 1527 | * valid mailbox or the RESET command failed, fall back to |
| 1528 | * hitting the chip with a hammer. |
| 1529 | */ |
| 1530 | if (mbox <= PCIE_FW_MASTER_MASK) { |
| 1531 | csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0); |
| 1532 | msleep(100); |
| 1533 | if (csio_do_reset(hw, true) == 0) |
| 1534 | return 0; |
| 1535 | } |
| 1536 | |
| 1537 | csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST); |
| 1538 | msleep(2000); |
| 1539 | } else { |
| 1540 | int ms; |
| 1541 | |
| 1542 | csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0); |
| 1543 | for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { |
| 1544 | if (!(csio_rd_reg32(hw, PCIE_FW) & PCIE_FW_HALT)) |
| 1545 | return 0; |
| 1546 | msleep(100); |
| 1547 | ms += 100; |
| 1548 | } |
| 1549 | return -ETIMEDOUT; |
| 1550 | } |
| 1551 | return 0; |
| 1552 | } |
| 1553 | |
| 1554 | /* |
| 1555 | * csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW |
| 1556 | * @hw: the HW module |
| 1557 | * @mbox: mailbox to use for the FW RESET command (if desired) |
| 1558 | * @fw_data: the firmware image to write |
| 1559 | * @size: image size |
| 1560 | * @force: force upgrade even if firmware doesn't cooperate |
| 1561 | * |
| 1562 | * Perform all of the steps necessary for upgrading an adapter's |
| 1563 | * firmware image. Normally this requires the cooperation of the |
| 1564 | * existing firmware in order to halt all existing activities |
| 1565 | * but if an invalid mailbox token is passed in we skip that step |
| 1566 | * (though we'll still put the adapter microprocessor into RESET in |
| 1567 | * that case). |
| 1568 | * |
| 1569 | * On successful return the new firmware will have been loaded and |
| 1570 | * the adapter will have been fully RESET losing all previous setup |
| 1571 | * state. On unsuccessful return the adapter may be completely hosed ... |
| 1572 | * positive errno indicates that the adapter is ~probably~ intact, a |
| 1573 | * negative errno indicates that things are looking bad ... |
| 1574 | */ |
| 1575 | static int |
| 1576 | csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox, |
| 1577 | const u8 *fw_data, uint32_t size, int32_t force) |
| 1578 | { |
| 1579 | const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; |
| 1580 | int reset, ret; |
| 1581 | |
| 1582 | ret = csio_hw_fw_halt(hw, mbox, force); |
| 1583 | if (ret != 0 && !force) |
| 1584 | return ret; |
| 1585 | |
| 1586 | ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size); |
| 1587 | if (ret != 0) |
| 1588 | return ret; |
| 1589 | |
| 1590 | /* |
| 1591 | * Older versions of the firmware don't understand the new |
| 1592 | * PCIE_FW.HALT flag and so won't know to perform a RESET when they |
| 1593 | * restart. So for newly loaded older firmware we'll have to do the |
| 1594 | * RESET for it so it starts up on a clean slate. We can tell if |
| 1595 | * the newly loaded firmware will handle this right by checking |
| 1596 | * its header flags to see if it advertises the capability. |
| 1597 | */ |
| 1598 | reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); |
| 1599 | return csio_hw_fw_restart(hw, mbox, reset); |
| 1600 | } |
| 1601 | |
| 1602 | |
| 1603 | /* |
| 1604 | * csio_hw_fw_config_file - setup an adapter via a Configuration File |
| 1605 | * @hw: the HW module |
| 1606 | * @mbox: mailbox to use for the FW command |
| 1607 | * @mtype: the memory type where the Configuration File is located |
| 1608 | * @maddr: the memory address where the Configuration File is located |
| 1609 | * @finiver: return value for CF [fini] version |
| 1610 | * @finicsum: return value for CF [fini] checksum |
| 1611 | * @cfcsum: return value for CF computed checksum |
| 1612 | * |
| 1613 | * Issue a command to get the firmware to process the Configuration |
| 1614 | * File located at the specified mtype/maddress. If the Configuration |
| 1615 | * File is processed successfully and return value pointers are |
| 1616 | * provided, the Configuration File "[fini] section version and |
| 1617 | * checksum values will be returned along with the computed checksum. |
| 1618 | * It's up to the caller to decide how it wants to respond to the |
| 1619 | * checksums not matching but it recommended that a prominant warning |
| 1620 | * be emitted in order to help people rapidly identify changed or |
| 1621 | * corrupted Configuration Files. |
| 1622 | * |
| 1623 | * Also note that it's possible to modify things like "niccaps", |
| 1624 | * "toecaps",etc. between processing the Configuration File and telling |
| 1625 | * the firmware to use the new configuration. Callers which want to |
| 1626 | * do this will need to "hand-roll" their own CAPS_CONFIGS commands for |
| 1627 | * Configuration Files if they want to do this. |
| 1628 | */ |
| 1629 | static int |
| 1630 | csio_hw_fw_config_file(struct csio_hw *hw, |
| 1631 | unsigned int mtype, unsigned int maddr, |
| 1632 | uint32_t *finiver, uint32_t *finicsum, uint32_t *cfcsum) |
| 1633 | { |
| 1634 | struct csio_mb *mbp; |
| 1635 | struct fw_caps_config_cmd *caps_cmd; |
| 1636 | int rv = -EINVAL; |
| 1637 | enum fw_retval ret; |
| 1638 | |
| 1639 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 1640 | if (!mbp) { |
| 1641 | CSIO_INC_STATS(hw, n_err_nomem); |
| 1642 | return -ENOMEM; |
| 1643 | } |
| 1644 | /* |
| 1645 | * Tell the firmware to process the indicated Configuration File. |
| 1646 | * If there are no errors and the caller has provided return value |
| 1647 | * pointers for the [fini] section version, checksum and computed |
| 1648 | * checksum, pass those back to the caller. |
| 1649 | */ |
| 1650 | caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb); |
| 1651 | CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1); |
| 1652 | caps_cmd->op_to_write = |
| 1653 | htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | |
| 1654 | FW_CMD_REQUEST | |
| 1655 | FW_CMD_READ); |
| 1656 | caps_cmd->cfvalid_to_len16 = |
| 1657 | htonl(FW_CAPS_CONFIG_CMD_CFVALID | |
| 1658 | FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | |
| 1659 | FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) | |
| 1660 | FW_LEN16(*caps_cmd)); |
| 1661 | |
| 1662 | if (csio_mb_issue(hw, mbp)) { |
| 1663 | csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n"); |
| 1664 | goto out; |
| 1665 | } |
| 1666 | |
| 1667 | ret = csio_mb_fw_retval(mbp); |
| 1668 | if (ret != FW_SUCCESS) { |
| 1669 | csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv); |
| 1670 | goto out; |
| 1671 | } |
| 1672 | |
| 1673 | if (finiver) |
| 1674 | *finiver = ntohl(caps_cmd->finiver); |
| 1675 | if (finicsum) |
| 1676 | *finicsum = ntohl(caps_cmd->finicsum); |
| 1677 | if (cfcsum) |
| 1678 | *cfcsum = ntohl(caps_cmd->cfcsum); |
| 1679 | |
| 1680 | /* Validate device capabilities */ |
| 1681 | if (csio_hw_validate_caps(hw, mbp)) { |
| 1682 | rv = -ENOENT; |
| 1683 | goto out; |
| 1684 | } |
| 1685 | |
| 1686 | /* |
| 1687 | * And now tell the firmware to use the configuration we just loaded. |
| 1688 | */ |
| 1689 | caps_cmd->op_to_write = |
| 1690 | htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) | |
| 1691 | FW_CMD_REQUEST | |
| 1692 | FW_CMD_WRITE); |
| 1693 | caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd)); |
| 1694 | |
| 1695 | if (csio_mb_issue(hw, mbp)) { |
| 1696 | csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n"); |
| 1697 | goto out; |
| 1698 | } |
| 1699 | |
| 1700 | ret = csio_mb_fw_retval(mbp); |
| 1701 | if (ret != FW_SUCCESS) { |
| 1702 | csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv); |
| 1703 | goto out; |
| 1704 | } |
| 1705 | |
| 1706 | rv = 0; |
| 1707 | out: |
| 1708 | mempool_free(mbp, hw->mb_mempool); |
| 1709 | return rv; |
| 1710 | } |
| 1711 | |
| 1712 | /* |
| 1713 | * csio_get_device_params - Get device parameters. |
| 1714 | * @hw: HW module |
| 1715 | * |
| 1716 | */ |
| 1717 | static int |
| 1718 | csio_get_device_params(struct csio_hw *hw) |
| 1719 | { |
| 1720 | struct csio_wrm *wrm = csio_hw_to_wrm(hw); |
| 1721 | struct csio_mb *mbp; |
| 1722 | enum fw_retval retval; |
| 1723 | u32 param[6]; |
| 1724 | int i, j = 0; |
| 1725 | |
| 1726 | /* Initialize portids to -1 */ |
| 1727 | for (i = 0; i < CSIO_MAX_PPORTS; i++) |
| 1728 | hw->pport[i].portid = -1; |
| 1729 | |
| 1730 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 1731 | if (!mbp) { |
| 1732 | CSIO_INC_STATS(hw, n_err_nomem); |
| 1733 | return -ENOMEM; |
| 1734 | } |
| 1735 | |
| 1736 | /* Get port vec information. */ |
| 1737 | param[0] = FW_PARAM_DEV(PORTVEC); |
| 1738 | |
| 1739 | /* Get Core clock. */ |
| 1740 | param[1] = FW_PARAM_DEV(CCLK); |
| 1741 | |
| 1742 | /* Get EQ id start and end. */ |
| 1743 | param[2] = FW_PARAM_PFVF(EQ_START); |
| 1744 | param[3] = FW_PARAM_PFVF(EQ_END); |
| 1745 | |
| 1746 | /* Get IQ id start and end. */ |
| 1747 | param[4] = FW_PARAM_PFVF(IQFLINT_START); |
| 1748 | param[5] = FW_PARAM_PFVF(IQFLINT_END); |
| 1749 | |
| 1750 | csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, |
| 1751 | ARRAY_SIZE(param), param, NULL, false, NULL); |
| 1752 | if (csio_mb_issue(hw, mbp)) { |
| 1753 | csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n"); |
| 1754 | mempool_free(mbp, hw->mb_mempool); |
| 1755 | return -EINVAL; |
| 1756 | } |
| 1757 | |
| 1758 | csio_mb_process_read_params_rsp(hw, mbp, &retval, |
| 1759 | ARRAY_SIZE(param), param); |
| 1760 | if (retval != FW_SUCCESS) { |
| 1761 | csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n", |
| 1762 | retval); |
| 1763 | mempool_free(mbp, hw->mb_mempool); |
| 1764 | return -EINVAL; |
| 1765 | } |
| 1766 | |
| 1767 | /* cache the information. */ |
| 1768 | hw->port_vec = param[0]; |
| 1769 | hw->vpd.cclk = param[1]; |
| 1770 | wrm->fw_eq_start = param[2]; |
| 1771 | wrm->fw_iq_start = param[4]; |
| 1772 | |
| 1773 | /* Using FW configured max iqs & eqs */ |
| 1774 | if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) || |
| 1775 | !csio_is_hw_master(hw)) { |
| 1776 | hw->cfg_niq = param[5] - param[4] + 1; |
| 1777 | hw->cfg_neq = param[3] - param[2] + 1; |
| 1778 | csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n", |
| 1779 | hw->cfg_niq, hw->cfg_neq); |
| 1780 | } |
| 1781 | |
| 1782 | hw->port_vec &= csio_port_mask; |
| 1783 | |
| 1784 | hw->num_pports = hweight32(hw->port_vec); |
| 1785 | |
| 1786 | csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n", |
| 1787 | hw->port_vec, hw->num_pports); |
| 1788 | |
| 1789 | for (i = 0; i < hw->num_pports; i++) { |
| 1790 | while ((hw->port_vec & (1 << j)) == 0) |
| 1791 | j++; |
| 1792 | hw->pport[i].portid = j++; |
| 1793 | csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid); |
| 1794 | } |
| 1795 | mempool_free(mbp, hw->mb_mempool); |
| 1796 | |
| 1797 | return 0; |
| 1798 | } |
| 1799 | |
| 1800 | |
| 1801 | /* |
| 1802 | * csio_config_device_caps - Get and set device capabilities. |
| 1803 | * @hw: HW module |
| 1804 | * |
| 1805 | */ |
| 1806 | static int |
| 1807 | csio_config_device_caps(struct csio_hw *hw) |
| 1808 | { |
| 1809 | struct csio_mb *mbp; |
| 1810 | enum fw_retval retval; |
| 1811 | int rv = -EINVAL; |
| 1812 | |
| 1813 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 1814 | if (!mbp) { |
| 1815 | CSIO_INC_STATS(hw, n_err_nomem); |
| 1816 | return -ENOMEM; |
| 1817 | } |
| 1818 | |
| 1819 | /* Get device capabilities */ |
| 1820 | csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL); |
| 1821 | |
| 1822 | if (csio_mb_issue(hw, mbp)) { |
| 1823 | csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n"); |
| 1824 | goto out; |
| 1825 | } |
| 1826 | |
| 1827 | retval = csio_mb_fw_retval(mbp); |
| 1828 | if (retval != FW_SUCCESS) { |
| 1829 | csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval); |
| 1830 | goto out; |
| 1831 | } |
| 1832 | |
| 1833 | /* Validate device capabilities */ |
| 1834 | if (csio_hw_validate_caps(hw, mbp)) |
| 1835 | goto out; |
| 1836 | |
| 1837 | /* Don't config device capabilities if already configured */ |
| 1838 | if (hw->fw_state == CSIO_DEV_STATE_INIT) { |
| 1839 | rv = 0; |
| 1840 | goto out; |
| 1841 | } |
| 1842 | |
| 1843 | /* Write back desired device capabilities */ |
| 1844 | csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true, |
| 1845 | false, true, NULL); |
| 1846 | |
| 1847 | if (csio_mb_issue(hw, mbp)) { |
| 1848 | csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n"); |
| 1849 | goto out; |
| 1850 | } |
| 1851 | |
| 1852 | retval = csio_mb_fw_retval(mbp); |
| 1853 | if (retval != FW_SUCCESS) { |
| 1854 | csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval); |
| 1855 | goto out; |
| 1856 | } |
| 1857 | |
| 1858 | rv = 0; |
| 1859 | out: |
| 1860 | mempool_free(mbp, hw->mb_mempool); |
| 1861 | return rv; |
| 1862 | } |
| 1863 | |
| 1864 | static int |
| 1865 | csio_config_global_rss(struct csio_hw *hw) |
| 1866 | { |
| 1867 | struct csio_mb *mbp; |
| 1868 | enum fw_retval retval; |
| 1869 | |
| 1870 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 1871 | if (!mbp) { |
| 1872 | CSIO_INC_STATS(hw, n_err_nomem); |
| 1873 | return -ENOMEM; |
| 1874 | } |
| 1875 | |
| 1876 | csio_rss_glb_config(hw, mbp, CSIO_MB_DEFAULT_TMO, |
| 1877 | FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL, |
| 1878 | FW_RSS_GLB_CONFIG_CMD_TNLMAPEN | |
| 1879 | FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ | |
| 1880 | FW_RSS_GLB_CONFIG_CMD_TNLALLLKP, |
| 1881 | NULL); |
| 1882 | |
| 1883 | if (csio_mb_issue(hw, mbp)) { |
| 1884 | csio_err(hw, "Issue of FW_RSS_GLB_CONFIG_CMD failed!\n"); |
| 1885 | mempool_free(mbp, hw->mb_mempool); |
| 1886 | return -EINVAL; |
| 1887 | } |
| 1888 | |
| 1889 | retval = csio_mb_fw_retval(mbp); |
| 1890 | if (retval != FW_SUCCESS) { |
| 1891 | csio_err(hw, "FW_RSS_GLB_CONFIG_CMD returned 0x%x!\n", retval); |
| 1892 | mempool_free(mbp, hw->mb_mempool); |
| 1893 | return -EINVAL; |
| 1894 | } |
| 1895 | |
| 1896 | mempool_free(mbp, hw->mb_mempool); |
| 1897 | |
| 1898 | return 0; |
| 1899 | } |
| 1900 | |
| 1901 | /* |
| 1902 | * csio_config_pfvf - Configure Physical/Virtual functions settings. |
| 1903 | * @hw: HW module |
| 1904 | * |
| 1905 | */ |
| 1906 | static int |
| 1907 | csio_config_pfvf(struct csio_hw *hw) |
| 1908 | { |
| 1909 | struct csio_mb *mbp; |
| 1910 | enum fw_retval retval; |
| 1911 | |
| 1912 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 1913 | if (!mbp) { |
| 1914 | CSIO_INC_STATS(hw, n_err_nomem); |
| 1915 | return -ENOMEM; |
| 1916 | } |
| 1917 | |
| 1918 | /* |
| 1919 | * For now, allow all PFs to access to all ports using a pmask |
| 1920 | * value of 0xF (M_FW_PFVF_CMD_PMASK). Once we have VFs, we will |
| 1921 | * need to provide access based on some rule. |
| 1922 | */ |
| 1923 | csio_mb_pfvf(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, CSIO_NEQ, |
| 1924 | CSIO_NETH_CTRL, CSIO_NIQ_FLINT, 0, 0, CSIO_NVI, CSIO_CMASK, |
| 1925 | CSIO_PMASK, CSIO_NEXACTF, CSIO_R_CAPS, CSIO_WX_CAPS, NULL); |
| 1926 | |
| 1927 | if (csio_mb_issue(hw, mbp)) { |
| 1928 | csio_err(hw, "Issue of FW_PFVF_CMD failed!\n"); |
| 1929 | mempool_free(mbp, hw->mb_mempool); |
| 1930 | return -EINVAL; |
| 1931 | } |
| 1932 | |
| 1933 | retval = csio_mb_fw_retval(mbp); |
| 1934 | if (retval != FW_SUCCESS) { |
| 1935 | csio_err(hw, "FW_PFVF_CMD returned 0x%x!\n", retval); |
| 1936 | mempool_free(mbp, hw->mb_mempool); |
| 1937 | return -EINVAL; |
| 1938 | } |
| 1939 | |
| 1940 | mempool_free(mbp, hw->mb_mempool); |
| 1941 | |
| 1942 | return 0; |
| 1943 | } |
| 1944 | |
| 1945 | /* |
| 1946 | * csio_enable_ports - Bring up all available ports. |
| 1947 | * @hw: HW module. |
| 1948 | * |
| 1949 | */ |
| 1950 | static int |
| 1951 | csio_enable_ports(struct csio_hw *hw) |
| 1952 | { |
| 1953 | struct csio_mb *mbp; |
| 1954 | enum fw_retval retval; |
| 1955 | uint8_t portid; |
| 1956 | int i; |
| 1957 | |
| 1958 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 1959 | if (!mbp) { |
| 1960 | CSIO_INC_STATS(hw, n_err_nomem); |
| 1961 | return -ENOMEM; |
| 1962 | } |
| 1963 | |
| 1964 | for (i = 0; i < hw->num_pports; i++) { |
| 1965 | portid = hw->pport[i].portid; |
| 1966 | |
| 1967 | /* Read PORT information */ |
| 1968 | csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, |
| 1969 | false, 0, 0, NULL); |
| 1970 | |
| 1971 | if (csio_mb_issue(hw, mbp)) { |
| 1972 | csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n", |
| 1973 | portid); |
| 1974 | mempool_free(mbp, hw->mb_mempool); |
| 1975 | return -EINVAL; |
| 1976 | } |
| 1977 | |
| 1978 | csio_mb_process_read_port_rsp(hw, mbp, &retval, |
| 1979 | &hw->pport[i].pcap); |
| 1980 | if (retval != FW_SUCCESS) { |
| 1981 | csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n", |
| 1982 | portid, retval); |
| 1983 | mempool_free(mbp, hw->mb_mempool); |
| 1984 | return -EINVAL; |
| 1985 | } |
| 1986 | |
| 1987 | /* Write back PORT information */ |
| 1988 | csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true, |
| 1989 | (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL); |
| 1990 | |
| 1991 | if (csio_mb_issue(hw, mbp)) { |
| 1992 | csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n", |
| 1993 | portid); |
| 1994 | mempool_free(mbp, hw->mb_mempool); |
| 1995 | return -EINVAL; |
| 1996 | } |
| 1997 | |
| 1998 | retval = csio_mb_fw_retval(mbp); |
| 1999 | if (retval != FW_SUCCESS) { |
| 2000 | csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n", |
| 2001 | portid, retval); |
| 2002 | mempool_free(mbp, hw->mb_mempool); |
| 2003 | return -EINVAL; |
| 2004 | } |
| 2005 | |
| 2006 | } /* For all ports */ |
| 2007 | |
| 2008 | mempool_free(mbp, hw->mb_mempool); |
| 2009 | |
| 2010 | return 0; |
| 2011 | } |
| 2012 | |
| 2013 | /* |
| 2014 | * csio_get_fcoe_resinfo - Read fcoe fw resource info. |
| 2015 | * @hw: HW module |
| 2016 | * Issued with lock held. |
| 2017 | */ |
| 2018 | static int |
| 2019 | csio_get_fcoe_resinfo(struct csio_hw *hw) |
| 2020 | { |
| 2021 | struct csio_fcoe_res_info *res_info = &hw->fres_info; |
| 2022 | struct fw_fcoe_res_info_cmd *rsp; |
| 2023 | struct csio_mb *mbp; |
| 2024 | enum fw_retval retval; |
| 2025 | |
| 2026 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 2027 | if (!mbp) { |
| 2028 | CSIO_INC_STATS(hw, n_err_nomem); |
| 2029 | return -ENOMEM; |
| 2030 | } |
| 2031 | |
| 2032 | /* Get FCoE FW resource information */ |
| 2033 | csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL); |
| 2034 | |
| 2035 | if (csio_mb_issue(hw, mbp)) { |
| 2036 | csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n"); |
| 2037 | mempool_free(mbp, hw->mb_mempool); |
| 2038 | return -EINVAL; |
| 2039 | } |
| 2040 | |
| 2041 | rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb); |
| 2042 | retval = FW_CMD_RETVAL_GET(ntohl(rsp->retval_len16)); |
| 2043 | if (retval != FW_SUCCESS) { |
| 2044 | csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n", |
| 2045 | retval); |
| 2046 | mempool_free(mbp, hw->mb_mempool); |
| 2047 | return -EINVAL; |
| 2048 | } |
| 2049 | |
| 2050 | res_info->e_d_tov = ntohs(rsp->e_d_tov); |
| 2051 | res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq); |
| 2052 | res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els); |
| 2053 | res_info->r_r_tov = ntohs(rsp->r_r_tov); |
| 2054 | res_info->max_xchgs = ntohl(rsp->max_xchgs); |
| 2055 | res_info->max_ssns = ntohl(rsp->max_ssns); |
| 2056 | res_info->used_xchgs = ntohl(rsp->used_xchgs); |
| 2057 | res_info->used_ssns = ntohl(rsp->used_ssns); |
| 2058 | res_info->max_fcfs = ntohl(rsp->max_fcfs); |
| 2059 | res_info->max_vnps = ntohl(rsp->max_vnps); |
| 2060 | res_info->used_fcfs = ntohl(rsp->used_fcfs); |
| 2061 | res_info->used_vnps = ntohl(rsp->used_vnps); |
| 2062 | |
| 2063 | csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns, |
| 2064 | res_info->max_xchgs); |
| 2065 | mempool_free(mbp, hw->mb_mempool); |
| 2066 | |
| 2067 | return 0; |
| 2068 | } |
| 2069 | |
| 2070 | static int |
| 2071 | csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param) |
| 2072 | { |
| 2073 | struct csio_mb *mbp; |
| 2074 | enum fw_retval retval; |
| 2075 | u32 _param[1]; |
| 2076 | |
| 2077 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 2078 | if (!mbp) { |
| 2079 | CSIO_INC_STATS(hw, n_err_nomem); |
| 2080 | return -ENOMEM; |
| 2081 | } |
| 2082 | |
| 2083 | /* |
| 2084 | * Find out whether we're dealing with a version of |
| 2085 | * the firmware which has configuration file support. |
| 2086 | */ |
| 2087 | _param[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | |
| 2088 | FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF)); |
| 2089 | |
| 2090 | csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, |
| 2091 | ARRAY_SIZE(_param), _param, NULL, false, NULL); |
| 2092 | if (csio_mb_issue(hw, mbp)) { |
| 2093 | csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n"); |
| 2094 | mempool_free(mbp, hw->mb_mempool); |
| 2095 | return -EINVAL; |
| 2096 | } |
| 2097 | |
| 2098 | csio_mb_process_read_params_rsp(hw, mbp, &retval, |
| 2099 | ARRAY_SIZE(_param), _param); |
| 2100 | if (retval != FW_SUCCESS) { |
| 2101 | csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n", |
| 2102 | retval); |
| 2103 | mempool_free(mbp, hw->mb_mempool); |
| 2104 | return -EINVAL; |
| 2105 | } |
| 2106 | |
| 2107 | mempool_free(mbp, hw->mb_mempool); |
| 2108 | *param = _param[0]; |
| 2109 | |
| 2110 | return 0; |
| 2111 | } |
| 2112 | |
| 2113 | static int |
| 2114 | csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path) |
| 2115 | { |
| 2116 | int ret = 0; |
| 2117 | const struct firmware *cf; |
| 2118 | struct pci_dev *pci_dev = hw->pdev; |
| 2119 | struct device *dev = &pci_dev->dev; |
Naresh Kumar Inna | a3667aa | 2012-11-15 22:41:18 +0530 | [diff] [blame] | 2120 | unsigned int mtype = 0, maddr = 0; |
| 2121 | uint32_t *cfg_data; |
| 2122 | int value_to_add = 0; |
| 2123 | |
| 2124 | if (request_firmware(&cf, CSIO_CF_FNAME, dev) < 0) { |
| 2125 | csio_err(hw, "could not find config file " CSIO_CF_FNAME |
| 2126 | ",err: %d\n", ret); |
| 2127 | return -ENOENT; |
| 2128 | } |
| 2129 | |
| 2130 | if (cf->size%4 != 0) |
| 2131 | value_to_add = 4 - (cf->size % 4); |
| 2132 | |
| 2133 | cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL); |
Jesper Juhl | 02db3db | 2012-12-26 21:31:51 +0100 | [diff] [blame] | 2134 | if (cfg_data == NULL) { |
| 2135 | ret = -ENOMEM; |
| 2136 | goto leave; |
| 2137 | } |
Naresh Kumar Inna | a3667aa | 2012-11-15 22:41:18 +0530 | [diff] [blame] | 2138 | |
| 2139 | memcpy((void *)cfg_data, (const void *)cf->data, cf->size); |
Jesper Juhl | 02db3db | 2012-12-26 21:31:51 +0100 | [diff] [blame] | 2140 | if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) { |
| 2141 | ret = -EINVAL; |
| 2142 | goto leave; |
| 2143 | } |
Naresh Kumar Inna | a3667aa | 2012-11-15 22:41:18 +0530 | [diff] [blame] | 2144 | |
| 2145 | mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param); |
| 2146 | maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16; |
| 2147 | |
| 2148 | ret = csio_memory_write(hw, mtype, maddr, |
| 2149 | cf->size + value_to_add, cfg_data); |
| 2150 | if (ret == 0) { |
| 2151 | csio_info(hw, "config file upgraded to " CSIO_CF_FNAME "\n"); |
| 2152 | strncpy(path, "/lib/firmware/" CSIO_CF_FNAME, 64); |
| 2153 | } |
| 2154 | |
Jesper Juhl | 02db3db | 2012-12-26 21:31:51 +0100 | [diff] [blame] | 2155 | leave: |
Naresh Kumar Inna | a3667aa | 2012-11-15 22:41:18 +0530 | [diff] [blame] | 2156 | kfree(cfg_data); |
| 2157 | release_firmware(cf); |
Naresh Kumar Inna | a3667aa | 2012-11-15 22:41:18 +0530 | [diff] [blame] | 2158 | return ret; |
| 2159 | } |
| 2160 | |
| 2161 | /* |
| 2162 | * HW initialization: contact FW, obtain config, perform basic init. |
| 2163 | * |
| 2164 | * If the firmware we're dealing with has Configuration File support, then |
| 2165 | * we use that to perform all configuration -- either using the configuration |
| 2166 | * file stored in flash on the adapter or using a filesystem-local file |
| 2167 | * if available. |
| 2168 | * |
| 2169 | * If we don't have configuration file support in the firmware, then we'll |
| 2170 | * have to set things up the old fashioned way with hard-coded register |
| 2171 | * writes and firmware commands ... |
| 2172 | */ |
| 2173 | |
| 2174 | /* |
| 2175 | * Attempt to initialize the HW via a Firmware Configuration File. |
| 2176 | */ |
| 2177 | static int |
| 2178 | csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param) |
| 2179 | { |
| 2180 | unsigned int mtype, maddr; |
| 2181 | int rv; |
| 2182 | uint32_t finiver, finicsum, cfcsum; |
| 2183 | int using_flash; |
| 2184 | char path[64]; |
| 2185 | |
| 2186 | /* |
| 2187 | * Reset device if necessary |
| 2188 | */ |
| 2189 | if (reset) { |
| 2190 | rv = csio_do_reset(hw, true); |
| 2191 | if (rv != 0) |
| 2192 | goto bye; |
| 2193 | } |
| 2194 | |
| 2195 | /* |
| 2196 | * If we have a configuration file in host , |
| 2197 | * then use that. Otherwise, use the configuration file stored |
| 2198 | * in the HW flash ... |
| 2199 | */ |
| 2200 | spin_unlock_irq(&hw->lock); |
| 2201 | rv = csio_hw_flash_config(hw, fw_cfg_param, path); |
| 2202 | spin_lock_irq(&hw->lock); |
| 2203 | if (rv != 0) { |
| 2204 | if (rv == -ENOENT) { |
| 2205 | /* |
| 2206 | * config file was not found. Use default |
| 2207 | * config file from flash. |
| 2208 | */ |
| 2209 | mtype = FW_MEMTYPE_CF_FLASH; |
| 2210 | maddr = csio_hw_flash_cfg_addr(hw); |
| 2211 | using_flash = 1; |
| 2212 | } else { |
| 2213 | /* |
| 2214 | * we revert back to the hardwired config if |
| 2215 | * flashing failed. |
| 2216 | */ |
| 2217 | goto bye; |
| 2218 | } |
| 2219 | } else { |
| 2220 | mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param); |
| 2221 | maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16; |
| 2222 | using_flash = 0; |
| 2223 | } |
| 2224 | |
| 2225 | hw->cfg_store = (uint8_t)mtype; |
| 2226 | |
| 2227 | /* |
| 2228 | * Issue a Capability Configuration command to the firmware to get it |
| 2229 | * to parse the Configuration File. |
| 2230 | */ |
| 2231 | rv = csio_hw_fw_config_file(hw, mtype, maddr, &finiver, |
| 2232 | &finicsum, &cfcsum); |
| 2233 | if (rv != 0) |
| 2234 | goto bye; |
| 2235 | |
| 2236 | hw->cfg_finiver = finiver; |
| 2237 | hw->cfg_finicsum = finicsum; |
| 2238 | hw->cfg_cfcsum = cfcsum; |
| 2239 | hw->cfg_csum_status = true; |
| 2240 | |
| 2241 | if (finicsum != cfcsum) { |
| 2242 | csio_warn(hw, |
| 2243 | "Config File checksum mismatch: csum=%#x, computed=%#x\n", |
| 2244 | finicsum, cfcsum); |
| 2245 | |
| 2246 | hw->cfg_csum_status = false; |
| 2247 | } |
| 2248 | |
| 2249 | /* |
| 2250 | * Note that we're operating with parameters |
| 2251 | * not supplied by the driver, rather than from hard-wired |
| 2252 | * initialization constants buried in the driver. |
| 2253 | */ |
| 2254 | hw->flags |= CSIO_HWF_USING_SOFT_PARAMS; |
| 2255 | |
| 2256 | /* device parameters */ |
| 2257 | rv = csio_get_device_params(hw); |
| 2258 | if (rv != 0) |
| 2259 | goto bye; |
| 2260 | |
| 2261 | /* Configure SGE */ |
| 2262 | csio_wr_sge_init(hw); |
| 2263 | |
| 2264 | /* |
| 2265 | * And finally tell the firmware to initialize itself using the |
| 2266 | * parameters from the Configuration File. |
| 2267 | */ |
| 2268 | /* Post event to notify completion of configuration */ |
| 2269 | csio_post_event(&hw->sm, CSIO_HWE_INIT); |
| 2270 | |
| 2271 | csio_info(hw, |
| 2272 | "Firmware Configuration File %s, version %#x, computed checksum %#x\n", |
| 2273 | (using_flash ? "in device FLASH" : path), finiver, cfcsum); |
| 2274 | |
| 2275 | return 0; |
| 2276 | |
| 2277 | /* |
| 2278 | * Something bad happened. Return the error ... |
| 2279 | */ |
| 2280 | bye: |
| 2281 | hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS; |
| 2282 | csio_dbg(hw, "Configuration file error %d\n", rv); |
| 2283 | return rv; |
| 2284 | } |
| 2285 | |
| 2286 | /* |
| 2287 | * Attempt to initialize the adapter via hard-coded, driver supplied |
| 2288 | * parameters ... |
| 2289 | */ |
| 2290 | static int |
| 2291 | csio_hw_no_fwconfig(struct csio_hw *hw, int reset) |
| 2292 | { |
| 2293 | int rv; |
| 2294 | /* |
| 2295 | * Reset device if necessary |
| 2296 | */ |
| 2297 | if (reset) { |
| 2298 | rv = csio_do_reset(hw, true); |
| 2299 | if (rv != 0) |
| 2300 | goto out; |
| 2301 | } |
| 2302 | |
| 2303 | /* Get and set device capabilities */ |
| 2304 | rv = csio_config_device_caps(hw); |
| 2305 | if (rv != 0) |
| 2306 | goto out; |
| 2307 | |
| 2308 | /* Config Global RSS command */ |
| 2309 | rv = csio_config_global_rss(hw); |
| 2310 | if (rv != 0) |
| 2311 | goto out; |
| 2312 | |
| 2313 | /* Configure PF/VF capabilities of device */ |
| 2314 | rv = csio_config_pfvf(hw); |
| 2315 | if (rv != 0) |
| 2316 | goto out; |
| 2317 | |
| 2318 | /* device parameters */ |
| 2319 | rv = csio_get_device_params(hw); |
| 2320 | if (rv != 0) |
| 2321 | goto out; |
| 2322 | |
| 2323 | /* Configure SGE */ |
| 2324 | csio_wr_sge_init(hw); |
| 2325 | |
| 2326 | /* Post event to notify completion of configuration */ |
| 2327 | csio_post_event(&hw->sm, CSIO_HWE_INIT); |
| 2328 | |
| 2329 | out: |
| 2330 | return rv; |
| 2331 | } |
| 2332 | |
| 2333 | /* |
| 2334 | * Returns -EINVAL if attempts to flash the firmware failed |
| 2335 | * else returns 0, |
| 2336 | * if flashing was not attempted because the card had the |
| 2337 | * latest firmware ECANCELED is returned |
| 2338 | */ |
| 2339 | static int |
| 2340 | csio_hw_flash_fw(struct csio_hw *hw) |
| 2341 | { |
| 2342 | int ret = -ECANCELED; |
| 2343 | const struct firmware *fw; |
| 2344 | const struct fw_hdr *hdr; |
| 2345 | u32 fw_ver; |
| 2346 | struct pci_dev *pci_dev = hw->pdev; |
| 2347 | struct device *dev = &pci_dev->dev ; |
| 2348 | |
| 2349 | if (request_firmware(&fw, CSIO_FW_FNAME, dev) < 0) { |
| 2350 | csio_err(hw, "could not find firmware image " CSIO_FW_FNAME |
| 2351 | ",err: %d\n", ret); |
| 2352 | return -EINVAL; |
| 2353 | } |
| 2354 | |
| 2355 | hdr = (const struct fw_hdr *)fw->data; |
| 2356 | fw_ver = ntohl(hdr->fw_ver); |
| 2357 | if (FW_HDR_FW_VER_MAJOR_GET(fw_ver) != FW_VERSION_MAJOR) |
| 2358 | return -EINVAL; /* wrong major version, won't do */ |
| 2359 | |
| 2360 | /* |
| 2361 | * If the flash FW is unusable or we found something newer, load it. |
| 2362 | */ |
| 2363 | if (FW_HDR_FW_VER_MAJOR_GET(hw->fwrev) != FW_VERSION_MAJOR || |
| 2364 | fw_ver > hw->fwrev) { |
| 2365 | ret = csio_hw_fw_upgrade(hw, hw->pfn, fw->data, fw->size, |
| 2366 | /*force=*/false); |
| 2367 | if (!ret) |
| 2368 | csio_info(hw, "firmware upgraded to version %pI4 from " |
| 2369 | CSIO_FW_FNAME "\n", &hdr->fw_ver); |
| 2370 | else |
| 2371 | csio_err(hw, "firmware upgrade failed! err=%d\n", ret); |
| 2372 | } |
| 2373 | |
| 2374 | release_firmware(fw); |
| 2375 | |
| 2376 | return ret; |
| 2377 | } |
| 2378 | |
| 2379 | |
| 2380 | /* |
| 2381 | * csio_hw_configure - Configure HW |
| 2382 | * @hw - HW module |
| 2383 | * |
| 2384 | */ |
| 2385 | static void |
| 2386 | csio_hw_configure(struct csio_hw *hw) |
| 2387 | { |
| 2388 | int reset = 1; |
| 2389 | int rv; |
| 2390 | u32 param[1]; |
| 2391 | |
| 2392 | rv = csio_hw_dev_ready(hw); |
| 2393 | if (rv != 0) { |
| 2394 | CSIO_INC_STATS(hw, n_err_fatal); |
| 2395 | csio_post_event(&hw->sm, CSIO_HWE_FATAL); |
| 2396 | goto out; |
| 2397 | } |
| 2398 | |
| 2399 | /* HW version */ |
| 2400 | hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV); |
| 2401 | |
| 2402 | /* Needed for FW download */ |
| 2403 | rv = csio_hw_get_flash_params(hw); |
| 2404 | if (rv != 0) { |
| 2405 | csio_err(hw, "Failed to get serial flash params rv:%d\n", rv); |
| 2406 | csio_post_event(&hw->sm, CSIO_HWE_FATAL); |
| 2407 | goto out; |
| 2408 | } |
| 2409 | |
| 2410 | /* Set pci completion timeout value to 4 seconds. */ |
| 2411 | csio_set_pcie_completion_timeout(hw, 0xd); |
| 2412 | |
| 2413 | csio_hw_set_mem_win(hw); |
| 2414 | |
| 2415 | rv = csio_hw_get_fw_version(hw, &hw->fwrev); |
| 2416 | if (rv != 0) |
| 2417 | goto out; |
| 2418 | |
| 2419 | csio_hw_print_fw_version(hw, "Firmware revision"); |
| 2420 | |
| 2421 | rv = csio_do_hello(hw, &hw->fw_state); |
| 2422 | if (rv != 0) { |
| 2423 | CSIO_INC_STATS(hw, n_err_fatal); |
| 2424 | csio_post_event(&hw->sm, CSIO_HWE_FATAL); |
| 2425 | goto out; |
| 2426 | } |
| 2427 | |
| 2428 | /* Read vpd */ |
| 2429 | rv = csio_hw_get_vpd_params(hw, &hw->vpd); |
| 2430 | if (rv != 0) |
| 2431 | goto out; |
| 2432 | |
| 2433 | if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) { |
| 2434 | rv = csio_hw_check_fw_version(hw); |
| 2435 | if (rv == -EINVAL) { |
| 2436 | |
| 2437 | /* Do firmware update */ |
| 2438 | spin_unlock_irq(&hw->lock); |
| 2439 | rv = csio_hw_flash_fw(hw); |
| 2440 | spin_lock_irq(&hw->lock); |
| 2441 | |
| 2442 | if (rv == 0) { |
| 2443 | reset = 0; |
| 2444 | /* |
| 2445 | * Note that the chip was reset as part of the |
| 2446 | * firmware upgrade so we don't reset it again |
| 2447 | * below and grab the new firmware version. |
| 2448 | */ |
| 2449 | rv = csio_hw_check_fw_version(hw); |
| 2450 | } |
| 2451 | } |
| 2452 | /* |
| 2453 | * If the firmware doesn't support Configuration |
| 2454 | * Files, use the old Driver-based, hard-wired |
| 2455 | * initialization. Otherwise, try using the |
| 2456 | * Configuration File support and fall back to the |
| 2457 | * Driver-based initialization if there's no |
| 2458 | * Configuration File found. |
| 2459 | */ |
| 2460 | if (csio_hw_check_fwconfig(hw, param) == 0) { |
| 2461 | rv = csio_hw_use_fwconfig(hw, reset, param); |
| 2462 | if (rv == -ENOENT) |
| 2463 | goto out; |
| 2464 | if (rv != 0) { |
| 2465 | csio_info(hw, |
| 2466 | "No Configuration File present " |
| 2467 | "on adapter. Using hard-wired " |
| 2468 | "configuration parameters.\n"); |
| 2469 | rv = csio_hw_no_fwconfig(hw, reset); |
| 2470 | } |
| 2471 | } else { |
| 2472 | rv = csio_hw_no_fwconfig(hw, reset); |
| 2473 | } |
| 2474 | |
| 2475 | if (rv != 0) |
| 2476 | goto out; |
| 2477 | |
| 2478 | } else { |
| 2479 | if (hw->fw_state == CSIO_DEV_STATE_INIT) { |
| 2480 | |
| 2481 | /* device parameters */ |
| 2482 | rv = csio_get_device_params(hw); |
| 2483 | if (rv != 0) |
| 2484 | goto out; |
| 2485 | |
| 2486 | /* Get device capabilities */ |
| 2487 | rv = csio_config_device_caps(hw); |
| 2488 | if (rv != 0) |
| 2489 | goto out; |
| 2490 | |
| 2491 | /* Configure SGE */ |
| 2492 | csio_wr_sge_init(hw); |
| 2493 | |
| 2494 | /* Post event to notify completion of configuration */ |
| 2495 | csio_post_event(&hw->sm, CSIO_HWE_INIT); |
| 2496 | goto out; |
| 2497 | } |
| 2498 | } /* if not master */ |
| 2499 | |
| 2500 | out: |
| 2501 | return; |
| 2502 | } |
| 2503 | |
| 2504 | /* |
| 2505 | * csio_hw_initialize - Initialize HW |
| 2506 | * @hw - HW module |
| 2507 | * |
| 2508 | */ |
| 2509 | static void |
| 2510 | csio_hw_initialize(struct csio_hw *hw) |
| 2511 | { |
| 2512 | struct csio_mb *mbp; |
| 2513 | enum fw_retval retval; |
| 2514 | int rv; |
| 2515 | int i; |
| 2516 | |
| 2517 | if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) { |
| 2518 | mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC); |
| 2519 | if (!mbp) |
| 2520 | goto out; |
| 2521 | |
| 2522 | csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL); |
| 2523 | |
| 2524 | if (csio_mb_issue(hw, mbp)) { |
| 2525 | csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n"); |
| 2526 | goto free_and_out; |
| 2527 | } |
| 2528 | |
| 2529 | retval = csio_mb_fw_retval(mbp); |
| 2530 | if (retval != FW_SUCCESS) { |
| 2531 | csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n", |
| 2532 | retval); |
| 2533 | goto free_and_out; |
| 2534 | } |
| 2535 | |
| 2536 | mempool_free(mbp, hw->mb_mempool); |
| 2537 | } |
| 2538 | |
| 2539 | rv = csio_get_fcoe_resinfo(hw); |
| 2540 | if (rv != 0) { |
| 2541 | csio_err(hw, "Failed to read fcoe resource info: %d\n", rv); |
| 2542 | goto out; |
| 2543 | } |
| 2544 | |
| 2545 | spin_unlock_irq(&hw->lock); |
| 2546 | rv = csio_config_queues(hw); |
| 2547 | spin_lock_irq(&hw->lock); |
| 2548 | |
| 2549 | if (rv != 0) { |
| 2550 | csio_err(hw, "Config of queues failed!: %d\n", rv); |
| 2551 | goto out; |
| 2552 | } |
| 2553 | |
| 2554 | for (i = 0; i < hw->num_pports; i++) |
| 2555 | hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA; |
| 2556 | |
| 2557 | if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) { |
| 2558 | rv = csio_enable_ports(hw); |
| 2559 | if (rv != 0) { |
| 2560 | csio_err(hw, "Failed to enable ports: %d\n", rv); |
| 2561 | goto out; |
| 2562 | } |
| 2563 | } |
| 2564 | |
| 2565 | csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE); |
| 2566 | return; |
| 2567 | |
| 2568 | free_and_out: |
| 2569 | mempool_free(mbp, hw->mb_mempool); |
| 2570 | out: |
| 2571 | return; |
| 2572 | } |
| 2573 | |
| 2574 | #define PF_INTR_MASK (PFSW | PFCIM) |
| 2575 | |
| 2576 | /* |
| 2577 | * csio_hw_intr_enable - Enable HW interrupts |
| 2578 | * @hw: Pointer to HW module. |
| 2579 | * |
| 2580 | * Enable interrupts in HW registers. |
| 2581 | */ |
| 2582 | static void |
| 2583 | csio_hw_intr_enable(struct csio_hw *hw) |
| 2584 | { |
| 2585 | uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw)); |
| 2586 | uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI)); |
| 2587 | uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE); |
| 2588 | |
| 2589 | /* |
| 2590 | * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up |
| 2591 | * by FW, so do nothing for INTX. |
| 2592 | */ |
| 2593 | if (hw->intr_mode == CSIO_IM_MSIX) |
| 2594 | csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG), |
| 2595 | AIVEC(AIVEC_MASK), vec); |
| 2596 | else if (hw->intr_mode == CSIO_IM_MSI) |
| 2597 | csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG), |
| 2598 | AIVEC(AIVEC_MASK), 0); |
| 2599 | |
| 2600 | csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE)); |
| 2601 | |
| 2602 | /* Turn on MB interrupts - this will internally flush PIO as well */ |
| 2603 | csio_mb_intr_enable(hw); |
| 2604 | |
| 2605 | /* These are common registers - only a master can modify them */ |
| 2606 | if (csio_is_hw_master(hw)) { |
| 2607 | /* |
| 2608 | * Disable the Serial FLASH interrupt, if enabled! |
| 2609 | */ |
| 2610 | pl &= (~SF); |
| 2611 | csio_wr_reg32(hw, pl, PL_INT_ENABLE); |
| 2612 | |
| 2613 | csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE | |
| 2614 | EGRESS_SIZE_ERR | ERR_INVALID_CIDX_INC | |
| 2615 | ERR_CPL_OPCODE_0 | ERR_DROPPED_DB | |
| 2616 | ERR_DATA_CPL_ON_HIGH_QID1 | |
| 2617 | ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 | |
| 2618 | ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 | |
| 2619 | ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO | |
| 2620 | ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR, |
| 2621 | SGE_INT_ENABLE3); |
| 2622 | csio_set_reg_field(hw, PL_INT_MAP0, 0, 1 << pf); |
| 2623 | } |
| 2624 | |
| 2625 | hw->flags |= CSIO_HWF_HW_INTR_ENABLED; |
| 2626 | |
| 2627 | } |
| 2628 | |
| 2629 | /* |
| 2630 | * csio_hw_intr_disable - Disable HW interrupts |
| 2631 | * @hw: Pointer to HW module. |
| 2632 | * |
| 2633 | * Turn off Mailbox and PCI_PF_CFG interrupts. |
| 2634 | */ |
| 2635 | void |
| 2636 | csio_hw_intr_disable(struct csio_hw *hw) |
| 2637 | { |
| 2638 | uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI)); |
| 2639 | |
| 2640 | if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED)) |
| 2641 | return; |
| 2642 | |
| 2643 | hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED; |
| 2644 | |
| 2645 | csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE)); |
| 2646 | if (csio_is_hw_master(hw)) |
| 2647 | csio_set_reg_field(hw, PL_INT_MAP0, 1 << pf, 0); |
| 2648 | |
| 2649 | /* Turn off MB interrupts */ |
| 2650 | csio_mb_intr_disable(hw); |
| 2651 | |
| 2652 | } |
| 2653 | |
| 2654 | static void |
| 2655 | csio_hw_fatal_err(struct csio_hw *hw) |
| 2656 | { |
| 2657 | csio_set_reg_field(hw, SGE_CONTROL, GLOBALENABLE, 0); |
| 2658 | csio_hw_intr_disable(hw); |
| 2659 | |
| 2660 | /* Do not reset HW, we may need FW state for debugging */ |
| 2661 | csio_fatal(hw, "HW Fatal error encountered!\n"); |
| 2662 | } |
| 2663 | |
| 2664 | /*****************************************************************************/ |
| 2665 | /* START: HW SM */ |
| 2666 | /*****************************************************************************/ |
| 2667 | /* |
| 2668 | * csio_hws_uninit - Uninit state |
| 2669 | * @hw - HW module |
| 2670 | * @evt - Event |
| 2671 | * |
| 2672 | */ |
| 2673 | static void |
| 2674 | csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt) |
| 2675 | { |
| 2676 | hw->prev_evt = hw->cur_evt; |
| 2677 | hw->cur_evt = evt; |
| 2678 | CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| 2679 | |
| 2680 | switch (evt) { |
| 2681 | case CSIO_HWE_CFG: |
| 2682 | csio_set_state(&hw->sm, csio_hws_configuring); |
| 2683 | csio_hw_configure(hw); |
| 2684 | break; |
| 2685 | |
| 2686 | default: |
| 2687 | CSIO_INC_STATS(hw, n_evt_unexp); |
| 2688 | break; |
| 2689 | } |
| 2690 | } |
| 2691 | |
| 2692 | /* |
| 2693 | * csio_hws_configuring - Configuring state |
| 2694 | * @hw - HW module |
| 2695 | * @evt - Event |
| 2696 | * |
| 2697 | */ |
| 2698 | static void |
| 2699 | csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt) |
| 2700 | { |
| 2701 | hw->prev_evt = hw->cur_evt; |
| 2702 | hw->cur_evt = evt; |
| 2703 | CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| 2704 | |
| 2705 | switch (evt) { |
| 2706 | case CSIO_HWE_INIT: |
| 2707 | csio_set_state(&hw->sm, csio_hws_initializing); |
| 2708 | csio_hw_initialize(hw); |
| 2709 | break; |
| 2710 | |
| 2711 | case CSIO_HWE_INIT_DONE: |
| 2712 | csio_set_state(&hw->sm, csio_hws_ready); |
| 2713 | /* Fan out event to all lnode SMs */ |
| 2714 | csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY); |
| 2715 | break; |
| 2716 | |
| 2717 | case CSIO_HWE_FATAL: |
| 2718 | csio_set_state(&hw->sm, csio_hws_uninit); |
| 2719 | break; |
| 2720 | |
| 2721 | case CSIO_HWE_PCI_REMOVE: |
| 2722 | csio_do_bye(hw); |
| 2723 | break; |
| 2724 | default: |
| 2725 | CSIO_INC_STATS(hw, n_evt_unexp); |
| 2726 | break; |
| 2727 | } |
| 2728 | } |
| 2729 | |
| 2730 | /* |
| 2731 | * csio_hws_initializing - Initialiazing state |
| 2732 | * @hw - HW module |
| 2733 | * @evt - Event |
| 2734 | * |
| 2735 | */ |
| 2736 | static void |
| 2737 | csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt) |
| 2738 | { |
| 2739 | hw->prev_evt = hw->cur_evt; |
| 2740 | hw->cur_evt = evt; |
| 2741 | CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| 2742 | |
| 2743 | switch (evt) { |
| 2744 | case CSIO_HWE_INIT_DONE: |
| 2745 | csio_set_state(&hw->sm, csio_hws_ready); |
| 2746 | |
| 2747 | /* Fan out event to all lnode SMs */ |
| 2748 | csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY); |
| 2749 | |
| 2750 | /* Enable interrupts */ |
| 2751 | csio_hw_intr_enable(hw); |
| 2752 | break; |
| 2753 | |
| 2754 | case CSIO_HWE_FATAL: |
| 2755 | csio_set_state(&hw->sm, csio_hws_uninit); |
| 2756 | break; |
| 2757 | |
| 2758 | case CSIO_HWE_PCI_REMOVE: |
| 2759 | csio_do_bye(hw); |
| 2760 | break; |
| 2761 | |
| 2762 | default: |
| 2763 | CSIO_INC_STATS(hw, n_evt_unexp); |
| 2764 | break; |
| 2765 | } |
| 2766 | } |
| 2767 | |
| 2768 | /* |
| 2769 | * csio_hws_ready - Ready state |
| 2770 | * @hw - HW module |
| 2771 | * @evt - Event |
| 2772 | * |
| 2773 | */ |
| 2774 | static void |
| 2775 | csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt) |
| 2776 | { |
| 2777 | /* Remember the event */ |
| 2778 | hw->evtflag = evt; |
| 2779 | |
| 2780 | hw->prev_evt = hw->cur_evt; |
| 2781 | hw->cur_evt = evt; |
| 2782 | CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| 2783 | |
| 2784 | switch (evt) { |
| 2785 | case CSIO_HWE_HBA_RESET: |
| 2786 | case CSIO_HWE_FW_DLOAD: |
| 2787 | case CSIO_HWE_SUSPEND: |
| 2788 | case CSIO_HWE_PCI_REMOVE: |
| 2789 | case CSIO_HWE_PCIERR_DETECTED: |
| 2790 | csio_set_state(&hw->sm, csio_hws_quiescing); |
| 2791 | /* cleanup all outstanding cmds */ |
| 2792 | if (evt == CSIO_HWE_HBA_RESET || |
| 2793 | evt == CSIO_HWE_PCIERR_DETECTED) |
| 2794 | csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false); |
| 2795 | else |
| 2796 | csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true); |
| 2797 | |
| 2798 | csio_hw_intr_disable(hw); |
| 2799 | csio_hw_mbm_cleanup(hw); |
| 2800 | csio_evtq_stop(hw); |
| 2801 | csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP); |
| 2802 | csio_evtq_flush(hw); |
| 2803 | csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw)); |
| 2804 | csio_post_event(&hw->sm, CSIO_HWE_QUIESCED); |
| 2805 | break; |
| 2806 | |
| 2807 | case CSIO_HWE_FATAL: |
| 2808 | csio_set_state(&hw->sm, csio_hws_uninit); |
| 2809 | break; |
| 2810 | |
| 2811 | default: |
| 2812 | CSIO_INC_STATS(hw, n_evt_unexp); |
| 2813 | break; |
| 2814 | } |
| 2815 | } |
| 2816 | |
| 2817 | /* |
| 2818 | * csio_hws_quiescing - Quiescing state |
| 2819 | * @hw - HW module |
| 2820 | * @evt - Event |
| 2821 | * |
| 2822 | */ |
| 2823 | static void |
| 2824 | csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt) |
| 2825 | { |
| 2826 | hw->prev_evt = hw->cur_evt; |
| 2827 | hw->cur_evt = evt; |
| 2828 | CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| 2829 | |
| 2830 | switch (evt) { |
| 2831 | case CSIO_HWE_QUIESCED: |
| 2832 | switch (hw->evtflag) { |
| 2833 | case CSIO_HWE_FW_DLOAD: |
| 2834 | csio_set_state(&hw->sm, csio_hws_resetting); |
| 2835 | /* Download firmware */ |
| 2836 | /* Fall through */ |
| 2837 | |
| 2838 | case CSIO_HWE_HBA_RESET: |
| 2839 | csio_set_state(&hw->sm, csio_hws_resetting); |
| 2840 | /* Start reset of the HBA */ |
| 2841 | csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET); |
| 2842 | csio_wr_destroy_queues(hw, false); |
| 2843 | csio_do_reset(hw, false); |
| 2844 | csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE); |
| 2845 | break; |
| 2846 | |
| 2847 | case CSIO_HWE_PCI_REMOVE: |
| 2848 | csio_set_state(&hw->sm, csio_hws_removing); |
| 2849 | csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE); |
| 2850 | csio_wr_destroy_queues(hw, true); |
| 2851 | /* Now send the bye command */ |
| 2852 | csio_do_bye(hw); |
| 2853 | break; |
| 2854 | |
| 2855 | case CSIO_HWE_SUSPEND: |
| 2856 | csio_set_state(&hw->sm, csio_hws_quiesced); |
| 2857 | break; |
| 2858 | |
| 2859 | case CSIO_HWE_PCIERR_DETECTED: |
| 2860 | csio_set_state(&hw->sm, csio_hws_pcierr); |
| 2861 | csio_wr_destroy_queues(hw, false); |
| 2862 | break; |
| 2863 | |
| 2864 | default: |
| 2865 | CSIO_INC_STATS(hw, n_evt_unexp); |
| 2866 | break; |
| 2867 | |
| 2868 | } |
| 2869 | break; |
| 2870 | |
| 2871 | default: |
| 2872 | CSIO_INC_STATS(hw, n_evt_unexp); |
| 2873 | break; |
| 2874 | } |
| 2875 | } |
| 2876 | |
| 2877 | /* |
| 2878 | * csio_hws_quiesced - Quiesced state |
| 2879 | * @hw - HW module |
| 2880 | * @evt - Event |
| 2881 | * |
| 2882 | */ |
| 2883 | static void |
| 2884 | csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt) |
| 2885 | { |
| 2886 | hw->prev_evt = hw->cur_evt; |
| 2887 | hw->cur_evt = evt; |
| 2888 | CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| 2889 | |
| 2890 | switch (evt) { |
| 2891 | case CSIO_HWE_RESUME: |
| 2892 | csio_set_state(&hw->sm, csio_hws_configuring); |
| 2893 | csio_hw_configure(hw); |
| 2894 | break; |
| 2895 | |
| 2896 | default: |
| 2897 | CSIO_INC_STATS(hw, n_evt_unexp); |
| 2898 | break; |
| 2899 | } |
| 2900 | } |
| 2901 | |
| 2902 | /* |
| 2903 | * csio_hws_resetting - HW Resetting state |
| 2904 | * @hw - HW module |
| 2905 | * @evt - Event |
| 2906 | * |
| 2907 | */ |
| 2908 | static void |
| 2909 | csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt) |
| 2910 | { |
| 2911 | hw->prev_evt = hw->cur_evt; |
| 2912 | hw->cur_evt = evt; |
| 2913 | CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| 2914 | |
| 2915 | switch (evt) { |
| 2916 | case CSIO_HWE_HBA_RESET_DONE: |
| 2917 | csio_evtq_start(hw); |
| 2918 | csio_set_state(&hw->sm, csio_hws_configuring); |
| 2919 | csio_hw_configure(hw); |
| 2920 | break; |
| 2921 | |
| 2922 | default: |
| 2923 | CSIO_INC_STATS(hw, n_evt_unexp); |
| 2924 | break; |
| 2925 | } |
| 2926 | } |
| 2927 | |
| 2928 | /* |
| 2929 | * csio_hws_removing - PCI Hotplug removing state |
| 2930 | * @hw - HW module |
| 2931 | * @evt - Event |
| 2932 | * |
| 2933 | */ |
| 2934 | static void |
| 2935 | csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt) |
| 2936 | { |
| 2937 | hw->prev_evt = hw->cur_evt; |
| 2938 | hw->cur_evt = evt; |
| 2939 | CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| 2940 | |
| 2941 | switch (evt) { |
| 2942 | case CSIO_HWE_HBA_RESET: |
| 2943 | if (!csio_is_hw_master(hw)) |
| 2944 | break; |
| 2945 | /* |
| 2946 | * The BYE should have alerady been issued, so we cant |
| 2947 | * use the mailbox interface. Hence we use the PL_RST |
| 2948 | * register directly. |
| 2949 | */ |
| 2950 | csio_err(hw, "Resetting HW and waiting 2 seconds...\n"); |
| 2951 | csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST); |
| 2952 | mdelay(2000); |
| 2953 | break; |
| 2954 | |
| 2955 | /* Should never receive any new events */ |
| 2956 | default: |
| 2957 | CSIO_INC_STATS(hw, n_evt_unexp); |
| 2958 | break; |
| 2959 | |
| 2960 | } |
| 2961 | } |
| 2962 | |
| 2963 | /* |
| 2964 | * csio_hws_pcierr - PCI Error state |
| 2965 | * @hw - HW module |
| 2966 | * @evt - Event |
| 2967 | * |
| 2968 | */ |
| 2969 | static void |
| 2970 | csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt) |
| 2971 | { |
| 2972 | hw->prev_evt = hw->cur_evt; |
| 2973 | hw->cur_evt = evt; |
| 2974 | CSIO_INC_STATS(hw, n_evt_sm[evt]); |
| 2975 | |
| 2976 | switch (evt) { |
| 2977 | case CSIO_HWE_PCIERR_SLOT_RESET: |
| 2978 | csio_evtq_start(hw); |
| 2979 | csio_set_state(&hw->sm, csio_hws_configuring); |
| 2980 | csio_hw_configure(hw); |
| 2981 | break; |
| 2982 | |
| 2983 | default: |
| 2984 | CSIO_INC_STATS(hw, n_evt_unexp); |
| 2985 | break; |
| 2986 | } |
| 2987 | } |
| 2988 | |
| 2989 | /*****************************************************************************/ |
| 2990 | /* END: HW SM */ |
| 2991 | /*****************************************************************************/ |
| 2992 | |
| 2993 | /* Slow path handlers */ |
| 2994 | struct intr_info { |
| 2995 | unsigned int mask; /* bits to check in interrupt status */ |
| 2996 | const char *msg; /* message to print or NULL */ |
| 2997 | short stat_idx; /* stat counter to increment or -1 */ |
| 2998 | unsigned short fatal; /* whether the condition reported is fatal */ |
| 2999 | }; |
| 3000 | |
| 3001 | /* |
| 3002 | * csio_handle_intr_status - table driven interrupt handler |
| 3003 | * @hw: HW instance |
| 3004 | * @reg: the interrupt status register to process |
| 3005 | * @acts: table of interrupt actions |
| 3006 | * |
| 3007 | * A table driven interrupt handler that applies a set of masks to an |
| 3008 | * interrupt status word and performs the corresponding actions if the |
| 3009 | * interrupts described by the mask have occured. The actions include |
| 3010 | * optionally emitting a warning or alert message. The table is terminated |
| 3011 | * by an entry specifying mask 0. Returns the number of fatal interrupt |
| 3012 | * conditions. |
| 3013 | */ |
| 3014 | static int |
| 3015 | csio_handle_intr_status(struct csio_hw *hw, unsigned int reg, |
| 3016 | const struct intr_info *acts) |
| 3017 | { |
| 3018 | int fatal = 0; |
| 3019 | unsigned int mask = 0; |
| 3020 | unsigned int status = csio_rd_reg32(hw, reg); |
| 3021 | |
| 3022 | for ( ; acts->mask; ++acts) { |
| 3023 | if (!(status & acts->mask)) |
| 3024 | continue; |
| 3025 | if (acts->fatal) { |
| 3026 | fatal++; |
| 3027 | csio_fatal(hw, "Fatal %s (0x%x)\n", |
| 3028 | acts->msg, status & acts->mask); |
| 3029 | } else if (acts->msg) |
| 3030 | csio_info(hw, "%s (0x%x)\n", |
| 3031 | acts->msg, status & acts->mask); |
| 3032 | mask |= acts->mask; |
| 3033 | } |
| 3034 | status &= mask; |
| 3035 | if (status) /* clear processed interrupts */ |
| 3036 | csio_wr_reg32(hw, status, reg); |
| 3037 | return fatal; |
| 3038 | } |
| 3039 | |
| 3040 | /* |
| 3041 | * Interrupt handler for the PCIE module. |
| 3042 | */ |
| 3043 | static void |
| 3044 | csio_pcie_intr_handler(struct csio_hw *hw) |
| 3045 | { |
| 3046 | static struct intr_info sysbus_intr_info[] = { |
| 3047 | { RNPP, "RXNP array parity error", -1, 1 }, |
| 3048 | { RPCP, "RXPC array parity error", -1, 1 }, |
| 3049 | { RCIP, "RXCIF array parity error", -1, 1 }, |
| 3050 | { RCCP, "Rx completions control array parity error", -1, 1 }, |
| 3051 | { RFTP, "RXFT array parity error", -1, 1 }, |
| 3052 | { 0, NULL, 0, 0 } |
| 3053 | }; |
| 3054 | static struct intr_info pcie_port_intr_info[] = { |
| 3055 | { TPCP, "TXPC array parity error", -1, 1 }, |
| 3056 | { TNPP, "TXNP array parity error", -1, 1 }, |
| 3057 | { TFTP, "TXFT array parity error", -1, 1 }, |
| 3058 | { TCAP, "TXCA array parity error", -1, 1 }, |
| 3059 | { TCIP, "TXCIF array parity error", -1, 1 }, |
| 3060 | { RCAP, "RXCA array parity error", -1, 1 }, |
| 3061 | { OTDD, "outbound request TLP discarded", -1, 1 }, |
| 3062 | { RDPE, "Rx data parity error", -1, 1 }, |
| 3063 | { TDUE, "Tx uncorrectable data error", -1, 1 }, |
| 3064 | { 0, NULL, 0, 0 } |
| 3065 | }; |
| 3066 | static struct intr_info pcie_intr_info[] = { |
| 3067 | { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 }, |
| 3068 | { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 }, |
| 3069 | { MSIDATAPERR, "MSI data parity error", -1, 1 }, |
| 3070 | { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 }, |
| 3071 | { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 }, |
| 3072 | { MSIXDATAPERR, "MSI-X data parity error", -1, 1 }, |
| 3073 | { MSIXDIPERR, "MSI-X DI parity error", -1, 1 }, |
| 3074 | { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 }, |
| 3075 | { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 }, |
| 3076 | { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 }, |
| 3077 | { CCNTPERR, "PCI CMD channel count parity error", -1, 1 }, |
| 3078 | { CREQPERR, "PCI CMD channel request parity error", -1, 1 }, |
| 3079 | { CRSPPERR, "PCI CMD channel response parity error", -1, 1 }, |
| 3080 | { DCNTPERR, "PCI DMA channel count parity error", -1, 1 }, |
| 3081 | { DREQPERR, "PCI DMA channel request parity error", -1, 1 }, |
| 3082 | { DRSPPERR, "PCI DMA channel response parity error", -1, 1 }, |
| 3083 | { HCNTPERR, "PCI HMA channel count parity error", -1, 1 }, |
| 3084 | { HREQPERR, "PCI HMA channel request parity error", -1, 1 }, |
| 3085 | { HRSPPERR, "PCI HMA channel response parity error", -1, 1 }, |
| 3086 | { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 }, |
| 3087 | { FIDPERR, "PCI FID parity error", -1, 1 }, |
| 3088 | { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 }, |
| 3089 | { MATAGPERR, "PCI MA tag parity error", -1, 1 }, |
| 3090 | { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 }, |
| 3091 | { RXCPLPERR, "PCI Rx completion parity error", -1, 1 }, |
| 3092 | { RXWRPERR, "PCI Rx write parity error", -1, 1 }, |
| 3093 | { RPLPERR, "PCI replay buffer parity error", -1, 1 }, |
| 3094 | { PCIESINT, "PCI core secondary fault", -1, 1 }, |
| 3095 | { PCIEPINT, "PCI core primary fault", -1, 1 }, |
| 3096 | { UNXSPLCPLERR, "PCI unexpected split completion error", -1, |
| 3097 | 0 }, |
| 3098 | { 0, NULL, 0, 0 } |
| 3099 | }; |
| 3100 | |
| 3101 | int fat; |
| 3102 | |
| 3103 | fat = csio_handle_intr_status(hw, |
| 3104 | PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, |
| 3105 | sysbus_intr_info) + |
| 3106 | csio_handle_intr_status(hw, |
| 3107 | PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, |
| 3108 | pcie_port_intr_info) + |
| 3109 | csio_handle_intr_status(hw, PCIE_INT_CAUSE, pcie_intr_info); |
| 3110 | if (fat) |
| 3111 | csio_hw_fatal_err(hw); |
| 3112 | } |
| 3113 | |
| 3114 | /* |
| 3115 | * TP interrupt handler. |
| 3116 | */ |
| 3117 | static void csio_tp_intr_handler(struct csio_hw *hw) |
| 3118 | { |
| 3119 | static struct intr_info tp_intr_info[] = { |
| 3120 | { 0x3fffffff, "TP parity error", -1, 1 }, |
| 3121 | { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 }, |
| 3122 | { 0, NULL, 0, 0 } |
| 3123 | }; |
| 3124 | |
| 3125 | if (csio_handle_intr_status(hw, TP_INT_CAUSE, tp_intr_info)) |
| 3126 | csio_hw_fatal_err(hw); |
| 3127 | } |
| 3128 | |
| 3129 | /* |
| 3130 | * SGE interrupt handler. |
| 3131 | */ |
| 3132 | static void csio_sge_intr_handler(struct csio_hw *hw) |
| 3133 | { |
| 3134 | uint64_t v; |
| 3135 | |
| 3136 | static struct intr_info sge_intr_info[] = { |
| 3137 | { ERR_CPL_EXCEED_IQE_SIZE, |
| 3138 | "SGE received CPL exceeding IQE size", -1, 1 }, |
| 3139 | { ERR_INVALID_CIDX_INC, |
| 3140 | "SGE GTS CIDX increment too large", -1, 0 }, |
| 3141 | { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 }, |
| 3142 | { ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 }, |
| 3143 | { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0, |
| 3144 | "SGE IQID > 1023 received CPL for FL", -1, 0 }, |
| 3145 | { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1, |
| 3146 | 0 }, |
| 3147 | { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1, |
| 3148 | 0 }, |
| 3149 | { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1, |
| 3150 | 0 }, |
| 3151 | { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1, |
| 3152 | 0 }, |
| 3153 | { ERR_ING_CTXT_PRIO, |
| 3154 | "SGE too many priority ingress contexts", -1, 0 }, |
| 3155 | { ERR_EGR_CTXT_PRIO, |
| 3156 | "SGE too many priority egress contexts", -1, 0 }, |
| 3157 | { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 }, |
| 3158 | { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 }, |
| 3159 | { 0, NULL, 0, 0 } |
| 3160 | }; |
| 3161 | |
| 3162 | v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1) | |
| 3163 | ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2) << 32); |
| 3164 | if (v) { |
| 3165 | csio_fatal(hw, "SGE parity error (%#llx)\n", |
| 3166 | (unsigned long long)v); |
| 3167 | csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF), |
| 3168 | SGE_INT_CAUSE1); |
| 3169 | csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2); |
| 3170 | } |
| 3171 | |
| 3172 | v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info); |
| 3173 | |
| 3174 | if (csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info) || |
| 3175 | v != 0) |
| 3176 | csio_hw_fatal_err(hw); |
| 3177 | } |
| 3178 | |
| 3179 | #define CIM_OBQ_INTR (OBQULP0PARERR | OBQULP1PARERR | OBQULP2PARERR |\ |
| 3180 | OBQULP3PARERR | OBQSGEPARERR | OBQNCSIPARERR) |
| 3181 | #define CIM_IBQ_INTR (IBQTP0PARERR | IBQTP1PARERR | IBQULPPARERR |\ |
| 3182 | IBQSGEHIPARERR | IBQSGELOPARERR | IBQNCSIPARERR) |
| 3183 | |
| 3184 | /* |
| 3185 | * CIM interrupt handler. |
| 3186 | */ |
| 3187 | static void csio_cim_intr_handler(struct csio_hw *hw) |
| 3188 | { |
| 3189 | static struct intr_info cim_intr_info[] = { |
| 3190 | { PREFDROPINT, "CIM control register prefetch drop", -1, 1 }, |
| 3191 | { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 }, |
| 3192 | { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 }, |
| 3193 | { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 }, |
| 3194 | { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 }, |
| 3195 | { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 }, |
| 3196 | { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 }, |
| 3197 | { 0, NULL, 0, 0 } |
| 3198 | }; |
| 3199 | static struct intr_info cim_upintr_info[] = { |
| 3200 | { RSVDSPACEINT, "CIM reserved space access", -1, 1 }, |
| 3201 | { ILLTRANSINT, "CIM illegal transaction", -1, 1 }, |
| 3202 | { ILLWRINT, "CIM illegal write", -1, 1 }, |
| 3203 | { ILLRDINT, "CIM illegal read", -1, 1 }, |
| 3204 | { ILLRDBEINT, "CIM illegal read BE", -1, 1 }, |
| 3205 | { ILLWRBEINT, "CIM illegal write BE", -1, 1 }, |
| 3206 | { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 }, |
| 3207 | { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 }, |
| 3208 | { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 }, |
| 3209 | { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 }, |
| 3210 | { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 }, |
| 3211 | { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 }, |
| 3212 | { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 }, |
| 3213 | { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 }, |
| 3214 | { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 }, |
| 3215 | { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 }, |
| 3216 | { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 }, |
| 3217 | { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 }, |
| 3218 | { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 }, |
| 3219 | { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 }, |
| 3220 | { SGLRDPLINT , "CIM single read from PL space", -1, 1 }, |
| 3221 | { SGLWRPLINT , "CIM single write to PL space", -1, 1 }, |
| 3222 | { BLKRDPLINT , "CIM block read from PL space", -1, 1 }, |
| 3223 | { BLKWRPLINT , "CIM block write to PL space", -1, 1 }, |
| 3224 | { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 }, |
| 3225 | { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 }, |
| 3226 | { TIMEOUTINT , "CIM PIF timeout", -1, 1 }, |
| 3227 | { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 }, |
| 3228 | { 0, NULL, 0, 0 } |
| 3229 | }; |
| 3230 | |
| 3231 | int fat; |
| 3232 | |
| 3233 | fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE, |
| 3234 | cim_intr_info) + |
| 3235 | csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE, |
| 3236 | cim_upintr_info); |
| 3237 | if (fat) |
| 3238 | csio_hw_fatal_err(hw); |
| 3239 | } |
| 3240 | |
| 3241 | /* |
| 3242 | * ULP RX interrupt handler. |
| 3243 | */ |
| 3244 | static void csio_ulprx_intr_handler(struct csio_hw *hw) |
| 3245 | { |
| 3246 | static struct intr_info ulprx_intr_info[] = { |
| 3247 | { 0x1800000, "ULPRX context error", -1, 1 }, |
| 3248 | { 0x7fffff, "ULPRX parity error", -1, 1 }, |
| 3249 | { 0, NULL, 0, 0 } |
| 3250 | }; |
| 3251 | |
| 3252 | if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE, ulprx_intr_info)) |
| 3253 | csio_hw_fatal_err(hw); |
| 3254 | } |
| 3255 | |
| 3256 | /* |
| 3257 | * ULP TX interrupt handler. |
| 3258 | */ |
| 3259 | static void csio_ulptx_intr_handler(struct csio_hw *hw) |
| 3260 | { |
| 3261 | static struct intr_info ulptx_intr_info[] = { |
| 3262 | { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1, |
| 3263 | 0 }, |
| 3264 | { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1, |
| 3265 | 0 }, |
| 3266 | { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1, |
| 3267 | 0 }, |
| 3268 | { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1, |
| 3269 | 0 }, |
| 3270 | { 0xfffffff, "ULPTX parity error", -1, 1 }, |
| 3271 | { 0, NULL, 0, 0 } |
| 3272 | }; |
| 3273 | |
| 3274 | if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE, ulptx_intr_info)) |
| 3275 | csio_hw_fatal_err(hw); |
| 3276 | } |
| 3277 | |
| 3278 | /* |
| 3279 | * PM TX interrupt handler. |
| 3280 | */ |
| 3281 | static void csio_pmtx_intr_handler(struct csio_hw *hw) |
| 3282 | { |
| 3283 | static struct intr_info pmtx_intr_info[] = { |
| 3284 | { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 }, |
| 3285 | { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 }, |
| 3286 | { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 }, |
| 3287 | { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 }, |
| 3288 | { 0xffffff0, "PMTX framing error", -1, 1 }, |
| 3289 | { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 }, |
| 3290 | { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, |
| 3291 | 1 }, |
| 3292 | { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 }, |
| 3293 | { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1}, |
| 3294 | { 0, NULL, 0, 0 } |
| 3295 | }; |
| 3296 | |
| 3297 | if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE, pmtx_intr_info)) |
| 3298 | csio_hw_fatal_err(hw); |
| 3299 | } |
| 3300 | |
| 3301 | /* |
| 3302 | * PM RX interrupt handler. |
| 3303 | */ |
| 3304 | static void csio_pmrx_intr_handler(struct csio_hw *hw) |
| 3305 | { |
| 3306 | static struct intr_info pmrx_intr_info[] = { |
| 3307 | { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 }, |
| 3308 | { 0x3ffff0, "PMRX framing error", -1, 1 }, |
| 3309 | { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 }, |
| 3310 | { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, |
| 3311 | 1 }, |
| 3312 | { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 }, |
| 3313 | { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1}, |
| 3314 | { 0, NULL, 0, 0 } |
| 3315 | }; |
| 3316 | |
| 3317 | if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE, pmrx_intr_info)) |
| 3318 | csio_hw_fatal_err(hw); |
| 3319 | } |
| 3320 | |
| 3321 | /* |
| 3322 | * CPL switch interrupt handler. |
| 3323 | */ |
| 3324 | static void csio_cplsw_intr_handler(struct csio_hw *hw) |
| 3325 | { |
| 3326 | static struct intr_info cplsw_intr_info[] = { |
| 3327 | { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 }, |
| 3328 | { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 }, |
| 3329 | { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 }, |
| 3330 | { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 }, |
| 3331 | { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 }, |
| 3332 | { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 }, |
| 3333 | { 0, NULL, 0, 0 } |
| 3334 | }; |
| 3335 | |
| 3336 | if (csio_handle_intr_status(hw, CPL_INTR_CAUSE, cplsw_intr_info)) |
| 3337 | csio_hw_fatal_err(hw); |
| 3338 | } |
| 3339 | |
| 3340 | /* |
| 3341 | * LE interrupt handler. |
| 3342 | */ |
| 3343 | static void csio_le_intr_handler(struct csio_hw *hw) |
| 3344 | { |
| 3345 | static struct intr_info le_intr_info[] = { |
| 3346 | { LIPMISS, "LE LIP miss", -1, 0 }, |
| 3347 | { LIP0, "LE 0 LIP error", -1, 0 }, |
| 3348 | { PARITYERR, "LE parity error", -1, 1 }, |
| 3349 | { UNKNOWNCMD, "LE unknown command", -1, 1 }, |
| 3350 | { REQQPARERR, "LE request queue parity error", -1, 1 }, |
| 3351 | { 0, NULL, 0, 0 } |
| 3352 | }; |
| 3353 | |
| 3354 | if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE, le_intr_info)) |
| 3355 | csio_hw_fatal_err(hw); |
| 3356 | } |
| 3357 | |
| 3358 | /* |
| 3359 | * MPS interrupt handler. |
| 3360 | */ |
| 3361 | static void csio_mps_intr_handler(struct csio_hw *hw) |
| 3362 | { |
| 3363 | static struct intr_info mps_rx_intr_info[] = { |
| 3364 | { 0xffffff, "MPS Rx parity error", -1, 1 }, |
| 3365 | { 0, NULL, 0, 0 } |
| 3366 | }; |
| 3367 | static struct intr_info mps_tx_intr_info[] = { |
| 3368 | { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 }, |
| 3369 | { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 }, |
| 3370 | { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 }, |
| 3371 | { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 }, |
| 3372 | { BUBBLE, "MPS Tx underflow", -1, 1 }, |
| 3373 | { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 }, |
| 3374 | { FRMERR, "MPS Tx framing error", -1, 1 }, |
| 3375 | { 0, NULL, 0, 0 } |
| 3376 | }; |
| 3377 | static struct intr_info mps_trc_intr_info[] = { |
| 3378 | { FILTMEM, "MPS TRC filter parity error", -1, 1 }, |
| 3379 | { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 }, |
| 3380 | { MISCPERR, "MPS TRC misc parity error", -1, 1 }, |
| 3381 | { 0, NULL, 0, 0 } |
| 3382 | }; |
| 3383 | static struct intr_info mps_stat_sram_intr_info[] = { |
| 3384 | { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, |
| 3385 | { 0, NULL, 0, 0 } |
| 3386 | }; |
| 3387 | static struct intr_info mps_stat_tx_intr_info[] = { |
| 3388 | { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, |
| 3389 | { 0, NULL, 0, 0 } |
| 3390 | }; |
| 3391 | static struct intr_info mps_stat_rx_intr_info[] = { |
| 3392 | { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, |
| 3393 | { 0, NULL, 0, 0 } |
| 3394 | }; |
| 3395 | static struct intr_info mps_cls_intr_info[] = { |
| 3396 | { MATCHSRAM, "MPS match SRAM parity error", -1, 1 }, |
| 3397 | { MATCHTCAM, "MPS match TCAM parity error", -1, 1 }, |
| 3398 | { HASHSRAM, "MPS hash SRAM parity error", -1, 1 }, |
| 3399 | { 0, NULL, 0, 0 } |
| 3400 | }; |
| 3401 | |
| 3402 | int fat; |
| 3403 | |
| 3404 | fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE, |
| 3405 | mps_rx_intr_info) + |
| 3406 | csio_handle_intr_status(hw, MPS_TX_INT_CAUSE, |
| 3407 | mps_tx_intr_info) + |
| 3408 | csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE, |
| 3409 | mps_trc_intr_info) + |
| 3410 | csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM, |
| 3411 | mps_stat_sram_intr_info) + |
| 3412 | csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO, |
| 3413 | mps_stat_tx_intr_info) + |
| 3414 | csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO, |
| 3415 | mps_stat_rx_intr_info) + |
| 3416 | csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE, |
| 3417 | mps_cls_intr_info); |
| 3418 | |
| 3419 | csio_wr_reg32(hw, 0, MPS_INT_CAUSE); |
| 3420 | csio_rd_reg32(hw, MPS_INT_CAUSE); /* flush */ |
| 3421 | if (fat) |
| 3422 | csio_hw_fatal_err(hw); |
| 3423 | } |
| 3424 | |
| 3425 | #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE) |
| 3426 | |
| 3427 | /* |
| 3428 | * EDC/MC interrupt handler. |
| 3429 | */ |
| 3430 | static void csio_mem_intr_handler(struct csio_hw *hw, int idx) |
| 3431 | { |
| 3432 | static const char name[3][5] = { "EDC0", "EDC1", "MC" }; |
| 3433 | |
| 3434 | unsigned int addr, cnt_addr, v; |
| 3435 | |
| 3436 | if (idx <= MEM_EDC1) { |
| 3437 | addr = EDC_REG(EDC_INT_CAUSE, idx); |
| 3438 | cnt_addr = EDC_REG(EDC_ECC_STATUS, idx); |
| 3439 | } else { |
| 3440 | addr = MC_INT_CAUSE; |
| 3441 | cnt_addr = MC_ECC_STATUS; |
| 3442 | } |
| 3443 | |
| 3444 | v = csio_rd_reg32(hw, addr) & MEM_INT_MASK; |
| 3445 | if (v & PERR_INT_CAUSE) |
| 3446 | csio_fatal(hw, "%s FIFO parity error\n", name[idx]); |
| 3447 | if (v & ECC_CE_INT_CAUSE) { |
| 3448 | uint32_t cnt = ECC_CECNT_GET(csio_rd_reg32(hw, cnt_addr)); |
| 3449 | |
| 3450 | csio_wr_reg32(hw, ECC_CECNT_MASK, cnt_addr); |
| 3451 | csio_warn(hw, "%u %s correctable ECC data error%s\n", |
| 3452 | cnt, name[idx], cnt > 1 ? "s" : ""); |
| 3453 | } |
| 3454 | if (v & ECC_UE_INT_CAUSE) |
| 3455 | csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]); |
| 3456 | |
| 3457 | csio_wr_reg32(hw, v, addr); |
| 3458 | if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE)) |
| 3459 | csio_hw_fatal_err(hw); |
| 3460 | } |
| 3461 | |
| 3462 | /* |
| 3463 | * MA interrupt handler. |
| 3464 | */ |
| 3465 | static void csio_ma_intr_handler(struct csio_hw *hw) |
| 3466 | { |
| 3467 | uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE); |
| 3468 | |
| 3469 | if (status & MEM_PERR_INT_CAUSE) |
| 3470 | csio_fatal(hw, "MA parity error, parity status %#x\n", |
| 3471 | csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS)); |
| 3472 | if (status & MEM_WRAP_INT_CAUSE) { |
| 3473 | v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS); |
| 3474 | csio_fatal(hw, |
| 3475 | "MA address wrap-around error by client %u to address %#x\n", |
| 3476 | MEM_WRAP_CLIENT_NUM_GET(v), MEM_WRAP_ADDRESS_GET(v) << 4); |
| 3477 | } |
| 3478 | csio_wr_reg32(hw, status, MA_INT_CAUSE); |
| 3479 | csio_hw_fatal_err(hw); |
| 3480 | } |
| 3481 | |
| 3482 | /* |
| 3483 | * SMB interrupt handler. |
| 3484 | */ |
| 3485 | static void csio_smb_intr_handler(struct csio_hw *hw) |
| 3486 | { |
| 3487 | static struct intr_info smb_intr_info[] = { |
| 3488 | { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 }, |
| 3489 | { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 }, |
| 3490 | { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 }, |
| 3491 | { 0, NULL, 0, 0 } |
| 3492 | }; |
| 3493 | |
| 3494 | if (csio_handle_intr_status(hw, SMB_INT_CAUSE, smb_intr_info)) |
| 3495 | csio_hw_fatal_err(hw); |
| 3496 | } |
| 3497 | |
| 3498 | /* |
| 3499 | * NC-SI interrupt handler. |
| 3500 | */ |
| 3501 | static void csio_ncsi_intr_handler(struct csio_hw *hw) |
| 3502 | { |
| 3503 | static struct intr_info ncsi_intr_info[] = { |
| 3504 | { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 }, |
| 3505 | { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 }, |
| 3506 | { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 }, |
| 3507 | { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 }, |
| 3508 | { 0, NULL, 0, 0 } |
| 3509 | }; |
| 3510 | |
| 3511 | if (csio_handle_intr_status(hw, NCSI_INT_CAUSE, ncsi_intr_info)) |
| 3512 | csio_hw_fatal_err(hw); |
| 3513 | } |
| 3514 | |
| 3515 | /* |
| 3516 | * XGMAC interrupt handler. |
| 3517 | */ |
| 3518 | static void csio_xgmac_intr_handler(struct csio_hw *hw, int port) |
| 3519 | { |
| 3520 | uint32_t v = csio_rd_reg32(hw, PORT_REG(port, XGMAC_PORT_INT_CAUSE)); |
| 3521 | |
| 3522 | v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR; |
| 3523 | if (!v) |
| 3524 | return; |
| 3525 | |
| 3526 | if (v & TXFIFO_PRTY_ERR) |
| 3527 | csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port); |
| 3528 | if (v & RXFIFO_PRTY_ERR) |
| 3529 | csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port); |
| 3530 | csio_wr_reg32(hw, v, PORT_REG(port, XGMAC_PORT_INT_CAUSE)); |
| 3531 | csio_hw_fatal_err(hw); |
| 3532 | } |
| 3533 | |
| 3534 | /* |
| 3535 | * PL interrupt handler. |
| 3536 | */ |
| 3537 | static void csio_pl_intr_handler(struct csio_hw *hw) |
| 3538 | { |
| 3539 | static struct intr_info pl_intr_info[] = { |
| 3540 | { FATALPERR, "T4 fatal parity error", -1, 1 }, |
| 3541 | { PERRVFID, "PL VFID_MAP parity error", -1, 1 }, |
| 3542 | { 0, NULL, 0, 0 } |
| 3543 | }; |
| 3544 | |
| 3545 | if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE, pl_intr_info)) |
| 3546 | csio_hw_fatal_err(hw); |
| 3547 | } |
| 3548 | |
| 3549 | /* |
| 3550 | * csio_hw_slow_intr_handler - control path interrupt handler |
| 3551 | * @hw: HW module |
| 3552 | * |
| 3553 | * Interrupt handler for non-data global interrupt events, e.g., errors. |
| 3554 | * The designation 'slow' is because it involves register reads, while |
| 3555 | * data interrupts typically don't involve any MMIOs. |
| 3556 | */ |
| 3557 | int |
| 3558 | csio_hw_slow_intr_handler(struct csio_hw *hw) |
| 3559 | { |
| 3560 | uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE); |
| 3561 | |
| 3562 | if (!(cause & CSIO_GLBL_INTR_MASK)) { |
| 3563 | CSIO_INC_STATS(hw, n_plint_unexp); |
| 3564 | return 0; |
| 3565 | } |
| 3566 | |
| 3567 | csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause); |
| 3568 | |
| 3569 | CSIO_INC_STATS(hw, n_plint_cnt); |
| 3570 | |
| 3571 | if (cause & CIM) |
| 3572 | csio_cim_intr_handler(hw); |
| 3573 | |
| 3574 | if (cause & MPS) |
| 3575 | csio_mps_intr_handler(hw); |
| 3576 | |
| 3577 | if (cause & NCSI) |
| 3578 | csio_ncsi_intr_handler(hw); |
| 3579 | |
| 3580 | if (cause & PL) |
| 3581 | csio_pl_intr_handler(hw); |
| 3582 | |
| 3583 | if (cause & SMB) |
| 3584 | csio_smb_intr_handler(hw); |
| 3585 | |
| 3586 | if (cause & XGMAC0) |
| 3587 | csio_xgmac_intr_handler(hw, 0); |
| 3588 | |
| 3589 | if (cause & XGMAC1) |
| 3590 | csio_xgmac_intr_handler(hw, 1); |
| 3591 | |
| 3592 | if (cause & XGMAC_KR0) |
| 3593 | csio_xgmac_intr_handler(hw, 2); |
| 3594 | |
| 3595 | if (cause & XGMAC_KR1) |
| 3596 | csio_xgmac_intr_handler(hw, 3); |
| 3597 | |
| 3598 | if (cause & PCIE) |
| 3599 | csio_pcie_intr_handler(hw); |
| 3600 | |
| 3601 | if (cause & MC) |
| 3602 | csio_mem_intr_handler(hw, MEM_MC); |
| 3603 | |
| 3604 | if (cause & EDC0) |
| 3605 | csio_mem_intr_handler(hw, MEM_EDC0); |
| 3606 | |
| 3607 | if (cause & EDC1) |
| 3608 | csio_mem_intr_handler(hw, MEM_EDC1); |
| 3609 | |
| 3610 | if (cause & LE) |
| 3611 | csio_le_intr_handler(hw); |
| 3612 | |
| 3613 | if (cause & TP) |
| 3614 | csio_tp_intr_handler(hw); |
| 3615 | |
| 3616 | if (cause & MA) |
| 3617 | csio_ma_intr_handler(hw); |
| 3618 | |
| 3619 | if (cause & PM_TX) |
| 3620 | csio_pmtx_intr_handler(hw); |
| 3621 | |
| 3622 | if (cause & PM_RX) |
| 3623 | csio_pmrx_intr_handler(hw); |
| 3624 | |
| 3625 | if (cause & ULP_RX) |
| 3626 | csio_ulprx_intr_handler(hw); |
| 3627 | |
| 3628 | if (cause & CPL_SWITCH) |
| 3629 | csio_cplsw_intr_handler(hw); |
| 3630 | |
| 3631 | if (cause & SGE) |
| 3632 | csio_sge_intr_handler(hw); |
| 3633 | |
| 3634 | if (cause & ULP_TX) |
| 3635 | csio_ulptx_intr_handler(hw); |
| 3636 | |
| 3637 | /* Clear the interrupts just processed for which we are the master. */ |
| 3638 | csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE); |
| 3639 | csio_rd_reg32(hw, PL_INT_CAUSE); /* flush */ |
| 3640 | |
| 3641 | return 1; |
| 3642 | } |
| 3643 | |
| 3644 | /***************************************************************************** |
| 3645 | * HW <--> mailbox interfacing routines. |
| 3646 | ****************************************************************************/ |
| 3647 | /* |
| 3648 | * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions |
| 3649 | * |
| 3650 | * @data: Private data pointer. |
| 3651 | * |
| 3652 | * Called from worker thread context. |
| 3653 | */ |
| 3654 | static void |
| 3655 | csio_mberr_worker(void *data) |
| 3656 | { |
| 3657 | struct csio_hw *hw = (struct csio_hw *)data; |
| 3658 | struct csio_mbm *mbm = &hw->mbm; |
| 3659 | LIST_HEAD(cbfn_q); |
| 3660 | struct csio_mb *mbp_next; |
| 3661 | int rv; |
| 3662 | |
| 3663 | del_timer_sync(&mbm->timer); |
| 3664 | |
| 3665 | spin_lock_irq(&hw->lock); |
| 3666 | if (list_empty(&mbm->cbfn_q)) { |
| 3667 | spin_unlock_irq(&hw->lock); |
| 3668 | return; |
| 3669 | } |
| 3670 | |
| 3671 | list_splice_tail_init(&mbm->cbfn_q, &cbfn_q); |
| 3672 | mbm->stats.n_cbfnq = 0; |
| 3673 | |
| 3674 | /* Try to start waiting mailboxes */ |
| 3675 | if (!list_empty(&mbm->req_q)) { |
| 3676 | mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list); |
| 3677 | list_del_init(&mbp_next->list); |
| 3678 | |
| 3679 | rv = csio_mb_issue(hw, mbp_next); |
| 3680 | if (rv != 0) |
| 3681 | list_add_tail(&mbp_next->list, &mbm->req_q); |
| 3682 | else |
| 3683 | CSIO_DEC_STATS(mbm, n_activeq); |
| 3684 | } |
| 3685 | spin_unlock_irq(&hw->lock); |
| 3686 | |
| 3687 | /* Now callback completions */ |
| 3688 | csio_mb_completions(hw, &cbfn_q); |
| 3689 | } |
| 3690 | |
| 3691 | /* |
| 3692 | * csio_hw_mb_timer - Top-level Mailbox timeout handler. |
| 3693 | * |
| 3694 | * @data: private data pointer |
| 3695 | * |
| 3696 | **/ |
| 3697 | static void |
| 3698 | csio_hw_mb_timer(uintptr_t data) |
| 3699 | { |
| 3700 | struct csio_hw *hw = (struct csio_hw *)data; |
| 3701 | struct csio_mb *mbp = NULL; |
| 3702 | |
| 3703 | spin_lock_irq(&hw->lock); |
| 3704 | mbp = csio_mb_tmo_handler(hw); |
| 3705 | spin_unlock_irq(&hw->lock); |
| 3706 | |
| 3707 | /* Call back the function for the timed-out Mailbox */ |
| 3708 | if (mbp) |
| 3709 | mbp->mb_cbfn(hw, mbp); |
| 3710 | |
| 3711 | } |
| 3712 | |
| 3713 | /* |
| 3714 | * csio_hw_mbm_cleanup - Cleanup Mailbox module. |
| 3715 | * @hw: HW module |
| 3716 | * |
| 3717 | * Called with lock held, should exit with lock held. |
| 3718 | * Cancels outstanding mailboxes (waiting, in-flight) and gathers them |
| 3719 | * into a local queue. Drops lock and calls the completions. Holds |
| 3720 | * lock and returns. |
| 3721 | */ |
| 3722 | static void |
| 3723 | csio_hw_mbm_cleanup(struct csio_hw *hw) |
| 3724 | { |
| 3725 | LIST_HEAD(cbfn_q); |
| 3726 | |
| 3727 | csio_mb_cancel_all(hw, &cbfn_q); |
| 3728 | |
| 3729 | spin_unlock_irq(&hw->lock); |
| 3730 | csio_mb_completions(hw, &cbfn_q); |
| 3731 | spin_lock_irq(&hw->lock); |
| 3732 | } |
| 3733 | |
| 3734 | /***************************************************************************** |
| 3735 | * Event handling |
| 3736 | ****************************************************************************/ |
| 3737 | int |
| 3738 | csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg, |
| 3739 | uint16_t len) |
| 3740 | { |
| 3741 | struct csio_evt_msg *evt_entry = NULL; |
| 3742 | |
| 3743 | if (type >= CSIO_EVT_MAX) |
| 3744 | return -EINVAL; |
| 3745 | |
| 3746 | if (len > CSIO_EVT_MSG_SIZE) |
| 3747 | return -EINVAL; |
| 3748 | |
| 3749 | if (hw->flags & CSIO_HWF_FWEVT_STOP) |
| 3750 | return -EINVAL; |
| 3751 | |
| 3752 | if (list_empty(&hw->evt_free_q)) { |
| 3753 | csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n", |
| 3754 | type, len); |
| 3755 | return -ENOMEM; |
| 3756 | } |
| 3757 | |
| 3758 | evt_entry = list_first_entry(&hw->evt_free_q, |
| 3759 | struct csio_evt_msg, list); |
| 3760 | list_del_init(&evt_entry->list); |
| 3761 | |
| 3762 | /* copy event msg and queue the event */ |
| 3763 | evt_entry->type = type; |
| 3764 | memcpy((void *)evt_entry->data, evt_msg, len); |
| 3765 | list_add_tail(&evt_entry->list, &hw->evt_active_q); |
| 3766 | |
| 3767 | CSIO_DEC_STATS(hw, n_evt_freeq); |
| 3768 | CSIO_INC_STATS(hw, n_evt_activeq); |
| 3769 | |
| 3770 | return 0; |
| 3771 | } |
| 3772 | |
| 3773 | static int |
| 3774 | csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg, |
| 3775 | uint16_t len, bool msg_sg) |
| 3776 | { |
| 3777 | struct csio_evt_msg *evt_entry = NULL; |
| 3778 | struct csio_fl_dma_buf *fl_sg; |
| 3779 | uint32_t off = 0; |
| 3780 | unsigned long flags; |
| 3781 | int n, ret = 0; |
| 3782 | |
| 3783 | if (type >= CSIO_EVT_MAX) |
| 3784 | return -EINVAL; |
| 3785 | |
| 3786 | if (len > CSIO_EVT_MSG_SIZE) |
| 3787 | return -EINVAL; |
| 3788 | |
| 3789 | spin_lock_irqsave(&hw->lock, flags); |
| 3790 | if (hw->flags & CSIO_HWF_FWEVT_STOP) { |
| 3791 | ret = -EINVAL; |
| 3792 | goto out; |
| 3793 | } |
| 3794 | |
| 3795 | if (list_empty(&hw->evt_free_q)) { |
| 3796 | csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n", |
| 3797 | type, len); |
| 3798 | ret = -ENOMEM; |
| 3799 | goto out; |
| 3800 | } |
| 3801 | |
| 3802 | evt_entry = list_first_entry(&hw->evt_free_q, |
| 3803 | struct csio_evt_msg, list); |
| 3804 | list_del_init(&evt_entry->list); |
| 3805 | |
| 3806 | /* copy event msg and queue the event */ |
| 3807 | evt_entry->type = type; |
| 3808 | |
| 3809 | /* If Payload in SG list*/ |
| 3810 | if (msg_sg) { |
| 3811 | fl_sg = (struct csio_fl_dma_buf *) evt_msg; |
| 3812 | for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) { |
| 3813 | memcpy((void *)((uintptr_t)evt_entry->data + off), |
| 3814 | fl_sg->flbufs[n].vaddr, |
| 3815 | fl_sg->flbufs[n].len); |
| 3816 | off += fl_sg->flbufs[n].len; |
| 3817 | } |
| 3818 | } else |
| 3819 | memcpy((void *)evt_entry->data, evt_msg, len); |
| 3820 | |
| 3821 | list_add_tail(&evt_entry->list, &hw->evt_active_q); |
| 3822 | CSIO_DEC_STATS(hw, n_evt_freeq); |
| 3823 | CSIO_INC_STATS(hw, n_evt_activeq); |
| 3824 | out: |
| 3825 | spin_unlock_irqrestore(&hw->lock, flags); |
| 3826 | return ret; |
| 3827 | } |
| 3828 | |
| 3829 | static void |
| 3830 | csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry) |
| 3831 | { |
| 3832 | if (evt_entry) { |
| 3833 | spin_lock_irq(&hw->lock); |
| 3834 | list_del_init(&evt_entry->list); |
| 3835 | list_add_tail(&evt_entry->list, &hw->evt_free_q); |
| 3836 | CSIO_DEC_STATS(hw, n_evt_activeq); |
| 3837 | CSIO_INC_STATS(hw, n_evt_freeq); |
| 3838 | spin_unlock_irq(&hw->lock); |
| 3839 | } |
| 3840 | } |
| 3841 | |
| 3842 | void |
| 3843 | csio_evtq_flush(struct csio_hw *hw) |
| 3844 | { |
| 3845 | uint32_t count; |
| 3846 | count = 30; |
| 3847 | while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) { |
| 3848 | spin_unlock_irq(&hw->lock); |
| 3849 | msleep(2000); |
| 3850 | spin_lock_irq(&hw->lock); |
| 3851 | } |
| 3852 | |
| 3853 | CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING)); |
| 3854 | } |
| 3855 | |
| 3856 | static void |
| 3857 | csio_evtq_stop(struct csio_hw *hw) |
| 3858 | { |
| 3859 | hw->flags |= CSIO_HWF_FWEVT_STOP; |
| 3860 | } |
| 3861 | |
| 3862 | static void |
| 3863 | csio_evtq_start(struct csio_hw *hw) |
| 3864 | { |
| 3865 | hw->flags &= ~CSIO_HWF_FWEVT_STOP; |
| 3866 | } |
| 3867 | |
| 3868 | static void |
| 3869 | csio_evtq_cleanup(struct csio_hw *hw) |
| 3870 | { |
| 3871 | struct list_head *evt_entry, *next_entry; |
| 3872 | |
| 3873 | /* Release outstanding events from activeq to freeq*/ |
| 3874 | if (!list_empty(&hw->evt_active_q)) |
| 3875 | list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q); |
| 3876 | |
| 3877 | hw->stats.n_evt_activeq = 0; |
| 3878 | hw->flags &= ~CSIO_HWF_FWEVT_PENDING; |
| 3879 | |
| 3880 | /* Freeup event entry */ |
| 3881 | list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) { |
| 3882 | kfree(evt_entry); |
| 3883 | CSIO_DEC_STATS(hw, n_evt_freeq); |
| 3884 | } |
| 3885 | |
| 3886 | hw->stats.n_evt_freeq = 0; |
| 3887 | } |
| 3888 | |
| 3889 | |
| 3890 | static void |
| 3891 | csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len, |
| 3892 | struct csio_fl_dma_buf *flb, void *priv) |
| 3893 | { |
| 3894 | __u8 op; |
| 3895 | __be64 *data; |
| 3896 | void *msg = NULL; |
| 3897 | uint32_t msg_len = 0; |
| 3898 | bool msg_sg = 0; |
| 3899 | |
| 3900 | op = ((struct rss_header *) wr)->opcode; |
| 3901 | if (op == CPL_FW6_PLD) { |
| 3902 | CSIO_INC_STATS(hw, n_cpl_fw6_pld); |
| 3903 | if (!flb || !flb->totlen) { |
| 3904 | CSIO_INC_STATS(hw, n_cpl_unexp); |
| 3905 | return; |
| 3906 | } |
| 3907 | |
| 3908 | msg = (void *) flb; |
| 3909 | msg_len = flb->totlen; |
| 3910 | msg_sg = 1; |
| 3911 | |
| 3912 | data = (__be64 *) msg; |
| 3913 | } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) { |
| 3914 | |
| 3915 | CSIO_INC_STATS(hw, n_cpl_fw6_msg); |
| 3916 | /* skip RSS header */ |
| 3917 | msg = (void *)((uintptr_t)wr + sizeof(__be64)); |
| 3918 | msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) : |
| 3919 | sizeof(struct cpl_fw4_msg); |
| 3920 | |
| 3921 | data = (__be64 *) msg; |
| 3922 | } else { |
| 3923 | csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op); |
| 3924 | CSIO_INC_STATS(hw, n_cpl_unexp); |
| 3925 | return; |
| 3926 | } |
| 3927 | |
| 3928 | /* |
| 3929 | * Enqueue event to EventQ. Events processing happens |
| 3930 | * in Event worker thread context |
| 3931 | */ |
| 3932 | if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg, |
| 3933 | (uint16_t)msg_len, msg_sg)) |
| 3934 | CSIO_INC_STATS(hw, n_evt_drop); |
| 3935 | } |
| 3936 | |
| 3937 | void |
| 3938 | csio_evtq_worker(struct work_struct *work) |
| 3939 | { |
| 3940 | struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work); |
| 3941 | struct list_head *evt_entry, *next_entry; |
| 3942 | LIST_HEAD(evt_q); |
| 3943 | struct csio_evt_msg *evt_msg; |
| 3944 | struct cpl_fw6_msg *msg; |
| 3945 | struct csio_rnode *rn; |
| 3946 | int rv = 0; |
| 3947 | uint8_t evtq_stop = 0; |
| 3948 | |
| 3949 | csio_dbg(hw, "event worker thread active evts#%d\n", |
| 3950 | hw->stats.n_evt_activeq); |
| 3951 | |
| 3952 | spin_lock_irq(&hw->lock); |
| 3953 | while (!list_empty(&hw->evt_active_q)) { |
| 3954 | list_splice_tail_init(&hw->evt_active_q, &evt_q); |
| 3955 | spin_unlock_irq(&hw->lock); |
| 3956 | |
| 3957 | list_for_each_safe(evt_entry, next_entry, &evt_q) { |
| 3958 | evt_msg = (struct csio_evt_msg *) evt_entry; |
| 3959 | |
| 3960 | /* Drop events if queue is STOPPED */ |
| 3961 | spin_lock_irq(&hw->lock); |
| 3962 | if (hw->flags & CSIO_HWF_FWEVT_STOP) |
| 3963 | evtq_stop = 1; |
| 3964 | spin_unlock_irq(&hw->lock); |
| 3965 | if (evtq_stop) { |
| 3966 | CSIO_INC_STATS(hw, n_evt_drop); |
| 3967 | goto free_evt; |
| 3968 | } |
| 3969 | |
| 3970 | switch (evt_msg->type) { |
| 3971 | case CSIO_EVT_FW: |
| 3972 | msg = (struct cpl_fw6_msg *)(evt_msg->data); |
| 3973 | |
| 3974 | if ((msg->opcode == CPL_FW6_MSG || |
| 3975 | msg->opcode == CPL_FW4_MSG) && |
| 3976 | !msg->type) { |
| 3977 | rv = csio_mb_fwevt_handler(hw, |
| 3978 | msg->data); |
| 3979 | if (!rv) |
| 3980 | break; |
| 3981 | /* Handle any remaining fw events */ |
| 3982 | csio_fcoe_fwevt_handler(hw, |
| 3983 | msg->opcode, msg->data); |
| 3984 | } else if (msg->opcode == CPL_FW6_PLD) { |
| 3985 | |
| 3986 | csio_fcoe_fwevt_handler(hw, |
| 3987 | msg->opcode, msg->data); |
| 3988 | } else { |
| 3989 | csio_warn(hw, |
| 3990 | "Unhandled FW msg op %x type %x\n", |
| 3991 | msg->opcode, msg->type); |
| 3992 | CSIO_INC_STATS(hw, n_evt_drop); |
| 3993 | } |
| 3994 | break; |
| 3995 | |
| 3996 | case CSIO_EVT_MBX: |
| 3997 | csio_mberr_worker(hw); |
| 3998 | break; |
| 3999 | |
| 4000 | case CSIO_EVT_DEV_LOSS: |
| 4001 | memcpy(&rn, evt_msg->data, sizeof(rn)); |
| 4002 | csio_rnode_devloss_handler(rn); |
| 4003 | break; |
| 4004 | |
| 4005 | default: |
| 4006 | csio_warn(hw, "Unhandled event %x on evtq\n", |
| 4007 | evt_msg->type); |
| 4008 | CSIO_INC_STATS(hw, n_evt_unexp); |
| 4009 | break; |
| 4010 | } |
| 4011 | free_evt: |
| 4012 | csio_free_evt(hw, evt_msg); |
| 4013 | } |
| 4014 | |
| 4015 | spin_lock_irq(&hw->lock); |
| 4016 | } |
| 4017 | hw->flags &= ~CSIO_HWF_FWEVT_PENDING; |
| 4018 | spin_unlock_irq(&hw->lock); |
| 4019 | } |
| 4020 | |
| 4021 | int |
| 4022 | csio_fwevtq_handler(struct csio_hw *hw) |
| 4023 | { |
| 4024 | int rv; |
| 4025 | |
| 4026 | if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) { |
| 4027 | CSIO_INC_STATS(hw, n_int_stray); |
| 4028 | return -EINVAL; |
| 4029 | } |
| 4030 | |
| 4031 | rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx, |
| 4032 | csio_process_fwevtq_entry, NULL); |
| 4033 | return rv; |
| 4034 | } |
| 4035 | |
| 4036 | /**************************************************************************** |
| 4037 | * Entry points |
| 4038 | ****************************************************************************/ |
| 4039 | |
| 4040 | /* Management module */ |
| 4041 | /* |
| 4042 | * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q. |
| 4043 | * mgmt - mgmt module |
| 4044 | * @io_req - io request |
| 4045 | * |
| 4046 | * Return - 0:if given IO Req exists in active Q. |
| 4047 | * -EINVAL :if lookup fails. |
| 4048 | */ |
| 4049 | int |
| 4050 | csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req) |
| 4051 | { |
| 4052 | struct list_head *tmp; |
| 4053 | |
| 4054 | /* Lookup ioreq in the ACTIVEQ */ |
| 4055 | list_for_each(tmp, &mgmtm->active_q) { |
| 4056 | if (io_req == (struct csio_ioreq *)tmp) |
| 4057 | return 0; |
| 4058 | } |
| 4059 | return -EINVAL; |
| 4060 | } |
| 4061 | |
| 4062 | #define ECM_MIN_TMO 1000 /* Minimum timeout value for req */ |
| 4063 | |
| 4064 | /* |
| 4065 | * csio_mgmts_tmo_handler - MGMT IO Timeout handler. |
| 4066 | * @data - Event data. |
| 4067 | * |
| 4068 | * Return - none. |
| 4069 | */ |
| 4070 | static void |
| 4071 | csio_mgmt_tmo_handler(uintptr_t data) |
| 4072 | { |
| 4073 | struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data; |
| 4074 | struct list_head *tmp; |
| 4075 | struct csio_ioreq *io_req; |
| 4076 | |
| 4077 | csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n"); |
| 4078 | |
| 4079 | spin_lock_irq(&mgmtm->hw->lock); |
| 4080 | |
| 4081 | list_for_each(tmp, &mgmtm->active_q) { |
| 4082 | io_req = (struct csio_ioreq *) tmp; |
| 4083 | io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO); |
| 4084 | |
| 4085 | if (!io_req->tmo) { |
| 4086 | /* Dequeue the request from retry Q. */ |
| 4087 | tmp = csio_list_prev(tmp); |
| 4088 | list_del_init(&io_req->sm.sm_list); |
| 4089 | if (io_req->io_cbfn) { |
| 4090 | /* io_req will be freed by completion handler */ |
| 4091 | io_req->wr_status = -ETIMEDOUT; |
| 4092 | io_req->io_cbfn(mgmtm->hw, io_req); |
| 4093 | } else { |
| 4094 | CSIO_DB_ASSERT(0); |
| 4095 | } |
| 4096 | } |
| 4097 | } |
| 4098 | |
| 4099 | /* If retry queue is not empty, re-arm timer */ |
| 4100 | if (!list_empty(&mgmtm->active_q)) |
| 4101 | mod_timer(&mgmtm->mgmt_timer, |
| 4102 | jiffies + msecs_to_jiffies(ECM_MIN_TMO)); |
| 4103 | spin_unlock_irq(&mgmtm->hw->lock); |
| 4104 | } |
| 4105 | |
| 4106 | static void |
| 4107 | csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm) |
| 4108 | { |
| 4109 | struct csio_hw *hw = mgmtm->hw; |
| 4110 | struct csio_ioreq *io_req; |
| 4111 | struct list_head *tmp; |
| 4112 | uint32_t count; |
| 4113 | |
| 4114 | count = 30; |
| 4115 | /* Wait for all outstanding req to complete gracefully */ |
| 4116 | while ((!list_empty(&mgmtm->active_q)) && count--) { |
| 4117 | spin_unlock_irq(&hw->lock); |
| 4118 | msleep(2000); |
| 4119 | spin_lock_irq(&hw->lock); |
| 4120 | } |
| 4121 | |
| 4122 | /* release outstanding req from ACTIVEQ */ |
| 4123 | list_for_each(tmp, &mgmtm->active_q) { |
| 4124 | io_req = (struct csio_ioreq *) tmp; |
| 4125 | tmp = csio_list_prev(tmp); |
| 4126 | list_del_init(&io_req->sm.sm_list); |
| 4127 | mgmtm->stats.n_active--; |
| 4128 | if (io_req->io_cbfn) { |
| 4129 | /* io_req will be freed by completion handler */ |
| 4130 | io_req->wr_status = -ETIMEDOUT; |
| 4131 | io_req->io_cbfn(mgmtm->hw, io_req); |
| 4132 | } |
| 4133 | } |
| 4134 | } |
| 4135 | |
| 4136 | /* |
| 4137 | * csio_mgmt_init - Mgmt module init entry point |
| 4138 | * @mgmtsm - mgmt module |
| 4139 | * @hw - HW module |
| 4140 | * |
| 4141 | * Initialize mgmt timer, resource wait queue, active queue, |
| 4142 | * completion q. Allocate Egress and Ingress |
| 4143 | * WR queues and save off the queue index returned by the WR |
| 4144 | * module for future use. Allocate and save off mgmt reqs in the |
| 4145 | * mgmt_req_freelist for future use. Make sure their SM is initialized |
| 4146 | * to uninit state. |
| 4147 | * Returns: 0 - on success |
| 4148 | * -ENOMEM - on error. |
| 4149 | */ |
| 4150 | static int |
| 4151 | csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw) |
| 4152 | { |
| 4153 | struct timer_list *timer = &mgmtm->mgmt_timer; |
| 4154 | |
| 4155 | init_timer(timer); |
| 4156 | timer->function = csio_mgmt_tmo_handler; |
| 4157 | timer->data = (unsigned long)mgmtm; |
| 4158 | |
| 4159 | INIT_LIST_HEAD(&mgmtm->active_q); |
| 4160 | INIT_LIST_HEAD(&mgmtm->cbfn_q); |
| 4161 | |
| 4162 | mgmtm->hw = hw; |
| 4163 | /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/ |
| 4164 | |
| 4165 | return 0; |
| 4166 | } |
| 4167 | |
| 4168 | /* |
| 4169 | * csio_mgmtm_exit - MGMT module exit entry point |
| 4170 | * @mgmtsm - mgmt module |
| 4171 | * |
| 4172 | * This function called during MGMT module uninit. |
| 4173 | * Stop timers, free ioreqs allocated. |
| 4174 | * Returns: None |
| 4175 | * |
| 4176 | */ |
| 4177 | static void |
| 4178 | csio_mgmtm_exit(struct csio_mgmtm *mgmtm) |
| 4179 | { |
| 4180 | del_timer_sync(&mgmtm->mgmt_timer); |
| 4181 | } |
| 4182 | |
| 4183 | |
| 4184 | /** |
| 4185 | * csio_hw_start - Kicks off the HW State machine |
| 4186 | * @hw: Pointer to HW module. |
| 4187 | * |
| 4188 | * It is assumed that the initialization is a synchronous operation. |
| 4189 | * So when we return afer posting the event, the HW SM should be in |
| 4190 | * the ready state, if there were no errors during init. |
| 4191 | */ |
| 4192 | int |
| 4193 | csio_hw_start(struct csio_hw *hw) |
| 4194 | { |
| 4195 | spin_lock_irq(&hw->lock); |
| 4196 | csio_post_event(&hw->sm, CSIO_HWE_CFG); |
| 4197 | spin_unlock_irq(&hw->lock); |
| 4198 | |
| 4199 | if (csio_is_hw_ready(hw)) |
| 4200 | return 0; |
| 4201 | else |
| 4202 | return -EINVAL; |
| 4203 | } |
| 4204 | |
| 4205 | int |
| 4206 | csio_hw_stop(struct csio_hw *hw) |
| 4207 | { |
| 4208 | csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE); |
| 4209 | |
| 4210 | if (csio_is_hw_removing(hw)) |
| 4211 | return 0; |
| 4212 | else |
| 4213 | return -EINVAL; |
| 4214 | } |
| 4215 | |
| 4216 | /* Max reset retries */ |
| 4217 | #define CSIO_MAX_RESET_RETRIES 3 |
| 4218 | |
| 4219 | /** |
| 4220 | * csio_hw_reset - Reset the hardware |
| 4221 | * @hw: HW module. |
| 4222 | * |
| 4223 | * Caller should hold lock across this function. |
| 4224 | */ |
| 4225 | int |
| 4226 | csio_hw_reset(struct csio_hw *hw) |
| 4227 | { |
| 4228 | if (!csio_is_hw_master(hw)) |
| 4229 | return -EPERM; |
| 4230 | |
| 4231 | if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) { |
| 4232 | csio_dbg(hw, "Max hw reset attempts reached.."); |
| 4233 | return -EINVAL; |
| 4234 | } |
| 4235 | |
| 4236 | hw->rst_retries++; |
| 4237 | csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET); |
| 4238 | |
| 4239 | if (csio_is_hw_ready(hw)) { |
| 4240 | hw->rst_retries = 0; |
| 4241 | hw->stats.n_reset_start = jiffies_to_msecs(jiffies); |
| 4242 | return 0; |
| 4243 | } else |
| 4244 | return -EINVAL; |
| 4245 | } |
| 4246 | |
| 4247 | /* |
| 4248 | * csio_hw_get_device_id - Caches the Adapter's vendor & device id. |
| 4249 | * @hw: HW module. |
| 4250 | */ |
| 4251 | static void |
| 4252 | csio_hw_get_device_id(struct csio_hw *hw) |
| 4253 | { |
| 4254 | /* Is the adapter device id cached already ?*/ |
| 4255 | if (csio_is_dev_id_cached(hw)) |
| 4256 | return; |
| 4257 | |
| 4258 | /* Get the PCI vendor & device id */ |
| 4259 | pci_read_config_word(hw->pdev, PCI_VENDOR_ID, |
| 4260 | &hw->params.pci.vendor_id); |
| 4261 | pci_read_config_word(hw->pdev, PCI_DEVICE_ID, |
| 4262 | &hw->params.pci.device_id); |
| 4263 | |
| 4264 | csio_dev_id_cached(hw); |
| 4265 | |
| 4266 | } /* csio_hw_get_device_id */ |
| 4267 | |
| 4268 | /* |
| 4269 | * csio_hw_set_description - Set the model, description of the hw. |
| 4270 | * @hw: HW module. |
| 4271 | * @ven_id: PCI Vendor ID |
| 4272 | * @dev_id: PCI Device ID |
| 4273 | */ |
| 4274 | static void |
| 4275 | csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id) |
| 4276 | { |
| 4277 | uint32_t adap_type, prot_type; |
| 4278 | |
| 4279 | if (ven_id == CSIO_VENDOR_ID) { |
| 4280 | prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK); |
| 4281 | adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK); |
| 4282 | |
| 4283 | if (prot_type == CSIO_FPGA) { |
| 4284 | memcpy(hw->model_desc, |
| 4285 | csio_fcoe_adapters[13].description, 32); |
| 4286 | } else if (prot_type == CSIO_T4_FCOE_ASIC) { |
| 4287 | memcpy(hw->hw_ver, |
| 4288 | csio_fcoe_adapters[adap_type].model_no, 16); |
| 4289 | memcpy(hw->model_desc, |
| 4290 | csio_fcoe_adapters[adap_type].description, 32); |
| 4291 | } else { |
| 4292 | char tempName[32] = "Chelsio FCoE Controller"; |
| 4293 | memcpy(hw->model_desc, tempName, 32); |
| 4294 | |
| 4295 | CSIO_DB_ASSERT(0); |
| 4296 | } |
| 4297 | } |
| 4298 | } /* csio_hw_set_description */ |
| 4299 | |
| 4300 | /** |
| 4301 | * csio_hw_init - Initialize HW module. |
| 4302 | * @hw: Pointer to HW module. |
| 4303 | * |
| 4304 | * Initialize the members of the HW module. |
| 4305 | */ |
| 4306 | int |
| 4307 | csio_hw_init(struct csio_hw *hw) |
| 4308 | { |
| 4309 | int rv = -EINVAL; |
| 4310 | uint32_t i; |
| 4311 | uint16_t ven_id, dev_id; |
| 4312 | struct csio_evt_msg *evt_entry; |
| 4313 | |
| 4314 | INIT_LIST_HEAD(&hw->sm.sm_list); |
| 4315 | csio_init_state(&hw->sm, csio_hws_uninit); |
| 4316 | spin_lock_init(&hw->lock); |
| 4317 | INIT_LIST_HEAD(&hw->sln_head); |
| 4318 | |
| 4319 | /* Get the PCI vendor & device id */ |
| 4320 | csio_hw_get_device_id(hw); |
| 4321 | |
| 4322 | strcpy(hw->name, CSIO_HW_NAME); |
| 4323 | |
| 4324 | /* Set the model & its description */ |
| 4325 | |
| 4326 | ven_id = hw->params.pci.vendor_id; |
| 4327 | dev_id = hw->params.pci.device_id; |
| 4328 | |
| 4329 | csio_hw_set_description(hw, ven_id, dev_id); |
| 4330 | |
| 4331 | /* Initialize default log level */ |
| 4332 | hw->params.log_level = (uint32_t) csio_dbg_level; |
| 4333 | |
| 4334 | csio_set_fwevt_intr_idx(hw, -1); |
| 4335 | csio_set_nondata_intr_idx(hw, -1); |
| 4336 | |
| 4337 | /* Init all the modules: Mailbox, WorkRequest and Transport */ |
| 4338 | if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer)) |
| 4339 | goto err; |
| 4340 | |
| 4341 | rv = csio_wrm_init(csio_hw_to_wrm(hw), hw); |
| 4342 | if (rv) |
| 4343 | goto err_mbm_exit; |
| 4344 | |
| 4345 | rv = csio_scsim_init(csio_hw_to_scsim(hw), hw); |
| 4346 | if (rv) |
| 4347 | goto err_wrm_exit; |
| 4348 | |
| 4349 | rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw); |
| 4350 | if (rv) |
| 4351 | goto err_scsim_exit; |
| 4352 | /* Pre-allocate evtq and initialize them */ |
| 4353 | INIT_LIST_HEAD(&hw->evt_active_q); |
| 4354 | INIT_LIST_HEAD(&hw->evt_free_q); |
| 4355 | for (i = 0; i < csio_evtq_sz; i++) { |
| 4356 | |
| 4357 | evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL); |
| 4358 | if (!evt_entry) { |
| 4359 | csio_err(hw, "Failed to initialize eventq"); |
| 4360 | goto err_evtq_cleanup; |
| 4361 | } |
| 4362 | |
| 4363 | list_add_tail(&evt_entry->list, &hw->evt_free_q); |
| 4364 | CSIO_INC_STATS(hw, n_evt_freeq); |
| 4365 | } |
| 4366 | |
| 4367 | hw->dev_num = dev_num; |
| 4368 | dev_num++; |
| 4369 | |
| 4370 | return 0; |
| 4371 | |
| 4372 | err_evtq_cleanup: |
| 4373 | csio_evtq_cleanup(hw); |
| 4374 | csio_mgmtm_exit(csio_hw_to_mgmtm(hw)); |
| 4375 | err_scsim_exit: |
| 4376 | csio_scsim_exit(csio_hw_to_scsim(hw)); |
| 4377 | err_wrm_exit: |
| 4378 | csio_wrm_exit(csio_hw_to_wrm(hw), hw); |
| 4379 | err_mbm_exit: |
| 4380 | csio_mbm_exit(csio_hw_to_mbm(hw)); |
| 4381 | err: |
| 4382 | return rv; |
| 4383 | } |
| 4384 | |
| 4385 | /** |
| 4386 | * csio_hw_exit - Un-initialize HW module. |
| 4387 | * @hw: Pointer to HW module. |
| 4388 | * |
| 4389 | */ |
| 4390 | void |
| 4391 | csio_hw_exit(struct csio_hw *hw) |
| 4392 | { |
| 4393 | csio_evtq_cleanup(hw); |
| 4394 | csio_mgmtm_exit(csio_hw_to_mgmtm(hw)); |
| 4395 | csio_scsim_exit(csio_hw_to_scsim(hw)); |
| 4396 | csio_wrm_exit(csio_hw_to_wrm(hw), hw); |
| 4397 | csio_mbm_exit(csio_hw_to_mbm(hw)); |
| 4398 | } |