blob: 301c3f13fb26c23a8ff8a154212ee73fb43f24be [file] [log] [blame]
Nuno Sáf110f312019-10-11 10:40:37 +02001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System
4 * driver
5 *
6 * Copyright 2019 Analog Devices Inc.
7 */
8#include <linux/bitfield.h>
9#include <linux/completion.h>
10#include <linux/device.h>
11#include <linux/kernel.h>
12#include <linux/iio/iio.h>
13#include <linux/interrupt.h>
14#include <linux/list.h>
15#include <linux/module.h>
16#include <linux/of_gpio.h>
17#include <linux/regmap.h>
18#include <linux/spi/spi.h>
19
20/* register map */
21#define LTC2983_STATUS_REG 0x0000
22#define LTC2983_TEMP_RES_START_REG 0x0010
23#define LTC2983_TEMP_RES_END_REG 0x005F
24#define LTC2983_GLOBAL_CONFIG_REG 0x00F0
25#define LTC2983_MULT_CHANNEL_START_REG 0x00F4
26#define LTC2983_MULT_CHANNEL_END_REG 0x00F7
27#define LTC2983_MUX_CONFIG_REG 0x00FF
28#define LTC2983_CHAN_ASSIGN_START_REG 0x0200
29#define LTC2983_CHAN_ASSIGN_END_REG 0x024F
30#define LTC2983_CUST_SENS_TBL_START_REG 0x0250
31#define LTC2983_CUST_SENS_TBL_END_REG 0x03CF
32
33#define LTC2983_DIFFERENTIAL_CHAN_MIN 2
34#define LTC2983_MAX_CHANNELS_NR 20
35#define LTC2983_MIN_CHANNELS_NR 1
36#define LTC2983_SLEEP 0x97
37#define LTC2983_CUSTOM_STEINHART_SIZE 24
38#define LTC2983_CUSTOM_SENSOR_ENTRY_SZ 6
39#define LTC2983_CUSTOM_STEINHART_ENTRY_SZ 4
40
41#define LTC2983_CHAN_START_ADDR(chan) \
42 (((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG)
43#define LTC2983_CHAN_RES_ADDR(chan) \
44 (((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG)
45#define LTC2983_THERMOCOUPLE_DIFF_MASK BIT(3)
46#define LTC2983_THERMOCOUPLE_SGL(x) \
47 FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x)
48#define LTC2983_THERMOCOUPLE_OC_CURR_MASK GENMASK(1, 0)
49#define LTC2983_THERMOCOUPLE_OC_CURR(x) \
50 FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x)
51#define LTC2983_THERMOCOUPLE_OC_CHECK_MASK BIT(2)
52#define LTC2983_THERMOCOUPLE_OC_CHECK(x) \
53 FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x)
54
55#define LTC2983_THERMISTOR_DIFF_MASK BIT(2)
56#define LTC2983_THERMISTOR_SGL(x) \
57 FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x)
58#define LTC2983_THERMISTOR_R_SHARE_MASK BIT(1)
59#define LTC2983_THERMISTOR_R_SHARE(x) \
60 FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x)
61#define LTC2983_THERMISTOR_C_ROTATE_MASK BIT(0)
62#define LTC2983_THERMISTOR_C_ROTATE(x) \
63 FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x)
64
65#define LTC2983_DIODE_DIFF_MASK BIT(2)
66#define LTC2983_DIODE_SGL(x) \
67 FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x)
68#define LTC2983_DIODE_3_CONV_CYCLE_MASK BIT(1)
69#define LTC2983_DIODE_3_CONV_CYCLE(x) \
70 FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x)
71#define LTC2983_DIODE_AVERAGE_ON_MASK BIT(0)
72#define LTC2983_DIODE_AVERAGE_ON(x) \
73 FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x)
74
75#define LTC2983_RTD_4_WIRE_MASK BIT(3)
76#define LTC2983_RTD_ROTATION_MASK BIT(1)
77#define LTC2983_RTD_C_ROTATE(x) \
78 FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x)
79#define LTC2983_RTD_KELVIN_R_SENSE_MASK GENMASK(3, 2)
80#define LTC2983_RTD_N_WIRES_MASK GENMASK(3, 2)
81#define LTC2983_RTD_N_WIRES(x) \
82 FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x)
83#define LTC2983_RTD_R_SHARE_MASK BIT(0)
84#define LTC2983_RTD_R_SHARE(x) \
85 FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1)
86
87#define LTC2983_COMMON_HARD_FAULT_MASK GENMASK(31, 30)
88#define LTC2983_COMMON_SOFT_FAULT_MASK GENMASK(27, 25)
89
90#define LTC2983_STATUS_START_MASK BIT(7)
91#define LTC2983_STATUS_START(x) FIELD_PREP(LTC2983_STATUS_START_MASK, x)
Nuno Sáb76d26d2021-08-11 15:32:20 +020092#define LTC2983_STATUS_UP_MASK GENMASK(7, 6)
93#define LTC2983_STATUS_UP(reg) FIELD_GET(LTC2983_STATUS_UP_MASK, reg)
Nuno Sáf110f312019-10-11 10:40:37 +020094
95#define LTC2983_STATUS_CHAN_SEL_MASK GENMASK(4, 0)
96#define LTC2983_STATUS_CHAN_SEL(x) \
97 FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x)
98
99#define LTC2983_TEMP_UNITS_MASK BIT(2)
100#define LTC2983_TEMP_UNITS(x) FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x)
101
102#define LTC2983_NOTCH_FREQ_MASK GENMASK(1, 0)
103#define LTC2983_NOTCH_FREQ(x) FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x)
104
105#define LTC2983_RES_VALID_MASK BIT(24)
106#define LTC2983_DATA_MASK GENMASK(23, 0)
107#define LTC2983_DATA_SIGN_BIT 23
108
109#define LTC2983_CHAN_TYPE_MASK GENMASK(31, 27)
110#define LTC2983_CHAN_TYPE(x) FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x)
111
112/* cold junction for thermocouples and rsense for rtd's and thermistor's */
113#define LTC2983_CHAN_ASSIGN_MASK GENMASK(26, 22)
114#define LTC2983_CHAN_ASSIGN(x) FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x)
115
116#define LTC2983_CUSTOM_LEN_MASK GENMASK(5, 0)
117#define LTC2983_CUSTOM_LEN(x) FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x)
118
119#define LTC2983_CUSTOM_ADDR_MASK GENMASK(11, 6)
120#define LTC2983_CUSTOM_ADDR(x) FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x)
121
122#define LTC2983_THERMOCOUPLE_CFG_MASK GENMASK(21, 18)
123#define LTC2983_THERMOCOUPLE_CFG(x) \
124 FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x)
125#define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK GENMASK(31, 29)
126#define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK GENMASK(28, 25)
127
128#define LTC2983_RTD_CFG_MASK GENMASK(21, 18)
129#define LTC2983_RTD_CFG(x) FIELD_PREP(LTC2983_RTD_CFG_MASK, x)
130#define LTC2983_RTD_EXC_CURRENT_MASK GENMASK(17, 14)
131#define LTC2983_RTD_EXC_CURRENT(x) \
132 FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x)
133#define LTC2983_RTD_CURVE_MASK GENMASK(13, 12)
134#define LTC2983_RTD_CURVE(x) FIELD_PREP(LTC2983_RTD_CURVE_MASK, x)
135
136#define LTC2983_THERMISTOR_CFG_MASK GENMASK(21, 19)
137#define LTC2983_THERMISTOR_CFG(x) \
138 FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x)
139#define LTC2983_THERMISTOR_EXC_CURRENT_MASK GENMASK(18, 15)
140#define LTC2983_THERMISTOR_EXC_CURRENT(x) \
141 FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x)
142
143#define LTC2983_DIODE_CFG_MASK GENMASK(26, 24)
144#define LTC2983_DIODE_CFG(x) FIELD_PREP(LTC2983_DIODE_CFG_MASK, x)
145#define LTC2983_DIODE_EXC_CURRENT_MASK GENMASK(23, 22)
146#define LTC2983_DIODE_EXC_CURRENT(x) \
147 FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x)
148#define LTC2983_DIODE_IDEAL_FACTOR_MASK GENMASK(21, 0)
149#define LTC2983_DIODE_IDEAL_FACTOR(x) \
150 FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x)
151
152#define LTC2983_R_SENSE_VAL_MASK GENMASK(26, 0)
153#define LTC2983_R_SENSE_VAL(x) FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x)
154
155#define LTC2983_ADC_SINGLE_ENDED_MASK BIT(26)
156#define LTC2983_ADC_SINGLE_ENDED(x) \
157 FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x)
158
159enum {
160 LTC2983_SENSOR_THERMOCOUPLE = 1,
161 LTC2983_SENSOR_THERMOCOUPLE_CUSTOM = 9,
162 LTC2983_SENSOR_RTD = 10,
163 LTC2983_SENSOR_RTD_CUSTOM = 18,
164 LTC2983_SENSOR_THERMISTOR = 19,
165 LTC2983_SENSOR_THERMISTOR_STEINHART = 26,
166 LTC2983_SENSOR_THERMISTOR_CUSTOM = 27,
167 LTC2983_SENSOR_DIODE = 28,
168 LTC2983_SENSOR_SENSE_RESISTOR = 29,
169 LTC2983_SENSOR_DIRECT_ADC = 30,
170};
171
172#define to_thermocouple(_sensor) \
173 container_of(_sensor, struct ltc2983_thermocouple, sensor)
174
175#define to_rtd(_sensor) \
176 container_of(_sensor, struct ltc2983_rtd, sensor)
177
178#define to_thermistor(_sensor) \
179 container_of(_sensor, struct ltc2983_thermistor, sensor)
180
181#define to_diode(_sensor) \
182 container_of(_sensor, struct ltc2983_diode, sensor)
183
184#define to_rsense(_sensor) \
185 container_of(_sensor, struct ltc2983_rsense, sensor)
186
187#define to_adc(_sensor) \
188 container_of(_sensor, struct ltc2983_adc, sensor)
189
190struct ltc2983_data {
191 struct regmap *regmap;
192 struct spi_device *spi;
193 struct mutex lock;
194 struct completion completion;
195 struct iio_chan_spec *iio_chan;
196 struct ltc2983_sensor **sensors;
197 u32 mux_delay_config;
198 u32 filter_notch_freq;
199 u16 custom_table_size;
200 u8 num_channels;
201 u8 iio_channels;
202 /*
203 * DMA (thus cache coherency maintenance) requires the
204 * transfer buffers to live in their own cache lines.
205 * Holds the converted temperature
206 */
207 __be32 temp ____cacheline_aligned;
208};
209
210struct ltc2983_sensor {
211 int (*fault_handler)(const struct ltc2983_data *st, const u32 result);
212 int (*assign_chan)(struct ltc2983_data *st,
213 const struct ltc2983_sensor *sensor);
214 /* specifies the sensor channel */
215 u32 chan;
216 /* sensor type */
217 u32 type;
218};
219
220struct ltc2983_custom_sensor {
221 /* raw table sensor data */
222 u8 *table;
223 size_t size;
224 /* address offset */
225 s8 offset;
226 bool is_steinhart;
227};
228
229struct ltc2983_thermocouple {
230 struct ltc2983_sensor sensor;
231 struct ltc2983_custom_sensor *custom;
232 u32 sensor_config;
233 u32 cold_junction_chan;
234};
235
236struct ltc2983_rtd {
237 struct ltc2983_sensor sensor;
238 struct ltc2983_custom_sensor *custom;
239 u32 sensor_config;
240 u32 r_sense_chan;
241 u32 excitation_current;
242 u32 rtd_curve;
243};
244
245struct ltc2983_thermistor {
246 struct ltc2983_sensor sensor;
247 struct ltc2983_custom_sensor *custom;
248 u32 sensor_config;
249 u32 r_sense_chan;
250 u32 excitation_current;
251};
252
253struct ltc2983_diode {
254 struct ltc2983_sensor sensor;
255 u32 sensor_config;
256 u32 excitation_current;
257 u32 ideal_factor_value;
258};
259
260struct ltc2983_rsense {
261 struct ltc2983_sensor sensor;
262 u32 r_sense_val;
263};
264
265struct ltc2983_adc {
266 struct ltc2983_sensor sensor;
267 bool single_ended;
268};
269
270/*
271 * Convert to Q format numbers. These number's are integers where
272 * the number of integer and fractional bits are specified. The resolution
273 * is given by 1/@resolution and tell us the number of fractional bits. For
274 * instance a resolution of 2^-10 means we have 10 fractional bits.
275 */
276static u32 __convert_to_raw(const u64 val, const u32 resolution)
277{
278 u64 __res = val * resolution;
279
280 /* all values are multiplied by 1000000 to remove the fraction */
281 do_div(__res, 1000000);
282
283 return __res;
284}
285
286static u32 __convert_to_raw_sign(const u64 val, const u32 resolution)
287{
288 s64 __res = -(s32)val;
289
290 __res = __convert_to_raw(__res, resolution);
291
292 return (u32)-__res;
293}
294
295static int __ltc2983_fault_handler(const struct ltc2983_data *st,
296 const u32 result, const u32 hard_mask,
297 const u32 soft_mask)
298{
299 const struct device *dev = &st->spi->dev;
300
301 if (result & hard_mask) {
302 dev_err(dev, "Invalid conversion: Sensor HARD fault\n");
303 return -EIO;
304 } else if (result & soft_mask) {
305 /* just print a warning */
306 dev_warn(dev, "Suspicious conversion: Sensor SOFT fault\n");
307 }
308
309 return 0;
310}
311
312static int __ltc2983_chan_assign_common(const struct ltc2983_data *st,
313 const struct ltc2983_sensor *sensor,
314 u32 chan_val)
315{
316 u32 reg = LTC2983_CHAN_START_ADDR(sensor->chan);
317 __be32 __chan_val;
318
319 chan_val |= LTC2983_CHAN_TYPE(sensor->type);
320 dev_dbg(&st->spi->dev, "Assign reg:0x%04X, val:0x%08X\n", reg,
321 chan_val);
322 __chan_val = cpu_to_be32(chan_val);
323 return regmap_bulk_write(st->regmap, reg, &__chan_val,
324 sizeof(__chan_val));
325}
326
327static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data *st,
328 struct ltc2983_custom_sensor *custom,
329 u32 *chan_val)
330{
331 u32 reg;
332 u8 mult = custom->is_steinhart ? LTC2983_CUSTOM_STEINHART_ENTRY_SZ :
333 LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
334 const struct device *dev = &st->spi->dev;
335 /*
336 * custom->size holds the raw size of the table. However, when
337 * configuring the sensor channel, we must write the number of
338 * entries of the table minus 1. For steinhart sensors 0 is written
339 * since the size is constant!
340 */
341 const u8 len = custom->is_steinhart ? 0 :
342 (custom->size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ) - 1;
343 /*
344 * Check if the offset was assigned already. It should be for steinhart
345 * sensors. When coming from sleep, it should be assigned for all.
346 */
347 if (custom->offset < 0) {
348 /*
349 * This needs to be done again here because, from the moment
350 * when this test was done (successfully) for this custom
351 * sensor, a steinhart sensor might have been added changing
352 * custom_table_size...
353 */
354 if (st->custom_table_size + custom->size >
355 (LTC2983_CUST_SENS_TBL_END_REG -
356 LTC2983_CUST_SENS_TBL_START_REG) + 1) {
357 dev_err(dev,
358 "Not space left(%d) for new custom sensor(%zu)",
359 st->custom_table_size,
360 custom->size);
361 return -EINVAL;
362 }
363
364 custom->offset = st->custom_table_size /
365 LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
366 st->custom_table_size += custom->size;
367 }
368
369 reg = (custom->offset * mult) + LTC2983_CUST_SENS_TBL_START_REG;
370
371 *chan_val |= LTC2983_CUSTOM_LEN(len);
372 *chan_val |= LTC2983_CUSTOM_ADDR(custom->offset);
373 dev_dbg(dev, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu",
374 reg, custom->offset,
375 custom->size);
376 /* write custom sensor table */
377 return regmap_bulk_write(st->regmap, reg, custom->table, custom->size);
378}
379
380static struct ltc2983_custom_sensor *__ltc2983_custom_sensor_new(
381 struct ltc2983_data *st,
382 const struct device_node *np,
383 const char *propname,
384 const bool is_steinhart,
385 const u32 resolution,
386 const bool has_signed)
387{
388 struct ltc2983_custom_sensor *new_custom;
389 u8 index, n_entries, tbl = 0;
390 struct device *dev = &st->spi->dev;
391 /*
392 * For custom steinhart, the full u32 is taken. For all the others
393 * the MSB is discarded.
394 */
Rohit Sarkar5a464c62020-03-28 12:23:04 +0530395 const u8 n_size = is_steinhart ? 4 : 3;
396 const u8 e_size = is_steinhart ? sizeof(u32) : sizeof(u64);
Nuno Sáf110f312019-10-11 10:40:37 +0200397
398 n_entries = of_property_count_elems_of_size(np, propname, e_size);
399 /* n_entries must be an even number */
400 if (!n_entries || (n_entries % 2) != 0) {
401 dev_err(dev, "Number of entries either 0 or not even\n");
402 return ERR_PTR(-EINVAL);
403 }
404
405 new_custom = devm_kzalloc(dev, sizeof(*new_custom), GFP_KERNEL);
406 if (!new_custom)
407 return ERR_PTR(-ENOMEM);
408
409 new_custom->size = n_entries * n_size;
410 /* check Steinhart size */
411 if (is_steinhart && new_custom->size != LTC2983_CUSTOM_STEINHART_SIZE) {
412 dev_err(dev, "Steinhart sensors size(%zu) must be 24",
413 new_custom->size);
414 return ERR_PTR(-EINVAL);
415 }
416 /* Check space on the table. */
417 if (st->custom_table_size + new_custom->size >
418 (LTC2983_CUST_SENS_TBL_END_REG -
419 LTC2983_CUST_SENS_TBL_START_REG) + 1) {
420 dev_err(dev, "No space left(%d) for new custom sensor(%zu)",
421 st->custom_table_size, new_custom->size);
422 return ERR_PTR(-EINVAL);
423 }
424
425 /* allocate the table */
426 new_custom->table = devm_kzalloc(dev, new_custom->size, GFP_KERNEL);
427 if (!new_custom->table)
428 return ERR_PTR(-ENOMEM);
429
430 for (index = 0; index < n_entries; index++) {
431 u64 temp = 0, j;
432 /*
433 * Steinhart sensors are configured with raw values in the
434 * devicetree. For the other sensors we must convert the
435 * value to raw. The odd index's correspond to temperarures
436 * and always have 1/1024 of resolution. Temperatures also
437 * come in kelvin, so signed values is not possible
438 */
439 if (!is_steinhart) {
440 of_property_read_u64_index(np, propname, index, &temp);
441
442 if ((index % 2) != 0)
443 temp = __convert_to_raw(temp, 1024);
444 else if (has_signed && (s64)temp < 0)
445 temp = __convert_to_raw_sign(temp, resolution);
446 else
447 temp = __convert_to_raw(temp, resolution);
448 } else {
Colin Ian King2e19b6c2019-11-05 20:28:18 +0000449 u32 t32;
450
451 of_property_read_u32_index(np, propname, index, &t32);
452 temp = t32;
Nuno Sáf110f312019-10-11 10:40:37 +0200453 }
454
455 for (j = 0; j < n_size; j++)
456 new_custom->table[tbl++] =
457 temp >> (8 * (n_size - j - 1));
458 }
459
460 new_custom->is_steinhart = is_steinhart;
461 /*
462 * This is done to first add all the steinhart sensors to the table,
463 * in order to maximize the table usage. If we mix adding steinhart
464 * with the other sensors, we might have to do some roundup to make
465 * sure that sensor_addr - 0x250(start address) is a multiple of 4
466 * (for steinhart), and a multiple of 6 for all the other sensors.
467 * Since we have const 24 bytes for steinhart sensors and 24 is
468 * also a multiple of 6, we guarantee that the first non-steinhart
469 * sensor will sit in a correct address without the need of filling
470 * addresses.
471 */
472 if (is_steinhart) {
473 new_custom->offset = st->custom_table_size /
474 LTC2983_CUSTOM_STEINHART_ENTRY_SZ;
475 st->custom_table_size += new_custom->size;
476 } else {
477 /* mark as unset. This is checked later on the assign phase */
478 new_custom->offset = -1;
479 }
480
481 return new_custom;
482}
483
484static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data *st,
485 const u32 result)
486{
487 return __ltc2983_fault_handler(st, result,
488 LTC2983_THERMOCOUPLE_HARD_FAULT_MASK,
489 LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK);
490}
491
492static int ltc2983_common_fault_handler(const struct ltc2983_data *st,
493 const u32 result)
494{
495 return __ltc2983_fault_handler(st, result,
496 LTC2983_COMMON_HARD_FAULT_MASK,
497 LTC2983_COMMON_SOFT_FAULT_MASK);
498}
499
500static int ltc2983_thermocouple_assign_chan(struct ltc2983_data *st,
501 const struct ltc2983_sensor *sensor)
502{
503 struct ltc2983_thermocouple *thermo = to_thermocouple(sensor);
504 u32 chan_val;
505
506 chan_val = LTC2983_CHAN_ASSIGN(thermo->cold_junction_chan);
507 chan_val |= LTC2983_THERMOCOUPLE_CFG(thermo->sensor_config);
508
509 if (thermo->custom) {
510 int ret;
511
512 ret = __ltc2983_chan_custom_sensor_assign(st, thermo->custom,
513 &chan_val);
514 if (ret)
515 return ret;
516 }
517 return __ltc2983_chan_assign_common(st, sensor, chan_val);
518}
519
520static int ltc2983_rtd_assign_chan(struct ltc2983_data *st,
521 const struct ltc2983_sensor *sensor)
522{
523 struct ltc2983_rtd *rtd = to_rtd(sensor);
524 u32 chan_val;
525
526 chan_val = LTC2983_CHAN_ASSIGN(rtd->r_sense_chan);
527 chan_val |= LTC2983_RTD_CFG(rtd->sensor_config);
528 chan_val |= LTC2983_RTD_EXC_CURRENT(rtd->excitation_current);
529 chan_val |= LTC2983_RTD_CURVE(rtd->rtd_curve);
530
531 if (rtd->custom) {
532 int ret;
533
534 ret = __ltc2983_chan_custom_sensor_assign(st, rtd->custom,
535 &chan_val);
536 if (ret)
537 return ret;
538 }
539 return __ltc2983_chan_assign_common(st, sensor, chan_val);
540}
541
542static int ltc2983_thermistor_assign_chan(struct ltc2983_data *st,
543 const struct ltc2983_sensor *sensor)
544{
545 struct ltc2983_thermistor *thermistor = to_thermistor(sensor);
546 u32 chan_val;
547
548 chan_val = LTC2983_CHAN_ASSIGN(thermistor->r_sense_chan);
549 chan_val |= LTC2983_THERMISTOR_CFG(thermistor->sensor_config);
550 chan_val |=
551 LTC2983_THERMISTOR_EXC_CURRENT(thermistor->excitation_current);
552
553 if (thermistor->custom) {
554 int ret;
555
556 ret = __ltc2983_chan_custom_sensor_assign(st,
557 thermistor->custom,
558 &chan_val);
559 if (ret)
560 return ret;
561 }
562 return __ltc2983_chan_assign_common(st, sensor, chan_val);
563}
564
565static int ltc2983_diode_assign_chan(struct ltc2983_data *st,
566 const struct ltc2983_sensor *sensor)
567{
568 struct ltc2983_diode *diode = to_diode(sensor);
569 u32 chan_val;
570
571 chan_val = LTC2983_DIODE_CFG(diode->sensor_config);
572 chan_val |= LTC2983_DIODE_EXC_CURRENT(diode->excitation_current);
573 chan_val |= LTC2983_DIODE_IDEAL_FACTOR(diode->ideal_factor_value);
574
575 return __ltc2983_chan_assign_common(st, sensor, chan_val);
576}
577
578static int ltc2983_r_sense_assign_chan(struct ltc2983_data *st,
579 const struct ltc2983_sensor *sensor)
580{
581 struct ltc2983_rsense *rsense = to_rsense(sensor);
582 u32 chan_val;
583
584 chan_val = LTC2983_R_SENSE_VAL(rsense->r_sense_val);
585
586 return __ltc2983_chan_assign_common(st, sensor, chan_val);
587}
588
589static int ltc2983_adc_assign_chan(struct ltc2983_data *st,
590 const struct ltc2983_sensor *sensor)
591{
592 struct ltc2983_adc *adc = to_adc(sensor);
593 u32 chan_val;
594
595 chan_val = LTC2983_ADC_SINGLE_ENDED(adc->single_ended);
596
597 return __ltc2983_chan_assign_common(st, sensor, chan_val);
598}
599
600static struct ltc2983_sensor *ltc2983_thermocouple_new(
601 const struct device_node *child,
602 struct ltc2983_data *st,
603 const struct ltc2983_sensor *sensor)
604{
605 struct ltc2983_thermocouple *thermo;
606 struct device_node *phandle;
607 u32 oc_current;
608 int ret;
609
610 thermo = devm_kzalloc(&st->spi->dev, sizeof(*thermo), GFP_KERNEL);
611 if (!thermo)
612 return ERR_PTR(-ENOMEM);
613
614 if (of_property_read_bool(child, "adi,single-ended"))
615 thermo->sensor_config = LTC2983_THERMOCOUPLE_SGL(1);
616
617 ret = of_property_read_u32(child, "adi,sensor-oc-current-microamp",
618 &oc_current);
619 if (!ret) {
620 switch (oc_current) {
621 case 10:
622 thermo->sensor_config |=
623 LTC2983_THERMOCOUPLE_OC_CURR(0);
624 break;
625 case 100:
626 thermo->sensor_config |=
627 LTC2983_THERMOCOUPLE_OC_CURR(1);
628 break;
629 case 500:
630 thermo->sensor_config |=
631 LTC2983_THERMOCOUPLE_OC_CURR(2);
632 break;
633 case 1000:
634 thermo->sensor_config |=
635 LTC2983_THERMOCOUPLE_OC_CURR(3);
636 break;
637 default:
638 dev_err(&st->spi->dev,
639 "Invalid open circuit current:%u", oc_current);
640 return ERR_PTR(-EINVAL);
641 }
642
643 thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CHECK(1);
644 }
645 /* validate channel index */
646 if (!(thermo->sensor_config & LTC2983_THERMOCOUPLE_DIFF_MASK) &&
647 sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
648 dev_err(&st->spi->dev,
649 "Invalid chann:%d for differential thermocouple",
650 sensor->chan);
651 return ERR_PTR(-EINVAL);
652 }
653
654 phandle = of_parse_phandle(child, "adi,cold-junction-handle", 0);
655 if (phandle) {
656 int ret;
657
658 ret = of_property_read_u32(phandle, "reg",
659 &thermo->cold_junction_chan);
660 if (ret) {
661 /*
662 * This would be catched later but we can just return
663 * the error right away.
664 */
665 dev_err(&st->spi->dev, "Property reg must be given\n");
666 of_node_put(phandle);
667 return ERR_PTR(-EINVAL);
668 }
669 }
670
671 /* check custom sensor */
672 if (sensor->type == LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
673 const char *propname = "adi,custom-thermocouple";
674
675 thermo->custom = __ltc2983_custom_sensor_new(st, child,
676 propname, false,
677 16384, true);
678 if (IS_ERR(thermo->custom)) {
679 of_node_put(phandle);
680 return ERR_CAST(thermo->custom);
681 }
682 }
683
684 /* set common parameters */
685 thermo->sensor.fault_handler = ltc2983_thermocouple_fault_handler;
686 thermo->sensor.assign_chan = ltc2983_thermocouple_assign_chan;
687
688 of_node_put(phandle);
689 return &thermo->sensor;
690}
691
692static struct ltc2983_sensor *ltc2983_rtd_new(const struct device_node *child,
693 struct ltc2983_data *st,
694 const struct ltc2983_sensor *sensor)
695{
696 struct ltc2983_rtd *rtd;
697 int ret = 0;
698 struct device *dev = &st->spi->dev;
699 struct device_node *phandle;
700 u32 excitation_current = 0, n_wires = 0;
701
702 rtd = devm_kzalloc(dev, sizeof(*rtd), GFP_KERNEL);
703 if (!rtd)
704 return ERR_PTR(-ENOMEM);
705
706 phandle = of_parse_phandle(child, "adi,rsense-handle", 0);
707 if (!phandle) {
708 dev_err(dev, "Property adi,rsense-handle missing or invalid");
709 return ERR_PTR(-EINVAL);
710 }
711
712 ret = of_property_read_u32(phandle, "reg", &rtd->r_sense_chan);
713 if (ret) {
714 dev_err(dev, "Property reg must be given\n");
715 goto fail;
716 }
717
718 ret = of_property_read_u32(child, "adi,number-of-wires", &n_wires);
719 if (!ret) {
720 switch (n_wires) {
721 case 2:
722 rtd->sensor_config = LTC2983_RTD_N_WIRES(0);
723 break;
724 case 3:
725 rtd->sensor_config = LTC2983_RTD_N_WIRES(1);
726 break;
727 case 4:
728 rtd->sensor_config = LTC2983_RTD_N_WIRES(2);
729 break;
730 case 5:
731 /* 4 wires, Kelvin Rsense */
732 rtd->sensor_config = LTC2983_RTD_N_WIRES(3);
733 break;
734 default:
735 dev_err(dev, "Invalid number of wires:%u\n", n_wires);
736 ret = -EINVAL;
737 goto fail;
738 }
739 }
740
741 if (of_property_read_bool(child, "adi,rsense-share")) {
742 /* Current rotation is only available with rsense sharing */
743 if (of_property_read_bool(child, "adi,current-rotate")) {
744 if (n_wires == 2 || n_wires == 3) {
745 dev_err(dev,
746 "Rotation not allowed for 2/3 Wire RTDs");
747 ret = -EINVAL;
748 goto fail;
749 }
750 rtd->sensor_config |= LTC2983_RTD_C_ROTATE(1);
751 } else {
752 rtd->sensor_config |= LTC2983_RTD_R_SHARE(1);
753 }
754 }
755 /*
756 * rtd channel indexes are a bit more complicated to validate.
757 * For 4wire RTD with rotation, the channel selection cannot be
758 * >=19 since the chann + 1 is used in this configuration.
759 * For 4wire RTDs with kelvin rsense, the rsense channel cannot be
760 * <=1 since chanel - 1 and channel - 2 are used.
761 */
762 if (rtd->sensor_config & LTC2983_RTD_4_WIRE_MASK) {
763 /* 4-wire */
764 u8 min = LTC2983_DIFFERENTIAL_CHAN_MIN,
765 max = LTC2983_MAX_CHANNELS_NR;
766
767 if (rtd->sensor_config & LTC2983_RTD_ROTATION_MASK)
768 max = LTC2983_MAX_CHANNELS_NR - 1;
769
770 if (((rtd->sensor_config & LTC2983_RTD_KELVIN_R_SENSE_MASK)
771 == LTC2983_RTD_KELVIN_R_SENSE_MASK) &&
772 (rtd->r_sense_chan <= min)) {
773 /* kelvin rsense*/
774 dev_err(dev,
775 "Invalid rsense chann:%d to use in kelvin rsense",
776 rtd->r_sense_chan);
777
778 ret = -EINVAL;
779 goto fail;
780 }
781
782 if (sensor->chan < min || sensor->chan > max) {
783 dev_err(dev, "Invalid chann:%d for the rtd config",
784 sensor->chan);
785
786 ret = -EINVAL;
787 goto fail;
788 }
789 } else {
790 /* same as differential case */
791 if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
792 dev_err(&st->spi->dev,
793 "Invalid chann:%d for RTD", sensor->chan);
794
795 ret = -EINVAL;
796 goto fail;
797 }
798 }
799
800 /* check custom sensor */
801 if (sensor->type == LTC2983_SENSOR_RTD_CUSTOM) {
802 rtd->custom = __ltc2983_custom_sensor_new(st, child,
803 "adi,custom-rtd",
804 false, 2048, false);
805 if (IS_ERR(rtd->custom)) {
806 of_node_put(phandle);
807 return ERR_CAST(rtd->custom);
808 }
809 }
810
811 /* set common parameters */
812 rtd->sensor.fault_handler = ltc2983_common_fault_handler;
813 rtd->sensor.assign_chan = ltc2983_rtd_assign_chan;
814
815 ret = of_property_read_u32(child, "adi,excitation-current-microamp",
816 &excitation_current);
817 if (ret) {
818 /* default to 5uA */
819 rtd->excitation_current = 1;
820 } else {
821 switch (excitation_current) {
822 case 5:
823 rtd->excitation_current = 0x01;
824 break;
825 case 10:
826 rtd->excitation_current = 0x02;
827 break;
828 case 25:
829 rtd->excitation_current = 0x03;
830 break;
831 case 50:
832 rtd->excitation_current = 0x04;
833 break;
834 case 100:
835 rtd->excitation_current = 0x05;
836 break;
837 case 250:
838 rtd->excitation_current = 0x06;
839 break;
840 case 500:
841 rtd->excitation_current = 0x07;
842 break;
843 case 1000:
844 rtd->excitation_current = 0x08;
845 break;
846 default:
847 dev_err(&st->spi->dev,
848 "Invalid value for excitation current(%u)",
849 excitation_current);
850 ret = -EINVAL;
851 goto fail;
852 }
853 }
854
855 of_property_read_u32(child, "adi,rtd-curve", &rtd->rtd_curve);
856
857 of_node_put(phandle);
858 return &rtd->sensor;
859fail:
860 of_node_put(phandle);
861 return ERR_PTR(ret);
862}
863
864static struct ltc2983_sensor *ltc2983_thermistor_new(
865 const struct device_node *child,
866 struct ltc2983_data *st,
867 const struct ltc2983_sensor *sensor)
868{
869 struct ltc2983_thermistor *thermistor;
870 struct device *dev = &st->spi->dev;
871 struct device_node *phandle;
872 u32 excitation_current = 0;
873 int ret = 0;
874
875 thermistor = devm_kzalloc(dev, sizeof(*thermistor), GFP_KERNEL);
876 if (!thermistor)
877 return ERR_PTR(-ENOMEM);
878
879 phandle = of_parse_phandle(child, "adi,rsense-handle", 0);
880 if (!phandle) {
881 dev_err(dev, "Property adi,rsense-handle missing or invalid");
882 return ERR_PTR(-EINVAL);
883 }
884
885 ret = of_property_read_u32(phandle, "reg", &thermistor->r_sense_chan);
886 if (ret) {
887 dev_err(dev, "rsense channel must be configured...\n");
888 goto fail;
889 }
890
891 if (of_property_read_bool(child, "adi,single-ended")) {
892 thermistor->sensor_config = LTC2983_THERMISTOR_SGL(1);
893 } else if (of_property_read_bool(child, "adi,rsense-share")) {
894 /* rotation is only possible if sharing rsense */
895 if (of_property_read_bool(child, "adi,current-rotate"))
896 thermistor->sensor_config =
897 LTC2983_THERMISTOR_C_ROTATE(1);
898 else
899 thermistor->sensor_config =
900 LTC2983_THERMISTOR_R_SHARE(1);
901 }
902 /* validate channel index */
903 if (!(thermistor->sensor_config & LTC2983_THERMISTOR_DIFF_MASK) &&
904 sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
905 dev_err(&st->spi->dev,
906 "Invalid chann:%d for differential thermistor",
907 sensor->chan);
908 ret = -EINVAL;
909 goto fail;
910 }
911
912 /* check custom sensor */
913 if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) {
914 bool steinhart = false;
915 const char *propname;
916
917 if (sensor->type == LTC2983_SENSOR_THERMISTOR_STEINHART) {
918 steinhart = true;
919 propname = "adi,custom-steinhart";
920 } else {
921 propname = "adi,custom-thermistor";
922 }
923
924 thermistor->custom = __ltc2983_custom_sensor_new(st, child,
925 propname,
926 steinhart,
927 64, false);
928 if (IS_ERR(thermistor->custom)) {
929 of_node_put(phandle);
930 return ERR_CAST(thermistor->custom);
931 }
932 }
933 /* set common parameters */
934 thermistor->sensor.fault_handler = ltc2983_common_fault_handler;
935 thermistor->sensor.assign_chan = ltc2983_thermistor_assign_chan;
936
937 ret = of_property_read_u32(child, "adi,excitation-current-nanoamp",
938 &excitation_current);
939 if (ret) {
940 /* Auto range is not allowed for custom sensors */
941 if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART)
942 /* default to 1uA */
943 thermistor->excitation_current = 0x03;
944 else
945 /* default to auto-range */
946 thermistor->excitation_current = 0x0c;
947 } else {
948 switch (excitation_current) {
949 case 0:
950 /* auto range */
951 if (sensor->type >=
952 LTC2983_SENSOR_THERMISTOR_STEINHART) {
953 dev_err(&st->spi->dev,
954 "Auto Range not allowed for custom sensors\n");
955 ret = -EINVAL;
956 goto fail;
957 }
958 thermistor->excitation_current = 0x0c;
959 break;
960 case 250:
961 thermistor->excitation_current = 0x01;
962 break;
963 case 500:
964 thermistor->excitation_current = 0x02;
965 break;
966 case 1000:
967 thermistor->excitation_current = 0x03;
968 break;
969 case 5000:
970 thermistor->excitation_current = 0x04;
971 break;
972 case 10000:
973 thermistor->excitation_current = 0x05;
974 break;
975 case 25000:
976 thermistor->excitation_current = 0x06;
977 break;
978 case 50000:
979 thermistor->excitation_current = 0x07;
980 break;
981 case 100000:
982 thermistor->excitation_current = 0x08;
983 break;
984 case 250000:
985 thermistor->excitation_current = 0x09;
986 break;
987 case 500000:
988 thermistor->excitation_current = 0x0a;
989 break;
990 case 1000000:
991 thermistor->excitation_current = 0x0b;
992 break;
993 default:
994 dev_err(&st->spi->dev,
995 "Invalid value for excitation current(%u)",
996 excitation_current);
997 ret = -EINVAL;
998 goto fail;
999 }
1000 }
1001
1002 of_node_put(phandle);
1003 return &thermistor->sensor;
1004fail:
1005 of_node_put(phandle);
1006 return ERR_PTR(ret);
1007}
1008
1009static struct ltc2983_sensor *ltc2983_diode_new(
1010 const struct device_node *child,
1011 const struct ltc2983_data *st,
1012 const struct ltc2983_sensor *sensor)
1013{
1014 struct ltc2983_diode *diode;
1015 u32 temp = 0, excitation_current = 0;
1016 int ret;
1017
1018 diode = devm_kzalloc(&st->spi->dev, sizeof(*diode), GFP_KERNEL);
1019 if (!diode)
1020 return ERR_PTR(-ENOMEM);
1021
1022 if (of_property_read_bool(child, "adi,single-ended"))
1023 diode->sensor_config = LTC2983_DIODE_SGL(1);
1024
1025 if (of_property_read_bool(child, "adi,three-conversion-cycles"))
1026 diode->sensor_config |= LTC2983_DIODE_3_CONV_CYCLE(1);
1027
1028 if (of_property_read_bool(child, "adi,average-on"))
1029 diode->sensor_config |= LTC2983_DIODE_AVERAGE_ON(1);
1030
1031 /* validate channel index */
1032 if (!(diode->sensor_config & LTC2983_DIODE_DIFF_MASK) &&
1033 sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1034 dev_err(&st->spi->dev,
1035 "Invalid chann:%d for differential thermistor",
1036 sensor->chan);
1037 return ERR_PTR(-EINVAL);
1038 }
1039 /* set common parameters */
1040 diode->sensor.fault_handler = ltc2983_common_fault_handler;
1041 diode->sensor.assign_chan = ltc2983_diode_assign_chan;
1042
1043 ret = of_property_read_u32(child, "adi,excitation-current-microamp",
1044 &excitation_current);
1045 if (!ret) {
1046 switch (excitation_current) {
1047 case 10:
1048 diode->excitation_current = 0x00;
1049 break;
1050 case 20:
1051 diode->excitation_current = 0x01;
1052 break;
1053 case 40:
1054 diode->excitation_current = 0x02;
1055 break;
1056 case 80:
1057 diode->excitation_current = 0x03;
1058 break;
1059 default:
1060 dev_err(&st->spi->dev,
1061 "Invalid value for excitation current(%u)",
1062 excitation_current);
1063 return ERR_PTR(-EINVAL);
1064 }
1065 }
1066
1067 of_property_read_u32(child, "adi,ideal-factor-value", &temp);
1068
1069 /* 2^20 resolution */
1070 diode->ideal_factor_value = __convert_to_raw(temp, 1048576);
1071
1072 return &diode->sensor;
1073}
1074
1075static struct ltc2983_sensor *ltc2983_r_sense_new(struct device_node *child,
1076 struct ltc2983_data *st,
1077 const struct ltc2983_sensor *sensor)
1078{
1079 struct ltc2983_rsense *rsense;
1080 int ret;
1081 u32 temp;
1082
1083 rsense = devm_kzalloc(&st->spi->dev, sizeof(*rsense), GFP_KERNEL);
1084 if (!rsense)
1085 return ERR_PTR(-ENOMEM);
1086
1087 /* validate channel index */
1088 if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1089 dev_err(&st->spi->dev, "Invalid chann:%d for r_sense",
1090 sensor->chan);
1091 return ERR_PTR(-EINVAL);
1092 }
1093
1094 ret = of_property_read_u32(child, "adi,rsense-val-milli-ohms", &temp);
1095 if (ret) {
1096 dev_err(&st->spi->dev, "Property adi,rsense-val-milli-ohms missing\n");
1097 return ERR_PTR(-EINVAL);
1098 }
1099 /*
1100 * Times 1000 because we have milli-ohms and __convert_to_raw
1101 * expects scales of 1000000 which are used for all other
1102 * properties.
1103 * 2^10 resolution
1104 */
1105 rsense->r_sense_val = __convert_to_raw((u64)temp * 1000, 1024);
1106
1107 /* set common parameters */
1108 rsense->sensor.assign_chan = ltc2983_r_sense_assign_chan;
1109
1110 return &rsense->sensor;
1111}
1112
1113static struct ltc2983_sensor *ltc2983_adc_new(struct device_node *child,
1114 struct ltc2983_data *st,
1115 const struct ltc2983_sensor *sensor)
1116{
1117 struct ltc2983_adc *adc;
1118
1119 adc = devm_kzalloc(&st->spi->dev, sizeof(*adc), GFP_KERNEL);
1120 if (!adc)
1121 return ERR_PTR(-ENOMEM);
1122
1123 if (of_property_read_bool(child, "adi,single-ended"))
1124 adc->single_ended = true;
1125
1126 if (!adc->single_ended &&
1127 sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1128 dev_err(&st->spi->dev, "Invalid chan:%d for differential adc\n",
1129 sensor->chan);
1130 return ERR_PTR(-EINVAL);
1131 }
1132 /* set common parameters */
1133 adc->sensor.assign_chan = ltc2983_adc_assign_chan;
1134 adc->sensor.fault_handler = ltc2983_common_fault_handler;
1135
1136 return &adc->sensor;
1137}
1138
1139static int ltc2983_chan_read(struct ltc2983_data *st,
1140 const struct ltc2983_sensor *sensor, int *val)
1141{
1142 u32 start_conversion = 0;
1143 int ret;
1144 unsigned long time;
1145
1146 start_conversion = LTC2983_STATUS_START(true);
1147 start_conversion |= LTC2983_STATUS_CHAN_SEL(sensor->chan);
1148 dev_dbg(&st->spi->dev, "Start conversion on chan:%d, status:%02X\n",
1149 sensor->chan, start_conversion);
1150 /* start conversion */
1151 ret = regmap_write(st->regmap, LTC2983_STATUS_REG, start_conversion);
1152 if (ret)
1153 return ret;
1154
1155 reinit_completion(&st->completion);
1156 /*
1157 * wait for conversion to complete.
1158 * 300 ms should be more than enough to complete the conversion.
1159 * Depending on the sensor configuration, there are 2/3 conversions
1160 * cycles of 82ms.
1161 */
1162 time = wait_for_completion_timeout(&st->completion,
1163 msecs_to_jiffies(300));
1164 if (!time) {
1165 dev_warn(&st->spi->dev, "Conversion timed out\n");
1166 return -ETIMEDOUT;
1167 }
1168
1169 /* read the converted data */
1170 ret = regmap_bulk_read(st->regmap, LTC2983_CHAN_RES_ADDR(sensor->chan),
1171 &st->temp, sizeof(st->temp));
1172 if (ret)
1173 return ret;
1174
1175 *val = __be32_to_cpu(st->temp);
1176
1177 if (!(LTC2983_RES_VALID_MASK & *val)) {
1178 dev_err(&st->spi->dev, "Invalid conversion detected\n");
1179 return -EIO;
1180 }
1181
1182 ret = sensor->fault_handler(st, *val);
1183 if (ret)
1184 return ret;
1185
1186 *val = sign_extend32((*val) & LTC2983_DATA_MASK, LTC2983_DATA_SIGN_BIT);
1187 return 0;
1188}
1189
1190static int ltc2983_read_raw(struct iio_dev *indio_dev,
1191 struct iio_chan_spec const *chan,
1192 int *val, int *val2, long mask)
1193{
1194 struct ltc2983_data *st = iio_priv(indio_dev);
1195 int ret;
1196
1197 /* sanity check */
1198 if (chan->address >= st->num_channels) {
1199 dev_err(&st->spi->dev, "Invalid chan address:%ld",
1200 chan->address);
1201 return -EINVAL;
1202 }
1203
1204 switch (mask) {
1205 case IIO_CHAN_INFO_RAW:
1206 mutex_lock(&st->lock);
1207 ret = ltc2983_chan_read(st, st->sensors[chan->address], val);
1208 mutex_unlock(&st->lock);
1209 return ret ?: IIO_VAL_INT;
1210 case IIO_CHAN_INFO_SCALE:
1211 switch (chan->type) {
1212 case IIO_TEMP:
1213 /* value in milli degrees */
1214 *val = 1000;
1215 /* 2^10 */
1216 *val2 = 1024;
1217 return IIO_VAL_FRACTIONAL;
1218 case IIO_VOLTAGE:
1219 /* value in millivolt */
1220 *val = 1000;
1221 /* 2^21 */
1222 *val2 = 2097152;
1223 return IIO_VAL_FRACTIONAL;
1224 default:
1225 return -EINVAL;
1226 }
1227 }
1228
1229 return -EINVAL;
1230}
1231
1232static int ltc2983_reg_access(struct iio_dev *indio_dev,
1233 unsigned int reg,
1234 unsigned int writeval,
1235 unsigned int *readval)
1236{
1237 struct ltc2983_data *st = iio_priv(indio_dev);
1238
1239 if (readval)
1240 return regmap_read(st->regmap, reg, readval);
1241 else
1242 return regmap_write(st->regmap, reg, writeval);
1243}
1244
1245static irqreturn_t ltc2983_irq_handler(int irq, void *data)
1246{
1247 struct ltc2983_data *st = data;
1248
1249 complete(&st->completion);
1250 return IRQ_HANDLED;
1251}
1252
1253#define LTC2983_CHAN(__type, index, __address) ({ \
1254 struct iio_chan_spec __chan = { \
1255 .type = __type, \
1256 .indexed = 1, \
1257 .channel = index, \
1258 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
1259 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
1260 .address = __address, \
1261 }; \
1262 __chan; \
1263})
1264
1265static int ltc2983_parse_dt(struct ltc2983_data *st)
1266{
1267 struct device_node *child;
1268 struct device *dev = &st->spi->dev;
1269 int ret = 0, chan = 0, channel_avail_mask = 0;
1270
1271 of_property_read_u32(dev->of_node, "adi,mux-delay-config-us",
1272 &st->mux_delay_config);
1273
1274 of_property_read_u32(dev->of_node, "adi,filter-notch-freq",
1275 &st->filter_notch_freq);
1276
1277 st->num_channels = of_get_available_child_count(dev->of_node);
Nuno Sá25d4abb2021-08-25 10:41:49 +02001278 if (!st->num_channels) {
1279 dev_err(&st->spi->dev, "At least one channel must be given!");
1280 return -EINVAL;
1281 }
1282
Nuno Sáf110f312019-10-11 10:40:37 +02001283 st->sensors = devm_kcalloc(dev, st->num_channels, sizeof(*st->sensors),
1284 GFP_KERNEL);
1285 if (!st->sensors)
1286 return -ENOMEM;
1287
1288 st->iio_channels = st->num_channels;
1289 for_each_available_child_of_node(dev->of_node, child) {
1290 struct ltc2983_sensor sensor;
1291
1292 ret = of_property_read_u32(child, "reg", &sensor.chan);
1293 if (ret) {
1294 dev_err(dev, "reg property must given for child nodes\n");
Nuno Sáb07c47b2020-09-25 11:10:44 +02001295 goto put_child;
Nuno Sáf110f312019-10-11 10:40:37 +02001296 }
1297
1298 /* check if we have a valid channel */
1299 if (sensor.chan < LTC2983_MIN_CHANNELS_NR ||
1300 sensor.chan > LTC2983_MAX_CHANNELS_NR) {
Nuno Sáb07c47b2020-09-25 11:10:44 +02001301 ret = -EINVAL;
Nuno Sáf110f312019-10-11 10:40:37 +02001302 dev_err(dev,
1303 "chan:%d must be from 1 to 20\n", sensor.chan);
Nuno Sáb07c47b2020-09-25 11:10:44 +02001304 goto put_child;
Nuno Sáf110f312019-10-11 10:40:37 +02001305 } else if (channel_avail_mask & BIT(sensor.chan)) {
Nuno Sáb07c47b2020-09-25 11:10:44 +02001306 ret = -EINVAL;
Nuno Sáf110f312019-10-11 10:40:37 +02001307 dev_err(dev, "chan:%d already in use\n", sensor.chan);
Nuno Sáb07c47b2020-09-25 11:10:44 +02001308 goto put_child;
Nuno Sáf110f312019-10-11 10:40:37 +02001309 }
1310
1311 ret = of_property_read_u32(child, "adi,sensor-type",
1312 &sensor.type);
1313 if (ret) {
1314 dev_err(dev,
1315 "adi,sensor-type property must given for child nodes\n");
Nuno Sáb07c47b2020-09-25 11:10:44 +02001316 goto put_child;
Nuno Sáf110f312019-10-11 10:40:37 +02001317 }
1318
1319 dev_dbg(dev, "Create new sensor, type %u, chann %u",
1320 sensor.type,
1321 sensor.chan);
1322
1323 if (sensor.type >= LTC2983_SENSOR_THERMOCOUPLE &&
1324 sensor.type <= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
1325 st->sensors[chan] = ltc2983_thermocouple_new(child, st,
1326 &sensor);
1327 } else if (sensor.type >= LTC2983_SENSOR_RTD &&
1328 sensor.type <= LTC2983_SENSOR_RTD_CUSTOM) {
1329 st->sensors[chan] = ltc2983_rtd_new(child, st, &sensor);
1330 } else if (sensor.type >= LTC2983_SENSOR_THERMISTOR &&
1331 sensor.type <= LTC2983_SENSOR_THERMISTOR_CUSTOM) {
1332 st->sensors[chan] = ltc2983_thermistor_new(child, st,
1333 &sensor);
1334 } else if (sensor.type == LTC2983_SENSOR_DIODE) {
1335 st->sensors[chan] = ltc2983_diode_new(child, st,
1336 &sensor);
1337 } else if (sensor.type == LTC2983_SENSOR_SENSE_RESISTOR) {
1338 st->sensors[chan] = ltc2983_r_sense_new(child, st,
1339 &sensor);
1340 /* don't add rsense to iio */
1341 st->iio_channels--;
1342 } else if (sensor.type == LTC2983_SENSOR_DIRECT_ADC) {
1343 st->sensors[chan] = ltc2983_adc_new(child, st, &sensor);
1344 } else {
1345 dev_err(dev, "Unknown sensor type %d\n", sensor.type);
Nuno Sáb07c47b2020-09-25 11:10:44 +02001346 ret = -EINVAL;
1347 goto put_child;
Nuno Sáf110f312019-10-11 10:40:37 +02001348 }
1349
1350 if (IS_ERR(st->sensors[chan])) {
1351 dev_err(dev, "Failed to create sensor %ld",
1352 PTR_ERR(st->sensors[chan]));
Nuno Sáb07c47b2020-09-25 11:10:44 +02001353 ret = PTR_ERR(st->sensors[chan]);
1354 goto put_child;
Nuno Sáf110f312019-10-11 10:40:37 +02001355 }
1356 /* set generic sensor parameters */
1357 st->sensors[chan]->chan = sensor.chan;
1358 st->sensors[chan]->type = sensor.type;
1359
1360 channel_avail_mask |= BIT(sensor.chan);
1361 chan++;
1362 }
1363
1364 return 0;
Nuno Sáb07c47b2020-09-25 11:10:44 +02001365put_child:
1366 of_node_put(child);
1367 return ret;
Nuno Sáf110f312019-10-11 10:40:37 +02001368}
1369
1370static int ltc2983_setup(struct ltc2983_data *st, bool assign_iio)
1371{
Nuno Sáb76d26d2021-08-11 15:32:20 +02001372 u32 iio_chan_t = 0, iio_chan_v = 0, chan, iio_idx = 0, status;
Nuno Sáf110f312019-10-11 10:40:37 +02001373 int ret;
Nuno Sáf110f312019-10-11 10:40:37 +02001374
Nuno Sáb76d26d2021-08-11 15:32:20 +02001375 /* make sure the device is up: start bit (7) is 0 and done bit (6) is 1 */
1376 ret = regmap_read_poll_timeout(st->regmap, LTC2983_STATUS_REG, status,
1377 LTC2983_STATUS_UP(status) == 1, 25000,
1378 25000 * 10);
1379 if (ret) {
Nuno Sáf110f312019-10-11 10:40:37 +02001380 dev_err(&st->spi->dev, "Device startup timed out\n");
Nuno Sáb76d26d2021-08-11 15:32:20 +02001381 return ret;
Nuno Sáf110f312019-10-11 10:40:37 +02001382 }
1383
1384 st->iio_chan = devm_kzalloc(&st->spi->dev,
1385 st->iio_channels * sizeof(*st->iio_chan),
1386 GFP_KERNEL);
1387
1388 if (!st->iio_chan)
1389 return -ENOMEM;
1390
1391 ret = regmap_update_bits(st->regmap, LTC2983_GLOBAL_CONFIG_REG,
1392 LTC2983_NOTCH_FREQ_MASK,
1393 LTC2983_NOTCH_FREQ(st->filter_notch_freq));
1394 if (ret)
1395 return ret;
1396
1397 ret = regmap_write(st->regmap, LTC2983_MUX_CONFIG_REG,
1398 st->mux_delay_config);
1399 if (ret)
1400 return ret;
1401
1402 for (chan = 0; chan < st->num_channels; chan++) {
1403 u32 chan_type = 0, *iio_chan;
1404
1405 ret = st->sensors[chan]->assign_chan(st, st->sensors[chan]);
1406 if (ret)
1407 return ret;
1408 /*
1409 * The assign_iio flag is necessary for when the device is
1410 * coming out of sleep. In that case, we just need to
1411 * re-configure the device channels.
1412 * We also don't assign iio channels for rsense.
1413 */
1414 if (st->sensors[chan]->type == LTC2983_SENSOR_SENSE_RESISTOR ||
1415 !assign_iio)
1416 continue;
1417
1418 /* assign iio channel */
1419 if (st->sensors[chan]->type != LTC2983_SENSOR_DIRECT_ADC) {
1420 chan_type = IIO_TEMP;
1421 iio_chan = &iio_chan_t;
1422 } else {
1423 chan_type = IIO_VOLTAGE;
1424 iio_chan = &iio_chan_v;
1425 }
1426
1427 /*
1428 * add chan as the iio .address so that, we can directly
1429 * reference the sensor given the iio_chan_spec
1430 */
1431 st->iio_chan[iio_idx++] = LTC2983_CHAN(chan_type, (*iio_chan)++,
1432 chan);
1433 }
1434
1435 return 0;
1436}
1437
1438static const struct regmap_range ltc2983_reg_ranges[] = {
1439 regmap_reg_range(LTC2983_STATUS_REG, LTC2983_STATUS_REG),
1440 regmap_reg_range(LTC2983_TEMP_RES_START_REG, LTC2983_TEMP_RES_END_REG),
1441 regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG, LTC2983_GLOBAL_CONFIG_REG),
1442 regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG,
1443 LTC2983_MULT_CHANNEL_END_REG),
1444 regmap_reg_range(LTC2983_MUX_CONFIG_REG, LTC2983_MUX_CONFIG_REG),
1445 regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG,
1446 LTC2983_CHAN_ASSIGN_END_REG),
1447 regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG,
1448 LTC2983_CUST_SENS_TBL_END_REG),
1449};
1450
1451static const struct regmap_access_table ltc2983_reg_table = {
1452 .yes_ranges = ltc2983_reg_ranges,
1453 .n_yes_ranges = ARRAY_SIZE(ltc2983_reg_ranges),
1454};
1455
1456/*
1457 * The reg_bits are actually 12 but the device needs the first *complete*
1458 * byte for the command (R/W).
1459 */
1460static const struct regmap_config ltc2983_regmap_config = {
1461 .reg_bits = 24,
1462 .val_bits = 8,
1463 .wr_table = &ltc2983_reg_table,
1464 .rd_table = &ltc2983_reg_table,
1465 .read_flag_mask = GENMASK(1, 0),
1466 .write_flag_mask = BIT(1),
1467};
1468
1469static const struct iio_info ltc2983_iio_info = {
1470 .read_raw = ltc2983_read_raw,
1471 .debugfs_reg_access = ltc2983_reg_access,
1472};
1473
1474static int ltc2983_probe(struct spi_device *spi)
1475{
1476 struct ltc2983_data *st;
1477 struct iio_dev *indio_dev;
Nuno Sá919726c2021-08-25 10:41:48 +02001478 struct gpio_desc *gpio;
Nuno Sáf110f312019-10-11 10:40:37 +02001479 const char *name = spi_get_device_id(spi)->name;
1480 int ret;
1481
1482 indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1483 if (!indio_dev)
1484 return -ENOMEM;
1485
1486 st = iio_priv(indio_dev);
1487
1488 st->regmap = devm_regmap_init_spi(spi, &ltc2983_regmap_config);
1489 if (IS_ERR(st->regmap)) {
1490 dev_err(&spi->dev, "Failed to initialize regmap\n");
1491 return PTR_ERR(st->regmap);
1492 }
1493
1494 mutex_init(&st->lock);
1495 init_completion(&st->completion);
1496 st->spi = spi;
1497 spi_set_drvdata(spi, st);
1498
1499 ret = ltc2983_parse_dt(st);
1500 if (ret)
1501 return ret;
Nuno Sáb76d26d2021-08-11 15:32:20 +02001502
Nuno Sá919726c2021-08-25 10:41:48 +02001503 gpio = devm_gpiod_get_optional(&st->spi->dev, "reset", GPIOD_OUT_HIGH);
1504 if (IS_ERR(gpio))
1505 return PTR_ERR(gpio);
1506
1507 if (gpio) {
1508 /* bring the device out of reset */
1509 usleep_range(1000, 1200);
1510 gpiod_set_value_cansleep(gpio, 0);
1511 }
1512
Nuno Sáb76d26d2021-08-11 15:32:20 +02001513 ret = ltc2983_setup(st, true);
1514 if (ret)
1515 return ret;
1516
Nuno Sáf110f312019-10-11 10:40:37 +02001517 ret = devm_request_irq(&spi->dev, spi->irq, ltc2983_irq_handler,
1518 IRQF_TRIGGER_RISING, name, st);
1519 if (ret) {
1520 dev_err(&spi->dev, "failed to request an irq, %d", ret);
1521 return ret;
1522 }
1523
Nuno Sáf110f312019-10-11 10:40:37 +02001524 indio_dev->name = name;
1525 indio_dev->num_channels = st->iio_channels;
1526 indio_dev->channels = st->iio_chan;
1527 indio_dev->modes = INDIO_DIRECT_MODE;
1528 indio_dev->info = &ltc2983_iio_info;
1529
1530 return devm_iio_device_register(&spi->dev, indio_dev);
1531}
1532
1533static int __maybe_unused ltc2983_resume(struct device *dev)
1534{
1535 struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1536 int dummy;
1537
1538 /* dummy read to bring the device out of sleep */
1539 regmap_read(st->regmap, LTC2983_STATUS_REG, &dummy);
1540 /* we need to re-assign the channels */
1541 return ltc2983_setup(st, false);
1542}
1543
1544static int __maybe_unused ltc2983_suspend(struct device *dev)
1545{
1546 struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1547
1548 return regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_SLEEP);
1549}
1550
1551static SIMPLE_DEV_PM_OPS(ltc2983_pm_ops, ltc2983_suspend, ltc2983_resume);
1552
1553static const struct spi_device_id ltc2983_id_table[] = {
1554 { "ltc2983" },
1555 {},
1556};
1557MODULE_DEVICE_TABLE(spi, ltc2983_id_table);
1558
1559static const struct of_device_id ltc2983_of_match[] = {
1560 { .compatible = "adi,ltc2983" },
1561 {},
1562};
1563MODULE_DEVICE_TABLE(of, ltc2983_of_match);
1564
1565static struct spi_driver ltc2983_driver = {
1566 .driver = {
1567 .name = "ltc2983",
1568 .of_match_table = ltc2983_of_match,
1569 .pm = &ltc2983_pm_ops,
1570 },
1571 .probe = ltc2983_probe,
1572 .id_table = ltc2983_id_table,
1573};
1574
1575module_spi_driver(ltc2983_driver);
1576
1577MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
1578MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors");
1579MODULE_LICENSE("GPL");