Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC |
| 4 | * |
| 5 | * Authors: |
| 6 | * Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru> |
| 7 | * Serge Semin <Sergey.Semin@baikalelectronics.ru> |
| 8 | * |
| 9 | * Baikal-T1 Process, Voltage, Temperature sensor driver |
| 10 | */ |
| 11 | |
| 12 | #include <linux/bitfield.h> |
| 13 | #include <linux/bitops.h> |
| 14 | #include <linux/clk.h> |
| 15 | #include <linux/completion.h> |
Serge Semin | a6db156 | 2020-09-20 14:09:21 +0300 | [diff] [blame] | 16 | #include <linux/delay.h> |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 17 | #include <linux/device.h> |
| 18 | #include <linux/hwmon-sysfs.h> |
| 19 | #include <linux/hwmon.h> |
| 20 | #include <linux/interrupt.h> |
| 21 | #include <linux/io.h> |
| 22 | #include <linux/kernel.h> |
| 23 | #include <linux/ktime.h> |
| 24 | #include <linux/limits.h> |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/mutex.h> |
| 27 | #include <linux/of.h> |
| 28 | #include <linux/platform_device.h> |
| 29 | #include <linux/seqlock.h> |
| 30 | #include <linux/sysfs.h> |
| 31 | #include <linux/types.h> |
| 32 | |
| 33 | #include "bt1-pvt.h" |
| 34 | |
| 35 | /* |
| 36 | * For the sake of the code simplification we created the sensors info table |
| 37 | * with the sensor names, activation modes, threshold registers base address |
| 38 | * and the thresholds bit fields. |
| 39 | */ |
| 40 | static const struct pvt_sensor_info pvt_info[] = { |
| 41 | PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES), |
| 42 | PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES), |
| 43 | PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES), |
| 44 | PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES), |
| 45 | PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES), |
| 46 | }; |
| 47 | |
| 48 | /* |
| 49 | * The original translation formulae of the temperature (in degrees of Celsius) |
| 50 | * to PVT data and vice-versa are following: |
| 51 | * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) + |
| 52 | * 1.7204e2, |
| 53 | * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) + |
| 54 | * 3.1020e-1*(N^1) - 4.838e1, |
| 55 | * where T = [-48.380, 147.438]C and N = [0, 1023]. |
| 56 | * They must be accordingly altered to be suitable for the integer arithmetics. |
| 57 | * The technique is called 'factor redistribution', which just makes sure the |
| 58 | * multiplications and divisions are made so to have a result of the operations |
| 59 | * within the integer numbers limit. In addition we need to translate the |
| 60 | * formulae to accept millidegrees of Celsius. Here what they look like after |
| 61 | * the alterations: |
| 62 | * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T + |
| 63 | * 17204e2) / 1e4, |
| 64 | * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D - |
| 65 | * 48380, |
| 66 | * where T = [-48380, 147438] mC and N = [0, 1023]. |
| 67 | */ |
Serge Semin | 3325169 | 2020-06-03 03:07:53 +0300 | [diff] [blame] | 68 | static const struct pvt_poly __maybe_unused poly_temp_to_N = { |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 69 | .total_divider = 10000, |
| 70 | .terms = { |
| 71 | {4, 18322, 10000, 10000}, |
| 72 | {3, 2343, 10000, 10}, |
| 73 | {2, 87018, 10000, 10}, |
| 74 | {1, 39269, 1000, 1}, |
| 75 | {0, 1720400, 1, 1} |
| 76 | } |
| 77 | }; |
| 78 | |
| 79 | static const struct pvt_poly poly_N_to_temp = { |
| 80 | .total_divider = 1, |
| 81 | .terms = { |
| 82 | {4, -16743, 1000, 1}, |
| 83 | {3, 81542, 1000, 1}, |
| 84 | {2, -182010, 1000, 1}, |
| 85 | {1, 310200, 1000, 1}, |
| 86 | {0, -48380, 1, 1} |
| 87 | } |
| 88 | }; |
| 89 | |
| 90 | /* |
| 91 | * Similar alterations are performed for the voltage conversion equations. |
| 92 | * The original formulae are: |
| 93 | * N = 1.8658e3*V - 1.1572e3, |
| 94 | * V = (N + 1.1572e3) / 1.8658e3, |
| 95 | * where V = [0.620, 1.168] V and N = [0, 1023]. |
| 96 | * After the optimization they looks as follows: |
| 97 | * N = (18658e-3*V - 11572) / 10, |
| 98 | * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658. |
| 99 | */ |
Serge Semin | 3325169 | 2020-06-03 03:07:53 +0300 | [diff] [blame] | 100 | static const struct pvt_poly __maybe_unused poly_volt_to_N = { |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 101 | .total_divider = 10, |
| 102 | .terms = { |
| 103 | {1, 18658, 1000, 1}, |
| 104 | {0, -11572, 1, 1} |
| 105 | } |
| 106 | }; |
| 107 | |
| 108 | static const struct pvt_poly poly_N_to_volt = { |
| 109 | .total_divider = 10, |
| 110 | .terms = { |
| 111 | {1, 100000, 18658, 1}, |
| 112 | {0, 115720000, 1, 18658} |
| 113 | } |
| 114 | }; |
| 115 | |
| 116 | /* |
| 117 | * Here is the polynomial calculation function, which performs the |
| 118 | * redistributed terms calculations. It's pretty straightforward. We walk |
| 119 | * over each degree term up to the free one, and perform the redistributed |
| 120 | * multiplication of the term coefficient, its divider (as for the rationale |
| 121 | * fraction representation), data power and the rational fraction divider |
| 122 | * leftover. Then all of this is collected in a total sum variable, which |
| 123 | * value is normalized by the total divider before being returned. |
| 124 | */ |
| 125 | static long pvt_calc_poly(const struct pvt_poly *poly, long data) |
| 126 | { |
| 127 | const struct pvt_poly_term *term = poly->terms; |
| 128 | long tmp, ret = 0; |
| 129 | int deg; |
| 130 | |
| 131 | do { |
| 132 | tmp = term->coef; |
| 133 | for (deg = 0; deg < term->deg; ++deg) |
| 134 | tmp = mult_frac(tmp, data, term->divider); |
| 135 | ret += tmp / term->divider_leftover; |
| 136 | } while ((term++)->deg); |
| 137 | |
| 138 | return ret / poly->total_divider; |
| 139 | } |
| 140 | |
| 141 | static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data) |
| 142 | { |
| 143 | u32 old; |
| 144 | |
| 145 | old = readl_relaxed(reg); |
| 146 | writel((old & ~mask) | (data & mask), reg); |
| 147 | |
| 148 | return old & mask; |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * Baikal-T1 PVT mode can be updated only when the controller is disabled. |
| 153 | * So first we disable it, then set the new mode together with the controller |
| 154 | * getting back enabled. The same concerns the temperature trim and |
| 155 | * measurements timeout. If it is necessary the interface mutex is supposed |
| 156 | * to be locked at the time the operations are performed. |
| 157 | */ |
| 158 | static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode) |
| 159 | { |
| 160 | u32 old; |
| 161 | |
| 162 | mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode); |
| 163 | |
| 164 | old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| 165 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN, |
| 166 | mode | old); |
| 167 | } |
| 168 | |
| 169 | static inline u32 pvt_calc_trim(long temp) |
| 170 | { |
| 171 | temp = clamp_val(temp, 0, PVT_TRIM_TEMP); |
| 172 | |
| 173 | return DIV_ROUND_UP(temp, PVT_TRIM_STEP); |
| 174 | } |
| 175 | |
| 176 | static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim) |
| 177 | { |
| 178 | u32 old; |
| 179 | |
| 180 | trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim); |
| 181 | |
| 182 | old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| 183 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN, |
| 184 | trim | old); |
| 185 | } |
| 186 | |
| 187 | static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout) |
| 188 | { |
| 189 | u32 old; |
| 190 | |
| 191 | old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| 192 | writel(tout, pvt->regs + PVT_TTIMEOUT); |
| 193 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old); |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * This driver can optionally provide the hwmon alarms for each sensor the PVT |
| 198 | * controller supports. The alarms functionality is made compile-time |
| 199 | * configurable due to the hardware interface implementation peculiarity |
| 200 | * described further in this comment. So in case if alarms are unnecessary in |
| 201 | * your system design it's recommended to have them disabled to prevent the PVT |
| 202 | * IRQs being periodically raised to get the data cache/alarms status up to |
| 203 | * date. |
| 204 | * |
| 205 | * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor, |
| 206 | * but is equipped with a dedicated control wrapper. It exposes the PVT |
| 207 | * sub-block registers space via the APB3 bus. In addition the wrapper provides |
| 208 | * a common interrupt vector of the sensors conversion completion events and |
| 209 | * threshold value alarms. Alas the wrapper interface hasn't been fully thought |
| 210 | * through. There is only one sensor can be activated at a time, for which the |
| 211 | * thresholds comparator is enabled right after the data conversion is |
| 212 | * completed. Due to this if alarms need to be implemented for all available |
| 213 | * sensors we can't just set the thresholds and enable the interrupts. We need |
| 214 | * to enable the sensors one after another and let the controller to detect |
| 215 | * the alarms by itself at each conversion. This also makes pointless to handle |
| 216 | * the alarms interrupts, since in occasion they happen synchronously with |
| 217 | * data conversion completion. The best driver design would be to have the |
| 218 | * completion interrupts enabled only and keep the converted value in the |
| 219 | * driver data cache. This solution is implemented if hwmon alarms are enabled |
| 220 | * in this driver. In case if the alarms are disabled, the conversion is |
| 221 | * performed on demand at the time a sensors input file is read. |
| 222 | */ |
| 223 | |
| 224 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 225 | |
| 226 | #define pvt_hard_isr NULL |
| 227 | |
| 228 | static irqreturn_t pvt_soft_isr(int irq, void *data) |
| 229 | { |
| 230 | const struct pvt_sensor_info *info; |
| 231 | struct pvt_hwmon *pvt = data; |
| 232 | struct pvt_cache *cache; |
| 233 | u32 val, thres_sts, old; |
| 234 | |
| 235 | /* |
| 236 | * DVALID bit will be cleared by reading the data. We need to save the |
| 237 | * status before the next conversion happens. Threshold events will be |
| 238 | * handled a bit later. |
| 239 | */ |
| 240 | thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT); |
| 241 | |
| 242 | /* |
| 243 | * Then lets recharge the PVT interface with the next sampling mode. |
| 244 | * Lock the interface mutex to serialize trim, timeouts and alarm |
| 245 | * thresholds settings. |
| 246 | */ |
| 247 | cache = &pvt->cache[pvt->sensor]; |
| 248 | info = &pvt_info[pvt->sensor]; |
| 249 | pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ? |
| 250 | PVT_SENSOR_FIRST : (pvt->sensor + 1); |
| 251 | |
| 252 | /* |
| 253 | * For some reason we have to mask the interrupt before changing the |
| 254 | * mode, otherwise sometimes the temperature mode doesn't get |
| 255 | * activated even though the actual mode in the ctrl register |
| 256 | * corresponds to one. Then we read the data. By doing so we also |
| 257 | * recharge the data conversion. After this the mode corresponding |
| 258 | * to the next sensor in the row is set. Finally we enable the |
| 259 | * interrupts back. |
| 260 | */ |
| 261 | mutex_lock(&pvt->iface_mtx); |
| 262 | |
| 263 | old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, |
| 264 | PVT_INTR_DVALID); |
| 265 | |
| 266 | val = readl(pvt->regs + PVT_DATA); |
| 267 | |
| 268 | pvt_set_mode(pvt, pvt_info[pvt->sensor].mode); |
| 269 | |
| 270 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old); |
| 271 | |
| 272 | mutex_unlock(&pvt->iface_mtx); |
| 273 | |
| 274 | /* |
| 275 | * We can now update the data cache with data just retrieved from the |
| 276 | * sensor. Lock write-seqlock to make sure the reader has a coherent |
| 277 | * data. |
| 278 | */ |
| 279 | write_seqlock(&cache->data_seqlock); |
| 280 | |
| 281 | cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val); |
| 282 | |
| 283 | write_sequnlock(&cache->data_seqlock); |
| 284 | |
| 285 | /* |
| 286 | * While PVT core is doing the next mode data conversion, we'll check |
| 287 | * whether the alarms were triggered for the current sensor. Note that |
| 288 | * according to the documentation only one threshold IRQ status can be |
| 289 | * set at a time, that's why if-else statement is utilized. |
| 290 | */ |
| 291 | if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) { |
| 292 | WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo); |
| 293 | hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm, |
| 294 | info->channel); |
| 295 | } else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) { |
| 296 | WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi); |
| 297 | hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm, |
| 298 | info->channel); |
| 299 | } |
| 300 | |
| 301 | return IRQ_HANDLED; |
| 302 | } |
| 303 | |
Guenter Roeck | 26797d8 | 2020-06-08 07:21:36 -0700 | [diff] [blame] | 304 | static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type) |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 305 | { |
| 306 | return 0644; |
| 307 | } |
| 308 | |
Guenter Roeck | 26797d8 | 2020-06-08 07:21:36 -0700 | [diff] [blame] | 309 | static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type) |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 310 | { |
| 311 | return 0444; |
| 312 | } |
| 313 | |
| 314 | static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 315 | long *val) |
| 316 | { |
| 317 | struct pvt_cache *cache = &pvt->cache[type]; |
| 318 | unsigned int seq; |
| 319 | u32 data; |
| 320 | |
| 321 | do { |
| 322 | seq = read_seqbegin(&cache->data_seqlock); |
| 323 | data = cache->data; |
| 324 | } while (read_seqretry(&cache->data_seqlock, seq)); |
| 325 | |
| 326 | if (type == PVT_TEMP) |
| 327 | *val = pvt_calc_poly(&poly_N_to_temp, data); |
| 328 | else |
| 329 | *val = pvt_calc_poly(&poly_N_to_volt, data); |
| 330 | |
| 331 | return 0; |
| 332 | } |
| 333 | |
| 334 | static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 335 | bool is_low, long *val) |
| 336 | { |
| 337 | u32 data; |
| 338 | |
| 339 | /* No need in serialization, since it is just read from MMIO. */ |
| 340 | data = readl(pvt->regs + pvt_info[type].thres_base); |
| 341 | |
| 342 | if (is_low) |
| 343 | data = FIELD_GET(PVT_THRES_LO_MASK, data); |
| 344 | else |
| 345 | data = FIELD_GET(PVT_THRES_HI_MASK, data); |
| 346 | |
| 347 | if (type == PVT_TEMP) |
| 348 | *val = pvt_calc_poly(&poly_N_to_temp, data); |
| 349 | else |
| 350 | *val = pvt_calc_poly(&poly_N_to_volt, data); |
| 351 | |
| 352 | return 0; |
| 353 | } |
| 354 | |
| 355 | static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 356 | bool is_low, long val) |
| 357 | { |
| 358 | u32 data, limit, mask; |
| 359 | int ret; |
| 360 | |
| 361 | if (type == PVT_TEMP) { |
| 362 | val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX); |
| 363 | data = pvt_calc_poly(&poly_temp_to_N, val); |
| 364 | } else { |
| 365 | val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX); |
| 366 | data = pvt_calc_poly(&poly_volt_to_N, val); |
| 367 | } |
| 368 | |
| 369 | /* Serialize limit update, since a part of the register is changed. */ |
| 370 | ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| 371 | if (ret) |
| 372 | return ret; |
| 373 | |
| 374 | /* Make sure the upper and lower ranges don't intersect. */ |
| 375 | limit = readl(pvt->regs + pvt_info[type].thres_base); |
| 376 | if (is_low) { |
| 377 | limit = FIELD_GET(PVT_THRES_HI_MASK, limit); |
| 378 | data = clamp_val(data, PVT_DATA_MIN, limit); |
| 379 | data = FIELD_PREP(PVT_THRES_LO_MASK, data); |
| 380 | mask = PVT_THRES_LO_MASK; |
| 381 | } else { |
| 382 | limit = FIELD_GET(PVT_THRES_LO_MASK, limit); |
| 383 | data = clamp_val(data, limit, PVT_DATA_MAX); |
| 384 | data = FIELD_PREP(PVT_THRES_HI_MASK, data); |
| 385 | mask = PVT_THRES_HI_MASK; |
| 386 | } |
| 387 | |
| 388 | pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data); |
| 389 | |
| 390 | mutex_unlock(&pvt->iface_mtx); |
| 391 | |
| 392 | return 0; |
| 393 | } |
| 394 | |
| 395 | static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 396 | bool is_low, long *val) |
| 397 | { |
| 398 | if (is_low) |
| 399 | *val = !!READ_ONCE(pvt->cache[type].thres_sts_lo); |
| 400 | else |
| 401 | *val = !!READ_ONCE(pvt->cache[type].thres_sts_hi); |
| 402 | |
| 403 | return 0; |
| 404 | } |
| 405 | |
| 406 | static const struct hwmon_channel_info *pvt_channel_info[] = { |
| 407 | HWMON_CHANNEL_INFO(chip, |
| 408 | HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL), |
| 409 | HWMON_CHANNEL_INFO(temp, |
| 410 | HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL | |
| 411 | HWMON_T_MIN | HWMON_T_MIN_ALARM | |
| 412 | HWMON_T_MAX | HWMON_T_MAX_ALARM | |
| 413 | HWMON_T_OFFSET), |
| 414 | HWMON_CHANNEL_INFO(in, |
| 415 | HWMON_I_INPUT | HWMON_I_LABEL | |
| 416 | HWMON_I_MIN | HWMON_I_MIN_ALARM | |
| 417 | HWMON_I_MAX | HWMON_I_MAX_ALARM, |
| 418 | HWMON_I_INPUT | HWMON_I_LABEL | |
| 419 | HWMON_I_MIN | HWMON_I_MIN_ALARM | |
| 420 | HWMON_I_MAX | HWMON_I_MAX_ALARM, |
| 421 | HWMON_I_INPUT | HWMON_I_LABEL | |
| 422 | HWMON_I_MIN | HWMON_I_MIN_ALARM | |
| 423 | HWMON_I_MAX | HWMON_I_MAX_ALARM, |
| 424 | HWMON_I_INPUT | HWMON_I_LABEL | |
| 425 | HWMON_I_MIN | HWMON_I_MIN_ALARM | |
| 426 | HWMON_I_MAX | HWMON_I_MAX_ALARM), |
| 427 | NULL |
| 428 | }; |
| 429 | |
| 430 | #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ |
| 431 | |
| 432 | static irqreturn_t pvt_hard_isr(int irq, void *data) |
| 433 | { |
| 434 | struct pvt_hwmon *pvt = data; |
| 435 | struct pvt_cache *cache; |
| 436 | u32 val; |
| 437 | |
| 438 | /* |
| 439 | * Mask the DVALID interrupt so after exiting from the handler a |
| 440 | * repeated conversion wouldn't happen. |
| 441 | */ |
| 442 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, |
| 443 | PVT_INTR_DVALID); |
| 444 | |
| 445 | /* |
| 446 | * Nothing special for alarm-less driver. Just read the data, update |
| 447 | * the cache and notify a waiter of this event. |
| 448 | */ |
| 449 | val = readl(pvt->regs + PVT_DATA); |
| 450 | if (!(val & PVT_DATA_VALID)) { |
| 451 | dev_err(pvt->dev, "Got IRQ when data isn't valid\n"); |
| 452 | return IRQ_HANDLED; |
| 453 | } |
| 454 | |
| 455 | cache = &pvt->cache[pvt->sensor]; |
| 456 | |
| 457 | WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val)); |
| 458 | |
| 459 | complete(&cache->conversion); |
| 460 | |
| 461 | return IRQ_HANDLED; |
| 462 | } |
| 463 | |
| 464 | #define pvt_soft_isr NULL |
| 465 | |
Guenter Roeck | 26797d8 | 2020-06-08 07:21:36 -0700 | [diff] [blame] | 466 | static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type) |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 467 | { |
| 468 | return 0; |
| 469 | } |
| 470 | |
Guenter Roeck | 26797d8 | 2020-06-08 07:21:36 -0700 | [diff] [blame] | 471 | static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type) |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 472 | { |
| 473 | return 0; |
| 474 | } |
| 475 | |
| 476 | static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 477 | long *val) |
| 478 | { |
| 479 | struct pvt_cache *cache = &pvt->cache[type]; |
Serge Semin | 0ffd21d | 2020-09-20 14:09:23 +0300 | [diff] [blame] | 480 | unsigned long timeout; |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 481 | u32 data; |
| 482 | int ret; |
| 483 | |
| 484 | /* |
| 485 | * Lock PVT conversion interface until data cache is updated. The |
| 486 | * data read procedure is following: set the requested PVT sensor |
| 487 | * mode, enable IRQ and conversion, wait until conversion is finished, |
| 488 | * then disable conversion and IRQ, and read the cached data. |
| 489 | */ |
| 490 | ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| 491 | if (ret) |
| 492 | return ret; |
| 493 | |
| 494 | pvt->sensor = type; |
| 495 | pvt_set_mode(pvt, pvt_info[type].mode); |
| 496 | |
| 497 | /* |
| 498 | * Unmask the DVALID interrupt and enable the sensors conversions. |
| 499 | * Do the reverse procedure when conversion is done. |
| 500 | */ |
| 501 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0); |
| 502 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN); |
| 503 | |
Serge Semin | 0ffd21d | 2020-09-20 14:09:23 +0300 | [diff] [blame] | 504 | /* |
| 505 | * Wait with timeout since in case if the sensor is suddenly powered |
| 506 | * down the request won't be completed and the caller will hang up on |
| 507 | * this procedure until the power is back up again. Multiply the |
| 508 | * timeout by the factor of two to prevent a false timeout. |
| 509 | */ |
| 510 | timeout = 2 * usecs_to_jiffies(ktime_to_us(pvt->timeout)); |
| 511 | ret = wait_for_completion_timeout(&cache->conversion, timeout); |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 512 | |
| 513 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| 514 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, |
| 515 | PVT_INTR_DVALID); |
| 516 | |
| 517 | data = READ_ONCE(cache->data); |
| 518 | |
| 519 | mutex_unlock(&pvt->iface_mtx); |
| 520 | |
Serge Semin | 0ffd21d | 2020-09-20 14:09:23 +0300 | [diff] [blame] | 521 | if (!ret) |
| 522 | return -ETIMEDOUT; |
| 523 | |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 524 | if (type == PVT_TEMP) |
| 525 | *val = pvt_calc_poly(&poly_N_to_temp, data); |
| 526 | else |
| 527 | *val = pvt_calc_poly(&poly_N_to_volt, data); |
| 528 | |
| 529 | return 0; |
| 530 | } |
| 531 | |
| 532 | static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 533 | bool is_low, long *val) |
| 534 | { |
| 535 | return -EOPNOTSUPP; |
| 536 | } |
| 537 | |
| 538 | static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 539 | bool is_low, long val) |
| 540 | { |
| 541 | return -EOPNOTSUPP; |
| 542 | } |
| 543 | |
| 544 | static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type, |
| 545 | bool is_low, long *val) |
| 546 | { |
| 547 | return -EOPNOTSUPP; |
| 548 | } |
| 549 | |
| 550 | static const struct hwmon_channel_info *pvt_channel_info[] = { |
| 551 | HWMON_CHANNEL_INFO(chip, |
| 552 | HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL), |
| 553 | HWMON_CHANNEL_INFO(temp, |
| 554 | HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL | |
| 555 | HWMON_T_OFFSET), |
| 556 | HWMON_CHANNEL_INFO(in, |
| 557 | HWMON_I_INPUT | HWMON_I_LABEL, |
| 558 | HWMON_I_INPUT | HWMON_I_LABEL, |
| 559 | HWMON_I_INPUT | HWMON_I_LABEL, |
| 560 | HWMON_I_INPUT | HWMON_I_LABEL), |
| 561 | NULL |
| 562 | }; |
| 563 | |
| 564 | #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ |
| 565 | |
| 566 | static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type, |
| 567 | int ch) |
| 568 | { |
| 569 | switch (type) { |
| 570 | case hwmon_temp: |
| 571 | if (ch < 0 || ch >= PVT_TEMP_CHS) |
| 572 | return false; |
| 573 | break; |
| 574 | case hwmon_in: |
| 575 | if (ch < 0 || ch >= PVT_VOLT_CHS) |
| 576 | return false; |
| 577 | break; |
| 578 | default: |
| 579 | break; |
| 580 | } |
| 581 | |
| 582 | /* The rest of the types are independent from the channel number. */ |
| 583 | return true; |
| 584 | } |
| 585 | |
| 586 | static umode_t pvt_hwmon_is_visible(const void *data, |
| 587 | enum hwmon_sensor_types type, |
| 588 | u32 attr, int ch) |
| 589 | { |
| 590 | if (!pvt_hwmon_channel_is_valid(type, ch)) |
| 591 | return 0; |
| 592 | |
| 593 | switch (type) { |
| 594 | case hwmon_chip: |
| 595 | switch (attr) { |
| 596 | case hwmon_chip_update_interval: |
| 597 | return 0644; |
| 598 | } |
| 599 | break; |
| 600 | case hwmon_temp: |
| 601 | switch (attr) { |
| 602 | case hwmon_temp_input: |
| 603 | case hwmon_temp_type: |
| 604 | case hwmon_temp_label: |
| 605 | return 0444; |
| 606 | case hwmon_temp_min: |
| 607 | case hwmon_temp_max: |
| 608 | return pvt_limit_is_visible(ch); |
| 609 | case hwmon_temp_min_alarm: |
| 610 | case hwmon_temp_max_alarm: |
| 611 | return pvt_alarm_is_visible(ch); |
| 612 | case hwmon_temp_offset: |
| 613 | return 0644; |
| 614 | } |
| 615 | break; |
| 616 | case hwmon_in: |
| 617 | switch (attr) { |
| 618 | case hwmon_in_input: |
| 619 | case hwmon_in_label: |
| 620 | return 0444; |
| 621 | case hwmon_in_min: |
| 622 | case hwmon_in_max: |
| 623 | return pvt_limit_is_visible(PVT_VOLT + ch); |
| 624 | case hwmon_in_min_alarm: |
| 625 | case hwmon_in_max_alarm: |
| 626 | return pvt_alarm_is_visible(PVT_VOLT + ch); |
| 627 | } |
| 628 | break; |
| 629 | default: |
| 630 | break; |
| 631 | } |
| 632 | |
| 633 | return 0; |
| 634 | } |
| 635 | |
| 636 | static int pvt_read_trim(struct pvt_hwmon *pvt, long *val) |
| 637 | { |
| 638 | u32 data; |
| 639 | |
| 640 | data = readl(pvt->regs + PVT_CTRL); |
| 641 | *val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP; |
| 642 | |
| 643 | return 0; |
| 644 | } |
| 645 | |
| 646 | static int pvt_write_trim(struct pvt_hwmon *pvt, long val) |
| 647 | { |
| 648 | u32 trim; |
| 649 | int ret; |
| 650 | |
| 651 | /* |
| 652 | * Serialize trim update, since a part of the register is changed and |
| 653 | * the controller is supposed to be disabled during this operation. |
| 654 | */ |
| 655 | ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| 656 | if (ret) |
| 657 | return ret; |
| 658 | |
| 659 | trim = pvt_calc_trim(val); |
| 660 | pvt_set_trim(pvt, trim); |
| 661 | |
| 662 | mutex_unlock(&pvt->iface_mtx); |
| 663 | |
| 664 | return 0; |
| 665 | } |
| 666 | |
| 667 | static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val) |
| 668 | { |
Serge Semin | 0015503 | 2020-09-20 14:09:22 +0300 | [diff] [blame] | 669 | int ret; |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 670 | |
Serge Semin | 0015503 | 2020-09-20 14:09:22 +0300 | [diff] [blame] | 671 | ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| 672 | if (ret) |
| 673 | return ret; |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 674 | |
| 675 | /* Return the result in msec as hwmon sysfs interface requires. */ |
Serge Semin | 0015503 | 2020-09-20 14:09:22 +0300 | [diff] [blame] | 676 | *val = ktime_to_ms(pvt->timeout); |
| 677 | |
| 678 | mutex_unlock(&pvt->iface_mtx); |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 679 | |
| 680 | return 0; |
| 681 | } |
| 682 | |
| 683 | static int pvt_write_timeout(struct pvt_hwmon *pvt, long val) |
| 684 | { |
| 685 | unsigned long rate; |
Serge Semin | 0015503 | 2020-09-20 14:09:22 +0300 | [diff] [blame] | 686 | ktime_t kt, cache; |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 687 | u32 data; |
| 688 | int ret; |
| 689 | |
| 690 | rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk); |
| 691 | if (!rate) |
| 692 | return -ENODEV; |
| 693 | |
| 694 | /* |
| 695 | * If alarms are enabled, the requested timeout must be divided |
| 696 | * between all available sensors to have the requested delay |
| 697 | * applicable to each individual sensor. |
| 698 | */ |
Serge Semin | 0015503 | 2020-09-20 14:09:22 +0300 | [diff] [blame] | 699 | cache = kt = ms_to_ktime(val); |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 700 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 701 | kt = ktime_divns(kt, PVT_SENSORS_NUM); |
| 702 | #endif |
| 703 | |
| 704 | /* |
| 705 | * Subtract a constant lag, which always persists due to the limited |
| 706 | * PVT sampling rate. Make sure the timeout is not negative. |
| 707 | */ |
| 708 | kt = ktime_sub_ns(kt, PVT_TOUT_MIN); |
| 709 | if (ktime_to_ns(kt) < 0) |
| 710 | kt = ktime_set(0, 0); |
| 711 | |
| 712 | /* |
| 713 | * Finally recalculate the timeout in terms of the reference clock |
| 714 | * period. |
| 715 | */ |
| 716 | data = ktime_divns(kt * rate, NSEC_PER_SEC); |
| 717 | |
| 718 | /* |
| 719 | * Update the measurements delay, but lock the interface first, since |
| 720 | * we have to disable PVT in order to have the new delay actually |
| 721 | * updated. |
| 722 | */ |
| 723 | ret = mutex_lock_interruptible(&pvt->iface_mtx); |
| 724 | if (ret) |
| 725 | return ret; |
| 726 | |
| 727 | pvt_set_tout(pvt, data); |
Serge Semin | 0015503 | 2020-09-20 14:09:22 +0300 | [diff] [blame] | 728 | pvt->timeout = cache; |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 729 | |
| 730 | mutex_unlock(&pvt->iface_mtx); |
| 731 | |
| 732 | return 0; |
| 733 | } |
| 734 | |
| 735 | static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type, |
| 736 | u32 attr, int ch, long *val) |
| 737 | { |
| 738 | struct pvt_hwmon *pvt = dev_get_drvdata(dev); |
| 739 | |
| 740 | if (!pvt_hwmon_channel_is_valid(type, ch)) |
| 741 | return -EINVAL; |
| 742 | |
| 743 | switch (type) { |
| 744 | case hwmon_chip: |
| 745 | switch (attr) { |
| 746 | case hwmon_chip_update_interval: |
| 747 | return pvt_read_timeout(pvt, val); |
| 748 | } |
| 749 | break; |
| 750 | case hwmon_temp: |
| 751 | switch (attr) { |
| 752 | case hwmon_temp_input: |
| 753 | return pvt_read_data(pvt, ch, val); |
| 754 | case hwmon_temp_type: |
| 755 | *val = 1; |
| 756 | return 0; |
| 757 | case hwmon_temp_min: |
| 758 | return pvt_read_limit(pvt, ch, true, val); |
| 759 | case hwmon_temp_max: |
| 760 | return pvt_read_limit(pvt, ch, false, val); |
| 761 | case hwmon_temp_min_alarm: |
| 762 | return pvt_read_alarm(pvt, ch, true, val); |
| 763 | case hwmon_temp_max_alarm: |
| 764 | return pvt_read_alarm(pvt, ch, false, val); |
| 765 | case hwmon_temp_offset: |
| 766 | return pvt_read_trim(pvt, val); |
| 767 | } |
| 768 | break; |
| 769 | case hwmon_in: |
| 770 | switch (attr) { |
| 771 | case hwmon_in_input: |
| 772 | return pvt_read_data(pvt, PVT_VOLT + ch, val); |
| 773 | case hwmon_in_min: |
| 774 | return pvt_read_limit(pvt, PVT_VOLT + ch, true, val); |
| 775 | case hwmon_in_max: |
| 776 | return pvt_read_limit(pvt, PVT_VOLT + ch, false, val); |
| 777 | case hwmon_in_min_alarm: |
| 778 | return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val); |
| 779 | case hwmon_in_max_alarm: |
| 780 | return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val); |
| 781 | } |
| 782 | break; |
| 783 | default: |
| 784 | break; |
| 785 | } |
| 786 | |
| 787 | return -EOPNOTSUPP; |
| 788 | } |
| 789 | |
| 790 | static int pvt_hwmon_read_string(struct device *dev, |
| 791 | enum hwmon_sensor_types type, |
| 792 | u32 attr, int ch, const char **str) |
| 793 | { |
| 794 | if (!pvt_hwmon_channel_is_valid(type, ch)) |
| 795 | return -EINVAL; |
| 796 | |
| 797 | switch (type) { |
| 798 | case hwmon_temp: |
| 799 | switch (attr) { |
| 800 | case hwmon_temp_label: |
| 801 | *str = pvt_info[ch].label; |
| 802 | return 0; |
| 803 | } |
| 804 | break; |
| 805 | case hwmon_in: |
| 806 | switch (attr) { |
| 807 | case hwmon_in_label: |
| 808 | *str = pvt_info[PVT_VOLT + ch].label; |
| 809 | return 0; |
| 810 | } |
| 811 | break; |
| 812 | default: |
| 813 | break; |
| 814 | } |
| 815 | |
| 816 | return -EOPNOTSUPP; |
| 817 | } |
| 818 | |
| 819 | static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type, |
| 820 | u32 attr, int ch, long val) |
| 821 | { |
| 822 | struct pvt_hwmon *pvt = dev_get_drvdata(dev); |
| 823 | |
| 824 | if (!pvt_hwmon_channel_is_valid(type, ch)) |
| 825 | return -EINVAL; |
| 826 | |
| 827 | switch (type) { |
| 828 | case hwmon_chip: |
| 829 | switch (attr) { |
| 830 | case hwmon_chip_update_interval: |
| 831 | return pvt_write_timeout(pvt, val); |
| 832 | } |
| 833 | break; |
| 834 | case hwmon_temp: |
| 835 | switch (attr) { |
| 836 | case hwmon_temp_min: |
| 837 | return pvt_write_limit(pvt, ch, true, val); |
| 838 | case hwmon_temp_max: |
| 839 | return pvt_write_limit(pvt, ch, false, val); |
| 840 | case hwmon_temp_offset: |
| 841 | return pvt_write_trim(pvt, val); |
| 842 | } |
| 843 | break; |
| 844 | case hwmon_in: |
| 845 | switch (attr) { |
| 846 | case hwmon_in_min: |
| 847 | return pvt_write_limit(pvt, PVT_VOLT + ch, true, val); |
| 848 | case hwmon_in_max: |
| 849 | return pvt_write_limit(pvt, PVT_VOLT + ch, false, val); |
| 850 | } |
| 851 | break; |
| 852 | default: |
| 853 | break; |
| 854 | } |
| 855 | |
| 856 | return -EOPNOTSUPP; |
| 857 | } |
| 858 | |
| 859 | static const struct hwmon_ops pvt_hwmon_ops = { |
| 860 | .is_visible = pvt_hwmon_is_visible, |
| 861 | .read = pvt_hwmon_read, |
| 862 | .read_string = pvt_hwmon_read_string, |
| 863 | .write = pvt_hwmon_write |
| 864 | }; |
| 865 | |
| 866 | static const struct hwmon_chip_info pvt_hwmon_info = { |
| 867 | .ops = &pvt_hwmon_ops, |
| 868 | .info = pvt_channel_info |
| 869 | }; |
| 870 | |
| 871 | static void pvt_clear_data(void *data) |
| 872 | { |
| 873 | struct pvt_hwmon *pvt = data; |
| 874 | #if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 875 | int idx; |
| 876 | |
| 877 | for (idx = 0; idx < PVT_SENSORS_NUM; ++idx) |
| 878 | complete_all(&pvt->cache[idx].conversion); |
| 879 | #endif |
| 880 | |
| 881 | mutex_destroy(&pvt->iface_mtx); |
| 882 | } |
| 883 | |
| 884 | static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev) |
| 885 | { |
| 886 | struct device *dev = &pdev->dev; |
| 887 | struct pvt_hwmon *pvt; |
| 888 | int ret, idx; |
| 889 | |
| 890 | pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL); |
| 891 | if (!pvt) |
| 892 | return ERR_PTR(-ENOMEM); |
| 893 | |
| 894 | ret = devm_add_action(dev, pvt_clear_data, pvt); |
| 895 | if (ret) { |
| 896 | dev_err(dev, "Can't add PVT data clear action\n"); |
| 897 | return ERR_PTR(ret); |
| 898 | } |
| 899 | |
| 900 | pvt->dev = dev; |
| 901 | pvt->sensor = PVT_SENSOR_FIRST; |
| 902 | mutex_init(&pvt->iface_mtx); |
| 903 | |
| 904 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 905 | for (idx = 0; idx < PVT_SENSORS_NUM; ++idx) |
| 906 | seqlock_init(&pvt->cache[idx].data_seqlock); |
| 907 | #else |
| 908 | for (idx = 0; idx < PVT_SENSORS_NUM; ++idx) |
| 909 | init_completion(&pvt->cache[idx].conversion); |
| 910 | #endif |
| 911 | |
| 912 | return pvt; |
| 913 | } |
| 914 | |
| 915 | static int pvt_request_regs(struct pvt_hwmon *pvt) |
| 916 | { |
| 917 | struct platform_device *pdev = to_platform_device(pvt->dev); |
| 918 | struct resource *res; |
| 919 | |
| 920 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 921 | if (!res) { |
| 922 | dev_err(pvt->dev, "Couldn't find PVT memresource\n"); |
| 923 | return -EINVAL; |
| 924 | } |
| 925 | |
| 926 | pvt->regs = devm_ioremap_resource(pvt->dev, res); |
Zhen Lei | 4943c60 | 2021-05-11 17:18:43 +0800 | [diff] [blame] | 927 | if (IS_ERR(pvt->regs)) |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 928 | return PTR_ERR(pvt->regs); |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 929 | |
| 930 | return 0; |
| 931 | } |
| 932 | |
| 933 | static void pvt_disable_clks(void *data) |
| 934 | { |
| 935 | struct pvt_hwmon *pvt = data; |
| 936 | |
| 937 | clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks); |
| 938 | } |
| 939 | |
| 940 | static int pvt_request_clks(struct pvt_hwmon *pvt) |
| 941 | { |
| 942 | int ret; |
| 943 | |
| 944 | pvt->clks[PVT_CLOCK_APB].id = "pclk"; |
| 945 | pvt->clks[PVT_CLOCK_REF].id = "ref"; |
| 946 | |
| 947 | ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks); |
| 948 | if (ret) { |
| 949 | dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n"); |
| 950 | return ret; |
| 951 | } |
| 952 | |
| 953 | ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks); |
| 954 | if (ret) { |
| 955 | dev_err(pvt->dev, "Couldn't enable the PVT clocks\n"); |
| 956 | return ret; |
| 957 | } |
| 958 | |
| 959 | ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt); |
| 960 | if (ret) { |
| 961 | dev_err(pvt->dev, "Can't add PVT clocks disable action\n"); |
| 962 | return ret; |
| 963 | } |
| 964 | |
| 965 | return 0; |
| 966 | } |
| 967 | |
Serge Semin | a6db156 | 2020-09-20 14:09:21 +0300 | [diff] [blame] | 968 | static int pvt_check_pwr(struct pvt_hwmon *pvt) |
| 969 | { |
| 970 | unsigned long tout; |
| 971 | int ret = 0; |
| 972 | u32 data; |
| 973 | |
| 974 | /* |
| 975 | * Test out the sensor conversion functionality. If it is not done on |
| 976 | * time then the domain must have been unpowered and we won't be able |
| 977 | * to use the device later in this driver. |
| 978 | * Note If the power source is lost during the normal driver work the |
| 979 | * data read procedure will either return -ETIMEDOUT (for the |
| 980 | * alarm-less driver configuration) or just stop the repeated |
| 981 | * conversion. In the later case alas we won't be able to detect the |
| 982 | * problem. |
| 983 | */ |
| 984 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL); |
| 985 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN); |
| 986 | pvt_set_tout(pvt, 0); |
| 987 | readl(pvt->regs + PVT_DATA); |
| 988 | |
| 989 | tout = PVT_TOUT_MIN / NSEC_PER_USEC; |
| 990 | usleep_range(tout, 2 * tout); |
| 991 | |
| 992 | data = readl(pvt->regs + PVT_DATA); |
| 993 | if (!(data & PVT_DATA_VALID)) { |
| 994 | ret = -ENODEV; |
| 995 | dev_err(pvt->dev, "Sensor is powered down\n"); |
| 996 | } |
| 997 | |
| 998 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| 999 | |
| 1000 | return ret; |
| 1001 | } |
| 1002 | |
Serge Semin | 0015503 | 2020-09-20 14:09:22 +0300 | [diff] [blame] | 1003 | static int pvt_init_iface(struct pvt_hwmon *pvt) |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 1004 | { |
Serge Semin | 0015503 | 2020-09-20 14:09:22 +0300 | [diff] [blame] | 1005 | unsigned long rate; |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 1006 | u32 trim, temp; |
| 1007 | |
Serge Semin | 0015503 | 2020-09-20 14:09:22 +0300 | [diff] [blame] | 1008 | rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk); |
| 1009 | if (!rate) { |
| 1010 | dev_err(pvt->dev, "Invalid reference clock rate\n"); |
| 1011 | return -ENODEV; |
| 1012 | } |
| 1013 | |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 1014 | /* |
| 1015 | * Make sure all interrupts and controller are disabled so not to |
| 1016 | * accidentally have ISR executed before the driver data is fully |
| 1017 | * initialized. Clear the IRQ status as well. |
| 1018 | */ |
| 1019 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL); |
| 1020 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| 1021 | readl(pvt->regs + PVT_CLR_INTR); |
| 1022 | readl(pvt->regs + PVT_DATA); |
| 1023 | |
| 1024 | /* Setup default sensor mode, timeout and temperature trim. */ |
| 1025 | pvt_set_mode(pvt, pvt_info[pvt->sensor].mode); |
| 1026 | pvt_set_tout(pvt, PVT_TOUT_DEF); |
| 1027 | |
Serge Semin | 0015503 | 2020-09-20 14:09:22 +0300 | [diff] [blame] | 1028 | /* |
| 1029 | * Preserve the current ref-clock based delay (Ttotal) between the |
| 1030 | * sensors data samples in the driver data so not to recalculate it |
| 1031 | * each time on the data requests and timeout reads. It consists of the |
| 1032 | * delay introduced by the internal ref-clock timer (N / Fclk) and the |
| 1033 | * constant timeout caused by each conversion latency (Tmin): |
| 1034 | * Ttotal = N / Fclk + Tmin |
| 1035 | * If alarms are enabled the sensors are polled one after another and |
| 1036 | * in order to get the next measurement of a particular sensor the |
| 1037 | * caller will have to wait for at most until all the others are |
| 1038 | * polled. In that case the formulae will look a bit different: |
| 1039 | * Ttotal = 5 * (N / Fclk + Tmin) |
| 1040 | */ |
| 1041 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 1042 | pvt->timeout = ktime_set(PVT_SENSORS_NUM * PVT_TOUT_DEF, 0); |
| 1043 | pvt->timeout = ktime_divns(pvt->timeout, rate); |
| 1044 | pvt->timeout = ktime_add_ns(pvt->timeout, PVT_SENSORS_NUM * PVT_TOUT_MIN); |
| 1045 | #else |
| 1046 | pvt->timeout = ktime_set(PVT_TOUT_DEF, 0); |
| 1047 | pvt->timeout = ktime_divns(pvt->timeout, rate); |
| 1048 | pvt->timeout = ktime_add_ns(pvt->timeout, PVT_TOUT_MIN); |
| 1049 | #endif |
| 1050 | |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 1051 | trim = PVT_TRIM_DEF; |
| 1052 | if (!of_property_read_u32(pvt->dev->of_node, |
| 1053 | "baikal,pvt-temp-offset-millicelsius", &temp)) |
| 1054 | trim = pvt_calc_trim(temp); |
| 1055 | |
| 1056 | pvt_set_trim(pvt, trim); |
Serge Semin | 0015503 | 2020-09-20 14:09:22 +0300 | [diff] [blame] | 1057 | |
| 1058 | return 0; |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 1059 | } |
| 1060 | |
| 1061 | static int pvt_request_irq(struct pvt_hwmon *pvt) |
| 1062 | { |
| 1063 | struct platform_device *pdev = to_platform_device(pvt->dev); |
| 1064 | int ret; |
| 1065 | |
| 1066 | pvt->irq = platform_get_irq(pdev, 0); |
| 1067 | if (pvt->irq < 0) |
| 1068 | return pvt->irq; |
| 1069 | |
| 1070 | ret = devm_request_threaded_irq(pvt->dev, pvt->irq, |
| 1071 | pvt_hard_isr, pvt_soft_isr, |
| 1072 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 1073 | IRQF_SHARED | IRQF_TRIGGER_HIGH | |
| 1074 | IRQF_ONESHOT, |
| 1075 | #else |
| 1076 | IRQF_SHARED | IRQF_TRIGGER_HIGH, |
| 1077 | #endif |
| 1078 | "pvt", pvt); |
| 1079 | if (ret) { |
| 1080 | dev_err(pvt->dev, "Couldn't request PVT IRQ\n"); |
| 1081 | return ret; |
| 1082 | } |
| 1083 | |
| 1084 | return 0; |
| 1085 | } |
| 1086 | |
| 1087 | static int pvt_create_hwmon(struct pvt_hwmon *pvt) |
| 1088 | { |
| 1089 | pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt, |
| 1090 | &pvt_hwmon_info, NULL); |
| 1091 | if (IS_ERR(pvt->hwmon)) { |
| 1092 | dev_err(pvt->dev, "Couldn't create hwmon device\n"); |
| 1093 | return PTR_ERR(pvt->hwmon); |
| 1094 | } |
| 1095 | |
| 1096 | return 0; |
| 1097 | } |
| 1098 | |
| 1099 | #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS) |
| 1100 | |
| 1101 | static void pvt_disable_iface(void *data) |
| 1102 | { |
| 1103 | struct pvt_hwmon *pvt = data; |
| 1104 | |
| 1105 | mutex_lock(&pvt->iface_mtx); |
| 1106 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0); |
| 1107 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, |
| 1108 | PVT_INTR_DVALID); |
| 1109 | mutex_unlock(&pvt->iface_mtx); |
| 1110 | } |
| 1111 | |
| 1112 | static int pvt_enable_iface(struct pvt_hwmon *pvt) |
| 1113 | { |
| 1114 | int ret; |
| 1115 | |
| 1116 | ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt); |
| 1117 | if (ret) { |
| 1118 | dev_err(pvt->dev, "Can't add PVT disable interface action\n"); |
| 1119 | return ret; |
| 1120 | } |
| 1121 | |
| 1122 | /* |
| 1123 | * Enable sensors data conversion and IRQ. We need to lock the |
| 1124 | * interface mutex since hwmon has just been created and the |
| 1125 | * corresponding sysfs files are accessible from user-space, |
| 1126 | * which theoretically may cause races. |
| 1127 | */ |
| 1128 | mutex_lock(&pvt->iface_mtx); |
| 1129 | pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0); |
| 1130 | pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN); |
| 1131 | mutex_unlock(&pvt->iface_mtx); |
| 1132 | |
| 1133 | return 0; |
| 1134 | } |
| 1135 | |
| 1136 | #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ |
| 1137 | |
| 1138 | static int pvt_enable_iface(struct pvt_hwmon *pvt) |
| 1139 | { |
| 1140 | return 0; |
| 1141 | } |
| 1142 | |
| 1143 | #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */ |
| 1144 | |
| 1145 | static int pvt_probe(struct platform_device *pdev) |
| 1146 | { |
| 1147 | struct pvt_hwmon *pvt; |
| 1148 | int ret; |
| 1149 | |
| 1150 | pvt = pvt_create_data(pdev); |
| 1151 | if (IS_ERR(pvt)) |
| 1152 | return PTR_ERR(pvt); |
| 1153 | |
| 1154 | ret = pvt_request_regs(pvt); |
| 1155 | if (ret) |
| 1156 | return ret; |
| 1157 | |
| 1158 | ret = pvt_request_clks(pvt); |
| 1159 | if (ret) |
| 1160 | return ret; |
| 1161 | |
Serge Semin | a6db156 | 2020-09-20 14:09:21 +0300 | [diff] [blame] | 1162 | ret = pvt_check_pwr(pvt); |
| 1163 | if (ret) |
| 1164 | return ret; |
| 1165 | |
Serge Semin | 0015503 | 2020-09-20 14:09:22 +0300 | [diff] [blame] | 1166 | ret = pvt_init_iface(pvt); |
| 1167 | if (ret) |
| 1168 | return ret; |
Serge Semin | 87976ce | 2020-05-28 17:28:05 +0300 | [diff] [blame] | 1169 | |
| 1170 | ret = pvt_request_irq(pvt); |
| 1171 | if (ret) |
| 1172 | return ret; |
| 1173 | |
| 1174 | ret = pvt_create_hwmon(pvt); |
| 1175 | if (ret) |
| 1176 | return ret; |
| 1177 | |
| 1178 | ret = pvt_enable_iface(pvt); |
| 1179 | if (ret) |
| 1180 | return ret; |
| 1181 | |
| 1182 | return 0; |
| 1183 | } |
| 1184 | |
| 1185 | static const struct of_device_id pvt_of_match[] = { |
| 1186 | { .compatible = "baikal,bt1-pvt" }, |
| 1187 | { } |
| 1188 | }; |
| 1189 | MODULE_DEVICE_TABLE(of, pvt_of_match); |
| 1190 | |
| 1191 | static struct platform_driver pvt_driver = { |
| 1192 | .probe = pvt_probe, |
| 1193 | .driver = { |
| 1194 | .name = "bt1-pvt", |
| 1195 | .of_match_table = pvt_of_match |
| 1196 | } |
| 1197 | }; |
| 1198 | module_platform_driver(pvt_driver); |
| 1199 | |
| 1200 | MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>"); |
| 1201 | MODULE_DESCRIPTION("Baikal-T1 PVT driver"); |
| 1202 | MODULE_LICENSE("GPL v2"); |