Eric Biggers | 059c2a4 | 2018-11-16 17:26:31 -0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Adiantum length-preserving encryption mode |
| 4 | * |
| 5 | * Copyright 2018 Google LLC |
| 6 | */ |
| 7 | |
| 8 | /* |
| 9 | * Adiantum is a tweakable, length-preserving encryption mode designed for fast |
| 10 | * and secure disk encryption, especially on CPUs without dedicated crypto |
| 11 | * instructions. Adiantum encrypts each sector using the XChaCha12 stream |
| 12 | * cipher, two passes of an ε-almost-∆-universal (εA∆U) hash function based on |
| 13 | * NH and Poly1305, and an invocation of the AES-256 block cipher on a single |
| 14 | * 16-byte block. See the paper for details: |
| 15 | * |
| 16 | * Adiantum: length-preserving encryption for entry-level processors |
| 17 | * (https://eprint.iacr.org/2018/720.pdf) |
| 18 | * |
| 19 | * For flexibility, this implementation also allows other ciphers: |
| 20 | * |
| 21 | * - Stream cipher: XChaCha12 or XChaCha20 |
| 22 | * - Block cipher: any with a 128-bit block size and 256-bit key |
| 23 | * |
| 24 | * This implementation doesn't currently allow other εA∆U hash functions, i.e. |
| 25 | * HPolyC is not supported. This is because Adiantum is ~20% faster than HPolyC |
| 26 | * but still provably as secure, and also the εA∆U hash function of HBSH is |
| 27 | * formally defined to take two inputs (tweak, message) which makes it difficult |
| 28 | * to wrap with the crypto_shash API. Rather, some details need to be handled |
| 29 | * here. Nevertheless, if needed in the future, support for other εA∆U hash |
| 30 | * functions could be added here. |
| 31 | */ |
| 32 | |
| 33 | #include <crypto/b128ops.h> |
| 34 | #include <crypto/chacha.h> |
| 35 | #include <crypto/internal/hash.h> |
| 36 | #include <crypto/internal/skcipher.h> |
| 37 | #include <crypto/nhpoly1305.h> |
| 38 | #include <crypto/scatterwalk.h> |
| 39 | #include <linux/module.h> |
| 40 | |
| 41 | #include "internal.h" |
| 42 | |
| 43 | /* |
| 44 | * Size of right-hand block of input data, in bytes; also the size of the block |
| 45 | * cipher's block size and the hash function's output. |
| 46 | */ |
| 47 | #define BLOCKCIPHER_BLOCK_SIZE 16 |
| 48 | |
| 49 | /* Size of the block cipher key (K_E) in bytes */ |
| 50 | #define BLOCKCIPHER_KEY_SIZE 32 |
| 51 | |
| 52 | /* Size of the hash key (K_H) in bytes */ |
| 53 | #define HASH_KEY_SIZE (POLY1305_BLOCK_SIZE + NHPOLY1305_KEY_SIZE) |
| 54 | |
| 55 | /* |
| 56 | * The specification allows variable-length tweaks, but Linux's crypto API |
| 57 | * currently only allows algorithms to support a single length. The "natural" |
| 58 | * tweak length for Adiantum is 16, since that fits into one Poly1305 block for |
| 59 | * the best performance. But longer tweaks are useful for fscrypt, to avoid |
| 60 | * needing to derive per-file keys. So instead we use two blocks, or 32 bytes. |
| 61 | */ |
| 62 | #define TWEAK_SIZE 32 |
| 63 | |
| 64 | struct adiantum_instance_ctx { |
| 65 | struct crypto_skcipher_spawn streamcipher_spawn; |
| 66 | struct crypto_spawn blockcipher_spawn; |
| 67 | struct crypto_shash_spawn hash_spawn; |
| 68 | }; |
| 69 | |
| 70 | struct adiantum_tfm_ctx { |
| 71 | struct crypto_skcipher *streamcipher; |
| 72 | struct crypto_cipher *blockcipher; |
| 73 | struct crypto_shash *hash; |
| 74 | struct poly1305_key header_hash_key; |
| 75 | }; |
| 76 | |
| 77 | struct adiantum_request_ctx { |
| 78 | |
| 79 | /* |
| 80 | * Buffer for right-hand block of data, i.e. |
| 81 | * |
| 82 | * P_L => P_M => C_M => C_R when encrypting, or |
| 83 | * C_R => C_M => P_M => P_L when decrypting. |
| 84 | * |
| 85 | * Also used to build the IV for the stream cipher. |
| 86 | */ |
| 87 | union { |
| 88 | u8 bytes[XCHACHA_IV_SIZE]; |
| 89 | __le32 words[XCHACHA_IV_SIZE / sizeof(__le32)]; |
| 90 | le128 bignum; /* interpret as element of Z/(2^{128}Z) */ |
| 91 | } rbuf; |
| 92 | |
| 93 | bool enc; /* true if encrypting, false if decrypting */ |
| 94 | |
| 95 | /* |
| 96 | * The result of the Poly1305 εA∆U hash function applied to |
| 97 | * (message length, tweak). |
| 98 | */ |
| 99 | le128 header_hash; |
| 100 | |
| 101 | /* Sub-requests, must be last */ |
| 102 | union { |
| 103 | struct shash_desc hash_desc; |
| 104 | struct skcipher_request streamcipher_req; |
| 105 | } u; |
| 106 | }; |
| 107 | |
| 108 | /* |
| 109 | * Given the XChaCha stream key K_S, derive the block cipher key K_E and the |
| 110 | * hash key K_H as follows: |
| 111 | * |
| 112 | * K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191) |
| 113 | * |
| 114 | * Note that this denotes using bits from the XChaCha keystream, which here we |
| 115 | * get indirectly by encrypting a buffer containing all 0's. |
| 116 | */ |
| 117 | static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key, |
| 118 | unsigned int keylen) |
| 119 | { |
| 120 | struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| 121 | struct { |
| 122 | u8 iv[XCHACHA_IV_SIZE]; |
| 123 | u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE]; |
| 124 | struct scatterlist sg; |
| 125 | struct crypto_wait wait; |
| 126 | struct skcipher_request req; /* must be last */ |
| 127 | } *data; |
| 128 | u8 *keyp; |
| 129 | int err; |
| 130 | |
| 131 | /* Set the stream cipher key (K_S) */ |
| 132 | crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK); |
| 133 | crypto_skcipher_set_flags(tctx->streamcipher, |
| 134 | crypto_skcipher_get_flags(tfm) & |
| 135 | CRYPTO_TFM_REQ_MASK); |
| 136 | err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen); |
| 137 | crypto_skcipher_set_flags(tfm, |
| 138 | crypto_skcipher_get_flags(tctx->streamcipher) & |
| 139 | CRYPTO_TFM_RES_MASK); |
| 140 | if (err) |
| 141 | return err; |
| 142 | |
| 143 | /* Derive the subkeys */ |
| 144 | data = kzalloc(sizeof(*data) + |
| 145 | crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL); |
| 146 | if (!data) |
| 147 | return -ENOMEM; |
| 148 | data->iv[0] = 1; |
| 149 | sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys)); |
| 150 | crypto_init_wait(&data->wait); |
| 151 | skcipher_request_set_tfm(&data->req, tctx->streamcipher); |
| 152 | skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP | |
| 153 | CRYPTO_TFM_REQ_MAY_BACKLOG, |
| 154 | crypto_req_done, &data->wait); |
| 155 | skcipher_request_set_crypt(&data->req, &data->sg, &data->sg, |
| 156 | sizeof(data->derived_keys), data->iv); |
| 157 | err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait); |
| 158 | if (err) |
| 159 | goto out; |
| 160 | keyp = data->derived_keys; |
| 161 | |
| 162 | /* Set the block cipher key (K_E) */ |
| 163 | crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK); |
| 164 | crypto_cipher_set_flags(tctx->blockcipher, |
| 165 | crypto_skcipher_get_flags(tfm) & |
| 166 | CRYPTO_TFM_REQ_MASK); |
| 167 | err = crypto_cipher_setkey(tctx->blockcipher, keyp, |
| 168 | BLOCKCIPHER_KEY_SIZE); |
| 169 | crypto_skcipher_set_flags(tfm, |
| 170 | crypto_cipher_get_flags(tctx->blockcipher) & |
| 171 | CRYPTO_TFM_RES_MASK); |
| 172 | if (err) |
| 173 | goto out; |
| 174 | keyp += BLOCKCIPHER_KEY_SIZE; |
| 175 | |
| 176 | /* Set the hash key (K_H) */ |
| 177 | poly1305_core_setkey(&tctx->header_hash_key, keyp); |
| 178 | keyp += POLY1305_BLOCK_SIZE; |
| 179 | |
| 180 | crypto_shash_clear_flags(tctx->hash, CRYPTO_TFM_REQ_MASK); |
| 181 | crypto_shash_set_flags(tctx->hash, crypto_skcipher_get_flags(tfm) & |
| 182 | CRYPTO_TFM_REQ_MASK); |
| 183 | err = crypto_shash_setkey(tctx->hash, keyp, NHPOLY1305_KEY_SIZE); |
| 184 | crypto_skcipher_set_flags(tfm, crypto_shash_get_flags(tctx->hash) & |
| 185 | CRYPTO_TFM_RES_MASK); |
| 186 | keyp += NHPOLY1305_KEY_SIZE; |
| 187 | WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]); |
| 188 | out: |
| 189 | kzfree(data); |
| 190 | return err; |
| 191 | } |
| 192 | |
| 193 | /* Addition in Z/(2^{128}Z) */ |
| 194 | static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2) |
| 195 | { |
| 196 | u64 x = le64_to_cpu(v1->b); |
| 197 | u64 y = le64_to_cpu(v2->b); |
| 198 | |
| 199 | r->b = cpu_to_le64(x + y); |
| 200 | r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) + |
| 201 | (x + y < x)); |
| 202 | } |
| 203 | |
| 204 | /* Subtraction in Z/(2^{128}Z) */ |
| 205 | static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2) |
| 206 | { |
| 207 | u64 x = le64_to_cpu(v1->b); |
| 208 | u64 y = le64_to_cpu(v2->b); |
| 209 | |
| 210 | r->b = cpu_to_le64(x - y); |
| 211 | r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) - |
| 212 | (x - y > x)); |
| 213 | } |
| 214 | |
| 215 | /* |
| 216 | * Apply the Poly1305 εA∆U hash function to (message length, tweak) and save the |
| 217 | * result to rctx->header_hash. |
| 218 | * |
| 219 | * This value is reused in both the first and second hash steps. Specifically, |
| 220 | * it's added to the result of an independently keyed εA∆U hash function (for |
| 221 | * equal length inputs only) taken over the message. This gives the overall |
| 222 | * Adiantum hash of the (tweak, message) pair. |
| 223 | */ |
| 224 | static void adiantum_hash_header(struct skcipher_request *req) |
| 225 | { |
| 226 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| 227 | const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| 228 | struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); |
| 229 | const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; |
| 230 | struct { |
| 231 | __le64 message_bits; |
| 232 | __le64 padding; |
| 233 | } header = { |
| 234 | .message_bits = cpu_to_le64((u64)bulk_len * 8) |
| 235 | }; |
| 236 | struct poly1305_state state; |
| 237 | |
| 238 | poly1305_core_init(&state); |
| 239 | |
| 240 | BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0); |
| 241 | poly1305_core_blocks(&state, &tctx->header_hash_key, |
| 242 | &header, sizeof(header) / POLY1305_BLOCK_SIZE); |
| 243 | |
| 244 | BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0); |
| 245 | poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv, |
| 246 | TWEAK_SIZE / POLY1305_BLOCK_SIZE); |
| 247 | |
| 248 | poly1305_core_emit(&state, &rctx->header_hash); |
| 249 | } |
| 250 | |
| 251 | /* Hash the left-hand block (the "bulk") of the message using NHPoly1305 */ |
| 252 | static int adiantum_hash_message(struct skcipher_request *req, |
| 253 | struct scatterlist *sgl, le128 *digest) |
| 254 | { |
| 255 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| 256 | const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| 257 | struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); |
| 258 | const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; |
| 259 | struct shash_desc *hash_desc = &rctx->u.hash_desc; |
| 260 | struct sg_mapping_iter miter; |
| 261 | unsigned int i, n; |
| 262 | int err; |
| 263 | |
| 264 | hash_desc->tfm = tctx->hash; |
| 265 | hash_desc->flags = 0; |
| 266 | |
| 267 | err = crypto_shash_init(hash_desc); |
| 268 | if (err) |
| 269 | return err; |
| 270 | |
| 271 | sg_miter_start(&miter, sgl, sg_nents(sgl), |
| 272 | SG_MITER_FROM_SG | SG_MITER_ATOMIC); |
| 273 | for (i = 0; i < bulk_len; i += n) { |
| 274 | sg_miter_next(&miter); |
| 275 | n = min_t(unsigned int, miter.length, bulk_len - i); |
| 276 | err = crypto_shash_update(hash_desc, miter.addr, n); |
| 277 | if (err) |
| 278 | break; |
| 279 | } |
| 280 | sg_miter_stop(&miter); |
| 281 | if (err) |
| 282 | return err; |
| 283 | |
| 284 | return crypto_shash_final(hash_desc, (u8 *)digest); |
| 285 | } |
| 286 | |
| 287 | /* Continue Adiantum encryption/decryption after the stream cipher step */ |
| 288 | static int adiantum_finish(struct skcipher_request *req) |
| 289 | { |
| 290 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| 291 | const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| 292 | struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); |
| 293 | const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; |
| 294 | le128 digest; |
| 295 | int err; |
| 296 | |
| 297 | /* If decrypting, decrypt C_M with the block cipher to get P_M */ |
| 298 | if (!rctx->enc) |
| 299 | crypto_cipher_decrypt_one(tctx->blockcipher, rctx->rbuf.bytes, |
| 300 | rctx->rbuf.bytes); |
| 301 | |
| 302 | /* |
| 303 | * Second hash step |
| 304 | * enc: C_R = C_M - H_{K_H}(T, C_L) |
| 305 | * dec: P_R = P_M - H_{K_H}(T, P_L) |
| 306 | */ |
| 307 | err = adiantum_hash_message(req, req->dst, &digest); |
| 308 | if (err) |
| 309 | return err; |
| 310 | le128_add(&digest, &digest, &rctx->header_hash); |
| 311 | le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest); |
| 312 | scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->dst, |
| 313 | bulk_len, BLOCKCIPHER_BLOCK_SIZE, 1); |
| 314 | return 0; |
| 315 | } |
| 316 | |
| 317 | static void adiantum_streamcipher_done(struct crypto_async_request *areq, |
| 318 | int err) |
| 319 | { |
| 320 | struct skcipher_request *req = areq->data; |
| 321 | |
| 322 | if (!err) |
| 323 | err = adiantum_finish(req); |
| 324 | |
| 325 | skcipher_request_complete(req, err); |
| 326 | } |
| 327 | |
| 328 | static int adiantum_crypt(struct skcipher_request *req, bool enc) |
| 329 | { |
| 330 | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| 331 | const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| 332 | struct adiantum_request_ctx *rctx = skcipher_request_ctx(req); |
| 333 | const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE; |
| 334 | unsigned int stream_len; |
| 335 | le128 digest; |
| 336 | int err; |
| 337 | |
| 338 | if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE) |
| 339 | return -EINVAL; |
| 340 | |
| 341 | rctx->enc = enc; |
| 342 | |
| 343 | /* |
| 344 | * First hash step |
| 345 | * enc: P_M = P_R + H_{K_H}(T, P_L) |
| 346 | * dec: C_M = C_R + H_{K_H}(T, C_L) |
| 347 | */ |
| 348 | adiantum_hash_header(req); |
| 349 | err = adiantum_hash_message(req, req->src, &digest); |
| 350 | if (err) |
| 351 | return err; |
| 352 | le128_add(&digest, &digest, &rctx->header_hash); |
| 353 | scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->src, |
| 354 | bulk_len, BLOCKCIPHER_BLOCK_SIZE, 0); |
| 355 | le128_add(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest); |
| 356 | |
| 357 | /* If encrypting, encrypt P_M with the block cipher to get C_M */ |
| 358 | if (enc) |
| 359 | crypto_cipher_encrypt_one(tctx->blockcipher, rctx->rbuf.bytes, |
| 360 | rctx->rbuf.bytes); |
| 361 | |
| 362 | /* Initialize the rest of the XChaCha IV (first part is C_M) */ |
| 363 | BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16); |
| 364 | BUILD_BUG_ON(XCHACHA_IV_SIZE != 32); /* nonce || stream position */ |
| 365 | rctx->rbuf.words[4] = cpu_to_le32(1); |
| 366 | rctx->rbuf.words[5] = 0; |
| 367 | rctx->rbuf.words[6] = 0; |
| 368 | rctx->rbuf.words[7] = 0; |
| 369 | |
| 370 | /* |
| 371 | * XChaCha needs to be done on all the data except the last 16 bytes; |
| 372 | * for disk encryption that usually means 4080 or 496 bytes. But ChaCha |
| 373 | * implementations tend to be most efficient when passed a whole number |
| 374 | * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes. |
| 375 | * And here it doesn't matter whether the last 16 bytes are written to, |
| 376 | * as the second hash step will overwrite them. Thus, round the XChaCha |
| 377 | * length up to the next 64-byte boundary if possible. |
| 378 | */ |
| 379 | stream_len = bulk_len; |
| 380 | if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen) |
| 381 | stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE); |
| 382 | |
| 383 | skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher); |
| 384 | skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src, |
| 385 | req->dst, stream_len, &rctx->rbuf); |
| 386 | skcipher_request_set_callback(&rctx->u.streamcipher_req, |
| 387 | req->base.flags, |
| 388 | adiantum_streamcipher_done, req); |
| 389 | return crypto_skcipher_encrypt(&rctx->u.streamcipher_req) ?: |
| 390 | adiantum_finish(req); |
| 391 | } |
| 392 | |
| 393 | static int adiantum_encrypt(struct skcipher_request *req) |
| 394 | { |
| 395 | return adiantum_crypt(req, true); |
| 396 | } |
| 397 | |
| 398 | static int adiantum_decrypt(struct skcipher_request *req) |
| 399 | { |
| 400 | return adiantum_crypt(req, false); |
| 401 | } |
| 402 | |
| 403 | static int adiantum_init_tfm(struct crypto_skcipher *tfm) |
| 404 | { |
| 405 | struct skcipher_instance *inst = skcipher_alg_instance(tfm); |
| 406 | struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst); |
| 407 | struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| 408 | struct crypto_skcipher *streamcipher; |
| 409 | struct crypto_cipher *blockcipher; |
| 410 | struct crypto_shash *hash; |
| 411 | unsigned int subreq_size; |
| 412 | int err; |
| 413 | |
| 414 | streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn); |
| 415 | if (IS_ERR(streamcipher)) |
| 416 | return PTR_ERR(streamcipher); |
| 417 | |
| 418 | blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn); |
| 419 | if (IS_ERR(blockcipher)) { |
| 420 | err = PTR_ERR(blockcipher); |
| 421 | goto err_free_streamcipher; |
| 422 | } |
| 423 | |
| 424 | hash = crypto_spawn_shash(&ictx->hash_spawn); |
| 425 | if (IS_ERR(hash)) { |
| 426 | err = PTR_ERR(hash); |
| 427 | goto err_free_blockcipher; |
| 428 | } |
| 429 | |
| 430 | tctx->streamcipher = streamcipher; |
| 431 | tctx->blockcipher = blockcipher; |
| 432 | tctx->hash = hash; |
| 433 | |
| 434 | BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) != |
| 435 | sizeof(struct adiantum_request_ctx)); |
| 436 | subreq_size = max(FIELD_SIZEOF(struct adiantum_request_ctx, |
| 437 | u.hash_desc) + |
| 438 | crypto_shash_descsize(hash), |
| 439 | FIELD_SIZEOF(struct adiantum_request_ctx, |
| 440 | u.streamcipher_req) + |
| 441 | crypto_skcipher_reqsize(streamcipher)); |
| 442 | |
| 443 | crypto_skcipher_set_reqsize(tfm, |
| 444 | offsetof(struct adiantum_request_ctx, u) + |
| 445 | subreq_size); |
| 446 | return 0; |
| 447 | |
| 448 | err_free_blockcipher: |
| 449 | crypto_free_cipher(blockcipher); |
| 450 | err_free_streamcipher: |
| 451 | crypto_free_skcipher(streamcipher); |
| 452 | return err; |
| 453 | } |
| 454 | |
| 455 | static void adiantum_exit_tfm(struct crypto_skcipher *tfm) |
| 456 | { |
| 457 | struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm); |
| 458 | |
| 459 | crypto_free_skcipher(tctx->streamcipher); |
| 460 | crypto_free_cipher(tctx->blockcipher); |
| 461 | crypto_free_shash(tctx->hash); |
| 462 | } |
| 463 | |
| 464 | static void adiantum_free_instance(struct skcipher_instance *inst) |
| 465 | { |
| 466 | struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst); |
| 467 | |
| 468 | crypto_drop_skcipher(&ictx->streamcipher_spawn); |
| 469 | crypto_drop_spawn(&ictx->blockcipher_spawn); |
| 470 | crypto_drop_shash(&ictx->hash_spawn); |
| 471 | kfree(inst); |
| 472 | } |
| 473 | |
| 474 | /* |
| 475 | * Check for a supported set of inner algorithms. |
| 476 | * See the comment at the beginning of this file. |
| 477 | */ |
| 478 | static bool adiantum_supported_algorithms(struct skcipher_alg *streamcipher_alg, |
| 479 | struct crypto_alg *blockcipher_alg, |
| 480 | struct shash_alg *hash_alg) |
| 481 | { |
| 482 | if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 && |
| 483 | strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0) |
| 484 | return false; |
| 485 | |
| 486 | if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE || |
| 487 | blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE) |
| 488 | return false; |
| 489 | if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE) |
| 490 | return false; |
| 491 | |
| 492 | if (strcmp(hash_alg->base.cra_name, "nhpoly1305") != 0) |
| 493 | return false; |
| 494 | |
| 495 | return true; |
| 496 | } |
| 497 | |
| 498 | static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb) |
| 499 | { |
| 500 | struct crypto_attr_type *algt; |
| 501 | const char *streamcipher_name; |
| 502 | const char *blockcipher_name; |
| 503 | const char *nhpoly1305_name; |
| 504 | struct skcipher_instance *inst; |
| 505 | struct adiantum_instance_ctx *ictx; |
| 506 | struct skcipher_alg *streamcipher_alg; |
| 507 | struct crypto_alg *blockcipher_alg; |
| 508 | struct crypto_alg *_hash_alg; |
| 509 | struct shash_alg *hash_alg; |
| 510 | int err; |
| 511 | |
| 512 | algt = crypto_get_attr_type(tb); |
| 513 | if (IS_ERR(algt)) |
| 514 | return PTR_ERR(algt); |
| 515 | |
| 516 | if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask) |
| 517 | return -EINVAL; |
| 518 | |
| 519 | streamcipher_name = crypto_attr_alg_name(tb[1]); |
| 520 | if (IS_ERR(streamcipher_name)) |
| 521 | return PTR_ERR(streamcipher_name); |
| 522 | |
| 523 | blockcipher_name = crypto_attr_alg_name(tb[2]); |
| 524 | if (IS_ERR(blockcipher_name)) |
| 525 | return PTR_ERR(blockcipher_name); |
| 526 | |
| 527 | nhpoly1305_name = crypto_attr_alg_name(tb[3]); |
| 528 | if (nhpoly1305_name == ERR_PTR(-ENOENT)) |
| 529 | nhpoly1305_name = "nhpoly1305"; |
| 530 | if (IS_ERR(nhpoly1305_name)) |
| 531 | return PTR_ERR(nhpoly1305_name); |
| 532 | |
| 533 | inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL); |
| 534 | if (!inst) |
| 535 | return -ENOMEM; |
| 536 | ictx = skcipher_instance_ctx(inst); |
| 537 | |
| 538 | /* Stream cipher, e.g. "xchacha12" */ |
| 539 | err = crypto_grab_skcipher(&ictx->streamcipher_spawn, streamcipher_name, |
| 540 | 0, crypto_requires_sync(algt->type, |
| 541 | algt->mask)); |
| 542 | if (err) |
| 543 | goto out_free_inst; |
| 544 | streamcipher_alg = crypto_spawn_skcipher_alg(&ictx->streamcipher_spawn); |
| 545 | |
| 546 | /* Block cipher, e.g. "aes" */ |
| 547 | err = crypto_grab_spawn(&ictx->blockcipher_spawn, blockcipher_name, |
| 548 | CRYPTO_ALG_TYPE_CIPHER, CRYPTO_ALG_TYPE_MASK); |
| 549 | if (err) |
| 550 | goto out_drop_streamcipher; |
| 551 | blockcipher_alg = ictx->blockcipher_spawn.alg; |
| 552 | |
| 553 | /* NHPoly1305 εA∆U hash function */ |
| 554 | _hash_alg = crypto_alg_mod_lookup(nhpoly1305_name, |
| 555 | CRYPTO_ALG_TYPE_SHASH, |
| 556 | CRYPTO_ALG_TYPE_MASK); |
| 557 | if (IS_ERR(_hash_alg)) { |
| 558 | err = PTR_ERR(_hash_alg); |
| 559 | goto out_drop_blockcipher; |
| 560 | } |
| 561 | hash_alg = __crypto_shash_alg(_hash_alg); |
| 562 | err = crypto_init_shash_spawn(&ictx->hash_spawn, hash_alg, |
| 563 | skcipher_crypto_instance(inst)); |
| 564 | if (err) { |
| 565 | crypto_mod_put(_hash_alg); |
| 566 | goto out_drop_blockcipher; |
| 567 | } |
| 568 | |
| 569 | /* Check the set of algorithms */ |
| 570 | if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg, |
| 571 | hash_alg)) { |
| 572 | pr_warn("Unsupported Adiantum instantiation: (%s,%s,%s)\n", |
| 573 | streamcipher_alg->base.cra_name, |
| 574 | blockcipher_alg->cra_name, hash_alg->base.cra_name); |
| 575 | err = -EINVAL; |
| 576 | goto out_drop_hash; |
| 577 | } |
| 578 | |
| 579 | /* Instance fields */ |
| 580 | |
| 581 | err = -ENAMETOOLONG; |
| 582 | if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, |
| 583 | "adiantum(%s,%s)", streamcipher_alg->base.cra_name, |
| 584 | blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME) |
| 585 | goto out_drop_hash; |
| 586 | if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, |
| 587 | "adiantum(%s,%s,%s)", |
| 588 | streamcipher_alg->base.cra_driver_name, |
| 589 | blockcipher_alg->cra_driver_name, |
| 590 | hash_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME) |
| 591 | goto out_drop_hash; |
| 592 | |
| 593 | inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE; |
| 594 | inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx); |
| 595 | inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask | |
| 596 | hash_alg->base.cra_alignmask; |
| 597 | /* |
| 598 | * The block cipher is only invoked once per message, so for long |
| 599 | * messages (e.g. sectors for disk encryption) its performance doesn't |
| 600 | * matter as much as that of the stream cipher and hash function. Thus, |
| 601 | * weigh the block cipher's ->cra_priority less. |
| 602 | */ |
| 603 | inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority + |
| 604 | 2 * hash_alg->base.cra_priority + |
| 605 | blockcipher_alg->cra_priority) / 7; |
| 606 | |
| 607 | inst->alg.setkey = adiantum_setkey; |
| 608 | inst->alg.encrypt = adiantum_encrypt; |
| 609 | inst->alg.decrypt = adiantum_decrypt; |
| 610 | inst->alg.init = adiantum_init_tfm; |
| 611 | inst->alg.exit = adiantum_exit_tfm; |
| 612 | inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(streamcipher_alg); |
| 613 | inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(streamcipher_alg); |
| 614 | inst->alg.ivsize = TWEAK_SIZE; |
| 615 | |
| 616 | inst->free = adiantum_free_instance; |
| 617 | |
| 618 | err = skcipher_register_instance(tmpl, inst); |
| 619 | if (err) |
| 620 | goto out_drop_hash; |
| 621 | |
| 622 | return 0; |
| 623 | |
| 624 | out_drop_hash: |
| 625 | crypto_drop_shash(&ictx->hash_spawn); |
| 626 | out_drop_blockcipher: |
| 627 | crypto_drop_spawn(&ictx->blockcipher_spawn); |
| 628 | out_drop_streamcipher: |
| 629 | crypto_drop_skcipher(&ictx->streamcipher_spawn); |
| 630 | out_free_inst: |
| 631 | kfree(inst); |
| 632 | return err; |
| 633 | } |
| 634 | |
| 635 | /* adiantum(streamcipher_name, blockcipher_name [, nhpoly1305_name]) */ |
| 636 | static struct crypto_template adiantum_tmpl = { |
| 637 | .name = "adiantum", |
| 638 | .create = adiantum_create, |
| 639 | .module = THIS_MODULE, |
| 640 | }; |
| 641 | |
| 642 | static int __init adiantum_module_init(void) |
| 643 | { |
| 644 | return crypto_register_template(&adiantum_tmpl); |
| 645 | } |
| 646 | |
| 647 | static void __exit adiantum_module_exit(void) |
| 648 | { |
| 649 | crypto_unregister_template(&adiantum_tmpl); |
| 650 | } |
| 651 | |
| 652 | module_init(adiantum_module_init); |
| 653 | module_exit(adiantum_module_exit); |
| 654 | |
| 655 | MODULE_DESCRIPTION("Adiantum length-preserving encryption mode"); |
| 656 | MODULE_LICENSE("GPL v2"); |
| 657 | MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>"); |
| 658 | MODULE_ALIAS_CRYPTO("adiantum"); |