Thomas Gleixner | c0a3132 | 2006-01-09 20:52:32 -0800 | [diff] [blame] | 1 | /* |
| 2 | * linux/kernel/hrtimer.c |
| 3 | * |
| 4 | * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> |
| 5 | * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar |
| 6 | * |
| 7 | * High-resolution kernel timers |
| 8 | * |
| 9 | * In contrast to the low-resolution timeout API implemented in |
| 10 | * kernel/timer.c, hrtimers provide finer resolution and accuracy |
| 11 | * depending on system configuration and capabilities. |
| 12 | * |
| 13 | * These timers are currently used for: |
| 14 | * - itimers |
| 15 | * - POSIX timers |
| 16 | * - nanosleep |
| 17 | * - precise in-kernel timing |
| 18 | * |
| 19 | * Started by: Thomas Gleixner and Ingo Molnar |
| 20 | * |
| 21 | * Credits: |
| 22 | * based on kernel/timer.c |
| 23 | * |
| 24 | * For licencing details see kernel-base/COPYING |
| 25 | */ |
| 26 | |
| 27 | #include <linux/cpu.h> |
| 28 | #include <linux/module.h> |
| 29 | #include <linux/percpu.h> |
| 30 | #include <linux/hrtimer.h> |
| 31 | #include <linux/notifier.h> |
| 32 | #include <linux/syscalls.h> |
| 33 | #include <linux/interrupt.h> |
| 34 | |
| 35 | #include <asm/uaccess.h> |
| 36 | |
| 37 | /** |
| 38 | * ktime_get - get the monotonic time in ktime_t format |
| 39 | * |
| 40 | * returns the time in ktime_t format |
| 41 | */ |
| 42 | static ktime_t ktime_get(void) |
| 43 | { |
| 44 | struct timespec now; |
| 45 | |
| 46 | ktime_get_ts(&now); |
| 47 | |
| 48 | return timespec_to_ktime(now); |
| 49 | } |
| 50 | |
| 51 | /** |
| 52 | * ktime_get_real - get the real (wall-) time in ktime_t format |
| 53 | * |
| 54 | * returns the time in ktime_t format |
| 55 | */ |
| 56 | static ktime_t ktime_get_real(void) |
| 57 | { |
| 58 | struct timespec now; |
| 59 | |
| 60 | getnstimeofday(&now); |
| 61 | |
| 62 | return timespec_to_ktime(now); |
| 63 | } |
| 64 | |
| 65 | EXPORT_SYMBOL_GPL(ktime_get_real); |
| 66 | |
| 67 | /* |
| 68 | * The timer bases: |
| 69 | */ |
| 70 | |
| 71 | #define MAX_HRTIMER_BASES 2 |
| 72 | |
| 73 | static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) = |
| 74 | { |
| 75 | { |
| 76 | .index = CLOCK_REALTIME, |
| 77 | .get_time = &ktime_get_real, |
| 78 | .resolution = KTIME_REALTIME_RES, |
| 79 | }, |
| 80 | { |
| 81 | .index = CLOCK_MONOTONIC, |
| 82 | .get_time = &ktime_get, |
| 83 | .resolution = KTIME_MONOTONIC_RES, |
| 84 | }, |
| 85 | }; |
| 86 | |
| 87 | /** |
| 88 | * ktime_get_ts - get the monotonic clock in timespec format |
| 89 | * |
| 90 | * @ts: pointer to timespec variable |
| 91 | * |
| 92 | * The function calculates the monotonic clock from the realtime |
| 93 | * clock and the wall_to_monotonic offset and stores the result |
| 94 | * in normalized timespec format in the variable pointed to by ts. |
| 95 | */ |
| 96 | void ktime_get_ts(struct timespec *ts) |
| 97 | { |
| 98 | struct timespec tomono; |
| 99 | unsigned long seq; |
| 100 | |
| 101 | do { |
| 102 | seq = read_seqbegin(&xtime_lock); |
| 103 | getnstimeofday(ts); |
| 104 | tomono = wall_to_monotonic; |
| 105 | |
| 106 | } while (read_seqretry(&xtime_lock, seq)); |
| 107 | |
| 108 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, |
| 109 | ts->tv_nsec + tomono.tv_nsec); |
| 110 | } |
Matt Helsley | 69778e3 | 2006-01-09 20:52:39 -0800 | [diff] [blame] | 111 | EXPORT_SYMBOL_GPL(ktime_get_ts); |
Thomas Gleixner | c0a3132 | 2006-01-09 20:52:32 -0800 | [diff] [blame] | 112 | |
| 113 | /* |
| 114 | * Functions and macros which are different for UP/SMP systems are kept in a |
| 115 | * single place |
| 116 | */ |
| 117 | #ifdef CONFIG_SMP |
| 118 | |
| 119 | #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0) |
| 120 | |
| 121 | /* |
| 122 | * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock |
| 123 | * means that all timers which are tied to this base via timer->base are |
| 124 | * locked, and the base itself is locked too. |
| 125 | * |
| 126 | * So __run_timers/migrate_timers can safely modify all timers which could |
| 127 | * be found on the lists/queues. |
| 128 | * |
| 129 | * When the timer's base is locked, and the timer removed from list, it is |
| 130 | * possible to set timer->base = NULL and drop the lock: the timer remains |
| 131 | * locked. |
| 132 | */ |
| 133 | static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer, |
| 134 | unsigned long *flags) |
| 135 | { |
| 136 | struct hrtimer_base *base; |
| 137 | |
| 138 | for (;;) { |
| 139 | base = timer->base; |
| 140 | if (likely(base != NULL)) { |
| 141 | spin_lock_irqsave(&base->lock, *flags); |
| 142 | if (likely(base == timer->base)) |
| 143 | return base; |
| 144 | /* The timer has migrated to another CPU: */ |
| 145 | spin_unlock_irqrestore(&base->lock, *flags); |
| 146 | } |
| 147 | cpu_relax(); |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | /* |
| 152 | * Switch the timer base to the current CPU when possible. |
| 153 | */ |
| 154 | static inline struct hrtimer_base * |
| 155 | switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base) |
| 156 | { |
| 157 | struct hrtimer_base *new_base; |
| 158 | |
| 159 | new_base = &__get_cpu_var(hrtimer_bases[base->index]); |
| 160 | |
| 161 | if (base != new_base) { |
| 162 | /* |
| 163 | * We are trying to schedule the timer on the local CPU. |
| 164 | * However we can't change timer's base while it is running, |
| 165 | * so we keep it on the same CPU. No hassle vs. reprogramming |
| 166 | * the event source in the high resolution case. The softirq |
| 167 | * code will take care of this when the timer function has |
| 168 | * completed. There is no conflict as we hold the lock until |
| 169 | * the timer is enqueued. |
| 170 | */ |
| 171 | if (unlikely(base->curr_timer == timer)) |
| 172 | return base; |
| 173 | |
| 174 | /* See the comment in lock_timer_base() */ |
| 175 | timer->base = NULL; |
| 176 | spin_unlock(&base->lock); |
| 177 | spin_lock(&new_base->lock); |
| 178 | timer->base = new_base; |
| 179 | } |
| 180 | return new_base; |
| 181 | } |
| 182 | |
| 183 | #else /* CONFIG_SMP */ |
| 184 | |
| 185 | #define set_curr_timer(b, t) do { } while (0) |
| 186 | |
| 187 | static inline struct hrtimer_base * |
| 188 | lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
| 189 | { |
| 190 | struct hrtimer_base *base = timer->base; |
| 191 | |
| 192 | spin_lock_irqsave(&base->lock, *flags); |
| 193 | |
| 194 | return base; |
| 195 | } |
| 196 | |
| 197 | #define switch_hrtimer_base(t, b) (b) |
| 198 | |
| 199 | #endif /* !CONFIG_SMP */ |
| 200 | |
| 201 | /* |
| 202 | * Functions for the union type storage format of ktime_t which are |
| 203 | * too large for inlining: |
| 204 | */ |
| 205 | #if BITS_PER_LONG < 64 |
| 206 | # ifndef CONFIG_KTIME_SCALAR |
| 207 | /** |
| 208 | * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable |
| 209 | * |
| 210 | * @kt: addend |
| 211 | * @nsec: the scalar nsec value to add |
| 212 | * |
| 213 | * Returns the sum of kt and nsec in ktime_t format |
| 214 | */ |
| 215 | ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) |
| 216 | { |
| 217 | ktime_t tmp; |
| 218 | |
| 219 | if (likely(nsec < NSEC_PER_SEC)) { |
| 220 | tmp.tv64 = nsec; |
| 221 | } else { |
| 222 | unsigned long rem = do_div(nsec, NSEC_PER_SEC); |
| 223 | |
| 224 | tmp = ktime_set((long)nsec, rem); |
| 225 | } |
| 226 | |
| 227 | return ktime_add(kt, tmp); |
| 228 | } |
| 229 | |
| 230 | #else /* CONFIG_KTIME_SCALAR */ |
| 231 | |
| 232 | # endif /* !CONFIG_KTIME_SCALAR */ |
| 233 | |
| 234 | /* |
| 235 | * Divide a ktime value by a nanosecond value |
| 236 | */ |
| 237 | static unsigned long ktime_divns(const ktime_t kt, nsec_t div) |
| 238 | { |
| 239 | u64 dclc, inc, dns; |
| 240 | int sft = 0; |
| 241 | |
| 242 | dclc = dns = ktime_to_ns(kt); |
| 243 | inc = div; |
| 244 | /* Make sure the divisor is less than 2^32: */ |
| 245 | while (div >> 32) { |
| 246 | sft++; |
| 247 | div >>= 1; |
| 248 | } |
| 249 | dclc >>= sft; |
| 250 | do_div(dclc, (unsigned long) div); |
| 251 | |
| 252 | return (unsigned long) dclc; |
| 253 | } |
| 254 | |
| 255 | #else /* BITS_PER_LONG < 64 */ |
| 256 | # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div)) |
| 257 | #endif /* BITS_PER_LONG >= 64 */ |
| 258 | |
| 259 | /* |
| 260 | * Counterpart to lock_timer_base above: |
| 261 | */ |
| 262 | static inline |
| 263 | void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) |
| 264 | { |
| 265 | spin_unlock_irqrestore(&timer->base->lock, *flags); |
| 266 | } |
| 267 | |
| 268 | /** |
| 269 | * hrtimer_forward - forward the timer expiry |
| 270 | * |
| 271 | * @timer: hrtimer to forward |
| 272 | * @interval: the interval to forward |
| 273 | * |
| 274 | * Forward the timer expiry so it will expire in the future. |
| 275 | * The number of overruns is added to the overrun field. |
| 276 | */ |
| 277 | unsigned long |
| 278 | hrtimer_forward(struct hrtimer *timer, const ktime_t interval) |
| 279 | { |
| 280 | unsigned long orun = 1; |
| 281 | ktime_t delta, now; |
| 282 | |
| 283 | now = timer->base->get_time(); |
| 284 | |
| 285 | delta = ktime_sub(now, timer->expires); |
| 286 | |
| 287 | if (delta.tv64 < 0) |
| 288 | return 0; |
| 289 | |
| 290 | if (unlikely(delta.tv64 >= interval.tv64)) { |
| 291 | nsec_t incr = ktime_to_ns(interval); |
| 292 | |
| 293 | orun = ktime_divns(delta, incr); |
| 294 | timer->expires = ktime_add_ns(timer->expires, incr * orun); |
| 295 | if (timer->expires.tv64 > now.tv64) |
| 296 | return orun; |
| 297 | /* |
| 298 | * This (and the ktime_add() below) is the |
| 299 | * correction for exact: |
| 300 | */ |
| 301 | orun++; |
| 302 | } |
| 303 | timer->expires = ktime_add(timer->expires, interval); |
| 304 | |
| 305 | return orun; |
| 306 | } |
| 307 | |
| 308 | /* |
| 309 | * enqueue_hrtimer - internal function to (re)start a timer |
| 310 | * |
| 311 | * The timer is inserted in expiry order. Insertion into the |
| 312 | * red black tree is O(log(n)). Must hold the base lock. |
| 313 | */ |
| 314 | static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) |
| 315 | { |
| 316 | struct rb_node **link = &base->active.rb_node; |
| 317 | struct list_head *prev = &base->pending; |
| 318 | struct rb_node *parent = NULL; |
| 319 | struct hrtimer *entry; |
| 320 | |
| 321 | /* |
| 322 | * Find the right place in the rbtree: |
| 323 | */ |
| 324 | while (*link) { |
| 325 | parent = *link; |
| 326 | entry = rb_entry(parent, struct hrtimer, node); |
| 327 | /* |
| 328 | * We dont care about collisions. Nodes with |
| 329 | * the same expiry time stay together. |
| 330 | */ |
| 331 | if (timer->expires.tv64 < entry->expires.tv64) |
| 332 | link = &(*link)->rb_left; |
| 333 | else { |
| 334 | link = &(*link)->rb_right; |
| 335 | prev = &entry->list; |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | /* |
| 340 | * Insert the timer to the rbtree and to the sorted list: |
| 341 | */ |
| 342 | rb_link_node(&timer->node, parent, link); |
| 343 | rb_insert_color(&timer->node, &base->active); |
| 344 | list_add(&timer->list, prev); |
| 345 | |
| 346 | timer->state = HRTIMER_PENDING; |
| 347 | } |
| 348 | |
| 349 | |
| 350 | /* |
| 351 | * __remove_hrtimer - internal function to remove a timer |
| 352 | * |
| 353 | * Caller must hold the base lock. |
| 354 | */ |
| 355 | static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) |
| 356 | { |
| 357 | /* |
| 358 | * Remove the timer from the sorted list and from the rbtree: |
| 359 | */ |
| 360 | list_del(&timer->list); |
| 361 | rb_erase(&timer->node, &base->active); |
| 362 | } |
| 363 | |
| 364 | /* |
| 365 | * remove hrtimer, called with base lock held |
| 366 | */ |
| 367 | static inline int |
| 368 | remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) |
| 369 | { |
| 370 | if (hrtimer_active(timer)) { |
| 371 | __remove_hrtimer(timer, base); |
| 372 | timer->state = HRTIMER_INACTIVE; |
| 373 | return 1; |
| 374 | } |
| 375 | return 0; |
| 376 | } |
| 377 | |
| 378 | /** |
| 379 | * hrtimer_start - (re)start an relative timer on the current CPU |
| 380 | * |
| 381 | * @timer: the timer to be added |
| 382 | * @tim: expiry time |
| 383 | * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) |
| 384 | * |
| 385 | * Returns: |
| 386 | * 0 on success |
| 387 | * 1 when the timer was active |
| 388 | */ |
| 389 | int |
| 390 | hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) |
| 391 | { |
| 392 | struct hrtimer_base *base, *new_base; |
| 393 | unsigned long flags; |
| 394 | int ret; |
| 395 | |
| 396 | base = lock_hrtimer_base(timer, &flags); |
| 397 | |
| 398 | /* Remove an active timer from the queue: */ |
| 399 | ret = remove_hrtimer(timer, base); |
| 400 | |
| 401 | /* Switch the timer base, if necessary: */ |
| 402 | new_base = switch_hrtimer_base(timer, base); |
| 403 | |
| 404 | if (mode == HRTIMER_REL) |
| 405 | tim = ktime_add(tim, new_base->get_time()); |
| 406 | timer->expires = tim; |
| 407 | |
| 408 | enqueue_hrtimer(timer, new_base); |
| 409 | |
| 410 | unlock_hrtimer_base(timer, &flags); |
| 411 | |
| 412 | return ret; |
| 413 | } |
| 414 | |
| 415 | /** |
| 416 | * hrtimer_try_to_cancel - try to deactivate a timer |
| 417 | * |
| 418 | * @timer: hrtimer to stop |
| 419 | * |
| 420 | * Returns: |
| 421 | * 0 when the timer was not active |
| 422 | * 1 when the timer was active |
| 423 | * -1 when the timer is currently excuting the callback function and |
| 424 | * can not be stopped |
| 425 | */ |
| 426 | int hrtimer_try_to_cancel(struct hrtimer *timer) |
| 427 | { |
| 428 | struct hrtimer_base *base; |
| 429 | unsigned long flags; |
| 430 | int ret = -1; |
| 431 | |
| 432 | base = lock_hrtimer_base(timer, &flags); |
| 433 | |
| 434 | if (base->curr_timer != timer) |
| 435 | ret = remove_hrtimer(timer, base); |
| 436 | |
| 437 | unlock_hrtimer_base(timer, &flags); |
| 438 | |
| 439 | return ret; |
| 440 | |
| 441 | } |
| 442 | |
| 443 | /** |
| 444 | * hrtimer_cancel - cancel a timer and wait for the handler to finish. |
| 445 | * |
| 446 | * @timer: the timer to be cancelled |
| 447 | * |
| 448 | * Returns: |
| 449 | * 0 when the timer was not active |
| 450 | * 1 when the timer was active |
| 451 | */ |
| 452 | int hrtimer_cancel(struct hrtimer *timer) |
| 453 | { |
| 454 | for (;;) { |
| 455 | int ret = hrtimer_try_to_cancel(timer); |
| 456 | |
| 457 | if (ret >= 0) |
| 458 | return ret; |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | /** |
| 463 | * hrtimer_get_remaining - get remaining time for the timer |
| 464 | * |
| 465 | * @timer: the timer to read |
| 466 | */ |
| 467 | ktime_t hrtimer_get_remaining(const struct hrtimer *timer) |
| 468 | { |
| 469 | struct hrtimer_base *base; |
| 470 | unsigned long flags; |
| 471 | ktime_t rem; |
| 472 | |
| 473 | base = lock_hrtimer_base(timer, &flags); |
| 474 | rem = ktime_sub(timer->expires, timer->base->get_time()); |
| 475 | unlock_hrtimer_base(timer, &flags); |
| 476 | |
| 477 | return rem; |
| 478 | } |
| 479 | |
| 480 | /** |
| 481 | * hrtimer_rebase - rebase an initialized hrtimer to a different base |
| 482 | * |
| 483 | * @timer: the timer to be rebased |
| 484 | * @clock_id: the clock to be used |
| 485 | */ |
| 486 | void hrtimer_rebase(struct hrtimer *timer, const clockid_t clock_id) |
| 487 | { |
| 488 | struct hrtimer_base *bases; |
| 489 | |
| 490 | bases = per_cpu(hrtimer_bases, raw_smp_processor_id()); |
| 491 | timer->base = &bases[clock_id]; |
| 492 | } |
| 493 | |
| 494 | /** |
| 495 | * hrtimer_init - initialize a timer to the given clock |
| 496 | * |
| 497 | * @timer: the timer to be initialized |
| 498 | * @clock_id: the clock to be used |
| 499 | */ |
| 500 | void hrtimer_init(struct hrtimer *timer, const clockid_t clock_id) |
| 501 | { |
| 502 | memset(timer, 0, sizeof(struct hrtimer)); |
| 503 | hrtimer_rebase(timer, clock_id); |
| 504 | } |
| 505 | |
| 506 | /** |
| 507 | * hrtimer_get_res - get the timer resolution for a clock |
| 508 | * |
| 509 | * @which_clock: which clock to query |
| 510 | * @tp: pointer to timespec variable to store the resolution |
| 511 | * |
| 512 | * Store the resolution of the clock selected by which_clock in the |
| 513 | * variable pointed to by tp. |
| 514 | */ |
| 515 | int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) |
| 516 | { |
| 517 | struct hrtimer_base *bases; |
| 518 | |
| 519 | tp->tv_sec = 0; |
| 520 | bases = per_cpu(hrtimer_bases, raw_smp_processor_id()); |
| 521 | tp->tv_nsec = bases[which_clock].resolution; |
| 522 | |
| 523 | return 0; |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * Expire the per base hrtimer-queue: |
| 528 | */ |
| 529 | static inline void run_hrtimer_queue(struct hrtimer_base *base) |
| 530 | { |
| 531 | ktime_t now = base->get_time(); |
| 532 | |
| 533 | spin_lock_irq(&base->lock); |
| 534 | |
| 535 | while (!list_empty(&base->pending)) { |
| 536 | struct hrtimer *timer; |
| 537 | int (*fn)(void *); |
| 538 | int restart; |
| 539 | void *data; |
| 540 | |
| 541 | timer = list_entry(base->pending.next, struct hrtimer, list); |
| 542 | if (now.tv64 <= timer->expires.tv64) |
| 543 | break; |
| 544 | |
| 545 | fn = timer->function; |
| 546 | data = timer->data; |
| 547 | set_curr_timer(base, timer); |
| 548 | __remove_hrtimer(timer, base); |
| 549 | spin_unlock_irq(&base->lock); |
| 550 | |
| 551 | /* |
| 552 | * fn == NULL is special case for the simplest timer |
| 553 | * variant - wake up process and do not restart: |
| 554 | */ |
| 555 | if (!fn) { |
| 556 | wake_up_process(data); |
| 557 | restart = HRTIMER_NORESTART; |
| 558 | } else |
| 559 | restart = fn(data); |
| 560 | |
| 561 | spin_lock_irq(&base->lock); |
| 562 | |
| 563 | if (restart == HRTIMER_RESTART) |
| 564 | enqueue_hrtimer(timer, base); |
| 565 | else |
| 566 | timer->state = HRTIMER_EXPIRED; |
| 567 | } |
| 568 | set_curr_timer(base, NULL); |
| 569 | spin_unlock_irq(&base->lock); |
| 570 | } |
| 571 | |
| 572 | /* |
| 573 | * Called from timer softirq every jiffy, expire hrtimers: |
| 574 | */ |
| 575 | void hrtimer_run_queues(void) |
| 576 | { |
| 577 | struct hrtimer_base *base = __get_cpu_var(hrtimer_bases); |
| 578 | int i; |
| 579 | |
| 580 | for (i = 0; i < MAX_HRTIMER_BASES; i++) |
| 581 | run_hrtimer_queue(&base[i]); |
| 582 | } |
| 583 | |
| 584 | /* |
Thomas Gleixner | 10c94ec | 2006-01-09 20:52:35 -0800 | [diff] [blame] | 585 | * Sleep related functions: |
| 586 | */ |
| 587 | |
| 588 | /** |
| 589 | * schedule_hrtimer - sleep until timeout |
| 590 | * |
| 591 | * @timer: hrtimer variable initialized with the correct clock base |
| 592 | * @mode: timeout value is abs/rel |
| 593 | * |
| 594 | * Make the current task sleep until @timeout is |
| 595 | * elapsed. |
| 596 | * |
| 597 | * You can set the task state as follows - |
| 598 | * |
| 599 | * %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to |
| 600 | * pass before the routine returns. The routine will return 0 |
| 601 | * |
| 602 | * %TASK_INTERRUPTIBLE - the routine may return early if a signal is |
| 603 | * delivered to the current task. In this case the remaining time |
| 604 | * will be returned |
| 605 | * |
| 606 | * The current task state is guaranteed to be TASK_RUNNING when this |
| 607 | * routine returns. |
| 608 | */ |
| 609 | static ktime_t __sched |
| 610 | schedule_hrtimer(struct hrtimer *timer, const enum hrtimer_mode mode) |
| 611 | { |
| 612 | /* fn stays NULL, meaning single-shot wakeup: */ |
| 613 | timer->data = current; |
| 614 | |
| 615 | hrtimer_start(timer, timer->expires, mode); |
| 616 | |
| 617 | schedule(); |
| 618 | hrtimer_cancel(timer); |
| 619 | |
| 620 | /* Return the remaining time: */ |
| 621 | if (timer->state != HRTIMER_EXPIRED) |
| 622 | return ktime_sub(timer->expires, timer->base->get_time()); |
| 623 | else |
| 624 | return (ktime_t) {.tv64 = 0 }; |
| 625 | } |
| 626 | |
| 627 | static inline ktime_t __sched |
| 628 | schedule_hrtimer_interruptible(struct hrtimer *timer, |
| 629 | const enum hrtimer_mode mode) |
| 630 | { |
| 631 | set_current_state(TASK_INTERRUPTIBLE); |
| 632 | |
| 633 | return schedule_hrtimer(timer, mode); |
| 634 | } |
| 635 | |
| 636 | static long __sched |
| 637 | nanosleep_restart(struct restart_block *restart, clockid_t clockid) |
| 638 | { |
| 639 | struct timespec __user *rmtp, tu; |
| 640 | void *rfn_save = restart->fn; |
| 641 | struct hrtimer timer; |
| 642 | ktime_t rem; |
| 643 | |
| 644 | restart->fn = do_no_restart_syscall; |
| 645 | |
| 646 | hrtimer_init(&timer, clockid); |
| 647 | |
| 648 | timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0; |
| 649 | |
| 650 | rem = schedule_hrtimer_interruptible(&timer, HRTIMER_ABS); |
| 651 | |
| 652 | if (rem.tv64 <= 0) |
| 653 | return 0; |
| 654 | |
| 655 | rmtp = (struct timespec __user *) restart->arg2; |
| 656 | tu = ktime_to_timespec(rem); |
| 657 | if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu))) |
| 658 | return -EFAULT; |
| 659 | |
| 660 | restart->fn = rfn_save; |
| 661 | |
| 662 | /* The other values in restart are already filled in */ |
| 663 | return -ERESTART_RESTARTBLOCK; |
| 664 | } |
| 665 | |
| 666 | static long __sched nanosleep_restart_mono(struct restart_block *restart) |
| 667 | { |
| 668 | return nanosleep_restart(restart, CLOCK_MONOTONIC); |
| 669 | } |
| 670 | |
| 671 | static long __sched nanosleep_restart_real(struct restart_block *restart) |
| 672 | { |
| 673 | return nanosleep_restart(restart, CLOCK_REALTIME); |
| 674 | } |
| 675 | |
| 676 | long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, |
| 677 | const enum hrtimer_mode mode, const clockid_t clockid) |
| 678 | { |
| 679 | struct restart_block *restart; |
| 680 | struct hrtimer timer; |
| 681 | struct timespec tu; |
| 682 | ktime_t rem; |
| 683 | |
| 684 | hrtimer_init(&timer, clockid); |
| 685 | |
| 686 | timer.expires = timespec_to_ktime(*rqtp); |
| 687 | |
| 688 | rem = schedule_hrtimer_interruptible(&timer, mode); |
| 689 | if (rem.tv64 <= 0) |
| 690 | return 0; |
| 691 | |
| 692 | /* Absolute timers do not update the rmtp value: */ |
| 693 | if (mode == HRTIMER_ABS) |
| 694 | return -ERESTARTNOHAND; |
| 695 | |
| 696 | tu = ktime_to_timespec(rem); |
| 697 | |
| 698 | if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu))) |
| 699 | return -EFAULT; |
| 700 | |
| 701 | restart = ¤t_thread_info()->restart_block; |
| 702 | restart->fn = (clockid == CLOCK_MONOTONIC) ? |
| 703 | nanosleep_restart_mono : nanosleep_restart_real; |
| 704 | restart->arg0 = timer.expires.tv64 & 0xFFFFFFFF; |
| 705 | restart->arg1 = timer.expires.tv64 >> 32; |
| 706 | restart->arg2 = (unsigned long) rmtp; |
| 707 | |
| 708 | return -ERESTART_RESTARTBLOCK; |
| 709 | } |
| 710 | |
Thomas Gleixner | 6ba1b91 | 2006-01-09 20:52:36 -0800 | [diff] [blame] | 711 | asmlinkage long |
| 712 | sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) |
| 713 | { |
| 714 | struct timespec tu; |
| 715 | |
| 716 | if (copy_from_user(&tu, rqtp, sizeof(tu))) |
| 717 | return -EFAULT; |
| 718 | |
| 719 | if (!timespec_valid(&tu)) |
| 720 | return -EINVAL; |
| 721 | |
| 722 | return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC); |
| 723 | } |
| 724 | |
Thomas Gleixner | 10c94ec | 2006-01-09 20:52:35 -0800 | [diff] [blame] | 725 | /* |
Thomas Gleixner | c0a3132 | 2006-01-09 20:52:32 -0800 | [diff] [blame] | 726 | * Functions related to boot-time initialization: |
| 727 | */ |
| 728 | static void __devinit init_hrtimers_cpu(int cpu) |
| 729 | { |
| 730 | struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu); |
| 731 | int i; |
| 732 | |
| 733 | for (i = 0; i < MAX_HRTIMER_BASES; i++) { |
| 734 | spin_lock_init(&base->lock); |
| 735 | INIT_LIST_HEAD(&base->pending); |
| 736 | base++; |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | #ifdef CONFIG_HOTPLUG_CPU |
| 741 | |
| 742 | static void migrate_hrtimer_list(struct hrtimer_base *old_base, |
| 743 | struct hrtimer_base *new_base) |
| 744 | { |
| 745 | struct hrtimer *timer; |
| 746 | struct rb_node *node; |
| 747 | |
| 748 | while ((node = rb_first(&old_base->active))) { |
| 749 | timer = rb_entry(node, struct hrtimer, node); |
| 750 | __remove_hrtimer(timer, old_base); |
| 751 | timer->base = new_base; |
| 752 | enqueue_hrtimer(timer, new_base); |
| 753 | } |
| 754 | } |
| 755 | |
| 756 | static void migrate_hrtimers(int cpu) |
| 757 | { |
| 758 | struct hrtimer_base *old_base, *new_base; |
| 759 | int i; |
| 760 | |
| 761 | BUG_ON(cpu_online(cpu)); |
| 762 | old_base = per_cpu(hrtimer_bases, cpu); |
| 763 | new_base = get_cpu_var(hrtimer_bases); |
| 764 | |
| 765 | local_irq_disable(); |
| 766 | |
| 767 | for (i = 0; i < MAX_HRTIMER_BASES; i++) { |
| 768 | |
| 769 | spin_lock(&new_base->lock); |
| 770 | spin_lock(&old_base->lock); |
| 771 | |
| 772 | BUG_ON(old_base->curr_timer); |
| 773 | |
| 774 | migrate_hrtimer_list(old_base, new_base); |
| 775 | |
| 776 | spin_unlock(&old_base->lock); |
| 777 | spin_unlock(&new_base->lock); |
| 778 | old_base++; |
| 779 | new_base++; |
| 780 | } |
| 781 | |
| 782 | local_irq_enable(); |
| 783 | put_cpu_var(hrtimer_bases); |
| 784 | } |
| 785 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 786 | |
| 787 | static int __devinit hrtimer_cpu_notify(struct notifier_block *self, |
| 788 | unsigned long action, void *hcpu) |
| 789 | { |
| 790 | long cpu = (long)hcpu; |
| 791 | |
| 792 | switch (action) { |
| 793 | |
| 794 | case CPU_UP_PREPARE: |
| 795 | init_hrtimers_cpu(cpu); |
| 796 | break; |
| 797 | |
| 798 | #ifdef CONFIG_HOTPLUG_CPU |
| 799 | case CPU_DEAD: |
| 800 | migrate_hrtimers(cpu); |
| 801 | break; |
| 802 | #endif |
| 803 | |
| 804 | default: |
| 805 | break; |
| 806 | } |
| 807 | |
| 808 | return NOTIFY_OK; |
| 809 | } |
| 810 | |
| 811 | static struct notifier_block __devinitdata hrtimers_nb = { |
| 812 | .notifier_call = hrtimer_cpu_notify, |
| 813 | }; |
| 814 | |
| 815 | void __init hrtimers_init(void) |
| 816 | { |
| 817 | hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, |
| 818 | (void *)(long)smp_processor_id()); |
| 819 | register_cpu_notifier(&hrtimers_nb); |
| 820 | } |
| 821 | |