blob: af89b32a93a56b9504fab6040b0110f4fa60bb1e [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* w83627ehf - Driver for the hardware monitoring functionality of
* the Winbond W83627EHF Super-I/O chip
* Copyright (C) 2005-2012 Jean Delvare <jdelvare@suse.de>
* Copyright (C) 2006 Yuan Mu (Winbond),
* Rudolf Marek <r.marek@assembler.cz>
* David Hubbard <david.c.hubbard@gmail.com>
* Daniel J Blueman <daniel.blueman@gmail.com>
* Copyright (C) 2010 Sheng-Yuan Huang (Nuvoton) (PS00)
*
* Shamelessly ripped from the w83627hf driver
* Copyright (C) 2003 Mark Studebaker
*
* Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
* in testing and debugging this driver.
*
* This driver also supports the W83627EHG, which is the lead-free
* version of the W83627EHF.
*
* Supports the following chips:
*
* Chip #vin #fan #pwm #temp chip IDs man ID
* w83627ehf 10 5 4 3 0x8850 0x88 0x5ca3
* 0x8860 0xa1
* w83627dhg 9 5 4 3 0xa020 0xc1 0x5ca3
* w83627dhg-p 9 5 4 3 0xb070 0xc1 0x5ca3
* w83627uhg 8 2 2 3 0xa230 0xc1 0x5ca3
* w83667hg 9 5 3 3 0xa510 0xc1 0x5ca3
* w83667hg-b 9 5 3 4 0xb350 0xc1 0x5ca3
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/platform_device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/acpi.h>
#include <linux/io.h>
#include "lm75.h"
enum kinds {
w83627ehf, w83627dhg, w83627dhg_p, w83627uhg,
w83667hg, w83667hg_b,
};
/* used to set data->name = w83627ehf_device_names[data->sio_kind] */
static const char * const w83627ehf_device_names[] = {
"w83627ehf",
"w83627dhg",
"w83627dhg",
"w83627uhg",
"w83667hg",
"w83667hg",
};
static unsigned short force_id;
module_param(force_id, ushort, 0);
MODULE_PARM_DESC(force_id, "Override the detected device ID");
#define DRVNAME "w83627ehf"
/*
* Super-I/O constants and functions
*/
#define W83627EHF_LD_HWM 0x0b
#define W83667HG_LD_VID 0x0d
#define SIO_REG_LDSEL 0x07 /* Logical device select */
#define SIO_REG_DEVID 0x20 /* Device ID (2 bytes) */
#define SIO_REG_EN_VRM10 0x2C /* GPIO3, GPIO4 selection */
#define SIO_REG_ENABLE 0x30 /* Logical device enable */
#define SIO_REG_ADDR 0x60 /* Logical device address (2 bytes) */
#define SIO_REG_VID_CTRL 0xF0 /* VID control */
#define SIO_REG_VID_DATA 0xF1 /* VID data */
#define SIO_W83627EHF_ID 0x8850
#define SIO_W83627EHG_ID 0x8860
#define SIO_W83627DHG_ID 0xa020
#define SIO_W83627DHG_P_ID 0xb070
#define SIO_W83627UHG_ID 0xa230
#define SIO_W83667HG_ID 0xa510
#define SIO_W83667HG_B_ID 0xb350
#define SIO_ID_MASK 0xFFF0
static inline void
superio_outb(int ioreg, int reg, int val)
{
outb(reg, ioreg);
outb(val, ioreg + 1);
}
static inline int
superio_inb(int ioreg, int reg)
{
outb(reg, ioreg);
return inb(ioreg + 1);
}
static inline void
superio_select(int ioreg, int ld)
{
outb(SIO_REG_LDSEL, ioreg);
outb(ld, ioreg + 1);
}
static inline int
superio_enter(int ioreg)
{
if (!request_muxed_region(ioreg, 2, DRVNAME))
return -EBUSY;
outb(0x87, ioreg);
outb(0x87, ioreg);
return 0;
}
static inline void
superio_exit(int ioreg)
{
outb(0xaa, ioreg);
outb(0x02, ioreg);
outb(0x02, ioreg + 1);
release_region(ioreg, 2);
}
/*
* ISA constants
*/
#define IOREGION_ALIGNMENT (~7)
#define IOREGION_OFFSET 5
#define IOREGION_LENGTH 2
#define ADDR_REG_OFFSET 0
#define DATA_REG_OFFSET 1
#define W83627EHF_REG_BANK 0x4E
#define W83627EHF_REG_CONFIG 0x40
/*
* Not currently used:
* REG_MAN_ID has the value 0x5ca3 for all supported chips.
* REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
* REG_MAN_ID is at port 0x4f
* REG_CHIP_ID is at port 0x58
*/
static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };
/* The W83627EHF registers for nr=7,8,9 are in bank 5 */
#define W83627EHF_REG_IN_MAX(nr) ((nr < 7) ? (0x2b + (nr) * 2) : \
(0x554 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN_MIN(nr) ((nr < 7) ? (0x2c + (nr) * 2) : \
(0x555 + (((nr) - 7) * 2)))
#define W83627EHF_REG_IN(nr) ((nr < 7) ? (0x20 + (nr)) : \
(0x550 + (nr) - 7))
static const u16 W83627EHF_REG_TEMP[] = { 0x27, 0x150, 0x250, 0x7e };
static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x3a, 0x153, 0x253, 0 };
static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x39, 0x155, 0x255, 0 };
static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0, 0x152, 0x252, 0 };
/* Fan clock dividers are spread over the following five registers */
#define W83627EHF_REG_FANDIV1 0x47
#define W83627EHF_REG_FANDIV2 0x4B
#define W83627EHF_REG_VBAT 0x5D
#define W83627EHF_REG_DIODE 0x59
#define W83627EHF_REG_SMI_OVT 0x4C
#define W83627EHF_REG_ALARM1 0x459
#define W83627EHF_REG_ALARM2 0x45A
#define W83627EHF_REG_ALARM3 0x45B
#define W83627EHF_REG_CASEOPEN_DET 0x42 /* SMI STATUS #2 */
#define W83627EHF_REG_CASEOPEN_CLR 0x46 /* SMI MASK #3 */
/* SmartFan registers */
#define W83627EHF_REG_FAN_STEPUP_TIME 0x0f
#define W83627EHF_REG_FAN_STEPDOWN_TIME 0x0e
/* DC or PWM output fan configuration */
static const u8 W83627EHF_REG_PWM_ENABLE[] = {
0x04, /* SYS FAN0 output mode and PWM mode */
0x04, /* CPU FAN0 output mode and PWM mode */
0x12, /* AUX FAN mode */
0x62, /* CPU FAN1 mode */
};
static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };
/* FAN Duty Cycle, be used to control */
static const u16 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
static const u16 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };
/* Advanced Fan control, some values are common for all fans */
static const u16 W83627EHF_REG_FAN_START_OUTPUT[] = { 0x0a, 0x0b, 0x16, 0x65 };
static const u16 W83627EHF_REG_FAN_STOP_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
static const u16 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0c, 0x0d, 0x17, 0x66 };
static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_COMMON[]
= { 0xff, 0x67, 0xff, 0x69 };
static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_COMMON[]
= { 0xff, 0x68, 0xff, 0x6a };
static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B[] = { 0x67, 0x69, 0x6b };
static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B[]
= { 0x68, 0x6a, 0x6c };
static const u16 W83627EHF_REG_TEMP_OFFSET[] = { 0x454, 0x455, 0x456 };
static const char *const w83667hg_b_temp_label[] = {
"SYSTIN",
"CPUTIN",
"AUXTIN",
"AMDTSI",
"PECI Agent 1",
"PECI Agent 2",
"PECI Agent 3",
"PECI Agent 4"
};
#define NUM_REG_TEMP ARRAY_SIZE(W83627EHF_REG_TEMP)
static int is_word_sized(u16 reg)
{
return ((((reg & 0xff00) == 0x100
|| (reg & 0xff00) == 0x200)
&& ((reg & 0x00ff) == 0x50
|| (reg & 0x00ff) == 0x53
|| (reg & 0x00ff) == 0x55))
|| (reg & 0xfff0) == 0x630
|| reg == 0x640 || reg == 0x642
|| ((reg & 0xfff0) == 0x650
&& (reg & 0x000f) >= 0x06)
|| reg == 0x73 || reg == 0x75 || reg == 0x77
);
}
/*
* Conversions
*/
/* 1 is PWM mode, output in ms */
static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
{
return mode ? 100 * reg : 400 * reg;
}
static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
{
return clamp_val((mode ? (msec + 50) / 100 : (msec + 200) / 400),
1, 255);
}
static unsigned int fan_from_reg8(u16 reg, unsigned int divreg)
{
if (reg == 0 || reg == 255)
return 0;
return 1350000U / (reg << divreg);
}
static inline unsigned int
div_from_reg(u8 reg)
{
return 1 << reg;
}
/*
* Some of the voltage inputs have internal scaling, the tables below
* contain 8 (the ADC LSB in mV) * scaling factor * 100
*/
static const u16 scale_in_common[10] = {
800, 800, 1600, 1600, 800, 800, 800, 1600, 1600, 800
};
static const u16 scale_in_w83627uhg[9] = {
800, 800, 3328, 3424, 800, 800, 0, 3328, 3400
};
static inline long in_from_reg(u8 reg, u8 nr, const u16 *scale_in)
{
return DIV_ROUND_CLOSEST(reg * scale_in[nr], 100);
}
static inline u8 in_to_reg(u32 val, u8 nr, const u16 *scale_in)
{
return clamp_val(DIV_ROUND_CLOSEST(val * 100, scale_in[nr]), 0, 255);
}
/*
* Data structures and manipulation thereof
*/
struct w83627ehf_data {
int addr; /* IO base of hw monitor block */
const char *name;
struct mutex lock;
u16 reg_temp[NUM_REG_TEMP];
u16 reg_temp_over[NUM_REG_TEMP];
u16 reg_temp_hyst[NUM_REG_TEMP];
u16 reg_temp_config[NUM_REG_TEMP];
u8 temp_src[NUM_REG_TEMP];
const char * const *temp_label;
const u16 *REG_FAN_MAX_OUTPUT;
const u16 *REG_FAN_STEP_OUTPUT;
const u16 *scale_in;
struct mutex update_lock;
bool valid; /* true if following fields are valid */
unsigned long last_updated; /* In jiffies */
/* Register values */
u8 bank; /* current register bank */
u8 in_num; /* number of in inputs we have */
u8 in[10]; /* Register value */
u8 in_max[10]; /* Register value */
u8 in_min[10]; /* Register value */
unsigned int rpm[5];
u16 fan_min[5];
u8 fan_div[5];
u8 has_fan; /* some fan inputs can be disabled */
u8 has_fan_min; /* some fans don't have min register */
u8 temp_type[3];
s8 temp_offset[3];
s16 temp[9];
s16 temp_max[9];
s16 temp_max_hyst[9];
u32 alarms;
u8 caseopen;
u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
u8 pwm_enable[4]; /* 1->manual
* 2->thermal cruise mode (also called SmartFan I)
* 3->fan speed cruise mode
* 4->variable thermal cruise (also called
* SmartFan III)
* 5->enhanced variable thermal cruise (also called
* SmartFan IV)
*/
u8 pwm_enable_orig[4]; /* original value of pwm_enable */
u8 pwm_num; /* number of pwm */
u8 pwm[4];
u8 target_temp[4];
u8 tolerance[4];
u8 fan_start_output[4]; /* minimum fan speed when spinning up */
u8 fan_stop_output[4]; /* minimum fan speed when spinning down */
u8 fan_stop_time[4]; /* time at minimum before disabling fan */
u8 fan_max_output[4]; /* maximum fan speed */
u8 fan_step_output[4]; /* rate of change output value */
u8 vid;
u8 vrm;
u16 have_temp;
u16 have_temp_offset;
u8 in6_skip:1;
u8 temp3_val_only:1;
u8 have_vid:1;
/* Remember extra register values over suspend/resume */
u8 vbat;
u8 fandiv1;
u8 fandiv2;
};
struct w83627ehf_sio_data {
int sioreg;
enum kinds kind;
};
/*
* On older chips, only registers 0x50-0x5f are banked.
* On more recent chips, all registers are banked.
* Assume that is the case and set the bank number for each access.
* Cache the bank number so it only needs to be set if it changes.
*/
static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
{
u8 bank = reg >> 8;
if (data->bank != bank) {
outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
outb_p(bank, data->addr + DATA_REG_OFFSET);
data->bank = bank;
}
}
static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
{
int res, word_sized = is_word_sized(reg);
mutex_lock(&data->lock);
w83627ehf_set_bank(data, reg);
outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
res = inb_p(data->addr + DATA_REG_OFFSET);
if (word_sized) {
outb_p((reg & 0xff) + 1,
data->addr + ADDR_REG_OFFSET);
res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
}
mutex_unlock(&data->lock);
return res;
}
static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg,
u16 value)
{
int word_sized = is_word_sized(reg);
mutex_lock(&data->lock);
w83627ehf_set_bank(data, reg);
outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
if (word_sized) {
outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
outb_p((reg & 0xff) + 1,
data->addr + ADDR_REG_OFFSET);
}
outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
mutex_unlock(&data->lock);
return 0;
}
/* We left-align 8-bit temperature values to make the code simpler */
static u16 w83627ehf_read_temp(struct w83627ehf_data *data, u16 reg)
{
u16 res;
res = w83627ehf_read_value(data, reg);
if (!is_word_sized(reg))
res <<= 8;
return res;
}
static int w83627ehf_write_temp(struct w83627ehf_data *data, u16 reg,
u16 value)
{
if (!is_word_sized(reg))
value >>= 8;
return w83627ehf_write_value(data, reg, value);
}
/* This function assumes that the caller holds data->update_lock */
static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
{
u8 reg;
switch (nr) {
case 0:
reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
| ((data->fan_div[0] & 0x03) << 4);
/* fan5 input control bit is write only, compute the value */
reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
| ((data->fan_div[0] & 0x04) << 3);
w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
break;
case 1:
reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
| ((data->fan_div[1] & 0x03) << 6);
/* fan5 input control bit is write only, compute the value */
reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
| ((data->fan_div[1] & 0x04) << 4);
w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
break;
case 2:
reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
| ((data->fan_div[2] & 0x03) << 6);
w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
| ((data->fan_div[2] & 0x04) << 5);
w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
break;
case 3:
reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
| (data->fan_div[3] & 0x03);
w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
| ((data->fan_div[3] & 0x04) << 5);
w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
break;
case 4:
reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
| ((data->fan_div[4] & 0x03) << 2)
| ((data->fan_div[4] & 0x04) << 5);
w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
break;
}
}
static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
{
int i;
i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
data->fan_div[0] = (i >> 4) & 0x03;
data->fan_div[1] = (i >> 6) & 0x03;
i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
data->fan_div[2] = (i >> 6) & 0x03;
i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
data->fan_div[0] |= (i >> 3) & 0x04;
data->fan_div[1] |= (i >> 4) & 0x04;
data->fan_div[2] |= (i >> 5) & 0x04;
if (data->has_fan & ((1 << 3) | (1 << 4))) {
i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
data->fan_div[3] = i & 0x03;
data->fan_div[4] = ((i >> 2) & 0x03)
| ((i >> 5) & 0x04);
}
if (data->has_fan & (1 << 3)) {
i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
data->fan_div[3] |= (i >> 5) & 0x04;
}
}
static void w83627ehf_update_pwm(struct w83627ehf_data *data)
{
int i;
int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
for (i = 0; i < data->pwm_num; i++) {
if (!(data->has_fan & (1 << i)))
continue;
/* pwmcfg, tolerance mapped for i=0, i=1 to same reg */
if (i != 1) {
pwmcfg = w83627ehf_read_value(data,
W83627EHF_REG_PWM_ENABLE[i]);
tolerance = w83627ehf_read_value(data,
W83627EHF_REG_TOLERANCE[i]);
}
data->pwm_mode[i] =
((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1;
data->pwm_enable[i] = ((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
& 3) + 1;
data->pwm[i] = w83627ehf_read_value(data, W83627EHF_REG_PWM[i]);
data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0)) & 0x0f;
}
}
static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
int i;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ + HZ/2)
|| !data->valid) {
/* Fan clock dividers */
w83627ehf_update_fan_div(data);
/* Measured voltages and limits */
for (i = 0; i < data->in_num; i++) {
if ((i == 6) && data->in6_skip)
continue;
data->in[i] = w83627ehf_read_value(data,
W83627EHF_REG_IN(i));
data->in_min[i] = w83627ehf_read_value(data,
W83627EHF_REG_IN_MIN(i));
data->in_max[i] = w83627ehf_read_value(data,
W83627EHF_REG_IN_MAX(i));
}
/* Measured fan speeds and limits */
for (i = 0; i < 5; i++) {
u16 reg;
if (!(data->has_fan & (1 << i)))
continue;
reg = w83627ehf_read_value(data, W83627EHF_REG_FAN[i]);
data->rpm[i] = fan_from_reg8(reg, data->fan_div[i]);
if (data->has_fan_min & (1 << i))
data->fan_min[i] = w83627ehf_read_value(data,
W83627EHF_REG_FAN_MIN[i]);
/*
* If we failed to measure the fan speed and clock
* divider can be increased, let's try that for next
* time
*/
if (reg >= 0xff && data->fan_div[i] < 0x07) {
dev_dbg(dev,
"Increasing fan%d clock divider from %u to %u\n",
i + 1, div_from_reg(data->fan_div[i]),
div_from_reg(data->fan_div[i] + 1));
data->fan_div[i]++;
w83627ehf_write_fan_div(data, i);
/* Preserve min limit if possible */
if ((data->has_fan_min & (1 << i))
&& data->fan_min[i] >= 2
&& data->fan_min[i] != 255)
w83627ehf_write_value(data,
W83627EHF_REG_FAN_MIN[i],
(data->fan_min[i] /= 2));
}
}
w83627ehf_update_pwm(data);
for (i = 0; i < data->pwm_num; i++) {
if (!(data->has_fan & (1 << i)))
continue;
data->fan_start_output[i] =
w83627ehf_read_value(data,
W83627EHF_REG_FAN_START_OUTPUT[i]);
data->fan_stop_output[i] =
w83627ehf_read_value(data,
W83627EHF_REG_FAN_STOP_OUTPUT[i]);
data->fan_stop_time[i] =
w83627ehf_read_value(data,
W83627EHF_REG_FAN_STOP_TIME[i]);
if (data->REG_FAN_MAX_OUTPUT &&
data->REG_FAN_MAX_OUTPUT[i] != 0xff)
data->fan_max_output[i] =
w83627ehf_read_value(data,
data->REG_FAN_MAX_OUTPUT[i]);
if (data->REG_FAN_STEP_OUTPUT &&
data->REG_FAN_STEP_OUTPUT[i] != 0xff)
data->fan_step_output[i] =
w83627ehf_read_value(data,
data->REG_FAN_STEP_OUTPUT[i]);
data->target_temp[i] =
w83627ehf_read_value(data,
W83627EHF_REG_TARGET[i]) &
(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
}
/* Measured temperatures and limits */
for (i = 0; i < NUM_REG_TEMP; i++) {
if (!(data->have_temp & (1 << i)))
continue;
data->temp[i] = w83627ehf_read_temp(data,
data->reg_temp[i]);
if (data->reg_temp_over[i])
data->temp_max[i]
= w83627ehf_read_temp(data,
data->reg_temp_over[i]);
if (data->reg_temp_hyst[i])
data->temp_max_hyst[i]
= w83627ehf_read_temp(data,
data->reg_temp_hyst[i]);
if (i > 2)
continue;
if (data->have_temp_offset & (1 << i))
data->temp_offset[i]
= w83627ehf_read_value(data,
W83627EHF_REG_TEMP_OFFSET[i]);
}
data->alarms = w83627ehf_read_value(data,
W83627EHF_REG_ALARM1) |
(w83627ehf_read_value(data,
W83627EHF_REG_ALARM2) << 8) |
(w83627ehf_read_value(data,
W83627EHF_REG_ALARM3) << 16);
data->caseopen = w83627ehf_read_value(data,
W83627EHF_REG_CASEOPEN_DET);
data->last_updated = jiffies;
data->valid = true;
}
mutex_unlock(&data->update_lock);
return data;
}
#define store_in_reg(REG, reg) \
static int \
store_in_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
long val) \
{ \
if (val < 0) \
return -EINVAL; \
mutex_lock(&data->update_lock); \
data->in_##reg[channel] = in_to_reg(val, channel, data->scale_in); \
w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(channel), \
data->in_##reg[channel]); \
mutex_unlock(&data->update_lock); \
return 0; \
}
store_in_reg(MIN, min)
store_in_reg(MAX, max)
static int
store_fan_min(struct device *dev, struct w83627ehf_data *data, int channel,
long val)
{
unsigned int reg;
u8 new_div;
if (val < 0)
return -EINVAL;
mutex_lock(&data->update_lock);
if (!val) {
/* No min limit, alarm disabled */
data->fan_min[channel] = 255;
new_div = data->fan_div[channel]; /* No change */
dev_info(dev, "fan%u low limit and alarm disabled\n",
channel + 1);
} else if ((reg = 1350000U / val) >= 128 * 255) {
/*
* Speed below this value cannot possibly be represented,
* even with the highest divider (128)
*/
data->fan_min[channel] = 254;
new_div = 7; /* 128 == (1 << 7) */
dev_warn(dev,
"fan%u low limit %lu below minimum %u, set to minimum\n",
channel + 1, val, fan_from_reg8(254, 7));
} else if (!reg) {
/*
* Speed above this value cannot possibly be represented,
* even with the lowest divider (1)
*/
data->fan_min[channel] = 1;
new_div = 0; /* 1 == (1 << 0) */
dev_warn(dev,
"fan%u low limit %lu above maximum %u, set to maximum\n",
channel + 1, val, fan_from_reg8(1, 0));
} else {
/*
* Automatically pick the best divider, i.e. the one such
* that the min limit will correspond to a register value
* in the 96..192 range
*/
new_div = 0;
while (reg > 192 && new_div < 7) {
reg >>= 1;
new_div++;
}
data->fan_min[channel] = reg;
}
/*
* Write both the fan clock divider (if it changed) and the new
* fan min (unconditionally)
*/
if (new_div != data->fan_div[channel]) {
dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
channel + 1, div_from_reg(data->fan_div[channel]),
div_from_reg(new_div));
data->fan_div[channel] = new_div;
w83627ehf_write_fan_div(data, channel);
/* Give the chip time to sample a new speed value */
data->last_updated = jiffies;
}
w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[channel],
data->fan_min[channel]);
mutex_unlock(&data->update_lock);
return 0;
}
#define store_temp_reg(addr, reg) \
static int \
store_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
long val) \
{ \
mutex_lock(&data->update_lock); \
data->reg[channel] = LM75_TEMP_TO_REG(val); \
w83627ehf_write_temp(data, data->addr[channel], data->reg[channel]); \
mutex_unlock(&data->update_lock); \
return 0; \
}
store_temp_reg(reg_temp_over, temp_max);
store_temp_reg(reg_temp_hyst, temp_max_hyst);
static int
store_temp_offset(struct device *dev, struct w83627ehf_data *data, int channel,
long val)
{
val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), -128, 127);
mutex_lock(&data->update_lock);
data->temp_offset[channel] = val;
w83627ehf_write_value(data, W83627EHF_REG_TEMP_OFFSET[channel], val);
mutex_unlock(&data->update_lock);
return 0;
}
static int
store_pwm_mode(struct device *dev, struct w83627ehf_data *data, int channel,
long val)
{
u16 reg;
if (val < 0 || val > 1)
return -EINVAL;
mutex_lock(&data->update_lock);
reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[channel]);
data->pwm_mode[channel] = val;
reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[channel]);
if (!val)
reg |= 1 << W83627EHF_PWM_MODE_SHIFT[channel];
w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel], reg);
mutex_unlock(&data->update_lock);
return 0;
}
static int
store_pwm(struct device *dev, struct w83627ehf_data *data, int channel,
long val)
{
val = clamp_val(val, 0, 255);
mutex_lock(&data->update_lock);
data->pwm[channel] = val;
w83627ehf_write_value(data, W83627EHF_REG_PWM[channel], val);
mutex_unlock(&data->update_lock);
return 0;
}
static int
store_pwm_enable(struct device *dev, struct w83627ehf_data *data, int channel,
long val)
{
u16 reg;
if (!val || val < 0 ||
(val > 4 && val != data->pwm_enable_orig[channel]))
return -EINVAL;
mutex_lock(&data->update_lock);
data->pwm_enable[channel] = val;
reg = w83627ehf_read_value(data,
W83627EHF_REG_PWM_ENABLE[channel]);
reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[channel]);
reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[channel];
w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel],
reg);
mutex_unlock(&data->update_lock);
return 0;
}
#define show_tol_temp(reg) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
return sprintf(buf, "%d\n", data->reg[nr] * 1000); \
}
show_tol_temp(tolerance)
show_tol_temp(target_temp)
static ssize_t
store_target_temp(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 127);
mutex_lock(&data->update_lock);
data->target_temp[nr] = val;
w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t
store_tolerance(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
int nr = sensor_attr->index;
u16 reg;
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
/* Limit the temp to 0C - 15C */
val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), 0, 15);
mutex_lock(&data->update_lock);
reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
if (nr == 1)
reg = (reg & 0x0f) | (val << 4);
else
reg = (reg & 0xf0) | val;
w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
data->tolerance[nr] = val;
mutex_unlock(&data->update_lock);
return count;
}
static SENSOR_DEVICE_ATTR(pwm1_target, 0644, show_target_temp,
store_target_temp, 0);
static SENSOR_DEVICE_ATTR(pwm2_target, 0644, show_target_temp,
store_target_temp, 1);
static SENSOR_DEVICE_ATTR(pwm3_target, 0644, show_target_temp,
store_target_temp, 2);
static SENSOR_DEVICE_ATTR(pwm4_target, 0644, show_target_temp,
store_target_temp, 3);
static SENSOR_DEVICE_ATTR(pwm1_tolerance, 0644, show_tolerance,
store_tolerance, 0);
static SENSOR_DEVICE_ATTR(pwm2_tolerance, 0644, show_tolerance,
store_tolerance, 1);
static SENSOR_DEVICE_ATTR(pwm3_tolerance, 0644, show_tolerance,
store_tolerance, 2);
static SENSOR_DEVICE_ATTR(pwm4_tolerance, 0644, show_tolerance,
store_tolerance, 3);
/* Smart Fan registers */
#define fan_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
return sprintf(buf, "%d\n", data->reg[nr]); \
} \
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct w83627ehf_data *data = dev_get_drvdata(dev); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
unsigned long val; \
int err; \
err = kstrtoul(buf, 10, &val); \
if (err < 0) \
return err; \
val = clamp_val(val, 1, 255); \
mutex_lock(&data->update_lock); \
data->reg[nr] = val; \
w83627ehf_write_value(data, REG[nr], val); \
mutex_unlock(&data->update_lock); \
return count; \
}
fan_functions(fan_start_output, W83627EHF_REG_FAN_START_OUTPUT)
fan_functions(fan_stop_output, W83627EHF_REG_FAN_STOP_OUTPUT)
fan_functions(fan_max_output, data->REG_FAN_MAX_OUTPUT)
fan_functions(fan_step_output, data->REG_FAN_STEP_OUTPUT)
#define fan_time_functions(reg, REG) \
static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
char *buf) \
{ \
struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
return sprintf(buf, "%d\n", \
step_time_from_reg(data->reg[nr], \
data->pwm_mode[nr])); \
} \
\
static ssize_t \
store_##reg(struct device *dev, struct device_attribute *attr, \
const char *buf, size_t count) \
{ \
struct w83627ehf_data *data = dev_get_drvdata(dev); \
struct sensor_device_attribute *sensor_attr = \
to_sensor_dev_attr(attr); \
int nr = sensor_attr->index; \
unsigned long val; \
int err; \
err = kstrtoul(buf, 10, &val); \
if (err < 0) \
return err; \
val = step_time_to_reg(val, data->pwm_mode[nr]); \
mutex_lock(&data->update_lock); \
data->reg[nr] = val; \
w83627ehf_write_value(data, REG[nr], val); \
mutex_unlock(&data->update_lock); \
return count; \
} \
fan_time_functions(fan_stop_time, W83627EHF_REG_FAN_STOP_TIME)
static SENSOR_DEVICE_ATTR(pwm4_stop_time, 0644, show_fan_stop_time,
store_fan_stop_time, 3);
static SENSOR_DEVICE_ATTR(pwm4_start_output, 0644, show_fan_start_output,
store_fan_start_output, 3);
static SENSOR_DEVICE_ATTR(pwm4_stop_output, 0644, show_fan_stop_output,
store_fan_stop_output, 3);
static SENSOR_DEVICE_ATTR(pwm4_max_output, 0644, show_fan_max_output,
store_fan_max_output, 3);
static SENSOR_DEVICE_ATTR(pwm4_step_output, 0644, show_fan_step_output,
store_fan_step_output, 3);
static SENSOR_DEVICE_ATTR(pwm3_stop_time, 0644, show_fan_stop_time,
store_fan_stop_time, 2);
static SENSOR_DEVICE_ATTR(pwm3_start_output, 0644, show_fan_start_output,
store_fan_start_output, 2);
static SENSOR_DEVICE_ATTR(pwm3_stop_output, 0644, show_fan_stop_output,
store_fan_stop_output, 2);
static SENSOR_DEVICE_ATTR(pwm1_stop_time, 0644, show_fan_stop_time,
store_fan_stop_time, 0);
static SENSOR_DEVICE_ATTR(pwm2_stop_time, 0644, show_fan_stop_time,
store_fan_stop_time, 1);
static SENSOR_DEVICE_ATTR(pwm1_start_output, 0644, show_fan_start_output,
store_fan_start_output, 0);
static SENSOR_DEVICE_ATTR(pwm2_start_output, 0644, show_fan_start_output,
store_fan_start_output, 1);
static SENSOR_DEVICE_ATTR(pwm1_stop_output, 0644, show_fan_stop_output,
store_fan_stop_output, 0);
static SENSOR_DEVICE_ATTR(pwm2_stop_output, 0644, show_fan_stop_output,
store_fan_stop_output, 1);
/*
* pwm1 and pwm3 don't support max and step settings on all chips.
* Need to check support while generating/removing attribute files.
*/
static SENSOR_DEVICE_ATTR(pwm1_max_output, 0644, show_fan_max_output,
store_fan_max_output, 0);
static SENSOR_DEVICE_ATTR(pwm1_step_output, 0644, show_fan_step_output,
store_fan_step_output, 0);
static SENSOR_DEVICE_ATTR(pwm2_max_output, 0644, show_fan_max_output,
store_fan_max_output, 1);
static SENSOR_DEVICE_ATTR(pwm2_step_output, 0644, show_fan_step_output,
store_fan_step_output, 1);
static SENSOR_DEVICE_ATTR(pwm3_max_output, 0644, show_fan_max_output,
store_fan_max_output, 2);
static SENSOR_DEVICE_ATTR(pwm3_step_output, 0644, show_fan_step_output,
store_fan_step_output, 2);
static ssize_t
cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR_RO(cpu0_vid);
/* Case open detection */
static int
clear_caseopen(struct device *dev, struct w83627ehf_data *data, int channel,
long val)
{
const u16 mask = 0x80;
u16 reg;
if (val != 0 || channel != 0)
return -EINVAL;
mutex_lock(&data->update_lock);
reg = w83627ehf_read_value(data, W83627EHF_REG_CASEOPEN_CLR);
w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg | mask);
w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg & ~mask);
data->valid = false; /* Force cache refresh */
mutex_unlock(&data->update_lock);
return 0;
}
static umode_t w83627ehf_attrs_visible(struct kobject *kobj,
struct attribute *a, int n)
{
struct device *dev = kobj_to_dev(kobj);
struct w83627ehf_data *data = dev_get_drvdata(dev);
struct device_attribute *devattr;
struct sensor_device_attribute *sda;
devattr = container_of(a, struct device_attribute, attr);
/* Not sensor */
if (devattr->show == cpu0_vid_show && data->have_vid)
return a->mode;
sda = (struct sensor_device_attribute *)devattr;
if (sda->index < 2 &&
(devattr->show == show_fan_stop_time ||
devattr->show == show_fan_start_output ||
devattr->show == show_fan_stop_output))
return a->mode;
if (sda->index < 3 &&
(devattr->show == show_fan_max_output ||
devattr->show == show_fan_step_output) &&
data->REG_FAN_STEP_OUTPUT &&
data->REG_FAN_STEP_OUTPUT[sda->index] != 0xff)
return a->mode;
/* if fan3 and fan4 are enabled create the files for them */
if (sda->index == 2 &&
(data->has_fan & (1 << 2)) && data->pwm_num >= 3 &&
(devattr->show == show_fan_stop_time ||
devattr->show == show_fan_start_output ||
devattr->show == show_fan_stop_output))
return a->mode;
if (sda->index == 3 &&
(data->has_fan & (1 << 3)) && data->pwm_num >= 4 &&
(devattr->show == show_fan_stop_time ||
devattr->show == show_fan_start_output ||
devattr->show == show_fan_stop_output ||
devattr->show == show_fan_max_output ||
devattr->show == show_fan_step_output))
return a->mode;
if ((devattr->show == show_target_temp ||
devattr->show == show_tolerance) &&
(data->has_fan & (1 << sda->index)) &&
sda->index < data->pwm_num)
return a->mode;
return 0;
}
/* These groups handle non-standard attributes used in this device */
static struct attribute *w83627ehf_attrs[] = {
&sensor_dev_attr_pwm1_stop_time.dev_attr.attr,
&sensor_dev_attr_pwm1_start_output.dev_attr.attr,
&sensor_dev_attr_pwm1_stop_output.dev_attr.attr,
&sensor_dev_attr_pwm1_max_output.dev_attr.attr,
&sensor_dev_attr_pwm1_step_output.dev_attr.attr,
&sensor_dev_attr_pwm1_target.dev_attr.attr,
&sensor_dev_attr_pwm1_tolerance.dev_attr.attr,
&sensor_dev_attr_pwm2_stop_time.dev_attr.attr,
&sensor_dev_attr_pwm2_start_output.dev_attr.attr,
&sensor_dev_attr_pwm2_stop_output.dev_attr.attr,
&sensor_dev_attr_pwm2_max_output.dev_attr.attr,
&sensor_dev_attr_pwm2_step_output.dev_attr.attr,
&sensor_dev_attr_pwm2_target.dev_attr.attr,
&sensor_dev_attr_pwm2_tolerance.dev_attr.attr,
&sensor_dev_attr_pwm3_stop_time.dev_attr.attr,
&sensor_dev_attr_pwm3_start_output.dev_attr.attr,
&sensor_dev_attr_pwm3_stop_output.dev_attr.attr,
&sensor_dev_attr_pwm3_max_output.dev_attr.attr,
&sensor_dev_attr_pwm3_step_output.dev_attr.attr,
&sensor_dev_attr_pwm3_target.dev_attr.attr,
&sensor_dev_attr_pwm3_tolerance.dev_attr.attr,
&sensor_dev_attr_pwm4_stop_time.dev_attr.attr,
&sensor_dev_attr_pwm4_start_output.dev_attr.attr,
&sensor_dev_attr_pwm4_stop_output.dev_attr.attr,
&sensor_dev_attr_pwm4_max_output.dev_attr.attr,
&sensor_dev_attr_pwm4_step_output.dev_attr.attr,
&sensor_dev_attr_pwm4_target.dev_attr.attr,
&sensor_dev_attr_pwm4_tolerance.dev_attr.attr,
&dev_attr_cpu0_vid.attr,
NULL
};
static const struct attribute_group w83627ehf_group = {
.attrs = w83627ehf_attrs,
.is_visible = w83627ehf_attrs_visible,
};
static const struct attribute_group *w83627ehf_groups[] = {
&w83627ehf_group,
NULL
};
/*
* Driver and device management
*/
/* Get the monitoring functions started */
static inline void w83627ehf_init_device(struct w83627ehf_data *data,
enum kinds kind)
{
int i;
u8 tmp, diode;
/* Start monitoring is needed */
tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
if (!(tmp & 0x01))
w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
tmp | 0x01);
/* Enable temperature sensors if needed */
for (i = 0; i < NUM_REG_TEMP; i++) {
if (!(data->have_temp & (1 << i)))
continue;
if (!data->reg_temp_config[i])
continue;
tmp = w83627ehf_read_value(data,
data->reg_temp_config[i]);
if (tmp & 0x01)
w83627ehf_write_value(data,
data->reg_temp_config[i],
tmp & 0xfe);
}
/* Enable VBAT monitoring if needed */
tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
if (!(tmp & 0x01))
w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
/* Get thermal sensor types */
switch (kind) {
case w83627ehf:
diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
break;
case w83627uhg:
diode = 0x00;
break;
default:
diode = 0x70;
}
for (i = 0; i < 3; i++) {
const char *label = NULL;
if (data->temp_label)
label = data->temp_label[data->temp_src[i]];
/* Digital source overrides analog type */
if (label && strncmp(label, "PECI", 4) == 0)
data->temp_type[i] = 6;
else if (label && strncmp(label, "AMD", 3) == 0)
data->temp_type[i] = 5;
else if ((tmp & (0x02 << i)))
data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 3;
else
data->temp_type[i] = 4; /* thermistor */
}
}
static void
w83627ehf_set_temp_reg_ehf(struct w83627ehf_data *data, int n_temp)
{
int i;
for (i = 0; i < n_temp; i++) {
data->reg_temp[i] = W83627EHF_REG_TEMP[i];
data->reg_temp_over[i] = W83627EHF_REG_TEMP_OVER[i];
data->reg_temp_hyst[i] = W83627EHF_REG_TEMP_HYST[i];
data->reg_temp_config[i] = W83627EHF_REG_TEMP_CONFIG[i];
}
}
static void
w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data *sio_data,
struct w83627ehf_data *data)
{
int fan3pin, fan4pin, fan5pin, regval;
/* The W83627UHG is simple, only two fan inputs, no config */
if (sio_data->kind == w83627uhg) {
data->has_fan = 0x03; /* fan1 and fan2 */
data->has_fan_min = 0x03;
return;
}
/* fan4 and fan5 share some pins with the GPIO and serial flash */
if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
fan3pin = 1;
fan4pin = superio_inb(sio_data->sioreg, 0x27) & 0x40;
fan5pin = superio_inb(sio_data->sioreg, 0x27) & 0x20;
} else {
fan3pin = 1;
fan4pin = !(superio_inb(sio_data->sioreg, 0x29) & 0x06);
fan5pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x02);
}
data->has_fan = data->has_fan_min = 0x03; /* fan1 and fan2 */
data->has_fan |= (fan3pin << 2);
data->has_fan_min |= (fan3pin << 2);
/*
* It looks like fan4 and fan5 pins can be alternatively used
* as fan on/off switches, but fan5 control is write only :/
* We assume that if the serial interface is disabled, designers
* connected fan5 as input unless they are emitting log 1, which
* is not the default.
*/
regval = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
if ((regval & (1 << 2)) && fan4pin) {
data->has_fan |= (1 << 3);
data->has_fan_min |= (1 << 3);
}
if (!(regval & (1 << 1)) && fan5pin) {
data->has_fan |= (1 << 4);
data->has_fan_min |= (1 << 4);
}
}
static umode_t
w83627ehf_is_visible(const void *drvdata, enum hwmon_sensor_types type,
u32 attr, int channel)
{
const struct w83627ehf_data *data = drvdata;
switch (type) {
case hwmon_temp:
/* channel 0.., name 1.. */
if (!(data->have_temp & (1 << channel)))
return 0;
if (attr == hwmon_temp_input)
return 0444;
if (attr == hwmon_temp_label) {
if (data->temp_label)
return 0444;
return 0;
}
if (channel == 2 && data->temp3_val_only)
return 0;
if (attr == hwmon_temp_max) {
if (data->reg_temp_over[channel])
return 0644;
else
return 0;
}
if (attr == hwmon_temp_max_hyst) {
if (data->reg_temp_hyst[channel])
return 0644;
else
return 0;
}
if (channel > 2)
return 0;
if (attr == hwmon_temp_alarm || attr == hwmon_temp_type)
return 0444;
if (attr == hwmon_temp_offset) {
if (data->have_temp_offset & (1 << channel))
return 0644;
else
return 0;
}
break;
case hwmon_fan:
/* channel 0.., name 1.. */
if (!(data->has_fan & (1 << channel)))
return 0;
if (attr == hwmon_fan_input || attr == hwmon_fan_alarm)
return 0444;
if (attr == hwmon_fan_div) {
return 0444;
}
if (attr == hwmon_fan_min) {
if (data->has_fan_min & (1 << channel))
return 0644;
else
return 0;
}
break;
case hwmon_in:
/* channel 0.., name 0.. */
if (channel >= data->in_num)
return 0;
if (channel == 6 && data->in6_skip)
return 0;
if (attr == hwmon_in_alarm || attr == hwmon_in_input)
return 0444;
if (attr == hwmon_in_min || attr == hwmon_in_max)
return 0644;
break;
case hwmon_pwm:
/* channel 0.., name 1.. */
if (!(data->has_fan & (1 << channel)) ||
channel >= data->pwm_num)
return 0;
if (attr == hwmon_pwm_mode || attr == hwmon_pwm_enable ||
attr == hwmon_pwm_input)
return 0644;
break;
case hwmon_intrusion:
return 0644;
default: /* Shouldn't happen */
return 0;
}
return 0; /* Shouldn't happen */
}
static int
w83627ehf_do_read_temp(struct w83627ehf_data *data, u32 attr,
int channel, long *val)
{
switch (attr) {
case hwmon_temp_input:
*val = LM75_TEMP_FROM_REG(data->temp[channel]);
return 0;
case hwmon_temp_max:
*val = LM75_TEMP_FROM_REG(data->temp_max[channel]);
return 0;
case hwmon_temp_max_hyst:
*val = LM75_TEMP_FROM_REG(data->temp_max_hyst[channel]);
return 0;
case hwmon_temp_offset:
*val = data->temp_offset[channel] * 1000;
return 0;
case hwmon_temp_type:
*val = (int)data->temp_type[channel];
return 0;
case hwmon_temp_alarm:
if (channel < 3) {
int bit[] = { 4, 5, 13 };
*val = (data->alarms >> bit[channel]) & 1;
return 0;
}
break;
default:
break;
}
return -EOPNOTSUPP;
}
static int
w83627ehf_do_read_in(struct w83627ehf_data *data, u32 attr,
int channel, long *val)
{
switch (attr) {
case hwmon_in_input:
*val = in_from_reg(data->in[channel], channel, data->scale_in);
return 0;
case hwmon_in_min:
*val = in_from_reg(data->in_min[channel], channel,
data->scale_in);
return 0;
case hwmon_in_max:
*val = in_from_reg(data->in_max[channel], channel,
data->scale_in);
return 0;
case hwmon_in_alarm:
if (channel < 10) {
int bit[] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, 19 };
*val = (data->alarms >> bit[channel]) & 1;
return 0;
}
break;
default:
break;
}
return -EOPNOTSUPP;
}
static int
w83627ehf_do_read_fan(struct w83627ehf_data *data, u32 attr,
int channel, long *val)
{
switch (attr) {
case hwmon_fan_input:
*val = data->rpm[channel];
return 0;
case hwmon_fan_min:
*val = fan_from_reg8(data->fan_min[channel],
data->fan_div[channel]);
return 0;
case hwmon_fan_div:
*val = div_from_reg(data->fan_div[channel]);
return 0;
case hwmon_fan_alarm:
if (channel < 5) {
int bit[] = { 6, 7, 11, 10, 23 };
*val = (data->alarms >> bit[channel]) & 1;
return 0;
}
break;
default:
break;
}
return -EOPNOTSUPP;
}
static int
w83627ehf_do_read_pwm(struct w83627ehf_data *data, u32 attr,
int channel, long *val)
{
switch (attr) {
case hwmon_pwm_input:
*val = data->pwm[channel];
return 0;
case hwmon_pwm_enable:
*val = data->pwm_enable[channel];
return 0;
case hwmon_pwm_mode:
*val = data->pwm_enable[channel];
return 0;
default:
break;
}
return -EOPNOTSUPP;
}
static int
w83627ehf_do_read_intrusion(struct w83627ehf_data *data, u32 attr,
int channel, long *val)
{
if (attr != hwmon_intrusion_alarm || channel != 0)
return -EOPNOTSUPP; /* shouldn't happen */
*val = !!(data->caseopen & 0x10);
return 0;
}
static int
w83627ehf_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
struct w83627ehf_data *data = w83627ehf_update_device(dev->parent);
switch (type) {
case hwmon_fan:
return w83627ehf_do_read_fan(data, attr, channel, val);
case hwmon_in:
return w83627ehf_do_read_in(data, attr, channel, val);
case hwmon_pwm:
return w83627ehf_do_read_pwm(data, attr, channel, val);
case hwmon_temp:
return w83627ehf_do_read_temp(data, attr, channel, val);
case hwmon_intrusion:
return w83627ehf_do_read_intrusion(data, attr, channel, val);
default:
break;
}
return -EOPNOTSUPP;
}
static int
w83627ehf_read_string(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
switch (type) {
case hwmon_temp:
if (attr == hwmon_temp_label) {
*str = data->temp_label[data->temp_src[channel]];
return 0;
}
break;
default:
break;
}
/* Nothing else should be read as a string */
return -EOPNOTSUPP;
}
static int
w83627ehf_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
if (type == hwmon_in && attr == hwmon_in_min)
return store_in_min(dev, data, channel, val);
if (type == hwmon_in && attr == hwmon_in_max)
return store_in_max(dev, data, channel, val);
if (type == hwmon_fan && attr == hwmon_fan_min)
return store_fan_min(dev, data, channel, val);
if (type == hwmon_temp && attr == hwmon_temp_max)
return store_temp_max(dev, data, channel, val);
if (type == hwmon_temp && attr == hwmon_temp_max_hyst)
return store_temp_max_hyst(dev, data, channel, val);
if (type == hwmon_temp && attr == hwmon_temp_offset)
return store_temp_offset(dev, data, channel, val);
if (type == hwmon_pwm && attr == hwmon_pwm_mode)
return store_pwm_mode(dev, data, channel, val);
if (type == hwmon_pwm && attr == hwmon_pwm_enable)
return store_pwm_enable(dev, data, channel, val);
if (type == hwmon_pwm && attr == hwmon_pwm_input)
return store_pwm(dev, data, channel, val);
if (type == hwmon_intrusion && attr == hwmon_intrusion_alarm)
return clear_caseopen(dev, data, channel, val);
return -EOPNOTSUPP;
}
static const struct hwmon_ops w83627ehf_ops = {
.is_visible = w83627ehf_is_visible,
.read = w83627ehf_read,
.read_string = w83627ehf_read_string,
.write = w83627ehf_write,
};
static const struct hwmon_channel_info *w83627ehf_info[] = {
HWMON_CHANNEL_INFO(fan,
HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN),
HWMON_CHANNEL_INFO(in,
HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN),
HWMON_CHANNEL_INFO(pwm,
HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE),
HWMON_CHANNEL_INFO(temp,
HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE),
HWMON_CHANNEL_INFO(intrusion,
HWMON_INTRUSION_ALARM),
NULL
};
static const struct hwmon_chip_info w83627ehf_chip_info = {
.ops = &w83627ehf_ops,
.info = w83627ehf_info,
};
static int __init w83627ehf_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct w83627ehf_sio_data *sio_data = dev_get_platdata(dev);
struct w83627ehf_data *data;
struct resource *res;
u8 en_vrm10;
int i, err = 0;
struct device *hwmon_dev;
res = platform_get_resource(pdev, IORESOURCE_IO, 0);
if (!devm_request_region(dev, res->start, IOREGION_LENGTH, DRVNAME))
return -EBUSY;
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->addr = res->start;
mutex_init(&data->lock);
mutex_init(&data->update_lock);
data->name = w83627ehf_device_names[sio_data->kind];
data->bank = 0xff; /* Force initial bank selection */
platform_set_drvdata(pdev, data);
/* 627EHG and 627EHF have 10 voltage inputs; 627DHG and 667HG have 9 */
data->in_num = (sio_data->kind == w83627ehf) ? 10 : 9;
/* 667HG has 3 pwms, and 627UHG has only 2 */
switch (sio_data->kind) {
default:
data->pwm_num = 4;
break;
case w83667hg:
case w83667hg_b:
data->pwm_num = 3;
break;
case w83627uhg:
data->pwm_num = 2;
break;
}
/* Default to 3 temperature inputs, code below will adjust as needed */
data->have_temp = 0x07;
/* Deal with temperature register setup first. */
if (sio_data->kind == w83667hg_b) {
u8 reg;
w83627ehf_set_temp_reg_ehf(data, 4);
/*
* Temperature sources are selected with bank 0, registers 0x49
* and 0x4a.
*/
reg = w83627ehf_read_value(data, 0x4a);
data->temp_src[0] = reg >> 5;
reg = w83627ehf_read_value(data, 0x49);
data->temp_src[1] = reg & 0x07;
data->temp_src[2] = (reg >> 4) & 0x07;
/*
* W83667HG-B has another temperature register at 0x7e.
* The temperature source is selected with register 0x7d.
* Support it if the source differs from already reported
* sources.
*/
reg = w83627ehf_read_value(data, 0x7d);
reg &= 0x07;
if (reg != data->temp_src[0] && reg != data->temp_src[1]
&& reg != data->temp_src[2]) {
data->temp_src[3] = reg;
data->have_temp |= 1 << 3;
}
/*
* Chip supports either AUXTIN or VIN3. Try to find out which
* one.
*/
reg = w83627ehf_read_value(data, W83627EHF_REG_TEMP_CONFIG[2]);
if (data->temp_src[2] == 2 && (reg & 0x01))
data->have_temp &= ~(1 << 2);
if ((data->temp_src[2] == 2 && (data->have_temp & (1 << 2)))
|| (data->temp_src[3] == 2 && (data->have_temp & (1 << 3))))
data->in6_skip = 1;
data->temp_label = w83667hg_b_temp_label;
data->have_temp_offset = data->have_temp & 0x07;
for (i = 0; i < 3; i++) {
if (data->temp_src[i] > 2)
data->have_temp_offset &= ~(1 << i);
}
} else if (sio_data->kind == w83627uhg) {
u8 reg;
w83627ehf_set_temp_reg_ehf(data, 3);
/*
* Temperature sources for temp2 and temp3 are selected with
* bank 0, registers 0x49 and 0x4a.
*/
data->temp_src[0] = 0; /* SYSTIN */
reg = w83627ehf_read_value(data, 0x49) & 0x07;
/* Adjust to have the same mapping as other source registers */
if (reg == 0)
data->temp_src[1] = 1;
else if (reg >= 2 && reg <= 5)
data->temp_src[1] = reg + 2;
else /* should never happen */
data->have_temp &= ~(1 << 1);
reg = w83627ehf_read_value(data, 0x4a);
data->temp_src[2] = reg >> 5;
/*
* Skip temp3 if source is invalid or the same as temp1
* or temp2.
*/
if (data->temp_src[2] == 2 || data->temp_src[2] == 3 ||
data->temp_src[2] == data->temp_src[0] ||
((data->have_temp & (1 << 1)) &&
data->temp_src[2] == data->temp_src[1]))
data->have_temp &= ~(1 << 2);
else
data->temp3_val_only = 1; /* No limit regs */
data->in6_skip = 1; /* No VIN3 */
data->temp_label = w83667hg_b_temp_label;
data->have_temp_offset = data->have_temp & 0x03;
for (i = 0; i < 3; i++) {
if (data->temp_src[i] > 1)
data->have_temp_offset &= ~(1 << i);
}
} else {
w83627ehf_set_temp_reg_ehf(data, 3);
/* Temperature sources are fixed */
if (sio_data->kind == w83667hg) {
u8 reg;
/*
* Chip supports either AUXTIN or VIN3. Try to find
* out which one.
*/
reg = w83627ehf_read_value(data,
W83627EHF_REG_TEMP_CONFIG[2]);
if (reg & 0x01)
data->have_temp &= ~(1 << 2);
else
data->in6_skip = 1;
}
data->have_temp_offset = data->have_temp & 0x07;
}
if (sio_data->kind == w83667hg_b) {
data->REG_FAN_MAX_OUTPUT =
W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B;
data->REG_FAN_STEP_OUTPUT =
W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B;
} else {
data->REG_FAN_MAX_OUTPUT =
W83627EHF_REG_FAN_MAX_OUTPUT_COMMON;
data->REG_FAN_STEP_OUTPUT =
W83627EHF_REG_FAN_STEP_OUTPUT_COMMON;
}
/* Setup input voltage scaling factors */
if (sio_data->kind == w83627uhg)
data->scale_in = scale_in_w83627uhg;
else
data->scale_in = scale_in_common;
/* Initialize the chip */
w83627ehf_init_device(data, sio_data->kind);
data->vrm = vid_which_vrm();
err = superio_enter(sio_data->sioreg);
if (err)
return err;
/* Read VID value */
if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
/*
* W83667HG has different pins for VID input and output, so
* we can get the VID input values directly at logical device D
* 0xe3.
*/
superio_select(sio_data->sioreg, W83667HG_LD_VID);
data->vid = superio_inb(sio_data->sioreg, 0xe3);
data->have_vid = true;
} else if (sio_data->kind != w83627uhg) {
superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
/*
* Set VID input sensibility if needed. In theory the
* BIOS should have set it, but in practice it's not
* always the case. We only do it for the W83627EHF/EHG
* because the W83627DHG is more complex in this
* respect.
*/
if (sio_data->kind == w83627ehf) {
en_vrm10 = superio_inb(sio_data->sioreg,
SIO_REG_EN_VRM10);
if ((en_vrm10 & 0x08) && data->vrm == 90) {
dev_warn(dev,
"Setting VID input voltage to TTL\n");
superio_outb(sio_data->sioreg,
SIO_REG_EN_VRM10,
en_vrm10 & ~0x08);
} else if (!(en_vrm10 & 0x08)
&& data->vrm == 100) {
dev_warn(dev,
"Setting VID input voltage to VRM10\n");
superio_outb(sio_data->sioreg,
SIO_REG_EN_VRM10,
en_vrm10 | 0x08);
}
}
data->vid = superio_inb(sio_data->sioreg,
SIO_REG_VID_DATA);
if (sio_data->kind == w83627ehf) /* 6 VID pins only */
data->vid &= 0x3f;
data->have_vid = true;
} else {
dev_info(dev,
"VID pins in output mode, CPU VID not available\n");
}
}
w83627ehf_check_fan_inputs(sio_data, data);
superio_exit(sio_data->sioreg);
/* Read fan clock dividers immediately */
w83627ehf_update_fan_div(data);
/* Read pwm data to save original values */
w83627ehf_update_pwm(data);
for (i = 0; i < data->pwm_num; i++)
data->pwm_enable_orig[i] = data->pwm_enable[i];
hwmon_dev = devm_hwmon_device_register_with_info(&pdev->dev,
data->name,
data,
&w83627ehf_chip_info,
w83627ehf_groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
static int __maybe_unused w83627ehf_suspend(struct device *dev)
{
struct w83627ehf_data *data = w83627ehf_update_device(dev);
mutex_lock(&data->update_lock);
data->vbat = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
mutex_unlock(&data->update_lock);
return 0;
}
static int __maybe_unused w83627ehf_resume(struct device *dev)
{
struct w83627ehf_data *data = dev_get_drvdata(dev);
int i;
mutex_lock(&data->update_lock);
data->bank = 0xff; /* Force initial bank selection */
/* Restore limits */
for (i = 0; i < data->in_num; i++) {
if ((i == 6) && data->in6_skip)
continue;
w83627ehf_write_value(data, W83627EHF_REG_IN_MIN(i),
data->in_min[i]);
w83627ehf_write_value(data, W83627EHF_REG_IN_MAX(i),
data->in_max[i]);
}
for (i = 0; i < 5; i++) {
if (!(data->has_fan_min & (1 << i)))
continue;
w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[i],
data->fan_min[i]);
}
for (i = 0; i < NUM_REG_TEMP; i++) {
if (!(data->have_temp & (1 << i)))
continue;
if (data->reg_temp_over[i])
w83627ehf_write_temp(data, data->reg_temp_over[i],
data->temp_max[i]);
if (data->reg_temp_hyst[i])
w83627ehf_write_temp(data, data->reg_temp_hyst[i],
data->temp_max_hyst[i]);
if (i > 2)
continue;
if (data->have_temp_offset & (1 << i))
w83627ehf_write_value(data,
W83627EHF_REG_TEMP_OFFSET[i],
data->temp_offset[i]);
}
/* Restore other settings */
w83627ehf_write_value(data, W83627EHF_REG_VBAT, data->vbat);
/* Force re-reading all values */
data->valid = false;
mutex_unlock(&data->update_lock);
return 0;
}
static SIMPLE_DEV_PM_OPS(w83627ehf_dev_pm_ops, w83627ehf_suspend, w83627ehf_resume);
static struct platform_driver w83627ehf_driver = {
.driver = {
.name = DRVNAME,
.pm = &w83627ehf_dev_pm_ops,
},
};
/* w83627ehf_find() looks for a '627 in the Super-I/O config space */
static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
struct w83627ehf_sio_data *sio_data)
{
static const char sio_name_W83627EHF[] __initconst = "W83627EHF";
static const char sio_name_W83627EHG[] __initconst = "W83627EHG";
static const char sio_name_W83627DHG[] __initconst = "W83627DHG";
static const char sio_name_W83627DHG_P[] __initconst = "W83627DHG-P";
static const char sio_name_W83627UHG[] __initconst = "W83627UHG";
static const char sio_name_W83667HG[] __initconst = "W83667HG";
static const char sio_name_W83667HG_B[] __initconst = "W83667HG-B";
u16 val;
const char *sio_name;
int err;
err = superio_enter(sioaddr);
if (err)
return err;
if (force_id)
val = force_id;
else
val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
| superio_inb(sioaddr, SIO_REG_DEVID + 1);
switch (val & SIO_ID_MASK) {
case SIO_W83627EHF_ID:
sio_data->kind = w83627ehf;
sio_name = sio_name_W83627EHF;
break;
case SIO_W83627EHG_ID:
sio_data->kind = w83627ehf;
sio_name = sio_name_W83627EHG;
break;
case SIO_W83627DHG_ID:
sio_data->kind = w83627dhg;
sio_name = sio_name_W83627DHG;
break;
case SIO_W83627DHG_P_ID:
sio_data->kind = w83627dhg_p;
sio_name = sio_name_W83627DHG_P;
break;
case SIO_W83627UHG_ID:
sio_data->kind = w83627uhg;
sio_name = sio_name_W83627UHG;
break;
case SIO_W83667HG_ID:
sio_data->kind = w83667hg;
sio_name = sio_name_W83667HG;
break;
case SIO_W83667HG_B_ID:
sio_data->kind = w83667hg_b;
sio_name = sio_name_W83667HG_B;
break;
default:
if (val != 0xffff)
pr_debug("unsupported chip ID: 0x%04x\n", val);
superio_exit(sioaddr);
return -ENODEV;
}
/* We have a known chip, find the HWM I/O address */
superio_select(sioaddr, W83627EHF_LD_HWM);
val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
| superio_inb(sioaddr, SIO_REG_ADDR + 1);
*addr = val & IOREGION_ALIGNMENT;
if (*addr == 0) {
pr_err("Refusing to enable a Super-I/O device with a base I/O port 0\n");
superio_exit(sioaddr);
return -ENODEV;
}
/* Activate logical device if needed */
val = superio_inb(sioaddr, SIO_REG_ENABLE);
if (!(val & 0x01)) {
pr_warn("Forcibly enabling Super-I/O. Sensor is probably unusable.\n");
superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
}
superio_exit(sioaddr);
pr_info("Found %s chip at %#x\n", sio_name, *addr);
sio_data->sioreg = sioaddr;
return 0;
}
/*
* when Super-I/O functions move to a separate file, the Super-I/O
* bus will manage the lifetime of the device and this module will only keep
* track of the w83627ehf driver.
*/
static struct platform_device *pdev;
static int __init sensors_w83627ehf_init(void)
{
int err;
unsigned short address;
struct resource res = {
.name = DRVNAME,
.flags = IORESOURCE_IO,
};
struct w83627ehf_sio_data sio_data;
/*
* initialize sio_data->kind and sio_data->sioreg.
*
* when Super-I/O functions move to a separate file, the Super-I/O
* driver will probe 0x2e and 0x4e and auto-detect the presence of a
* w83627ehf hardware monitor, and call probe()
*/
if (w83627ehf_find(0x2e, &address, &sio_data) &&
w83627ehf_find(0x4e, &address, &sio_data))
return -ENODEV;
res.start = address + IOREGION_OFFSET;
res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
err = acpi_check_resource_conflict(&res);
if (err)
return err;
pdev = platform_create_bundle(&w83627ehf_driver, w83627ehf_probe, &res, 1, &sio_data,
sizeof(struct w83627ehf_sio_data));
return PTR_ERR_OR_ZERO(pdev);
}
static void __exit sensors_w83627ehf_exit(void)
{
platform_device_unregister(pdev);
platform_driver_unregister(&w83627ehf_driver);
}
MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
MODULE_DESCRIPTION("W83627EHF driver");
MODULE_LICENSE("GPL");
module_init(sensors_w83627ehf_init);
module_exit(sensors_w83627ehf_exit);