blob: e45d8d94574ca7c78b9d51da4600d589d3d6a082 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* SCSI Zoned Block commands
*
* Copyright (C) 2014-2015 SUSE Linux GmbH
* Written by: Hannes Reinecke <hare@suse.de>
* Modified by: Damien Le Moal <damien.lemoal@hgst.com>
* Modified by: Shaun Tancheff <shaun.tancheff@seagate.com>
*/
#include <linux/blkdev.h>
#include <linux/vmalloc.h>
#include <linux/sched/mm.h>
#include <linux/mutex.h>
#include <asm/unaligned.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include "sd.h"
static unsigned int sd_zbc_get_zone_wp_offset(struct blk_zone *zone)
{
if (zone->type == ZBC_ZONE_TYPE_CONV)
return 0;
switch (zone->cond) {
case BLK_ZONE_COND_IMP_OPEN:
case BLK_ZONE_COND_EXP_OPEN:
case BLK_ZONE_COND_CLOSED:
return zone->wp - zone->start;
case BLK_ZONE_COND_FULL:
return zone->len;
case BLK_ZONE_COND_EMPTY:
case BLK_ZONE_COND_OFFLINE:
case BLK_ZONE_COND_READONLY:
default:
/*
* Offline and read-only zones do not have a valid
* write pointer. Use 0 as for an empty zone.
*/
return 0;
}
}
static int sd_zbc_parse_report(struct scsi_disk *sdkp, u8 *buf,
unsigned int idx, report_zones_cb cb, void *data)
{
struct scsi_device *sdp = sdkp->device;
struct blk_zone zone = { 0 };
int ret;
zone.type = buf[0] & 0x0f;
zone.cond = (buf[1] >> 4) & 0xf;
if (buf[1] & 0x01)
zone.reset = 1;
if (buf[1] & 0x02)
zone.non_seq = 1;
zone.len = logical_to_sectors(sdp, get_unaligned_be64(&buf[8]));
zone.capacity = zone.len;
zone.start = logical_to_sectors(sdp, get_unaligned_be64(&buf[16]));
zone.wp = logical_to_sectors(sdp, get_unaligned_be64(&buf[24]));
if (zone.type != ZBC_ZONE_TYPE_CONV &&
zone.cond == ZBC_ZONE_COND_FULL)
zone.wp = zone.start + zone.len;
ret = cb(&zone, idx, data);
if (ret)
return ret;
if (sdkp->rev_wp_offset)
sdkp->rev_wp_offset[idx] = sd_zbc_get_zone_wp_offset(&zone);
return 0;
}
/**
* sd_zbc_do_report_zones - Issue a REPORT ZONES scsi command.
* @sdkp: The target disk
* @buf: vmalloc-ed buffer to use for the reply
* @buflen: the buffer size
* @lba: Start LBA of the report
* @partial: Do partial report
*
* For internal use during device validation.
* Using partial=true can significantly speed up execution of a report zones
* command because the disk does not have to count all possible report matching
* zones and will only report the count of zones fitting in the command reply
* buffer.
*/
static int sd_zbc_do_report_zones(struct scsi_disk *sdkp, unsigned char *buf,
unsigned int buflen, sector_t lba,
bool partial)
{
struct scsi_device *sdp = sdkp->device;
const int timeout = sdp->request_queue->rq_timeout;
struct scsi_sense_hdr sshdr;
unsigned char cmd[16];
unsigned int rep_len;
int result;
memset(cmd, 0, 16);
cmd[0] = ZBC_IN;
cmd[1] = ZI_REPORT_ZONES;
put_unaligned_be64(lba, &cmd[2]);
put_unaligned_be32(buflen, &cmd[10]);
if (partial)
cmd[14] = ZBC_REPORT_ZONE_PARTIAL;
result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
buf, buflen, &sshdr,
timeout, SD_MAX_RETRIES, NULL);
if (result) {
sd_printk(KERN_ERR, sdkp,
"REPORT ZONES start lba %llu failed\n", lba);
sd_print_result(sdkp, "REPORT ZONES", result);
if (driver_byte(result) == DRIVER_SENSE &&
scsi_sense_valid(&sshdr))
sd_print_sense_hdr(sdkp, &sshdr);
return -EIO;
}
rep_len = get_unaligned_be32(&buf[0]);
if (rep_len < 64) {
sd_printk(KERN_ERR, sdkp,
"REPORT ZONES report invalid length %u\n",
rep_len);
return -EIO;
}
return 0;
}
/**
* sd_zbc_alloc_report_buffer() - Allocate a buffer for report zones reply.
* @sdkp: The target disk
* @nr_zones: Maximum number of zones to report
* @buflen: Size of the buffer allocated
*
* Try to allocate a reply buffer for the number of requested zones.
* The size of the buffer allocated may be smaller than requested to
* satify the device constraint (max_hw_sectors, max_segments, etc).
*
* Return the address of the allocated buffer and update @buflen with
* the size of the allocated buffer.
*/
static void *sd_zbc_alloc_report_buffer(struct scsi_disk *sdkp,
unsigned int nr_zones, size_t *buflen)
{
struct request_queue *q = sdkp->disk->queue;
size_t bufsize;
void *buf;
/*
* Report zone buffer size should be at most 64B times the number of
* zones requested plus the 64B reply header, but should be at least
* SECTOR_SIZE for ATA devices.
* Make sure that this size does not exceed the hardware capabilities.
* Furthermore, since the report zone command cannot be split, make
* sure that the allocated buffer can always be mapped by limiting the
* number of pages allocated to the HBA max segments limit.
*/
nr_zones = min(nr_zones, sdkp->nr_zones);
bufsize = roundup((nr_zones + 1) * 64, SECTOR_SIZE);
bufsize = min_t(size_t, bufsize,
queue_max_hw_sectors(q) << SECTOR_SHIFT);
bufsize = min_t(size_t, bufsize, queue_max_segments(q) << PAGE_SHIFT);
while (bufsize >= SECTOR_SIZE) {
buf = __vmalloc(bufsize,
GFP_KERNEL | __GFP_ZERO | __GFP_NORETRY);
if (buf) {
*buflen = bufsize;
return buf;
}
bufsize >>= 1;
}
return NULL;
}
/**
* sd_zbc_zone_sectors - Get the device zone size in number of 512B sectors.
* @sdkp: The target disk
*/
static inline sector_t sd_zbc_zone_sectors(struct scsi_disk *sdkp)
{
return logical_to_sectors(sdkp->device, sdkp->zone_blocks);
}
int sd_zbc_report_zones(struct gendisk *disk, sector_t sector,
unsigned int nr_zones, report_zones_cb cb, void *data)
{
struct scsi_disk *sdkp = scsi_disk(disk);
sector_t capacity = logical_to_sectors(sdkp->device, sdkp->capacity);
unsigned int nr, i;
unsigned char *buf;
size_t offset, buflen = 0;
int zone_idx = 0;
int ret;
if (!sd_is_zoned(sdkp))
/* Not a zoned device */
return -EOPNOTSUPP;
if (!capacity)
/* Device gone or invalid */
return -ENODEV;
buf = sd_zbc_alloc_report_buffer(sdkp, nr_zones, &buflen);
if (!buf)
return -ENOMEM;
while (zone_idx < nr_zones && sector < capacity) {
ret = sd_zbc_do_report_zones(sdkp, buf, buflen,
sectors_to_logical(sdkp->device, sector), true);
if (ret)
goto out;
offset = 0;
nr = min(nr_zones, get_unaligned_be32(&buf[0]) / 64);
if (!nr)
break;
for (i = 0; i < nr && zone_idx < nr_zones; i++) {
offset += 64;
ret = sd_zbc_parse_report(sdkp, buf + offset, zone_idx,
cb, data);
if (ret)
goto out;
zone_idx++;
}
sector += sd_zbc_zone_sectors(sdkp) * i;
}
ret = zone_idx;
out:
kvfree(buf);
return ret;
}
static blk_status_t sd_zbc_cmnd_checks(struct scsi_cmnd *cmd)
{
struct request *rq = cmd->request;
struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
sector_t sector = blk_rq_pos(rq);
if (!sd_is_zoned(sdkp))
/* Not a zoned device */
return BLK_STS_IOERR;
if (sdkp->device->changed)
return BLK_STS_IOERR;
if (sector & (sd_zbc_zone_sectors(sdkp) - 1))
/* Unaligned request */
return BLK_STS_IOERR;
return BLK_STS_OK;
}
#define SD_ZBC_INVALID_WP_OFST (~0u)
#define SD_ZBC_UPDATING_WP_OFST (SD_ZBC_INVALID_WP_OFST - 1)
static int sd_zbc_update_wp_offset_cb(struct blk_zone *zone, unsigned int idx,
void *data)
{
struct scsi_disk *sdkp = data;
lockdep_assert_held(&sdkp->zones_wp_offset_lock);
sdkp->zones_wp_offset[idx] = sd_zbc_get_zone_wp_offset(zone);
return 0;
}
static void sd_zbc_update_wp_offset_workfn(struct work_struct *work)
{
struct scsi_disk *sdkp;
unsigned long flags;
unsigned int zno;
int ret;
sdkp = container_of(work, struct scsi_disk, zone_wp_offset_work);
spin_lock_irqsave(&sdkp->zones_wp_offset_lock, flags);
for (zno = 0; zno < sdkp->nr_zones; zno++) {
if (sdkp->zones_wp_offset[zno] != SD_ZBC_UPDATING_WP_OFST)
continue;
spin_unlock_irqrestore(&sdkp->zones_wp_offset_lock, flags);
ret = sd_zbc_do_report_zones(sdkp, sdkp->zone_wp_update_buf,
SD_BUF_SIZE,
zno * sdkp->zone_blocks, true);
spin_lock_irqsave(&sdkp->zones_wp_offset_lock, flags);
if (!ret)
sd_zbc_parse_report(sdkp, sdkp->zone_wp_update_buf + 64,
zno, sd_zbc_update_wp_offset_cb,
sdkp);
}
spin_unlock_irqrestore(&sdkp->zones_wp_offset_lock, flags);
scsi_device_put(sdkp->device);
}
/**
* sd_zbc_prepare_zone_append() - Prepare an emulated ZONE_APPEND command.
* @cmd: the command to setup
* @lba: the LBA to patch
* @nr_blocks: the number of LBAs to be written
*
* Called from sd_setup_read_write_cmnd() for REQ_OP_ZONE_APPEND.
* @sd_zbc_prepare_zone_append() handles the necessary zone wrote locking and
* patching of the lba for an emulated ZONE_APPEND command.
*
* In case the cached write pointer offset is %SD_ZBC_INVALID_WP_OFST it will
* schedule a REPORT ZONES command and return BLK_STS_IOERR.
*/
blk_status_t sd_zbc_prepare_zone_append(struct scsi_cmnd *cmd, sector_t *lba,
unsigned int nr_blocks)
{
struct request *rq = cmd->request;
struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
unsigned int wp_offset, zno = blk_rq_zone_no(rq);
unsigned long flags;
blk_status_t ret;
ret = sd_zbc_cmnd_checks(cmd);
if (ret != BLK_STS_OK)
return ret;
if (!blk_rq_zone_is_seq(rq))
return BLK_STS_IOERR;
/* Unlock of the write lock will happen in sd_zbc_complete() */
if (!blk_req_zone_write_trylock(rq))
return BLK_STS_ZONE_RESOURCE;
spin_lock_irqsave(&sdkp->zones_wp_offset_lock, flags);
wp_offset = sdkp->zones_wp_offset[zno];
switch (wp_offset) {
case SD_ZBC_INVALID_WP_OFST:
/*
* We are about to schedule work to update a zone write pointer
* offset, which will cause the zone append command to be
* requeued. So make sure that the scsi device does not go away
* while the work is being processed.
*/
if (scsi_device_get(sdkp->device)) {
ret = BLK_STS_IOERR;
break;
}
sdkp->zones_wp_offset[zno] = SD_ZBC_UPDATING_WP_OFST;
schedule_work(&sdkp->zone_wp_offset_work);
fallthrough;
case SD_ZBC_UPDATING_WP_OFST:
ret = BLK_STS_DEV_RESOURCE;
break;
default:
wp_offset = sectors_to_logical(sdkp->device, wp_offset);
if (wp_offset + nr_blocks > sdkp->zone_blocks) {
ret = BLK_STS_IOERR;
break;
}
*lba += wp_offset;
}
spin_unlock_irqrestore(&sdkp->zones_wp_offset_lock, flags);
if (ret)
blk_req_zone_write_unlock(rq);
return ret;
}
/**
* sd_zbc_setup_zone_mgmt_cmnd - Prepare a zone ZBC_OUT command. The operations
* can be RESET WRITE POINTER, OPEN, CLOSE or FINISH.
* @cmd: the command to setup
* @op: Operation to be performed
* @all: All zones control
*
* Called from sd_init_command() for REQ_OP_ZONE_RESET, REQ_OP_ZONE_RESET_ALL,
* REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE or REQ_OP_ZONE_FINISH requests.
*/
blk_status_t sd_zbc_setup_zone_mgmt_cmnd(struct scsi_cmnd *cmd,
unsigned char op, bool all)
{
struct request *rq = cmd->request;
sector_t sector = blk_rq_pos(rq);
struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
sector_t block = sectors_to_logical(sdkp->device, sector);
blk_status_t ret;
ret = sd_zbc_cmnd_checks(cmd);
if (ret != BLK_STS_OK)
return ret;
cmd->cmd_len = 16;
memset(cmd->cmnd, 0, cmd->cmd_len);
cmd->cmnd[0] = ZBC_OUT;
cmd->cmnd[1] = op;
if (all)
cmd->cmnd[14] = 0x1;
else
put_unaligned_be64(block, &cmd->cmnd[2]);
rq->timeout = SD_TIMEOUT;
cmd->sc_data_direction = DMA_NONE;
cmd->transfersize = 0;
cmd->allowed = 0;
return BLK_STS_OK;
}
static bool sd_zbc_need_zone_wp_update(struct request *rq)
{
switch (req_op(rq)) {
case REQ_OP_ZONE_APPEND:
case REQ_OP_ZONE_FINISH:
case REQ_OP_ZONE_RESET:
case REQ_OP_ZONE_RESET_ALL:
return true;
case REQ_OP_WRITE:
case REQ_OP_WRITE_ZEROES:
case REQ_OP_WRITE_SAME:
return blk_rq_zone_is_seq(rq);
default:
return false;
}
}
/**
* sd_zbc_zone_wp_update - Update cached zone write pointer upon cmd completion
* @cmd: Completed command
* @good_bytes: Command reply bytes
*
* Called from sd_zbc_complete() to handle the update of the cached zone write
* pointer value in case an update is needed.
*/
static unsigned int sd_zbc_zone_wp_update(struct scsi_cmnd *cmd,
unsigned int good_bytes)
{
int result = cmd->result;
struct request *rq = cmd->request;
struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
unsigned int zno = blk_rq_zone_no(rq);
enum req_opf op = req_op(rq);
unsigned long flags;
/*
* If we got an error for a command that needs updating the write
* pointer offset cache, we must mark the zone wp offset entry as
* invalid to force an update from disk the next time a zone append
* command is issued.
*/
spin_lock_irqsave(&sdkp->zones_wp_offset_lock, flags);
if (result && op != REQ_OP_ZONE_RESET_ALL) {
if (op == REQ_OP_ZONE_APPEND) {
/* Force complete completion (no retry) */
good_bytes = 0;
scsi_set_resid(cmd, blk_rq_bytes(rq));
}
/*
* Force an update of the zone write pointer offset on
* the next zone append access.
*/
if (sdkp->zones_wp_offset[zno] != SD_ZBC_UPDATING_WP_OFST)
sdkp->zones_wp_offset[zno] = SD_ZBC_INVALID_WP_OFST;
goto unlock_wp_offset;
}
switch (op) {
case REQ_OP_ZONE_APPEND:
rq->__sector += sdkp->zones_wp_offset[zno];
fallthrough;
case REQ_OP_WRITE_ZEROES:
case REQ_OP_WRITE_SAME:
case REQ_OP_WRITE:
if (sdkp->zones_wp_offset[zno] < sd_zbc_zone_sectors(sdkp))
sdkp->zones_wp_offset[zno] +=
good_bytes >> SECTOR_SHIFT;
break;
case REQ_OP_ZONE_RESET:
sdkp->zones_wp_offset[zno] = 0;
break;
case REQ_OP_ZONE_FINISH:
sdkp->zones_wp_offset[zno] = sd_zbc_zone_sectors(sdkp);
break;
case REQ_OP_ZONE_RESET_ALL:
memset(sdkp->zones_wp_offset, 0,
sdkp->nr_zones * sizeof(unsigned int));
break;
default:
break;
}
unlock_wp_offset:
spin_unlock_irqrestore(&sdkp->zones_wp_offset_lock, flags);
return good_bytes;
}
/**
* sd_zbc_complete - ZBC command post processing.
* @cmd: Completed command
* @good_bytes: Command reply bytes
* @sshdr: command sense header
*
* Called from sd_done() to handle zone commands errors and updates to the
* device queue zone write pointer offset cahce.
*/
unsigned int sd_zbc_complete(struct scsi_cmnd *cmd, unsigned int good_bytes,
struct scsi_sense_hdr *sshdr)
{
int result = cmd->result;
struct request *rq = cmd->request;
if (op_is_zone_mgmt(req_op(rq)) &&
result &&
sshdr->sense_key == ILLEGAL_REQUEST &&
sshdr->asc == 0x24) {
/*
* INVALID FIELD IN CDB error: a zone management command was
* attempted on a conventional zone. Nothing to worry about,
* so be quiet about the error.
*/
rq->rq_flags |= RQF_QUIET;
} else if (sd_zbc_need_zone_wp_update(rq))
good_bytes = sd_zbc_zone_wp_update(cmd, good_bytes);
if (req_op(rq) == REQ_OP_ZONE_APPEND)
blk_req_zone_write_unlock(rq);
return good_bytes;
}
/**
* sd_zbc_check_zoned_characteristics - Check zoned block device characteristics
* @sdkp: Target disk
* @buf: Buffer where to store the VPD page data
*
* Read VPD page B6, get information and check that reads are unconstrained.
*/
static int sd_zbc_check_zoned_characteristics(struct scsi_disk *sdkp,
unsigned char *buf)
{
if (scsi_get_vpd_page(sdkp->device, 0xb6, buf, 64)) {
sd_printk(KERN_NOTICE, sdkp,
"Read zoned characteristics VPD page failed\n");
return -ENODEV;
}
if (sdkp->device->type != TYPE_ZBC) {
/* Host-aware */
sdkp->urswrz = 1;
sdkp->zones_optimal_open = get_unaligned_be32(&buf[8]);
sdkp->zones_optimal_nonseq = get_unaligned_be32(&buf[12]);
sdkp->zones_max_open = 0;
} else {
/* Host-managed */
sdkp->urswrz = buf[4] & 1;
sdkp->zones_optimal_open = 0;
sdkp->zones_optimal_nonseq = 0;
sdkp->zones_max_open = get_unaligned_be32(&buf[16]);
}
/*
* Check for unconstrained reads: host-managed devices with
* constrained reads (drives failing read after write pointer)
* are not supported.
*/
if (!sdkp->urswrz) {
if (sdkp->first_scan)
sd_printk(KERN_NOTICE, sdkp,
"constrained reads devices are not supported\n");
return -ENODEV;
}
return 0;
}
/**
* sd_zbc_check_capacity - Check the device capacity
* @sdkp: Target disk
* @buf: command buffer
* @zblocks: zone size in number of blocks
*
* Get the device zone size and check that the device capacity as reported
* by READ CAPACITY matches the max_lba value (plus one) of the report zones
* command reply for devices with RC_BASIS == 0.
*
* Returns 0 upon success or an error code upon failure.
*/
static int sd_zbc_check_capacity(struct scsi_disk *sdkp, unsigned char *buf,
u32 *zblocks)
{
u64 zone_blocks;
sector_t max_lba;
unsigned char *rec;
int ret;
/* Do a report zone to get max_lba and the size of the first zone */
ret = sd_zbc_do_report_zones(sdkp, buf, SD_BUF_SIZE, 0, false);
if (ret)
return ret;
if (sdkp->rc_basis == 0) {
/* The max_lba field is the capacity of this device */
max_lba = get_unaligned_be64(&buf[8]);
if (sdkp->capacity != max_lba + 1) {
if (sdkp->first_scan)
sd_printk(KERN_WARNING, sdkp,
"Changing capacity from %llu to max LBA+1 %llu\n",
(unsigned long long)sdkp->capacity,
(unsigned long long)max_lba + 1);
sdkp->capacity = max_lba + 1;
}
}
/* Get the size of the first reported zone */
rec = buf + 64;
zone_blocks = get_unaligned_be64(&rec[8]);
if (logical_to_sectors(sdkp->device, zone_blocks) > UINT_MAX) {
if (sdkp->first_scan)
sd_printk(KERN_NOTICE, sdkp,
"Zone size too large\n");
return -EFBIG;
}
*zblocks = zone_blocks;
return 0;
}
static void sd_zbc_print_zones(struct scsi_disk *sdkp)
{
if (!sd_is_zoned(sdkp) || !sdkp->capacity)
return;
if (sdkp->capacity & (sdkp->zone_blocks - 1))
sd_printk(KERN_NOTICE, sdkp,
"%u zones of %u logical blocks + 1 runt zone\n",
sdkp->nr_zones - 1,
sdkp->zone_blocks);
else
sd_printk(KERN_NOTICE, sdkp,
"%u zones of %u logical blocks\n",
sdkp->nr_zones,
sdkp->zone_blocks);
}
static int sd_zbc_init_disk(struct scsi_disk *sdkp)
{
sdkp->zones_wp_offset = NULL;
spin_lock_init(&sdkp->zones_wp_offset_lock);
sdkp->rev_wp_offset = NULL;
mutex_init(&sdkp->rev_mutex);
INIT_WORK(&sdkp->zone_wp_offset_work, sd_zbc_update_wp_offset_workfn);
sdkp->zone_wp_update_buf = kzalloc(SD_BUF_SIZE, GFP_KERNEL);
if (!sdkp->zone_wp_update_buf)
return -ENOMEM;
return 0;
}
static void sd_zbc_clear_zone_info(struct scsi_disk *sdkp)
{
/* Serialize against revalidate zones */
mutex_lock(&sdkp->rev_mutex);
kvfree(sdkp->zones_wp_offset);
sdkp->zones_wp_offset = NULL;
kfree(sdkp->zone_wp_update_buf);
sdkp->zone_wp_update_buf = NULL;
sdkp->nr_zones = 0;
sdkp->rev_nr_zones = 0;
sdkp->zone_blocks = 0;
sdkp->rev_zone_blocks = 0;
mutex_unlock(&sdkp->rev_mutex);
}
void sd_zbc_release_disk(struct scsi_disk *sdkp)
{
if (sd_is_zoned(sdkp))
sd_zbc_clear_zone_info(sdkp);
}
static void sd_zbc_revalidate_zones_cb(struct gendisk *disk)
{
struct scsi_disk *sdkp = scsi_disk(disk);
swap(sdkp->zones_wp_offset, sdkp->rev_wp_offset);
}
int sd_zbc_revalidate_zones(struct scsi_disk *sdkp)
{
struct gendisk *disk = sdkp->disk;
struct request_queue *q = disk->queue;
u32 zone_blocks = sdkp->rev_zone_blocks;
unsigned int nr_zones = sdkp->rev_nr_zones;
u32 max_append;
int ret = 0;
unsigned int flags;
/*
* For all zoned disks, initialize zone append emulation data if not
* already done. This is necessary also for host-aware disks used as
* regular disks due to the presence of partitions as these partitions
* may be deleted and the disk zoned model changed back from
* BLK_ZONED_NONE to BLK_ZONED_HA.
*/
if (sd_is_zoned(sdkp) && !sdkp->zone_wp_update_buf) {
ret = sd_zbc_init_disk(sdkp);
if (ret)
return ret;
}
/*
* There is nothing to do for regular disks, including host-aware disks
* that have partitions.
*/
if (!blk_queue_is_zoned(q))
return 0;
/*
* Make sure revalidate zones are serialized to ensure exclusive
* updates of the scsi disk data.
*/
mutex_lock(&sdkp->rev_mutex);
if (sdkp->zone_blocks == zone_blocks &&
sdkp->nr_zones == nr_zones &&
disk->queue->nr_zones == nr_zones)
goto unlock;
flags = memalloc_noio_save();
sdkp->zone_blocks = zone_blocks;
sdkp->nr_zones = nr_zones;
sdkp->rev_wp_offset = kvcalloc(nr_zones, sizeof(u32), GFP_KERNEL);
if (!sdkp->rev_wp_offset) {
ret = -ENOMEM;
memalloc_noio_restore(flags);
goto unlock;
}
ret = blk_revalidate_disk_zones(disk, sd_zbc_revalidate_zones_cb);
memalloc_noio_restore(flags);
kvfree(sdkp->rev_wp_offset);
sdkp->rev_wp_offset = NULL;
if (ret) {
sdkp->zone_blocks = 0;
sdkp->nr_zones = 0;
sdkp->capacity = 0;
goto unlock;
}
max_append = min_t(u32, logical_to_sectors(sdkp->device, zone_blocks),
q->limits.max_segments << (PAGE_SHIFT - 9));
max_append = min_t(u32, max_append, queue_max_hw_sectors(q));
blk_queue_max_zone_append_sectors(q, max_append);
sd_zbc_print_zones(sdkp);
unlock:
mutex_unlock(&sdkp->rev_mutex);
return ret;
}
int sd_zbc_read_zones(struct scsi_disk *sdkp, unsigned char *buf)
{
struct gendisk *disk = sdkp->disk;
struct request_queue *q = disk->queue;
unsigned int nr_zones;
u32 zone_blocks = 0;
int ret;
if (!sd_is_zoned(sdkp))
/*
* Device managed or normal SCSI disk,
* no special handling required
*/
return 0;
/* READ16/WRITE16 is mandatory for ZBC disks */
sdkp->device->use_16_for_rw = 1;
sdkp->device->use_10_for_rw = 0;
if (!blk_queue_is_zoned(q)) {
/*
* This can happen for a host aware disk with partitions.
* The block device zone information was already cleared
* by blk_queue_set_zoned(). Only clear the scsi disk zone
* information and exit early.
*/
sd_zbc_clear_zone_info(sdkp);
return 0;
}
/* Check zoned block device characteristics (unconstrained reads) */
ret = sd_zbc_check_zoned_characteristics(sdkp, buf);
if (ret)
goto err;
/* Check the device capacity reported by report zones */
ret = sd_zbc_check_capacity(sdkp, buf, &zone_blocks);
if (ret != 0)
goto err;
/* The drive satisfies the kernel restrictions: set it up */
blk_queue_flag_set(QUEUE_FLAG_ZONE_RESETALL, q);
blk_queue_required_elevator_features(q, ELEVATOR_F_ZBD_SEQ_WRITE);
if (sdkp->zones_max_open == U32_MAX)
blk_queue_max_open_zones(q, 0);
else
blk_queue_max_open_zones(q, sdkp->zones_max_open);
blk_queue_max_active_zones(q, 0);
nr_zones = round_up(sdkp->capacity, zone_blocks) >> ilog2(zone_blocks);
/*
* Per ZBC and ZAC specifications, writes in sequential write required
* zones of host-managed devices must be aligned to the device physical
* block size.
*/
if (blk_queue_zoned_model(q) == BLK_ZONED_HM)
blk_queue_zone_write_granularity(q, sdkp->physical_block_size);
sdkp->rev_nr_zones = nr_zones;
sdkp->rev_zone_blocks = zone_blocks;
return 0;
err:
sdkp->capacity = 0;
return ret;
}