| /* |
| * JFFS2 -- Journalling Flash File System, Version 2. |
| * |
| * Copyright (C) 2001-2003 Red Hat, Inc. |
| * |
| * Created by David Woodhouse <dwmw2@infradead.org> |
| * |
| * For licensing information, see the file 'LICENCE' in this directory. |
| * |
| * $Id: gc.c,v 1.155 2005/11/07 11:14:39 gleixner Exp $ |
| * |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/slab.h> |
| #include <linux/pagemap.h> |
| #include <linux/crc32.h> |
| #include <linux/compiler.h> |
| #include <linux/stat.h> |
| #include "nodelist.h" |
| #include "compr.h" |
| |
| static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, |
| struct jffs2_inode_cache *ic, |
| struct jffs2_raw_node_ref *raw); |
| static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_inode_info *f, struct jffs2_full_dnode *fd); |
| static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); |
| static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_inode_info *f, struct jffs2_full_dirent *fd); |
| static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, |
| uint32_t start, uint32_t end); |
| static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, |
| uint32_t start, uint32_t end); |
| static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f); |
| |
| /* Called with erase_completion_lock held */ |
| static struct jffs2_eraseblock *jffs2_find_gc_block(struct jffs2_sb_info *c) |
| { |
| struct jffs2_eraseblock *ret; |
| struct list_head *nextlist = NULL; |
| int n = jiffies % 128; |
| |
| /* Pick an eraseblock to garbage collect next. This is where we'll |
| put the clever wear-levelling algorithms. Eventually. */ |
| /* We possibly want to favour the dirtier blocks more when the |
| number of free blocks is low. */ |
| again: |
| if (!list_empty(&c->bad_used_list) && c->nr_free_blocks > c->resv_blocks_gcbad) { |
| D1(printk(KERN_DEBUG "Picking block from bad_used_list to GC next\n")); |
| nextlist = &c->bad_used_list; |
| } else if (n < 50 && !list_empty(&c->erasable_list)) { |
| /* Note that most of them will have gone directly to be erased. |
| So don't favour the erasable_list _too_ much. */ |
| D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next\n")); |
| nextlist = &c->erasable_list; |
| } else if (n < 110 && !list_empty(&c->very_dirty_list)) { |
| /* Most of the time, pick one off the very_dirty list */ |
| D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next\n")); |
| nextlist = &c->very_dirty_list; |
| } else if (n < 126 && !list_empty(&c->dirty_list)) { |
| D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next\n")); |
| nextlist = &c->dirty_list; |
| } else if (!list_empty(&c->clean_list)) { |
| D1(printk(KERN_DEBUG "Picking block from clean_list to GC next\n")); |
| nextlist = &c->clean_list; |
| } else if (!list_empty(&c->dirty_list)) { |
| D1(printk(KERN_DEBUG "Picking block from dirty_list to GC next (clean_list was empty)\n")); |
| |
| nextlist = &c->dirty_list; |
| } else if (!list_empty(&c->very_dirty_list)) { |
| D1(printk(KERN_DEBUG "Picking block from very_dirty_list to GC next (clean_list and dirty_list were empty)\n")); |
| nextlist = &c->very_dirty_list; |
| } else if (!list_empty(&c->erasable_list)) { |
| D1(printk(KERN_DEBUG "Picking block from erasable_list to GC next (clean_list and {very_,}dirty_list were empty)\n")); |
| |
| nextlist = &c->erasable_list; |
| } else if (!list_empty(&c->erasable_pending_wbuf_list)) { |
| /* There are blocks are wating for the wbuf sync */ |
| D1(printk(KERN_DEBUG "Synching wbuf in order to reuse erasable_pending_wbuf_list blocks\n")); |
| spin_unlock(&c->erase_completion_lock); |
| jffs2_flush_wbuf_pad(c); |
| spin_lock(&c->erase_completion_lock); |
| goto again; |
| } else { |
| /* Eep. All were empty */ |
| D1(printk(KERN_NOTICE "jffs2: No clean, dirty _or_ erasable blocks to GC from! Where are they all?\n")); |
| return NULL; |
| } |
| |
| ret = list_entry(nextlist->next, struct jffs2_eraseblock, list); |
| list_del(&ret->list); |
| c->gcblock = ret; |
| ret->gc_node = ret->first_node; |
| if (!ret->gc_node) { |
| printk(KERN_WARNING "Eep. ret->gc_node for block at 0x%08x is NULL\n", ret->offset); |
| BUG(); |
| } |
| |
| /* Have we accidentally picked a clean block with wasted space ? */ |
| if (ret->wasted_size) { |
| D1(printk(KERN_DEBUG "Converting wasted_size %08x to dirty_size\n", ret->wasted_size)); |
| ret->dirty_size += ret->wasted_size; |
| c->wasted_size -= ret->wasted_size; |
| c->dirty_size += ret->wasted_size; |
| ret->wasted_size = 0; |
| } |
| |
| return ret; |
| } |
| |
| /* jffs2_garbage_collect_pass |
| * Make a single attempt to progress GC. Move one node, and possibly |
| * start erasing one eraseblock. |
| */ |
| int jffs2_garbage_collect_pass(struct jffs2_sb_info *c) |
| { |
| struct jffs2_inode_info *f; |
| struct jffs2_inode_cache *ic; |
| struct jffs2_eraseblock *jeb; |
| struct jffs2_raw_node_ref *raw; |
| int ret = 0, inum, nlink; |
| int xattr = 0; |
| |
| if (down_interruptible(&c->alloc_sem)) |
| return -EINTR; |
| |
| for (;;) { |
| spin_lock(&c->erase_completion_lock); |
| if (!c->unchecked_size) |
| break; |
| |
| /* We can't start doing GC yet. We haven't finished checking |
| the node CRCs etc. Do it now. */ |
| |
| /* checked_ino is protected by the alloc_sem */ |
| if (c->checked_ino > c->highest_ino && xattr) { |
| printk(KERN_CRIT "Checked all inodes but still 0x%x bytes of unchecked space?\n", |
| c->unchecked_size); |
| jffs2_dbg_dump_block_lists_nolock(c); |
| spin_unlock(&c->erase_completion_lock); |
| BUG(); |
| } |
| |
| spin_unlock(&c->erase_completion_lock); |
| |
| if (!xattr) |
| xattr = jffs2_verify_xattr(c); |
| |
| spin_lock(&c->inocache_lock); |
| |
| ic = jffs2_get_ino_cache(c, c->checked_ino++); |
| |
| if (!ic) { |
| spin_unlock(&c->inocache_lock); |
| continue; |
| } |
| |
| if (!ic->nlink) { |
| D1(printk(KERN_DEBUG "Skipping check of ino #%d with nlink zero\n", |
| ic->ino)); |
| spin_unlock(&c->inocache_lock); |
| continue; |
| } |
| switch(ic->state) { |
| case INO_STATE_CHECKEDABSENT: |
| case INO_STATE_PRESENT: |
| D1(printk(KERN_DEBUG "Skipping ino #%u already checked\n", ic->ino)); |
| spin_unlock(&c->inocache_lock); |
| continue; |
| |
| case INO_STATE_GC: |
| case INO_STATE_CHECKING: |
| printk(KERN_WARNING "Inode #%u is in state %d during CRC check phase!\n", ic->ino, ic->state); |
| spin_unlock(&c->inocache_lock); |
| BUG(); |
| |
| case INO_STATE_READING: |
| /* We need to wait for it to finish, lest we move on |
| and trigger the BUG() above while we haven't yet |
| finished checking all its nodes */ |
| D1(printk(KERN_DEBUG "Waiting for ino #%u to finish reading\n", ic->ino)); |
| /* We need to come back again for the _same_ inode. We've |
| made no progress in this case, but that should be OK */ |
| c->checked_ino--; |
| |
| up(&c->alloc_sem); |
| sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); |
| return 0; |
| |
| default: |
| BUG(); |
| |
| case INO_STATE_UNCHECKED: |
| ; |
| } |
| ic->state = INO_STATE_CHECKING; |
| spin_unlock(&c->inocache_lock); |
| |
| D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() triggering inode scan of ino#%u\n", ic->ino)); |
| |
| ret = jffs2_do_crccheck_inode(c, ic); |
| if (ret) |
| printk(KERN_WARNING "Returned error for crccheck of ino #%u. Expect badness...\n", ic->ino); |
| |
| jffs2_set_inocache_state(c, ic, INO_STATE_CHECKEDABSENT); |
| up(&c->alloc_sem); |
| return ret; |
| } |
| |
| /* First, work out which block we're garbage-collecting */ |
| jeb = c->gcblock; |
| |
| if (!jeb) |
| jeb = jffs2_find_gc_block(c); |
| |
| if (!jeb) { |
| D1 (printk(KERN_NOTICE "jffs2: Couldn't find erase block to garbage collect!\n")); |
| spin_unlock(&c->erase_completion_lock); |
| up(&c->alloc_sem); |
| return -EIO; |
| } |
| |
| D1(printk(KERN_DEBUG "GC from block %08x, used_size %08x, dirty_size %08x, free_size %08x\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->free_size)); |
| D1(if (c->nextblock) |
| printk(KERN_DEBUG "Nextblock at %08x, used_size %08x, dirty_size %08x, wasted_size %08x, free_size %08x\n", c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->free_size)); |
| |
| if (!jeb->used_size) { |
| up(&c->alloc_sem); |
| goto eraseit; |
| } |
| |
| raw = jeb->gc_node; |
| |
| while(ref_obsolete(raw)) { |
| D1(printk(KERN_DEBUG "Node at 0x%08x is obsolete... skipping\n", ref_offset(raw))); |
| raw = raw->next_phys; |
| if (unlikely(!raw)) { |
| printk(KERN_WARNING "eep. End of raw list while still supposedly nodes to GC\n"); |
| printk(KERN_WARNING "erase block at 0x%08x. free_size 0x%08x, dirty_size 0x%08x, used_size 0x%08x\n", |
| jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size); |
| jeb->gc_node = raw; |
| spin_unlock(&c->erase_completion_lock); |
| up(&c->alloc_sem); |
| BUG(); |
| } |
| } |
| jeb->gc_node = raw; |
| |
| D1(printk(KERN_DEBUG "Going to garbage collect node at 0x%08x\n", ref_offset(raw))); |
| |
| if (!raw->next_in_ino) { |
| /* Inode-less node. Clean marker, snapshot or something like that */ |
| spin_unlock(&c->erase_completion_lock); |
| if (ref_flags(raw) == REF_PRISTINE) { |
| /* It's an unknown node with JFFS2_FEATURE_RWCOMPAT_COPY */ |
| jffs2_garbage_collect_pristine(c, NULL, raw); |
| } else { |
| /* Just mark it obsolete */ |
| jffs2_mark_node_obsolete(c, raw); |
| } |
| up(&c->alloc_sem); |
| goto eraseit_lock; |
| } |
| |
| ic = jffs2_raw_ref_to_ic(raw); |
| |
| #ifdef CONFIG_JFFS2_FS_XATTR |
| /* When 'ic' refers xattr_datum/xattr_ref, this node is GCed as xattr. |
| * We can decide whether this node is inode or xattr by ic->class. */ |
| if (ic->class == RAWNODE_CLASS_XATTR_DATUM |
| || ic->class == RAWNODE_CLASS_XATTR_REF) { |
| BUG_ON(raw->next_in_ino != (void *)ic); |
| spin_unlock(&c->erase_completion_lock); |
| |
| if (ic->class == RAWNODE_CLASS_XATTR_DATUM) { |
| ret = jffs2_garbage_collect_xattr_datum(c, (struct jffs2_xattr_datum *)ic); |
| } else { |
| ret = jffs2_garbage_collect_xattr_ref(c, (struct jffs2_xattr_ref *)ic); |
| } |
| goto release_sem; |
| } |
| #endif |
| |
| /* We need to hold the inocache. Either the erase_completion_lock or |
| the inocache_lock are sufficient; we trade down since the inocache_lock |
| causes less contention. */ |
| spin_lock(&c->inocache_lock); |
| |
| spin_unlock(&c->erase_completion_lock); |
| |
| D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass collecting from block @0x%08x. Node @0x%08x(%d), ino #%u\n", jeb->offset, ref_offset(raw), ref_flags(raw), ic->ino)); |
| |
| /* Three possibilities: |
| 1. Inode is already in-core. We must iget it and do proper |
| updating to its fragtree, etc. |
| 2. Inode is not in-core, node is REF_PRISTINE. We lock the |
| inocache to prevent a read_inode(), copy the node intact. |
| 3. Inode is not in-core, node is not pristine. We must iget() |
| and take the slow path. |
| */ |
| |
| switch(ic->state) { |
| case INO_STATE_CHECKEDABSENT: |
| /* It's been checked, but it's not currently in-core. |
| We can just copy any pristine nodes, but have |
| to prevent anyone else from doing read_inode() while |
| we're at it, so we set the state accordingly */ |
| if (ref_flags(raw) == REF_PRISTINE) |
| ic->state = INO_STATE_GC; |
| else { |
| D1(printk(KERN_DEBUG "Ino #%u is absent but node not REF_PRISTINE. Reading.\n", |
| ic->ino)); |
| } |
| break; |
| |
| case INO_STATE_PRESENT: |
| /* It's in-core. GC must iget() it. */ |
| break; |
| |
| case INO_STATE_UNCHECKED: |
| case INO_STATE_CHECKING: |
| case INO_STATE_GC: |
| /* Should never happen. We should have finished checking |
| by the time we actually start doing any GC, and since |
| we're holding the alloc_sem, no other garbage collection |
| can happen. |
| */ |
| printk(KERN_CRIT "Inode #%u already in state %d in jffs2_garbage_collect_pass()!\n", |
| ic->ino, ic->state); |
| up(&c->alloc_sem); |
| spin_unlock(&c->inocache_lock); |
| BUG(); |
| |
| case INO_STATE_READING: |
| /* Someone's currently trying to read it. We must wait for |
| them to finish and then go through the full iget() route |
| to do the GC. However, sometimes read_inode() needs to get |
| the alloc_sem() (for marking nodes invalid) so we must |
| drop the alloc_sem before sleeping. */ |
| |
| up(&c->alloc_sem); |
| D1(printk(KERN_DEBUG "jffs2_garbage_collect_pass() waiting for ino #%u in state %d\n", |
| ic->ino, ic->state)); |
| sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); |
| /* And because we dropped the alloc_sem we must start again from the |
| beginning. Ponder chance of livelock here -- we're returning success |
| without actually making any progress. |
| |
| Q: What are the chances that the inode is back in INO_STATE_READING |
| again by the time we next enter this function? And that this happens |
| enough times to cause a real delay? |
| |
| A: Small enough that I don't care :) |
| */ |
| return 0; |
| } |
| |
| /* OK. Now if the inode is in state INO_STATE_GC, we are going to copy the |
| node intact, and we don't have to muck about with the fragtree etc. |
| because we know it's not in-core. If it _was_ in-core, we go through |
| all the iget() crap anyway */ |
| |
| if (ic->state == INO_STATE_GC) { |
| spin_unlock(&c->inocache_lock); |
| |
| ret = jffs2_garbage_collect_pristine(c, ic, raw); |
| |
| spin_lock(&c->inocache_lock); |
| ic->state = INO_STATE_CHECKEDABSENT; |
| wake_up(&c->inocache_wq); |
| |
| if (ret != -EBADFD) { |
| spin_unlock(&c->inocache_lock); |
| goto release_sem; |
| } |
| |
| /* Fall through if it wanted us to, with inocache_lock held */ |
| } |
| |
| /* Prevent the fairly unlikely race where the gcblock is |
| entirely obsoleted by the final close of a file which had |
| the only valid nodes in the block, followed by erasure, |
| followed by freeing of the ic because the erased block(s) |
| held _all_ the nodes of that inode.... never been seen but |
| it's vaguely possible. */ |
| |
| inum = ic->ino; |
| nlink = ic->nlink; |
| spin_unlock(&c->inocache_lock); |
| |
| f = jffs2_gc_fetch_inode(c, inum, nlink); |
| if (IS_ERR(f)) { |
| ret = PTR_ERR(f); |
| goto release_sem; |
| } |
| if (!f) { |
| ret = 0; |
| goto release_sem; |
| } |
| |
| ret = jffs2_garbage_collect_live(c, jeb, raw, f); |
| |
| jffs2_gc_release_inode(c, f); |
| |
| release_sem: |
| up(&c->alloc_sem); |
| |
| eraseit_lock: |
| /* If we've finished this block, start it erasing */ |
| spin_lock(&c->erase_completion_lock); |
| |
| eraseit: |
| if (c->gcblock && !c->gcblock->used_size) { |
| D1(printk(KERN_DEBUG "Block at 0x%08x completely obsoleted by GC. Moving to erase_pending_list\n", c->gcblock->offset)); |
| /* We're GC'ing an empty block? */ |
| list_add_tail(&c->gcblock->list, &c->erase_pending_list); |
| c->gcblock = NULL; |
| c->nr_erasing_blocks++; |
| jffs2_erase_pending_trigger(c); |
| } |
| spin_unlock(&c->erase_completion_lock); |
| |
| return ret; |
| } |
| |
| static int jffs2_garbage_collect_live(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_raw_node_ref *raw, struct jffs2_inode_info *f) |
| { |
| struct jffs2_node_frag *frag; |
| struct jffs2_full_dnode *fn = NULL; |
| struct jffs2_full_dirent *fd; |
| uint32_t start = 0, end = 0, nrfrags = 0; |
| int ret = 0; |
| |
| down(&f->sem); |
| |
| /* Now we have the lock for this inode. Check that it's still the one at the head |
| of the list. */ |
| |
| spin_lock(&c->erase_completion_lock); |
| |
| if (c->gcblock != jeb) { |
| spin_unlock(&c->erase_completion_lock); |
| D1(printk(KERN_DEBUG "GC block is no longer gcblock. Restart\n")); |
| goto upnout; |
| } |
| if (ref_obsolete(raw)) { |
| spin_unlock(&c->erase_completion_lock); |
| D1(printk(KERN_DEBUG "node to be GC'd was obsoleted in the meantime.\n")); |
| /* They'll call again */ |
| goto upnout; |
| } |
| spin_unlock(&c->erase_completion_lock); |
| |
| /* OK. Looks safe. And nobody can get us now because we have the semaphore. Move the block */ |
| if (f->metadata && f->metadata->raw == raw) { |
| fn = f->metadata; |
| ret = jffs2_garbage_collect_metadata(c, jeb, f, fn); |
| goto upnout; |
| } |
| |
| /* FIXME. Read node and do lookup? */ |
| for (frag = frag_first(&f->fragtree); frag; frag = frag_next(frag)) { |
| if (frag->node && frag->node->raw == raw) { |
| fn = frag->node; |
| end = frag->ofs + frag->size; |
| if (!nrfrags++) |
| start = frag->ofs; |
| if (nrfrags == frag->node->frags) |
| break; /* We've found them all */ |
| } |
| } |
| if (fn) { |
| if (ref_flags(raw) == REF_PRISTINE) { |
| ret = jffs2_garbage_collect_pristine(c, f->inocache, raw); |
| if (!ret) { |
| /* Urgh. Return it sensibly. */ |
| frag->node->raw = f->inocache->nodes; |
| } |
| if (ret != -EBADFD) |
| goto upnout; |
| } |
| /* We found a datanode. Do the GC */ |
| if((start >> PAGE_CACHE_SHIFT) < ((end-1) >> PAGE_CACHE_SHIFT)) { |
| /* It crosses a page boundary. Therefore, it must be a hole. */ |
| ret = jffs2_garbage_collect_hole(c, jeb, f, fn, start, end); |
| } else { |
| /* It could still be a hole. But we GC the page this way anyway */ |
| ret = jffs2_garbage_collect_dnode(c, jeb, f, fn, start, end); |
| } |
| goto upnout; |
| } |
| |
| /* Wasn't a dnode. Try dirent */ |
| for (fd = f->dents; fd; fd=fd->next) { |
| if (fd->raw == raw) |
| break; |
| } |
| |
| if (fd && fd->ino) { |
| ret = jffs2_garbage_collect_dirent(c, jeb, f, fd); |
| } else if (fd) { |
| ret = jffs2_garbage_collect_deletion_dirent(c, jeb, f, fd); |
| } else { |
| printk(KERN_WARNING "Raw node at 0x%08x wasn't in node lists for ino #%u\n", |
| ref_offset(raw), f->inocache->ino); |
| if (ref_obsolete(raw)) { |
| printk(KERN_WARNING "But it's obsolete so we don't mind too much\n"); |
| } else { |
| jffs2_dbg_dump_node(c, ref_offset(raw)); |
| BUG(); |
| } |
| } |
| upnout: |
| up(&f->sem); |
| |
| return ret; |
| } |
| |
| static int jffs2_garbage_collect_pristine(struct jffs2_sb_info *c, |
| struct jffs2_inode_cache *ic, |
| struct jffs2_raw_node_ref *raw) |
| { |
| union jffs2_node_union *node; |
| struct jffs2_raw_node_ref *nraw; |
| size_t retlen; |
| int ret; |
| uint32_t phys_ofs, alloclen; |
| uint32_t crc, rawlen; |
| int retried = 0; |
| |
| D1(printk(KERN_DEBUG "Going to GC REF_PRISTINE node at 0x%08x\n", ref_offset(raw))); |
| |
| alloclen = rawlen = ref_totlen(c, c->gcblock, raw); |
| |
| /* Ask for a small amount of space (or the totlen if smaller) because we |
| don't want to force wastage of the end of a block if splitting would |
| work. */ |
| if (ic && alloclen > sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN) |
| alloclen = sizeof(struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN; |
| |
| ret = jffs2_reserve_space_gc(c, alloclen, &phys_ofs, &alloclen, rawlen); |
| /* 'rawlen' is not the exact summary size; it is only an upper estimation */ |
| |
| if (ret) |
| return ret; |
| |
| if (alloclen < rawlen) { |
| /* Doesn't fit untouched. We'll go the old route and split it */ |
| return -EBADFD; |
| } |
| |
| node = kmalloc(rawlen, GFP_KERNEL); |
| if (!node) |
| return -ENOMEM; |
| |
| ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)node); |
| if (!ret && retlen != rawlen) |
| ret = -EIO; |
| if (ret) |
| goto out_node; |
| |
| crc = crc32(0, node, sizeof(struct jffs2_unknown_node)-4); |
| if (je32_to_cpu(node->u.hdr_crc) != crc) { |
| printk(KERN_WARNING "Header CRC failed on REF_PRISTINE node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| ref_offset(raw), je32_to_cpu(node->u.hdr_crc), crc); |
| goto bail; |
| } |
| |
| switch(je16_to_cpu(node->u.nodetype)) { |
| case JFFS2_NODETYPE_INODE: |
| crc = crc32(0, node, sizeof(node->i)-8); |
| if (je32_to_cpu(node->i.node_crc) != crc) { |
| printk(KERN_WARNING "Node CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| ref_offset(raw), je32_to_cpu(node->i.node_crc), crc); |
| goto bail; |
| } |
| |
| if (je32_to_cpu(node->i.dsize)) { |
| crc = crc32(0, node->i.data, je32_to_cpu(node->i.csize)); |
| if (je32_to_cpu(node->i.data_crc) != crc) { |
| printk(KERN_WARNING "Data CRC failed on REF_PRISTINE data node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| ref_offset(raw), je32_to_cpu(node->i.data_crc), crc); |
| goto bail; |
| } |
| } |
| break; |
| |
| case JFFS2_NODETYPE_DIRENT: |
| crc = crc32(0, node, sizeof(node->d)-8); |
| if (je32_to_cpu(node->d.node_crc) != crc) { |
| printk(KERN_WARNING "Node CRC failed on REF_PRISTINE dirent node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| ref_offset(raw), je32_to_cpu(node->d.node_crc), crc); |
| goto bail; |
| } |
| |
| if (node->d.nsize) { |
| crc = crc32(0, node->d.name, node->d.nsize); |
| if (je32_to_cpu(node->d.name_crc) != crc) { |
| printk(KERN_WARNING "Name CRC failed on REF_PRISTINE dirent ode at 0x%08x: Read 0x%08x, calculated 0x%08x\n", |
| ref_offset(raw), je32_to_cpu(node->d.name_crc), crc); |
| goto bail; |
| } |
| } |
| break; |
| default: |
| /* If it's inode-less, we don't _know_ what it is. Just copy it intact */ |
| if (ic) { |
| printk(KERN_WARNING "Unknown node type for REF_PRISTINE node at 0x%08x: 0x%04x\n", |
| ref_offset(raw), je16_to_cpu(node->u.nodetype)); |
| goto bail; |
| } |
| } |
| |
| nraw = jffs2_alloc_raw_node_ref(); |
| if (!nraw) { |
| ret = -ENOMEM; |
| goto out_node; |
| } |
| |
| /* OK, all the CRCs are good; this node can just be copied as-is. */ |
| retry: |
| nraw->flash_offset = phys_ofs; |
| |
| ret = jffs2_flash_write(c, phys_ofs, rawlen, &retlen, (char *)node); |
| |
| if (ret || (retlen != rawlen)) { |
| printk(KERN_NOTICE "Write of %d bytes at 0x%08x failed. returned %d, retlen %zd\n", |
| rawlen, phys_ofs, ret, retlen); |
| if (retlen) { |
| nraw->flash_offset |= REF_OBSOLETE; |
| jffs2_add_physical_node_ref(c, nraw, rawlen, NULL); |
| jffs2_mark_node_obsolete(c, nraw); |
| } else { |
| printk(KERN_NOTICE "Not marking the space at 0x%08x as dirty because the flash driver returned retlen zero\n", nraw->flash_offset); |
| jffs2_free_raw_node_ref(nraw); |
| } |
| if (!retried && (nraw = jffs2_alloc_raw_node_ref())) { |
| /* Try to reallocate space and retry */ |
| uint32_t dummy; |
| struct jffs2_eraseblock *jeb = &c->blocks[phys_ofs / c->sector_size]; |
| |
| retried = 1; |
| |
| D1(printk(KERN_DEBUG "Retrying failed write of REF_PRISTINE node.\n")); |
| |
| jffs2_dbg_acct_sanity_check(c,jeb); |
| jffs2_dbg_acct_paranoia_check(c, jeb); |
| |
| ret = jffs2_reserve_space_gc(c, rawlen, &phys_ofs, &dummy, rawlen); |
| /* this is not the exact summary size of it, |
| it is only an upper estimation */ |
| |
| if (!ret) { |
| D1(printk(KERN_DEBUG "Allocated space at 0x%08x to retry failed write.\n", phys_ofs)); |
| |
| jffs2_dbg_acct_sanity_check(c,jeb); |
| jffs2_dbg_acct_paranoia_check(c, jeb); |
| |
| goto retry; |
| } |
| D1(printk(KERN_DEBUG "Failed to allocate space to retry failed write: %d!\n", ret)); |
| jffs2_free_raw_node_ref(nraw); |
| } |
| |
| jffs2_free_raw_node_ref(nraw); |
| if (!ret) |
| ret = -EIO; |
| goto out_node; |
| } |
| nraw->flash_offset |= REF_PRISTINE; |
| jffs2_add_physical_node_ref(c, nraw, rawlen, ic); |
| |
| jffs2_mark_node_obsolete(c, raw); |
| D1(printk(KERN_DEBUG "WHEEE! GC REF_PRISTINE node at 0x%08x succeeded\n", ref_offset(raw))); |
| |
| out_node: |
| kfree(node); |
| return ret; |
| bail: |
| ret = -EBADFD; |
| goto out_node; |
| } |
| |
| static int jffs2_garbage_collect_metadata(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_inode_info *f, struct jffs2_full_dnode *fn) |
| { |
| struct jffs2_full_dnode *new_fn; |
| struct jffs2_raw_inode ri; |
| struct jffs2_node_frag *last_frag; |
| union jffs2_device_node dev; |
| char *mdata = NULL, mdatalen = 0; |
| uint32_t alloclen, phys_ofs, ilen; |
| int ret; |
| |
| if (S_ISBLK(JFFS2_F_I_MODE(f)) || |
| S_ISCHR(JFFS2_F_I_MODE(f)) ) { |
| /* For these, we don't actually need to read the old node */ |
| mdatalen = jffs2_encode_dev(&dev, JFFS2_F_I_RDEV(f)); |
| mdata = (char *)&dev; |
| D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bytes of kdev_t\n", mdatalen)); |
| } else if (S_ISLNK(JFFS2_F_I_MODE(f))) { |
| mdatalen = fn->size; |
| mdata = kmalloc(fn->size, GFP_KERNEL); |
| if (!mdata) { |
| printk(KERN_WARNING "kmalloc of mdata failed in jffs2_garbage_collect_metadata()\n"); |
| return -ENOMEM; |
| } |
| ret = jffs2_read_dnode(c, f, fn, mdata, 0, mdatalen); |
| if (ret) { |
| printk(KERN_WARNING "read of old metadata failed in jffs2_garbage_collect_metadata(): %d\n", ret); |
| kfree(mdata); |
| return ret; |
| } |
| D1(printk(KERN_DEBUG "jffs2_garbage_collect_metadata(): Writing %d bites of symlink target\n", mdatalen)); |
| |
| } |
| |
| ret = jffs2_reserve_space_gc(c, sizeof(ri) + mdatalen, &phys_ofs, &alloclen, |
| JFFS2_SUMMARY_INODE_SIZE); |
| if (ret) { |
| printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_metadata failed: %d\n", |
| sizeof(ri)+ mdatalen, ret); |
| goto out; |
| } |
| |
| last_frag = frag_last(&f->fragtree); |
| if (last_frag) |
| /* Fetch the inode length from the fragtree rather then |
| * from i_size since i_size may have not been updated yet */ |
| ilen = last_frag->ofs + last_frag->size; |
| else |
| ilen = JFFS2_F_I_SIZE(f); |
| |
| memset(&ri, 0, sizeof(ri)); |
| ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); |
| ri.totlen = cpu_to_je32(sizeof(ri) + mdatalen); |
| ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); |
| |
| ri.ino = cpu_to_je32(f->inocache->ino); |
| ri.version = cpu_to_je32(++f->highest_version); |
| ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); |
| ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); |
| ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); |
| ri.isize = cpu_to_je32(ilen); |
| ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); |
| ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); |
| ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); |
| ri.offset = cpu_to_je32(0); |
| ri.csize = cpu_to_je32(mdatalen); |
| ri.dsize = cpu_to_je32(mdatalen); |
| ri.compr = JFFS2_COMPR_NONE; |
| ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); |
| ri.data_crc = cpu_to_je32(crc32(0, mdata, mdatalen)); |
| |
| new_fn = jffs2_write_dnode(c, f, &ri, mdata, mdatalen, phys_ofs, ALLOC_GC); |
| |
| if (IS_ERR(new_fn)) { |
| printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); |
| ret = PTR_ERR(new_fn); |
| goto out; |
| } |
| jffs2_mark_node_obsolete(c, fn->raw); |
| jffs2_free_full_dnode(fn); |
| f->metadata = new_fn; |
| out: |
| if (S_ISLNK(JFFS2_F_I_MODE(f))) |
| kfree(mdata); |
| return ret; |
| } |
| |
| static int jffs2_garbage_collect_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) |
| { |
| struct jffs2_full_dirent *new_fd; |
| struct jffs2_raw_dirent rd; |
| uint32_t alloclen, phys_ofs; |
| int ret; |
| |
| rd.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| rd.nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT); |
| rd.nsize = strlen(fd->name); |
| rd.totlen = cpu_to_je32(sizeof(rd) + rd.nsize); |
| rd.hdr_crc = cpu_to_je32(crc32(0, &rd, sizeof(struct jffs2_unknown_node)-4)); |
| |
| rd.pino = cpu_to_je32(f->inocache->ino); |
| rd.version = cpu_to_je32(++f->highest_version); |
| rd.ino = cpu_to_je32(fd->ino); |
| /* If the times on this inode were set by explicit utime() they can be different, |
| so refrain from splatting them. */ |
| if (JFFS2_F_I_MTIME(f) == JFFS2_F_I_CTIME(f)) |
| rd.mctime = cpu_to_je32(JFFS2_F_I_MTIME(f)); |
| else |
| rd.mctime = cpu_to_je32(0); |
| rd.type = fd->type; |
| rd.node_crc = cpu_to_je32(crc32(0, &rd, sizeof(rd)-8)); |
| rd.name_crc = cpu_to_je32(crc32(0, fd->name, rd.nsize)); |
| |
| ret = jffs2_reserve_space_gc(c, sizeof(rd)+rd.nsize, &phys_ofs, &alloclen, |
| JFFS2_SUMMARY_DIRENT_SIZE(rd.nsize)); |
| if (ret) { |
| printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dirent failed: %d\n", |
| sizeof(rd)+rd.nsize, ret); |
| return ret; |
| } |
| new_fd = jffs2_write_dirent(c, f, &rd, fd->name, rd.nsize, phys_ofs, ALLOC_GC); |
| |
| if (IS_ERR(new_fd)) { |
| printk(KERN_WARNING "jffs2_write_dirent in garbage_collect_dirent failed: %ld\n", PTR_ERR(new_fd)); |
| return PTR_ERR(new_fd); |
| } |
| jffs2_add_fd_to_list(c, new_fd, &f->dents); |
| return 0; |
| } |
| |
| static int jffs2_garbage_collect_deletion_dirent(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_inode_info *f, struct jffs2_full_dirent *fd) |
| { |
| struct jffs2_full_dirent **fdp = &f->dents; |
| int found = 0; |
| |
| /* On a medium where we can't actually mark nodes obsolete |
| pernamently, such as NAND flash, we need to work out |
| whether this deletion dirent is still needed to actively |
| delete a 'real' dirent with the same name that's still |
| somewhere else on the flash. */ |
| if (!jffs2_can_mark_obsolete(c)) { |
| struct jffs2_raw_dirent *rd; |
| struct jffs2_raw_node_ref *raw; |
| int ret; |
| size_t retlen; |
| int name_len = strlen(fd->name); |
| uint32_t name_crc = crc32(0, fd->name, name_len); |
| uint32_t rawlen = ref_totlen(c, jeb, fd->raw); |
| |
| rd = kmalloc(rawlen, GFP_KERNEL); |
| if (!rd) |
| return -ENOMEM; |
| |
| /* Prevent the erase code from nicking the obsolete node refs while |
| we're looking at them. I really don't like this extra lock but |
| can't see any alternative. Suggestions on a postcard to... */ |
| down(&c->erase_free_sem); |
| |
| for (raw = f->inocache->nodes; raw != (void *)f->inocache; raw = raw->next_in_ino) { |
| |
| /* We only care about obsolete ones */ |
| if (!(ref_obsolete(raw))) |
| continue; |
| |
| /* Any dirent with the same name is going to have the same length... */ |
| if (ref_totlen(c, NULL, raw) != rawlen) |
| continue; |
| |
| /* Doesn't matter if there's one in the same erase block. We're going to |
| delete it too at the same time. */ |
| if (SECTOR_ADDR(raw->flash_offset) == SECTOR_ADDR(fd->raw->flash_offset)) |
| continue; |
| |
| D1(printk(KERN_DEBUG "Check potential deletion dirent at %08x\n", ref_offset(raw))); |
| |
| /* This is an obsolete node belonging to the same directory, and it's of the right |
| length. We need to take a closer look...*/ |
| ret = jffs2_flash_read(c, ref_offset(raw), rawlen, &retlen, (char *)rd); |
| if (ret) { |
| printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Read error (%d) reading obsolete node at %08x\n", ret, ref_offset(raw)); |
| /* If we can't read it, we don't need to continue to obsolete it. Continue */ |
| continue; |
| } |
| if (retlen != rawlen) { |
| printk(KERN_WARNING "jffs2_g_c_deletion_dirent(): Short read (%zd not %u) reading header from obsolete node at %08x\n", |
| retlen, rawlen, ref_offset(raw)); |
| continue; |
| } |
| |
| if (je16_to_cpu(rd->nodetype) != JFFS2_NODETYPE_DIRENT) |
| continue; |
| |
| /* If the name CRC doesn't match, skip */ |
| if (je32_to_cpu(rd->name_crc) != name_crc) |
| continue; |
| |
| /* If the name length doesn't match, or it's another deletion dirent, skip */ |
| if (rd->nsize != name_len || !je32_to_cpu(rd->ino)) |
| continue; |
| |
| /* OK, check the actual name now */ |
| if (memcmp(rd->name, fd->name, name_len)) |
| continue; |
| |
| /* OK. The name really does match. There really is still an older node on |
| the flash which our deletion dirent obsoletes. So we have to write out |
| a new deletion dirent to replace it */ |
| up(&c->erase_free_sem); |
| |
| D1(printk(KERN_DEBUG "Deletion dirent at %08x still obsoletes real dirent \"%s\" at %08x for ino #%u\n", |
| ref_offset(fd->raw), fd->name, ref_offset(raw), je32_to_cpu(rd->ino))); |
| kfree(rd); |
| |
| return jffs2_garbage_collect_dirent(c, jeb, f, fd); |
| } |
| |
| up(&c->erase_free_sem); |
| kfree(rd); |
| } |
| |
| /* FIXME: If we're deleting a dirent which contains the current mtime and ctime, |
| we should update the metadata node with those times accordingly */ |
| |
| /* No need for it any more. Just mark it obsolete and remove it from the list */ |
| while (*fdp) { |
| if ((*fdp) == fd) { |
| found = 1; |
| *fdp = fd->next; |
| break; |
| } |
| fdp = &(*fdp)->next; |
| } |
| if (!found) { |
| printk(KERN_WARNING "Deletion dirent \"%s\" not found in list for ino #%u\n", fd->name, f->inocache->ino); |
| } |
| jffs2_mark_node_obsolete(c, fd->raw); |
| jffs2_free_full_dirent(fd); |
| return 0; |
| } |
| |
| static int jffs2_garbage_collect_hole(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, |
| uint32_t start, uint32_t end) |
| { |
| struct jffs2_raw_inode ri; |
| struct jffs2_node_frag *frag; |
| struct jffs2_full_dnode *new_fn; |
| uint32_t alloclen, phys_ofs, ilen; |
| int ret; |
| |
| D1(printk(KERN_DEBUG "Writing replacement hole node for ino #%u from offset 0x%x to 0x%x\n", |
| f->inocache->ino, start, end)); |
| |
| memset(&ri, 0, sizeof(ri)); |
| |
| if(fn->frags > 1) { |
| size_t readlen; |
| uint32_t crc; |
| /* It's partially obsoleted by a later write. So we have to |
| write it out again with the _same_ version as before */ |
| ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(ri), &readlen, (char *)&ri); |
| if (readlen != sizeof(ri) || ret) { |
| printk(KERN_WARNING "Node read failed in jffs2_garbage_collect_hole. Ret %d, retlen %zd. Data will be lost by writing new hole node\n", ret, readlen); |
| goto fill; |
| } |
| if (je16_to_cpu(ri.nodetype) != JFFS2_NODETYPE_INODE) { |
| printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had node type 0x%04x instead of JFFS2_NODETYPE_INODE(0x%04x)\n", |
| ref_offset(fn->raw), |
| je16_to_cpu(ri.nodetype), JFFS2_NODETYPE_INODE); |
| return -EIO; |
| } |
| if (je32_to_cpu(ri.totlen) != sizeof(ri)) { |
| printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had totlen 0x%x instead of expected 0x%zx\n", |
| ref_offset(fn->raw), |
| je32_to_cpu(ri.totlen), sizeof(ri)); |
| return -EIO; |
| } |
| crc = crc32(0, &ri, sizeof(ri)-8); |
| if (crc != je32_to_cpu(ri.node_crc)) { |
| printk(KERN_WARNING "jffs2_garbage_collect_hole: Node at 0x%08x had CRC 0x%08x which doesn't match calculated CRC 0x%08x\n", |
| ref_offset(fn->raw), |
| je32_to_cpu(ri.node_crc), crc); |
| /* FIXME: We could possibly deal with this by writing new holes for each frag */ |
| printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", |
| start, end, f->inocache->ino); |
| goto fill; |
| } |
| if (ri.compr != JFFS2_COMPR_ZERO) { |
| printk(KERN_WARNING "jffs2_garbage_collect_hole: Node 0x%08x wasn't a hole node!\n", ref_offset(fn->raw)); |
| printk(KERN_WARNING "Data in the range 0x%08x to 0x%08x of inode #%u will be lost\n", |
| start, end, f->inocache->ino); |
| goto fill; |
| } |
| } else { |
| fill: |
| ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); |
| ri.totlen = cpu_to_je32(sizeof(ri)); |
| ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); |
| |
| ri.ino = cpu_to_je32(f->inocache->ino); |
| ri.version = cpu_to_je32(++f->highest_version); |
| ri.offset = cpu_to_je32(start); |
| ri.dsize = cpu_to_je32(end - start); |
| ri.csize = cpu_to_je32(0); |
| ri.compr = JFFS2_COMPR_ZERO; |
| } |
| |
| frag = frag_last(&f->fragtree); |
| if (frag) |
| /* Fetch the inode length from the fragtree rather then |
| * from i_size since i_size may have not been updated yet */ |
| ilen = frag->ofs + frag->size; |
| else |
| ilen = JFFS2_F_I_SIZE(f); |
| |
| ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); |
| ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); |
| ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); |
| ri.isize = cpu_to_je32(ilen); |
| ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); |
| ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); |
| ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); |
| ri.data_crc = cpu_to_je32(0); |
| ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); |
| |
| ret = jffs2_reserve_space_gc(c, sizeof(ri), &phys_ofs, &alloclen, |
| JFFS2_SUMMARY_INODE_SIZE); |
| if (ret) { |
| printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_hole failed: %d\n", |
| sizeof(ri), ret); |
| return ret; |
| } |
| new_fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_GC); |
| |
| if (IS_ERR(new_fn)) { |
| printk(KERN_WARNING "Error writing new hole node: %ld\n", PTR_ERR(new_fn)); |
| return PTR_ERR(new_fn); |
| } |
| if (je32_to_cpu(ri.version) == f->highest_version) { |
| jffs2_add_full_dnode_to_inode(c, f, new_fn); |
| if (f->metadata) { |
| jffs2_mark_node_obsolete(c, f->metadata->raw); |
| jffs2_free_full_dnode(f->metadata); |
| f->metadata = NULL; |
| } |
| return 0; |
| } |
| |
| /* |
| * We should only get here in the case where the node we are |
| * replacing had more than one frag, so we kept the same version |
| * number as before. (Except in case of error -- see 'goto fill;' |
| * above.) |
| */ |
| D1(if(unlikely(fn->frags <= 1)) { |
| printk(KERN_WARNING "jffs2_garbage_collect_hole: Replacing fn with %d frag(s) but new ver %d != highest_version %d of ino #%d\n", |
| fn->frags, je32_to_cpu(ri.version), f->highest_version, |
| je32_to_cpu(ri.ino)); |
| }); |
| |
| /* This is a partially-overlapped hole node. Mark it REF_NORMAL not REF_PRISTINE */ |
| mark_ref_normal(new_fn->raw); |
| |
| for (frag = jffs2_lookup_node_frag(&f->fragtree, fn->ofs); |
| frag; frag = frag_next(frag)) { |
| if (frag->ofs > fn->size + fn->ofs) |
| break; |
| if (frag->node == fn) { |
| frag->node = new_fn; |
| new_fn->frags++; |
| fn->frags--; |
| } |
| } |
| if (fn->frags) { |
| printk(KERN_WARNING "jffs2_garbage_collect_hole: Old node still has frags!\n"); |
| BUG(); |
| } |
| if (!new_fn->frags) { |
| printk(KERN_WARNING "jffs2_garbage_collect_hole: New node has no frags!\n"); |
| BUG(); |
| } |
| |
| jffs2_mark_node_obsolete(c, fn->raw); |
| jffs2_free_full_dnode(fn); |
| |
| return 0; |
| } |
| |
| static int jffs2_garbage_collect_dnode(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, |
| struct jffs2_inode_info *f, struct jffs2_full_dnode *fn, |
| uint32_t start, uint32_t end) |
| { |
| struct jffs2_full_dnode *new_fn; |
| struct jffs2_raw_inode ri; |
| uint32_t alloclen, phys_ofs, offset, orig_end, orig_start; |
| int ret = 0; |
| unsigned char *comprbuf = NULL, *writebuf; |
| unsigned long pg; |
| unsigned char *pg_ptr; |
| |
| memset(&ri, 0, sizeof(ri)); |
| |
| D1(printk(KERN_DEBUG "Writing replacement dnode for ino #%u from offset 0x%x to 0x%x\n", |
| f->inocache->ino, start, end)); |
| |
| orig_end = end; |
| orig_start = start; |
| |
| if (c->nr_free_blocks + c->nr_erasing_blocks > c->resv_blocks_gcmerge) { |
| /* Attempt to do some merging. But only expand to cover logically |
| adjacent frags if the block containing them is already considered |
| to be dirty. Otherwise we end up with GC just going round in |
| circles dirtying the nodes it already wrote out, especially |
| on NAND where we have small eraseblocks and hence a much higher |
| chance of nodes having to be split to cross boundaries. */ |
| |
| struct jffs2_node_frag *frag; |
| uint32_t min, max; |
| |
| min = start & ~(PAGE_CACHE_SIZE-1); |
| max = min + PAGE_CACHE_SIZE; |
| |
| frag = jffs2_lookup_node_frag(&f->fragtree, start); |
| |
| /* BUG_ON(!frag) but that'll happen anyway... */ |
| |
| BUG_ON(frag->ofs != start); |
| |
| /* First grow down... */ |
| while((frag = frag_prev(frag)) && frag->ofs >= min) { |
| |
| /* If the previous frag doesn't even reach the beginning, there's |
| excessive fragmentation. Just merge. */ |
| if (frag->ofs > min) { |
| D1(printk(KERN_DEBUG "Expanding down to cover partial frag (0x%x-0x%x)\n", |
| frag->ofs, frag->ofs+frag->size)); |
| start = frag->ofs; |
| continue; |
| } |
| /* OK. This frag holds the first byte of the page. */ |
| if (!frag->node || !frag->node->raw) { |
| D1(printk(KERN_DEBUG "First frag in page is hole (0x%x-0x%x). Not expanding down.\n", |
| frag->ofs, frag->ofs+frag->size)); |
| break; |
| } else { |
| |
| /* OK, it's a frag which extends to the beginning of the page. Does it live |
| in a block which is still considered clean? If so, don't obsolete it. |
| If not, cover it anyway. */ |
| |
| struct jffs2_raw_node_ref *raw = frag->node->raw; |
| struct jffs2_eraseblock *jeb; |
| |
| jeb = &c->blocks[raw->flash_offset / c->sector_size]; |
| |
| if (jeb == c->gcblock) { |
| D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in gcblock at %08x\n", |
| frag->ofs, frag->ofs+frag->size, ref_offset(raw))); |
| start = frag->ofs; |
| break; |
| } |
| if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { |
| D1(printk(KERN_DEBUG "Not expanding down to cover frag (0x%x-0x%x) in clean block %08x\n", |
| frag->ofs, frag->ofs+frag->size, jeb->offset)); |
| break; |
| } |
| |
| D1(printk(KERN_DEBUG "Expanding down to cover frag (0x%x-0x%x) in dirty block %08x\n", |
| frag->ofs, frag->ofs+frag->size, jeb->offset)); |
| start = frag->ofs; |
| break; |
| } |
| } |
| |
| /* ... then up */ |
| |
| /* Find last frag which is actually part of the node we're to GC. */ |
| frag = jffs2_lookup_node_frag(&f->fragtree, end-1); |
| |
| while((frag = frag_next(frag)) && frag->ofs+frag->size <= max) { |
| |
| /* If the previous frag doesn't even reach the beginning, there's lots |
| of fragmentation. Just merge. */ |
| if (frag->ofs+frag->size < max) { |
| D1(printk(KERN_DEBUG "Expanding up to cover partial frag (0x%x-0x%x)\n", |
| frag->ofs, frag->ofs+frag->size)); |
| end = frag->ofs + frag->size; |
| continue; |
| } |
| |
| if (!frag->node || !frag->node->raw) { |
| D1(printk(KERN_DEBUG "Last frag in page is hole (0x%x-0x%x). Not expanding up.\n", |
| frag->ofs, frag->ofs+frag->size)); |
| break; |
| } else { |
| |
| /* OK, it's a frag which extends to the beginning of the page. Does it live |
| in a block which is still considered clean? If so, don't obsolete it. |
| If not, cover it anyway. */ |
| |
| struct jffs2_raw_node_ref *raw = frag->node->raw; |
| struct jffs2_eraseblock *jeb; |
| |
| jeb = &c->blocks[raw->flash_offset / c->sector_size]; |
| |
| if (jeb == c->gcblock) { |
| D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in gcblock at %08x\n", |
| frag->ofs, frag->ofs+frag->size, ref_offset(raw))); |
| end = frag->ofs + frag->size; |
| break; |
| } |
| if (!ISDIRTY(jeb->dirty_size + jeb->wasted_size)) { |
| D1(printk(KERN_DEBUG "Not expanding up to cover frag (0x%x-0x%x) in clean block %08x\n", |
| frag->ofs, frag->ofs+frag->size, jeb->offset)); |
| break; |
| } |
| |
| D1(printk(KERN_DEBUG "Expanding up to cover frag (0x%x-0x%x) in dirty block %08x\n", |
| frag->ofs, frag->ofs+frag->size, jeb->offset)); |
| end = frag->ofs + frag->size; |
| break; |
| } |
| } |
| D1(printk(KERN_DEBUG "Expanded dnode to write from (0x%x-0x%x) to (0x%x-0x%x)\n", |
| orig_start, orig_end, start, end)); |
| |
| D1(BUG_ON(end > frag_last(&f->fragtree)->ofs + frag_last(&f->fragtree)->size)); |
| BUG_ON(end < orig_end); |
| BUG_ON(start > orig_start); |
| } |
| |
| /* First, use readpage() to read the appropriate page into the page cache */ |
| /* Q: What happens if we actually try to GC the _same_ page for which commit_write() |
| * triggered garbage collection in the first place? |
| * A: I _think_ it's OK. read_cache_page shouldn't deadlock, we'll write out the |
| * page OK. We'll actually write it out again in commit_write, which is a little |
| * suboptimal, but at least we're correct. |
| */ |
| pg_ptr = jffs2_gc_fetch_page(c, f, start, &pg); |
| |
| if (IS_ERR(pg_ptr)) { |
| printk(KERN_WARNING "read_cache_page() returned error: %ld\n", PTR_ERR(pg_ptr)); |
| return PTR_ERR(pg_ptr); |
| } |
| |
| offset = start; |
| while(offset < orig_end) { |
| uint32_t datalen; |
| uint32_t cdatalen; |
| uint16_t comprtype = JFFS2_COMPR_NONE; |
| |
| ret = jffs2_reserve_space_gc(c, sizeof(ri) + JFFS2_MIN_DATA_LEN, &phys_ofs, |
| &alloclen, JFFS2_SUMMARY_INODE_SIZE); |
| |
| if (ret) { |
| printk(KERN_WARNING "jffs2_reserve_space_gc of %zd bytes for garbage_collect_dnode failed: %d\n", |
| sizeof(ri)+ JFFS2_MIN_DATA_LEN, ret); |
| break; |
| } |
| cdatalen = min_t(uint32_t, alloclen - sizeof(ri), end - offset); |
| datalen = end - offset; |
| |
| writebuf = pg_ptr + (offset & (PAGE_CACHE_SIZE -1)); |
| |
| comprtype = jffs2_compress(c, f, writebuf, &comprbuf, &datalen, &cdatalen); |
| |
| ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); |
| ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE); |
| ri.totlen = cpu_to_je32(sizeof(ri) + cdatalen); |
| ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4)); |
| |
| ri.ino = cpu_to_je32(f->inocache->ino); |
| ri.version = cpu_to_je32(++f->highest_version); |
| ri.mode = cpu_to_jemode(JFFS2_F_I_MODE(f)); |
| ri.uid = cpu_to_je16(JFFS2_F_I_UID(f)); |
| ri.gid = cpu_to_je16(JFFS2_F_I_GID(f)); |
| ri.isize = cpu_to_je32(JFFS2_F_I_SIZE(f)); |
| ri.atime = cpu_to_je32(JFFS2_F_I_ATIME(f)); |
| ri.ctime = cpu_to_je32(JFFS2_F_I_CTIME(f)); |
| ri.mtime = cpu_to_je32(JFFS2_F_I_MTIME(f)); |
| ri.offset = cpu_to_je32(offset); |
| ri.csize = cpu_to_je32(cdatalen); |
| ri.dsize = cpu_to_je32(datalen); |
| ri.compr = comprtype & 0xff; |
| ri.usercompr = (comprtype >> 8) & 0xff; |
| ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8)); |
| ri.data_crc = cpu_to_je32(crc32(0, comprbuf, cdatalen)); |
| |
| new_fn = jffs2_write_dnode(c, f, &ri, comprbuf, cdatalen, phys_ofs, ALLOC_GC); |
| |
| jffs2_free_comprbuf(comprbuf, writebuf); |
| |
| if (IS_ERR(new_fn)) { |
| printk(KERN_WARNING "Error writing new dnode: %ld\n", PTR_ERR(new_fn)); |
| ret = PTR_ERR(new_fn); |
| break; |
| } |
| ret = jffs2_add_full_dnode_to_inode(c, f, new_fn); |
| offset += datalen; |
| if (f->metadata) { |
| jffs2_mark_node_obsolete(c, f->metadata->raw); |
| jffs2_free_full_dnode(f->metadata); |
| f->metadata = NULL; |
| } |
| } |
| |
| jffs2_gc_release_page(c, pg_ptr, &pg); |
| return ret; |
| } |