| /* |
| * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. |
| * Copyright 2004-2011 Red Hat, Inc. |
| * |
| * This copyrighted material is made available to anyone wishing to use, |
| * modify, copy, or redistribute it subject to the terms and conditions |
| * of the GNU General Public License version 2. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/dlm.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <linux/delay.h> |
| #include <linux/gfs2_ondisk.h> |
| |
| #include "incore.h" |
| #include "glock.h" |
| #include "util.h" |
| #include "sys.h" |
| #include "trace_gfs2.h" |
| |
| extern struct workqueue_struct *gfs2_control_wq; |
| |
| /** |
| * gfs2_update_stats - Update time based stats |
| * @mv: Pointer to mean/variance structure to update |
| * @sample: New data to include |
| * |
| * @delta is the difference between the current rtt sample and the |
| * running average srtt. We add 1/8 of that to the srtt in order to |
| * update the current srtt estimate. The varience estimate is a bit |
| * more complicated. We subtract the abs value of the @delta from |
| * the current variance estimate and add 1/4 of that to the running |
| * total. |
| * |
| * Note that the index points at the array entry containing the smoothed |
| * mean value, and the variance is always in the following entry |
| * |
| * Reference: TCP/IP Illustrated, vol 2, p. 831,832 |
| * All times are in units of integer nanoseconds. Unlike the TCP/IP case, |
| * they are not scaled fixed point. |
| */ |
| |
| static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, |
| s64 sample) |
| { |
| s64 delta = sample - s->stats[index]; |
| s->stats[index] += (delta >> 3); |
| index++; |
| s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2); |
| } |
| |
| /** |
| * gfs2_update_reply_times - Update locking statistics |
| * @gl: The glock to update |
| * |
| * This assumes that gl->gl_dstamp has been set earlier. |
| * |
| * The rtt (lock round trip time) is an estimate of the time |
| * taken to perform a dlm lock request. We update it on each |
| * reply from the dlm. |
| * |
| * The blocking flag is set on the glock for all dlm requests |
| * which may potentially block due to lock requests from other nodes. |
| * DLM requests where the current lock state is exclusive, the |
| * requested state is null (or unlocked) or where the TRY or |
| * TRY_1CB flags are set are classified as non-blocking. All |
| * other DLM requests are counted as (potentially) blocking. |
| */ |
| static inline void gfs2_update_reply_times(struct gfs2_glock *gl) |
| { |
| struct gfs2_pcpu_lkstats *lks; |
| const unsigned gltype = gl->gl_name.ln_type; |
| unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ? |
| GFS2_LKS_SRTTB : GFS2_LKS_SRTT; |
| s64 rtt; |
| |
| preempt_disable(); |
| rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); |
| lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats); |
| gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ |
| gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ |
| preempt_enable(); |
| |
| trace_gfs2_glock_lock_time(gl, rtt); |
| } |
| |
| /** |
| * gfs2_update_request_times - Update locking statistics |
| * @gl: The glock to update |
| * |
| * The irt (lock inter-request times) measures the average time |
| * between requests to the dlm. It is updated immediately before |
| * each dlm call. |
| */ |
| |
| static inline void gfs2_update_request_times(struct gfs2_glock *gl) |
| { |
| struct gfs2_pcpu_lkstats *lks; |
| const unsigned gltype = gl->gl_name.ln_type; |
| ktime_t dstamp; |
| s64 irt; |
| |
| preempt_disable(); |
| dstamp = gl->gl_dstamp; |
| gl->gl_dstamp = ktime_get_real(); |
| irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); |
| lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats); |
| gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ |
| gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ |
| preempt_enable(); |
| } |
| |
| static void gdlm_ast(void *arg) |
| { |
| struct gfs2_glock *gl = arg; |
| unsigned ret = gl->gl_state; |
| |
| gfs2_update_reply_times(gl); |
| BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); |
| |
| if (gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) |
| memset(gl->gl_lvb, 0, GDLM_LVB_SIZE); |
| |
| switch (gl->gl_lksb.sb_status) { |
| case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ |
| gfs2_glock_free(gl); |
| return; |
| case -DLM_ECANCEL: /* Cancel while getting lock */ |
| ret |= LM_OUT_CANCELED; |
| goto out; |
| case -EAGAIN: /* Try lock fails */ |
| case -EDEADLK: /* Deadlock detected */ |
| goto out; |
| case -ETIMEDOUT: /* Canceled due to timeout */ |
| ret |= LM_OUT_ERROR; |
| goto out; |
| case 0: /* Success */ |
| break; |
| default: /* Something unexpected */ |
| BUG(); |
| } |
| |
| ret = gl->gl_req; |
| if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) { |
| if (gl->gl_req == LM_ST_SHARED) |
| ret = LM_ST_DEFERRED; |
| else if (gl->gl_req == LM_ST_DEFERRED) |
| ret = LM_ST_SHARED; |
| else |
| BUG(); |
| } |
| |
| set_bit(GLF_INITIAL, &gl->gl_flags); |
| gfs2_glock_complete(gl, ret); |
| return; |
| out: |
| if (!test_bit(GLF_INITIAL, &gl->gl_flags)) |
| gl->gl_lksb.sb_lkid = 0; |
| gfs2_glock_complete(gl, ret); |
| } |
| |
| static void gdlm_bast(void *arg, int mode) |
| { |
| struct gfs2_glock *gl = arg; |
| |
| switch (mode) { |
| case DLM_LOCK_EX: |
| gfs2_glock_cb(gl, LM_ST_UNLOCKED); |
| break; |
| case DLM_LOCK_CW: |
| gfs2_glock_cb(gl, LM_ST_DEFERRED); |
| break; |
| case DLM_LOCK_PR: |
| gfs2_glock_cb(gl, LM_ST_SHARED); |
| break; |
| default: |
| printk(KERN_ERR "unknown bast mode %d", mode); |
| BUG(); |
| } |
| } |
| |
| /* convert gfs lock-state to dlm lock-mode */ |
| |
| static int make_mode(const unsigned int lmstate) |
| { |
| switch (lmstate) { |
| case LM_ST_UNLOCKED: |
| return DLM_LOCK_NL; |
| case LM_ST_EXCLUSIVE: |
| return DLM_LOCK_EX; |
| case LM_ST_DEFERRED: |
| return DLM_LOCK_CW; |
| case LM_ST_SHARED: |
| return DLM_LOCK_PR; |
| } |
| printk(KERN_ERR "unknown LM state %d", lmstate); |
| BUG(); |
| return -1; |
| } |
| |
| static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, |
| const int req) |
| { |
| u32 lkf = DLM_LKF_VALBLK; |
| u32 lkid = gl->gl_lksb.sb_lkid; |
| |
| if (gfs_flags & LM_FLAG_TRY) |
| lkf |= DLM_LKF_NOQUEUE; |
| |
| if (gfs_flags & LM_FLAG_TRY_1CB) { |
| lkf |= DLM_LKF_NOQUEUE; |
| lkf |= DLM_LKF_NOQUEUEBAST; |
| } |
| |
| if (gfs_flags & LM_FLAG_PRIORITY) { |
| lkf |= DLM_LKF_NOORDER; |
| lkf |= DLM_LKF_HEADQUE; |
| } |
| |
| if (gfs_flags & LM_FLAG_ANY) { |
| if (req == DLM_LOCK_PR) |
| lkf |= DLM_LKF_ALTCW; |
| else if (req == DLM_LOCK_CW) |
| lkf |= DLM_LKF_ALTPR; |
| else |
| BUG(); |
| } |
| |
| if (lkid != 0) { |
| lkf |= DLM_LKF_CONVERT; |
| if (test_bit(GLF_BLOCKING, &gl->gl_flags)) |
| lkf |= DLM_LKF_QUECVT; |
| } |
| |
| return lkf; |
| } |
| |
| static void gfs2_reverse_hex(char *c, u64 value) |
| { |
| while (value) { |
| *c-- = hex_asc[value & 0x0f]; |
| value >>= 4; |
| } |
| } |
| |
| static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, |
| unsigned int flags) |
| { |
| struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct; |
| int req; |
| u32 lkf; |
| char strname[GDLM_STRNAME_BYTES] = ""; |
| |
| req = make_mode(req_state); |
| lkf = make_flags(gl, flags, req); |
| gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); |
| gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); |
| if (gl->gl_lksb.sb_lkid) { |
| gfs2_update_request_times(gl); |
| } else { |
| memset(strname, ' ', GDLM_STRNAME_BYTES - 1); |
| strname[GDLM_STRNAME_BYTES - 1] = '\0'; |
| gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); |
| gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); |
| gl->gl_dstamp = ktime_get_real(); |
| } |
| /* |
| * Submit the actual lock request. |
| */ |
| |
| return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, |
| GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); |
| } |
| |
| static void gdlm_put_lock(struct gfs2_glock *gl) |
| { |
| struct gfs2_sbd *sdp = gl->gl_sbd; |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| int error; |
| |
| if (gl->gl_lksb.sb_lkid == 0) { |
| gfs2_glock_free(gl); |
| return; |
| } |
| |
| clear_bit(GLF_BLOCKING, &gl->gl_flags); |
| gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); |
| gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); |
| gfs2_update_request_times(gl); |
| |
| /* don't want to skip dlm_unlock writing the lvb when lock is ex */ |
| if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && |
| gl->gl_state != LM_ST_EXCLUSIVE) { |
| gfs2_glock_free(gl); |
| return; |
| } |
| |
| error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK, |
| NULL, gl); |
| if (error) { |
| printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n", |
| gl->gl_name.ln_type, |
| (unsigned long long)gl->gl_name.ln_number, error); |
| return; |
| } |
| } |
| |
| static void gdlm_cancel(struct gfs2_glock *gl) |
| { |
| struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct; |
| dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); |
| } |
| |
| /* |
| * dlm/gfs2 recovery coordination using dlm_recover callbacks |
| * |
| * 1. dlm_controld sees lockspace members change |
| * 2. dlm_controld blocks dlm-kernel locking activity |
| * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) |
| * 4. dlm_controld starts and finishes its own user level recovery |
| * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery |
| * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) |
| * 7. dlm_recoverd does its own lock recovery |
| * 8. dlm_recoverd unblocks dlm-kernel locking activity |
| * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) |
| * 10. gfs2_control updates control_lock lvb with new generation and jid bits |
| * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) |
| * 12. gfs2_recover dequeues and recovers journals of failed nodes |
| * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) |
| * 14. gfs2_control updates control_lock lvb jid bits for recovered journals |
| * 15. gfs2_control unblocks normal locking when all journals are recovered |
| * |
| * - failures during recovery |
| * |
| * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control |
| * clears BLOCK_LOCKS (step 15), e.g. another node fails while still |
| * recovering for a prior failure. gfs2_control needs a way to detect |
| * this so it can leave BLOCK_LOCKS set in step 15. This is managed using |
| * the recover_block and recover_start values. |
| * |
| * recover_done() provides a new lockspace generation number each time it |
| * is called (step 9). This generation number is saved as recover_start. |
| * When recover_prep() is called, it sets BLOCK_LOCKS and sets |
| * recover_block = recover_start. So, while recover_block is equal to |
| * recover_start, BLOCK_LOCKS should remain set. (recover_spin must |
| * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) |
| * |
| * - more specific gfs2 steps in sequence above |
| * |
| * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start |
| * 6. recover_slot records any failed jids (maybe none) |
| * 9. recover_done sets recover_start = new generation number |
| * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids |
| * 12. gfs2_recover does journal recoveries for failed jids identified above |
| * 14. gfs2_control clears control_lock lvb bits for recovered jids |
| * 15. gfs2_control checks if recover_block == recover_start (step 3 occured |
| * again) then do nothing, otherwise if recover_start > recover_block |
| * then clear BLOCK_LOCKS. |
| * |
| * - parallel recovery steps across all nodes |
| * |
| * All nodes attempt to update the control_lock lvb with the new generation |
| * number and jid bits, but only the first to get the control_lock EX will |
| * do so; others will see that it's already done (lvb already contains new |
| * generation number.) |
| * |
| * . All nodes get the same recover_prep/recover_slot/recover_done callbacks |
| * . All nodes attempt to set control_lock lvb gen + bits for the new gen |
| * . One node gets control_lock first and writes the lvb, others see it's done |
| * . All nodes attempt to recover jids for which they see control_lock bits set |
| * . One node succeeds for a jid, and that one clears the jid bit in the lvb |
| * . All nodes will eventually see all lvb bits clear and unblock locks |
| * |
| * - is there a problem with clearing an lvb bit that should be set |
| * and missing a journal recovery? |
| * |
| * 1. jid fails |
| * 2. lvb bit set for step 1 |
| * 3. jid recovered for step 1 |
| * 4. jid taken again (new mount) |
| * 5. jid fails (for step 4) |
| * 6. lvb bit set for step 5 (will already be set) |
| * 7. lvb bit cleared for step 3 |
| * |
| * This is not a problem because the failure in step 5 does not |
| * require recovery, because the mount in step 4 could not have |
| * progressed far enough to unblock locks and access the fs. The |
| * control_mount() function waits for all recoveries to be complete |
| * for the latest lockspace generation before ever unblocking locks |
| * and returning. The mount in step 4 waits until the recovery in |
| * step 1 is done. |
| * |
| * - special case of first mounter: first node to mount the fs |
| * |
| * The first node to mount a gfs2 fs needs to check all the journals |
| * and recover any that need recovery before other nodes are allowed |
| * to mount the fs. (Others may begin mounting, but they must wait |
| * for the first mounter to be done before taking locks on the fs |
| * or accessing the fs.) This has two parts: |
| * |
| * 1. The mounted_lock tells a node it's the first to mount the fs. |
| * Each node holds the mounted_lock in PR while it's mounted. |
| * Each node tries to acquire the mounted_lock in EX when it mounts. |
| * If a node is granted the mounted_lock EX it means there are no |
| * other mounted nodes (no PR locks exist), and it is the first mounter. |
| * The mounted_lock is demoted to PR when first recovery is done, so |
| * others will fail to get an EX lock, but will get a PR lock. |
| * |
| * 2. The control_lock blocks others in control_mount() while the first |
| * mounter is doing first mount recovery of all journals. |
| * A mounting node needs to acquire control_lock in EX mode before |
| * it can proceed. The first mounter holds control_lock in EX while doing |
| * the first mount recovery, blocking mounts from other nodes, then demotes |
| * control_lock to NL when it's done (others_may_mount/first_done), |
| * allowing other nodes to continue mounting. |
| * |
| * first mounter: |
| * control_lock EX/NOQUEUE success |
| * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) |
| * set first=1 |
| * do first mounter recovery |
| * mounted_lock EX->PR |
| * control_lock EX->NL, write lvb generation |
| * |
| * other mounter: |
| * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) |
| * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) |
| * mounted_lock PR/NOQUEUE success |
| * read lvb generation |
| * control_lock EX->NL |
| * set first=0 |
| * |
| * - mount during recovery |
| * |
| * If a node mounts while others are doing recovery (not first mounter), |
| * the mounting node will get its initial recover_done() callback without |
| * having seen any previous failures/callbacks. |
| * |
| * It must wait for all recoveries preceding its mount to be finished |
| * before it unblocks locks. It does this by repeating the "other mounter" |
| * steps above until the lvb generation number is >= its mount generation |
| * number (from initial recover_done) and all lvb bits are clear. |
| * |
| * - control_lock lvb format |
| * |
| * 4 bytes generation number: the latest dlm lockspace generation number |
| * from recover_done callback. Indicates the jid bitmap has been updated |
| * to reflect all slot failures through that generation. |
| * 4 bytes unused. |
| * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates |
| * that jid N needs recovery. |
| */ |
| |
| #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ |
| |
| static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, |
| char *lvb_bits) |
| { |
| uint32_t gen; |
| memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); |
| memcpy(&gen, lvb_bits, sizeof(uint32_t)); |
| *lvb_gen = le32_to_cpu(gen); |
| } |
| |
| static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, |
| char *lvb_bits) |
| { |
| uint32_t gen; |
| memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); |
| gen = cpu_to_le32(lvb_gen); |
| memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t)); |
| } |
| |
| static int all_jid_bits_clear(char *lvb) |
| { |
| int i; |
| for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) { |
| if (lvb[i]) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static void sync_wait_cb(void *arg) |
| { |
| struct lm_lockstruct *ls = arg; |
| complete(&ls->ls_sync_wait); |
| } |
| |
| static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) |
| { |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| int error; |
| |
| error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); |
| if (error) { |
| fs_err(sdp, "%s lkid %x error %d\n", |
| name, lksb->sb_lkid, error); |
| return error; |
| } |
| |
| wait_for_completion(&ls->ls_sync_wait); |
| |
| if (lksb->sb_status != -DLM_EUNLOCK) { |
| fs_err(sdp, "%s lkid %x status %d\n", |
| name, lksb->sb_lkid, lksb->sb_status); |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, |
| unsigned int num, struct dlm_lksb *lksb, char *name) |
| { |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| char strname[GDLM_STRNAME_BYTES]; |
| int error, status; |
| |
| memset(strname, 0, GDLM_STRNAME_BYTES); |
| snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); |
| |
| error = dlm_lock(ls->ls_dlm, mode, lksb, flags, |
| strname, GDLM_STRNAME_BYTES - 1, |
| 0, sync_wait_cb, ls, NULL); |
| if (error) { |
| fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", |
| name, lksb->sb_lkid, flags, mode, error); |
| return error; |
| } |
| |
| wait_for_completion(&ls->ls_sync_wait); |
| |
| status = lksb->sb_status; |
| |
| if (status && status != -EAGAIN) { |
| fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", |
| name, lksb->sb_lkid, flags, mode, status); |
| } |
| |
| return status; |
| } |
| |
| static int mounted_unlock(struct gfs2_sbd *sdp) |
| { |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); |
| } |
| |
| static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) |
| { |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, |
| &ls->ls_mounted_lksb, "mounted_lock"); |
| } |
| |
| static int control_unlock(struct gfs2_sbd *sdp) |
| { |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); |
| } |
| |
| static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) |
| { |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, |
| &ls->ls_control_lksb, "control_lock"); |
| } |
| |
| static void gfs2_control_func(struct work_struct *work) |
| { |
| struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| char lvb_bits[GDLM_LVB_SIZE]; |
| uint32_t block_gen, start_gen, lvb_gen, flags; |
| int recover_set = 0; |
| int write_lvb = 0; |
| int recover_size; |
| int i, error; |
| |
| spin_lock(&ls->ls_recover_spin); |
| /* |
| * No MOUNT_DONE means we're still mounting; control_mount() |
| * will set this flag, after which this thread will take over |
| * all further clearing of BLOCK_LOCKS. |
| * |
| * FIRST_MOUNT means this node is doing first mounter recovery, |
| * for which recovery control is handled by |
| * control_mount()/control_first_done(), not this thread. |
| */ |
| if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || |
| test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { |
| spin_unlock(&ls->ls_recover_spin); |
| return; |
| } |
| block_gen = ls->ls_recover_block; |
| start_gen = ls->ls_recover_start; |
| spin_unlock(&ls->ls_recover_spin); |
| |
| /* |
| * Equal block_gen and start_gen implies we are between |
| * recover_prep and recover_done callbacks, which means |
| * dlm recovery is in progress and dlm locking is blocked. |
| * There's no point trying to do any work until recover_done. |
| */ |
| |
| if (block_gen == start_gen) |
| return; |
| |
| /* |
| * Propagate recover_submit[] and recover_result[] to lvb: |
| * dlm_recoverd adds to recover_submit[] jids needing recovery |
| * gfs2_recover adds to recover_result[] journal recovery results |
| * |
| * set lvb bit for jids in recover_submit[] if the lvb has not |
| * yet been updated for the generation of the failure |
| * |
| * clear lvb bit for jids in recover_result[] if the result of |
| * the journal recovery is SUCCESS |
| */ |
| |
| error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); |
| if (error) { |
| fs_err(sdp, "control lock EX error %d\n", error); |
| return; |
| } |
| |
| control_lvb_read(ls, &lvb_gen, lvb_bits); |
| |
| spin_lock(&ls->ls_recover_spin); |
| if (block_gen != ls->ls_recover_block || |
| start_gen != ls->ls_recover_start) { |
| fs_info(sdp, "recover generation %u block1 %u %u\n", |
| start_gen, block_gen, ls->ls_recover_block); |
| spin_unlock(&ls->ls_recover_spin); |
| control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); |
| return; |
| } |
| |
| recover_size = ls->ls_recover_size; |
| |
| if (lvb_gen <= start_gen) { |
| /* |
| * Clear lvb bits for jids we've successfully recovered. |
| * Because all nodes attempt to recover failed journals, |
| * a journal can be recovered multiple times successfully |
| * in succession. Only the first will really do recovery, |
| * the others find it clean, but still report a successful |
| * recovery. So, another node may have already recovered |
| * the jid and cleared the lvb bit for it. |
| */ |
| for (i = 0; i < recover_size; i++) { |
| if (ls->ls_recover_result[i] != LM_RD_SUCCESS) |
| continue; |
| |
| ls->ls_recover_result[i] = 0; |
| |
| if (!test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) |
| continue; |
| |
| __clear_bit_le(i, lvb_bits + JID_BITMAP_OFFSET); |
| write_lvb = 1; |
| } |
| } |
| |
| if (lvb_gen == start_gen) { |
| /* |
| * Failed slots before start_gen are already set in lvb. |
| */ |
| for (i = 0; i < recover_size; i++) { |
| if (!ls->ls_recover_submit[i]) |
| continue; |
| if (ls->ls_recover_submit[i] < lvb_gen) |
| ls->ls_recover_submit[i] = 0; |
| } |
| } else if (lvb_gen < start_gen) { |
| /* |
| * Failed slots before start_gen are not yet set in lvb. |
| */ |
| for (i = 0; i < recover_size; i++) { |
| if (!ls->ls_recover_submit[i]) |
| continue; |
| if (ls->ls_recover_submit[i] < start_gen) { |
| ls->ls_recover_submit[i] = 0; |
| __set_bit_le(i, lvb_bits + JID_BITMAP_OFFSET); |
| } |
| } |
| /* even if there are no bits to set, we need to write the |
| latest generation to the lvb */ |
| write_lvb = 1; |
| } else { |
| /* |
| * we should be getting a recover_done() for lvb_gen soon |
| */ |
| } |
| spin_unlock(&ls->ls_recover_spin); |
| |
| if (write_lvb) { |
| control_lvb_write(ls, start_gen, lvb_bits); |
| flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; |
| } else { |
| flags = DLM_LKF_CONVERT; |
| } |
| |
| error = control_lock(sdp, DLM_LOCK_NL, flags); |
| if (error) { |
| fs_err(sdp, "control lock NL error %d\n", error); |
| return; |
| } |
| |
| /* |
| * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), |
| * and clear a jid bit in the lvb if the recovery is a success. |
| * Eventually all journals will be recovered, all jid bits will |
| * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. |
| */ |
| |
| for (i = 0; i < recover_size; i++) { |
| if (test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) { |
| fs_info(sdp, "recover generation %u jid %d\n", |
| start_gen, i); |
| gfs2_recover_set(sdp, i); |
| recover_set++; |
| } |
| } |
| if (recover_set) |
| return; |
| |
| /* |
| * No more jid bits set in lvb, all recovery is done, unblock locks |
| * (unless a new recover_prep callback has occured blocking locks |
| * again while working above) |
| */ |
| |
| spin_lock(&ls->ls_recover_spin); |
| if (ls->ls_recover_block == block_gen && |
| ls->ls_recover_start == start_gen) { |
| clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); |
| spin_unlock(&ls->ls_recover_spin); |
| fs_info(sdp, "recover generation %u done\n", start_gen); |
| gfs2_glock_thaw(sdp); |
| } else { |
| fs_info(sdp, "recover generation %u block2 %u %u\n", |
| start_gen, block_gen, ls->ls_recover_block); |
| spin_unlock(&ls->ls_recover_spin); |
| } |
| } |
| |
| static int control_mount(struct gfs2_sbd *sdp) |
| { |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| char lvb_bits[GDLM_LVB_SIZE]; |
| uint32_t start_gen, block_gen, mount_gen, lvb_gen; |
| int mounted_mode; |
| int retries = 0; |
| int error; |
| |
| memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); |
| memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); |
| memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); |
| ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; |
| init_completion(&ls->ls_sync_wait); |
| |
| set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); |
| |
| error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); |
| if (error) { |
| fs_err(sdp, "control_mount control_lock NL error %d\n", error); |
| return error; |
| } |
| |
| error = mounted_lock(sdp, DLM_LOCK_NL, 0); |
| if (error) { |
| fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); |
| control_unlock(sdp); |
| return error; |
| } |
| mounted_mode = DLM_LOCK_NL; |
| |
| restart: |
| if (retries++ && signal_pending(current)) { |
| error = -EINTR; |
| goto fail; |
| } |
| |
| /* |
| * We always start with both locks in NL. control_lock is |
| * demoted to NL below so we don't need to do it here. |
| */ |
| |
| if (mounted_mode != DLM_LOCK_NL) { |
| error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); |
| if (error) |
| goto fail; |
| mounted_mode = DLM_LOCK_NL; |
| } |
| |
| /* |
| * Other nodes need to do some work in dlm recovery and gfs2_control |
| * before the recover_done and control_lock will be ready for us below. |
| * A delay here is not required but often avoids having to retry. |
| */ |
| |
| msleep_interruptible(500); |
| |
| /* |
| * Acquire control_lock in EX and mounted_lock in either EX or PR. |
| * control_lock lvb keeps track of any pending journal recoveries. |
| * mounted_lock indicates if any other nodes have the fs mounted. |
| */ |
| |
| error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); |
| if (error == -EAGAIN) { |
| goto restart; |
| } else if (error) { |
| fs_err(sdp, "control_mount control_lock EX error %d\n", error); |
| goto fail; |
| } |
| |
| error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); |
| if (!error) { |
| mounted_mode = DLM_LOCK_EX; |
| goto locks_done; |
| } else if (error != -EAGAIN) { |
| fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); |
| goto fail; |
| } |
| |
| error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); |
| if (!error) { |
| mounted_mode = DLM_LOCK_PR; |
| goto locks_done; |
| } else { |
| /* not even -EAGAIN should happen here */ |
| fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); |
| goto fail; |
| } |
| |
| locks_done: |
| /* |
| * If we got both locks above in EX, then we're the first mounter. |
| * If not, then we need to wait for the control_lock lvb to be |
| * updated by other mounted nodes to reflect our mount generation. |
| * |
| * In simple first mounter cases, first mounter will see zero lvb_gen, |
| * but in cases where all existing nodes leave/fail before mounting |
| * nodes finish control_mount, then all nodes will be mounting and |
| * lvb_gen will be non-zero. |
| */ |
| |
| control_lvb_read(ls, &lvb_gen, lvb_bits); |
| |
| if (lvb_gen == 0xFFFFFFFF) { |
| /* special value to force mount attempts to fail */ |
| fs_err(sdp, "control_mount control_lock disabled\n"); |
| error = -EINVAL; |
| goto fail; |
| } |
| |
| if (mounted_mode == DLM_LOCK_EX) { |
| /* first mounter, keep both EX while doing first recovery */ |
| spin_lock(&ls->ls_recover_spin); |
| clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); |
| set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); |
| set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); |
| spin_unlock(&ls->ls_recover_spin); |
| fs_info(sdp, "first mounter control generation %u\n", lvb_gen); |
| return 0; |
| } |
| |
| error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); |
| if (error) |
| goto fail; |
| |
| /* |
| * We are not first mounter, now we need to wait for the control_lock |
| * lvb generation to be >= the generation from our first recover_done |
| * and all lvb bits to be clear (no pending journal recoveries.) |
| */ |
| |
| if (!all_jid_bits_clear(lvb_bits)) { |
| /* journals need recovery, wait until all are clear */ |
| fs_info(sdp, "control_mount wait for journal recovery\n"); |
| goto restart; |
| } |
| |
| spin_lock(&ls->ls_recover_spin); |
| block_gen = ls->ls_recover_block; |
| start_gen = ls->ls_recover_start; |
| mount_gen = ls->ls_recover_mount; |
| |
| if (lvb_gen < mount_gen) { |
| /* wait for mounted nodes to update control_lock lvb to our |
| generation, which might include new recovery bits set */ |
| fs_info(sdp, "control_mount wait1 block %u start %u mount %u " |
| "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, |
| lvb_gen, ls->ls_recover_flags); |
| spin_unlock(&ls->ls_recover_spin); |
| goto restart; |
| } |
| |
| if (lvb_gen != start_gen) { |
| /* wait for mounted nodes to update control_lock lvb to the |
| latest recovery generation */ |
| fs_info(sdp, "control_mount wait2 block %u start %u mount %u " |
| "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, |
| lvb_gen, ls->ls_recover_flags); |
| spin_unlock(&ls->ls_recover_spin); |
| goto restart; |
| } |
| |
| if (block_gen == start_gen) { |
| /* dlm recovery in progress, wait for it to finish */ |
| fs_info(sdp, "control_mount wait3 block %u start %u mount %u " |
| "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, |
| lvb_gen, ls->ls_recover_flags); |
| spin_unlock(&ls->ls_recover_spin); |
| goto restart; |
| } |
| |
| clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); |
| set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); |
| memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); |
| memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); |
| spin_unlock(&ls->ls_recover_spin); |
| return 0; |
| |
| fail: |
| mounted_unlock(sdp); |
| control_unlock(sdp); |
| return error; |
| } |
| |
| static int dlm_recovery_wait(void *word) |
| { |
| schedule(); |
| return 0; |
| } |
| |
| static int control_first_done(struct gfs2_sbd *sdp) |
| { |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| char lvb_bits[GDLM_LVB_SIZE]; |
| uint32_t start_gen, block_gen; |
| int error; |
| |
| restart: |
| spin_lock(&ls->ls_recover_spin); |
| start_gen = ls->ls_recover_start; |
| block_gen = ls->ls_recover_block; |
| |
| if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || |
| !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || |
| !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { |
| /* sanity check, should not happen */ |
| fs_err(sdp, "control_first_done start %u block %u flags %lx\n", |
| start_gen, block_gen, ls->ls_recover_flags); |
| spin_unlock(&ls->ls_recover_spin); |
| control_unlock(sdp); |
| return -1; |
| } |
| |
| if (start_gen == block_gen) { |
| /* |
| * Wait for the end of a dlm recovery cycle to switch from |
| * first mounter recovery. We can ignore any recover_slot |
| * callbacks between the recover_prep and next recover_done |
| * because we are still the first mounter and any failed nodes |
| * have not fully mounted, so they don't need recovery. |
| */ |
| spin_unlock(&ls->ls_recover_spin); |
| fs_info(sdp, "control_first_done wait gen %u\n", start_gen); |
| |
| wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, |
| dlm_recovery_wait, TASK_UNINTERRUPTIBLE); |
| goto restart; |
| } |
| |
| clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); |
| set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); |
| memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); |
| memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); |
| spin_unlock(&ls->ls_recover_spin); |
| |
| memset(lvb_bits, 0, sizeof(lvb_bits)); |
| control_lvb_write(ls, start_gen, lvb_bits); |
| |
| error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); |
| if (error) |
| fs_err(sdp, "control_first_done mounted PR error %d\n", error); |
| |
| error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); |
| if (error) |
| fs_err(sdp, "control_first_done control NL error %d\n", error); |
| |
| return error; |
| } |
| |
| /* |
| * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) |
| * to accomodate the largest slot number. (NB dlm slot numbers start at 1, |
| * gfs2 jids start at 0, so jid = slot - 1) |
| */ |
| |
| #define RECOVER_SIZE_INC 16 |
| |
| static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, |
| int num_slots) |
| { |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| uint32_t *submit = NULL; |
| uint32_t *result = NULL; |
| uint32_t old_size, new_size; |
| int i, max_jid; |
| |
| max_jid = 0; |
| for (i = 0; i < num_slots; i++) { |
| if (max_jid < slots[i].slot - 1) |
| max_jid = slots[i].slot - 1; |
| } |
| |
| old_size = ls->ls_recover_size; |
| |
| if (old_size >= max_jid + 1) |
| return 0; |
| |
| new_size = old_size + RECOVER_SIZE_INC; |
| |
| submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS); |
| result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS); |
| if (!submit || !result) { |
| kfree(submit); |
| kfree(result); |
| return -ENOMEM; |
| } |
| |
| spin_lock(&ls->ls_recover_spin); |
| memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); |
| memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); |
| kfree(ls->ls_recover_submit); |
| kfree(ls->ls_recover_result); |
| ls->ls_recover_submit = submit; |
| ls->ls_recover_result = result; |
| ls->ls_recover_size = new_size; |
| spin_unlock(&ls->ls_recover_spin); |
| return 0; |
| } |
| |
| static void free_recover_size(struct lm_lockstruct *ls) |
| { |
| kfree(ls->ls_recover_submit); |
| kfree(ls->ls_recover_result); |
| ls->ls_recover_submit = NULL; |
| ls->ls_recover_result = NULL; |
| ls->ls_recover_size = 0; |
| } |
| |
| /* dlm calls before it does lock recovery */ |
| |
| static void gdlm_recover_prep(void *arg) |
| { |
| struct gfs2_sbd *sdp = arg; |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| |
| spin_lock(&ls->ls_recover_spin); |
| ls->ls_recover_block = ls->ls_recover_start; |
| set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); |
| |
| if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || |
| test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { |
| spin_unlock(&ls->ls_recover_spin); |
| return; |
| } |
| set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); |
| spin_unlock(&ls->ls_recover_spin); |
| } |
| |
| /* dlm calls after recover_prep has been completed on all lockspace members; |
| identifies slot/jid of failed member */ |
| |
| static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) |
| { |
| struct gfs2_sbd *sdp = arg; |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| int jid = slot->slot - 1; |
| |
| spin_lock(&ls->ls_recover_spin); |
| if (ls->ls_recover_size < jid + 1) { |
| fs_err(sdp, "recover_slot jid %d gen %u short size %d", |
| jid, ls->ls_recover_block, ls->ls_recover_size); |
| spin_unlock(&ls->ls_recover_spin); |
| return; |
| } |
| |
| if (ls->ls_recover_submit[jid]) { |
| fs_info(sdp, "recover_slot jid %d gen %u prev %u", |
| jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); |
| } |
| ls->ls_recover_submit[jid] = ls->ls_recover_block; |
| spin_unlock(&ls->ls_recover_spin); |
| } |
| |
| /* dlm calls after recover_slot and after it completes lock recovery */ |
| |
| static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, |
| int our_slot, uint32_t generation) |
| { |
| struct gfs2_sbd *sdp = arg; |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| |
| /* ensure the ls jid arrays are large enough */ |
| set_recover_size(sdp, slots, num_slots); |
| |
| spin_lock(&ls->ls_recover_spin); |
| ls->ls_recover_start = generation; |
| |
| if (!ls->ls_recover_mount) { |
| ls->ls_recover_mount = generation; |
| ls->ls_jid = our_slot - 1; |
| } |
| |
| if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) |
| queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); |
| |
| clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); |
| smp_mb__after_clear_bit(); |
| wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); |
| spin_unlock(&ls->ls_recover_spin); |
| } |
| |
| /* gfs2_recover thread has a journal recovery result */ |
| |
| static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, |
| unsigned int result) |
| { |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| |
| if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) |
| return; |
| |
| /* don't care about the recovery of own journal during mount */ |
| if (jid == ls->ls_jid) |
| return; |
| |
| spin_lock(&ls->ls_recover_spin); |
| if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { |
| spin_unlock(&ls->ls_recover_spin); |
| return; |
| } |
| if (ls->ls_recover_size < jid + 1) { |
| fs_err(sdp, "recovery_result jid %d short size %d", |
| jid, ls->ls_recover_size); |
| spin_unlock(&ls->ls_recover_spin); |
| return; |
| } |
| |
| fs_info(sdp, "recover jid %d result %s\n", jid, |
| result == LM_RD_GAVEUP ? "busy" : "success"); |
| |
| ls->ls_recover_result[jid] = result; |
| |
| /* GAVEUP means another node is recovering the journal; delay our |
| next attempt to recover it, to give the other node a chance to |
| finish before trying again */ |
| |
| if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) |
| queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, |
| result == LM_RD_GAVEUP ? HZ : 0); |
| spin_unlock(&ls->ls_recover_spin); |
| } |
| |
| const struct dlm_lockspace_ops gdlm_lockspace_ops = { |
| .recover_prep = gdlm_recover_prep, |
| .recover_slot = gdlm_recover_slot, |
| .recover_done = gdlm_recover_done, |
| }; |
| |
| static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) |
| { |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| char cluster[GFS2_LOCKNAME_LEN]; |
| const char *fsname; |
| uint32_t flags; |
| int error, ops_result; |
| |
| /* |
| * initialize everything |
| */ |
| |
| INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); |
| spin_lock_init(&ls->ls_recover_spin); |
| ls->ls_recover_flags = 0; |
| ls->ls_recover_mount = 0; |
| ls->ls_recover_start = 0; |
| ls->ls_recover_block = 0; |
| ls->ls_recover_size = 0; |
| ls->ls_recover_submit = NULL; |
| ls->ls_recover_result = NULL; |
| |
| error = set_recover_size(sdp, NULL, 0); |
| if (error) |
| goto fail; |
| |
| /* |
| * prepare dlm_new_lockspace args |
| */ |
| |
| fsname = strchr(table, ':'); |
| if (!fsname) { |
| fs_info(sdp, "no fsname found\n"); |
| error = -EINVAL; |
| goto fail_free; |
| } |
| memset(cluster, 0, sizeof(cluster)); |
| memcpy(cluster, table, strlen(table) - strlen(fsname)); |
| fsname++; |
| |
| flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL; |
| |
| /* |
| * create/join lockspace |
| */ |
| |
| error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, |
| &gdlm_lockspace_ops, sdp, &ops_result, |
| &ls->ls_dlm); |
| if (error) { |
| fs_err(sdp, "dlm_new_lockspace error %d\n", error); |
| goto fail_free; |
| } |
| |
| if (ops_result < 0) { |
| /* |
| * dlm does not support ops callbacks, |
| * old dlm_controld/gfs_controld are used, try without ops. |
| */ |
| fs_info(sdp, "dlm lockspace ops not used\n"); |
| free_recover_size(ls); |
| set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); |
| return 0; |
| } |
| |
| if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { |
| fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); |
| error = -EINVAL; |
| goto fail_release; |
| } |
| |
| /* |
| * control_mount() uses control_lock to determine first mounter, |
| * and for later mounts, waits for any recoveries to be cleared. |
| */ |
| |
| error = control_mount(sdp); |
| if (error) { |
| fs_err(sdp, "mount control error %d\n", error); |
| goto fail_release; |
| } |
| |
| ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); |
| clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); |
| smp_mb__after_clear_bit(); |
| wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); |
| return 0; |
| |
| fail_release: |
| dlm_release_lockspace(ls->ls_dlm, 2); |
| fail_free: |
| free_recover_size(ls); |
| fail: |
| return error; |
| } |
| |
| static void gdlm_first_done(struct gfs2_sbd *sdp) |
| { |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| int error; |
| |
| if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) |
| return; |
| |
| error = control_first_done(sdp); |
| if (error) |
| fs_err(sdp, "mount first_done error %d\n", error); |
| } |
| |
| static void gdlm_unmount(struct gfs2_sbd *sdp) |
| { |
| struct lm_lockstruct *ls = &sdp->sd_lockstruct; |
| |
| if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) |
| goto release; |
| |
| /* wait for gfs2_control_wq to be done with this mount */ |
| |
| spin_lock(&ls->ls_recover_spin); |
| set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); |
| spin_unlock(&ls->ls_recover_spin); |
| flush_delayed_work(&sdp->sd_control_work); |
| |
| /* mounted_lock and control_lock will be purged in dlm recovery */ |
| release: |
| if (ls->ls_dlm) { |
| dlm_release_lockspace(ls->ls_dlm, 2); |
| ls->ls_dlm = NULL; |
| } |
| |
| free_recover_size(ls); |
| } |
| |
| static const match_table_t dlm_tokens = { |
| { Opt_jid, "jid=%d"}, |
| { Opt_id, "id=%d"}, |
| { Opt_first, "first=%d"}, |
| { Opt_nodir, "nodir=%d"}, |
| { Opt_err, NULL }, |
| }; |
| |
| const struct lm_lockops gfs2_dlm_ops = { |
| .lm_proto_name = "lock_dlm", |
| .lm_mount = gdlm_mount, |
| .lm_first_done = gdlm_first_done, |
| .lm_recovery_result = gdlm_recovery_result, |
| .lm_unmount = gdlm_unmount, |
| .lm_put_lock = gdlm_put_lock, |
| .lm_lock = gdlm_lock, |
| .lm_cancel = gdlm_cancel, |
| .lm_tokens = &dlm_tokens, |
| }; |
| |