| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * pSeries NUMA support |
| * |
| * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM |
| */ |
| #define pr_fmt(fmt) "numa: " fmt |
| |
| #include <linux/threads.h> |
| #include <linux/memblock.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/mmzone.h> |
| #include <linux/export.h> |
| #include <linux/nodemask.h> |
| #include <linux/cpu.h> |
| #include <linux/notifier.h> |
| #include <linux/of.h> |
| #include <linux/pfn.h> |
| #include <linux/cpuset.h> |
| #include <linux/node.h> |
| #include <linux/stop_machine.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/uaccess.h> |
| #include <linux/slab.h> |
| #include <asm/cputhreads.h> |
| #include <asm/sparsemem.h> |
| #include <asm/prom.h> |
| #include <asm/smp.h> |
| #include <asm/topology.h> |
| #include <asm/firmware.h> |
| #include <asm/paca.h> |
| #include <asm/hvcall.h> |
| #include <asm/setup.h> |
| #include <asm/vdso.h> |
| #include <asm/drmem.h> |
| |
| static int numa_enabled = 1; |
| |
| static char *cmdline __initdata; |
| |
| static int numa_debug; |
| #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } |
| |
| int numa_cpu_lookup_table[NR_CPUS]; |
| cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; |
| struct pglist_data *node_data[MAX_NUMNODES]; |
| |
| EXPORT_SYMBOL(numa_cpu_lookup_table); |
| EXPORT_SYMBOL(node_to_cpumask_map); |
| EXPORT_SYMBOL(node_data); |
| |
| static int min_common_depth; |
| static int n_mem_addr_cells, n_mem_size_cells; |
| static int form1_affinity; |
| |
| #define MAX_DISTANCE_REF_POINTS 4 |
| static int distance_ref_points_depth; |
| static const __be32 *distance_ref_points; |
| static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; |
| |
| /* |
| * Allocate node_to_cpumask_map based on number of available nodes |
| * Requires node_possible_map to be valid. |
| * |
| * Note: cpumask_of_node() is not valid until after this is done. |
| */ |
| static void __init setup_node_to_cpumask_map(void) |
| { |
| unsigned int node; |
| |
| /* setup nr_node_ids if not done yet */ |
| if (nr_node_ids == MAX_NUMNODES) |
| setup_nr_node_ids(); |
| |
| /* allocate the map */ |
| for_each_node(node) |
| alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); |
| |
| /* cpumask_of_node() will now work */ |
| dbg("Node to cpumask map for %u nodes\n", nr_node_ids); |
| } |
| |
| static int __init fake_numa_create_new_node(unsigned long end_pfn, |
| unsigned int *nid) |
| { |
| unsigned long long mem; |
| char *p = cmdline; |
| static unsigned int fake_nid; |
| static unsigned long long curr_boundary; |
| |
| /* |
| * Modify node id, iff we started creating NUMA nodes |
| * We want to continue from where we left of the last time |
| */ |
| if (fake_nid) |
| *nid = fake_nid; |
| /* |
| * In case there are no more arguments to parse, the |
| * node_id should be the same as the last fake node id |
| * (we've handled this above). |
| */ |
| if (!p) |
| return 0; |
| |
| mem = memparse(p, &p); |
| if (!mem) |
| return 0; |
| |
| if (mem < curr_boundary) |
| return 0; |
| |
| curr_boundary = mem; |
| |
| if ((end_pfn << PAGE_SHIFT) > mem) { |
| /* |
| * Skip commas and spaces |
| */ |
| while (*p == ',' || *p == ' ' || *p == '\t') |
| p++; |
| |
| cmdline = p; |
| fake_nid++; |
| *nid = fake_nid; |
| dbg("created new fake_node with id %d\n", fake_nid); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void reset_numa_cpu_lookup_table(void) |
| { |
| unsigned int cpu; |
| |
| for_each_possible_cpu(cpu) |
| numa_cpu_lookup_table[cpu] = -1; |
| } |
| |
| static void map_cpu_to_node(int cpu, int node) |
| { |
| update_numa_cpu_lookup_table(cpu, node); |
| |
| dbg("adding cpu %d to node %d\n", cpu, node); |
| |
| if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) |
| cpumask_set_cpu(cpu, node_to_cpumask_map[node]); |
| } |
| |
| #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) |
| static void unmap_cpu_from_node(unsigned long cpu) |
| { |
| int node = numa_cpu_lookup_table[cpu]; |
| |
| dbg("removing cpu %lu from node %d\n", cpu, node); |
| |
| if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { |
| cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); |
| } else { |
| printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", |
| cpu, node); |
| } |
| } |
| #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ |
| |
| int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc) |
| { |
| int dist = 0; |
| |
| int i, index; |
| |
| for (i = 0; i < distance_ref_points_depth; i++) { |
| index = be32_to_cpu(distance_ref_points[i]); |
| if (cpu1_assoc[index] == cpu2_assoc[index]) |
| break; |
| dist++; |
| } |
| |
| return dist; |
| } |
| |
| /* must hold reference to node during call */ |
| static const __be32 *of_get_associativity(struct device_node *dev) |
| { |
| return of_get_property(dev, "ibm,associativity", NULL); |
| } |
| |
| int __node_distance(int a, int b) |
| { |
| int i; |
| int distance = LOCAL_DISTANCE; |
| |
| if (!form1_affinity) |
| return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); |
| |
| for (i = 0; i < distance_ref_points_depth; i++) { |
| if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) |
| break; |
| |
| /* Double the distance for each NUMA level */ |
| distance *= 2; |
| } |
| |
| return distance; |
| } |
| EXPORT_SYMBOL(__node_distance); |
| |
| static void initialize_distance_lookup_table(int nid, |
| const __be32 *associativity) |
| { |
| int i; |
| |
| if (!form1_affinity) |
| return; |
| |
| for (i = 0; i < distance_ref_points_depth; i++) { |
| const __be32 *entry; |
| |
| entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1]; |
| distance_lookup_table[nid][i] = of_read_number(entry, 1); |
| } |
| } |
| |
| /* |
| * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA |
| * info is found. |
| */ |
| static int associativity_to_nid(const __be32 *associativity) |
| { |
| int nid = NUMA_NO_NODE; |
| |
| if (!numa_enabled) |
| goto out; |
| |
| if (of_read_number(associativity, 1) >= min_common_depth) |
| nid = of_read_number(&associativity[min_common_depth], 1); |
| |
| /* POWER4 LPAR uses 0xffff as invalid node */ |
| if (nid == 0xffff || nid >= nr_node_ids) |
| nid = NUMA_NO_NODE; |
| |
| if (nid > 0 && |
| of_read_number(associativity, 1) >= distance_ref_points_depth) { |
| /* |
| * Skip the length field and send start of associativity array |
| */ |
| initialize_distance_lookup_table(nid, associativity + 1); |
| } |
| |
| out: |
| return nid; |
| } |
| |
| /* Returns the nid associated with the given device tree node, |
| * or -1 if not found. |
| */ |
| static int of_node_to_nid_single(struct device_node *device) |
| { |
| int nid = NUMA_NO_NODE; |
| const __be32 *tmp; |
| |
| tmp = of_get_associativity(device); |
| if (tmp) |
| nid = associativity_to_nid(tmp); |
| return nid; |
| } |
| |
| /* Walk the device tree upwards, looking for an associativity id */ |
| int of_node_to_nid(struct device_node *device) |
| { |
| int nid = NUMA_NO_NODE; |
| |
| of_node_get(device); |
| while (device) { |
| nid = of_node_to_nid_single(device); |
| if (nid != -1) |
| break; |
| |
| device = of_get_next_parent(device); |
| } |
| of_node_put(device); |
| |
| return nid; |
| } |
| EXPORT_SYMBOL(of_node_to_nid); |
| |
| static int __init find_min_common_depth(void) |
| { |
| int depth; |
| struct device_node *root; |
| |
| if (firmware_has_feature(FW_FEATURE_OPAL)) |
| root = of_find_node_by_path("/ibm,opal"); |
| else |
| root = of_find_node_by_path("/rtas"); |
| if (!root) |
| root = of_find_node_by_path("/"); |
| |
| /* |
| * This property is a set of 32-bit integers, each representing |
| * an index into the ibm,associativity nodes. |
| * |
| * With form 0 affinity the first integer is for an SMP configuration |
| * (should be all 0's) and the second is for a normal NUMA |
| * configuration. We have only one level of NUMA. |
| * |
| * With form 1 affinity the first integer is the most significant |
| * NUMA boundary and the following are progressively less significant |
| * boundaries. There can be more than one level of NUMA. |
| */ |
| distance_ref_points = of_get_property(root, |
| "ibm,associativity-reference-points", |
| &distance_ref_points_depth); |
| |
| if (!distance_ref_points) { |
| dbg("NUMA: ibm,associativity-reference-points not found.\n"); |
| goto err; |
| } |
| |
| distance_ref_points_depth /= sizeof(int); |
| |
| if (firmware_has_feature(FW_FEATURE_OPAL) || |
| firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { |
| dbg("Using form 1 affinity\n"); |
| form1_affinity = 1; |
| } |
| |
| if (form1_affinity) { |
| depth = of_read_number(distance_ref_points, 1); |
| } else { |
| if (distance_ref_points_depth < 2) { |
| printk(KERN_WARNING "NUMA: " |
| "short ibm,associativity-reference-points\n"); |
| goto err; |
| } |
| |
| depth = of_read_number(&distance_ref_points[1], 1); |
| } |
| |
| /* |
| * Warn and cap if the hardware supports more than |
| * MAX_DISTANCE_REF_POINTS domains. |
| */ |
| if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { |
| printk(KERN_WARNING "NUMA: distance array capped at " |
| "%d entries\n", MAX_DISTANCE_REF_POINTS); |
| distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; |
| } |
| |
| of_node_put(root); |
| return depth; |
| |
| err: |
| of_node_put(root); |
| return -1; |
| } |
| |
| static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) |
| { |
| struct device_node *memory = NULL; |
| |
| memory = of_find_node_by_type(memory, "memory"); |
| if (!memory) |
| panic("numa.c: No memory nodes found!"); |
| |
| *n_addr_cells = of_n_addr_cells(memory); |
| *n_size_cells = of_n_size_cells(memory); |
| of_node_put(memory); |
| } |
| |
| static unsigned long read_n_cells(int n, const __be32 **buf) |
| { |
| unsigned long result = 0; |
| |
| while (n--) { |
| result = (result << 32) | of_read_number(*buf, 1); |
| (*buf)++; |
| } |
| return result; |
| } |
| |
| struct assoc_arrays { |
| u32 n_arrays; |
| u32 array_sz; |
| const __be32 *arrays; |
| }; |
| |
| /* |
| * Retrieve and validate the list of associativity arrays for drconf |
| * memory from the ibm,associativity-lookup-arrays property of the |
| * device tree.. |
| * |
| * The layout of the ibm,associativity-lookup-arrays property is a number N |
| * indicating the number of associativity arrays, followed by a number M |
| * indicating the size of each associativity array, followed by a list |
| * of N associativity arrays. |
| */ |
| static int of_get_assoc_arrays(struct assoc_arrays *aa) |
| { |
| struct device_node *memory; |
| const __be32 *prop; |
| u32 len; |
| |
| memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
| if (!memory) |
| return -1; |
| |
| prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); |
| if (!prop || len < 2 * sizeof(unsigned int)) { |
| of_node_put(memory); |
| return -1; |
| } |
| |
| aa->n_arrays = of_read_number(prop++, 1); |
| aa->array_sz = of_read_number(prop++, 1); |
| |
| of_node_put(memory); |
| |
| /* Now that we know the number of arrays and size of each array, |
| * revalidate the size of the property read in. |
| */ |
| if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) |
| return -1; |
| |
| aa->arrays = prop; |
| return 0; |
| } |
| |
| /* |
| * This is like of_node_to_nid_single() for memory represented in the |
| * ibm,dynamic-reconfiguration-memory node. |
| */ |
| static int of_drconf_to_nid_single(struct drmem_lmb *lmb) |
| { |
| struct assoc_arrays aa = { .arrays = NULL }; |
| int default_nid = NUMA_NO_NODE; |
| int nid = default_nid; |
| int rc, index; |
| |
| if ((min_common_depth < 0) || !numa_enabled) |
| return default_nid; |
| |
| rc = of_get_assoc_arrays(&aa); |
| if (rc) |
| return default_nid; |
| |
| if (min_common_depth <= aa.array_sz && |
| !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) { |
| index = lmb->aa_index * aa.array_sz + min_common_depth - 1; |
| nid = of_read_number(&aa.arrays[index], 1); |
| |
| if (nid == 0xffff || nid >= nr_node_ids) |
| nid = default_nid; |
| |
| if (nid > 0) { |
| index = lmb->aa_index * aa.array_sz; |
| initialize_distance_lookup_table(nid, |
| &aa.arrays[index]); |
| } |
| } |
| |
| return nid; |
| } |
| |
| #ifdef CONFIG_PPC_SPLPAR |
| static int vphn_get_nid(long lcpu) |
| { |
| __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; |
| long rc, hwid; |
| |
| /* |
| * On a shared lpar, device tree will not have node associativity. |
| * At this time lppaca, or its __old_status field may not be |
| * updated. Hence kernel cannot detect if its on a shared lpar. So |
| * request an explicit associativity irrespective of whether the |
| * lpar is shared or dedicated. Use the device tree property as a |
| * fallback. cpu_to_phys_id is only valid between |
| * smp_setup_cpu_maps() and smp_setup_pacas(). |
| */ |
| if (firmware_has_feature(FW_FEATURE_VPHN)) { |
| if (cpu_to_phys_id) |
| hwid = cpu_to_phys_id[lcpu]; |
| else |
| hwid = get_hard_smp_processor_id(lcpu); |
| |
| rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity); |
| if (rc == H_SUCCESS) |
| return associativity_to_nid(associativity); |
| } |
| |
| return NUMA_NO_NODE; |
| } |
| #else |
| static int vphn_get_nid(long unused) |
| { |
| return NUMA_NO_NODE; |
| } |
| #endif /* CONFIG_PPC_SPLPAR */ |
| |
| /* |
| * Figure out to which domain a cpu belongs and stick it there. |
| * Return the id of the domain used. |
| */ |
| static int numa_setup_cpu(unsigned long lcpu) |
| { |
| struct device_node *cpu; |
| int fcpu = cpu_first_thread_sibling(lcpu); |
| int nid = NUMA_NO_NODE; |
| |
| if (!cpu_present(lcpu)) { |
| set_cpu_numa_node(lcpu, first_online_node); |
| return first_online_node; |
| } |
| |
| /* |
| * If a valid cpu-to-node mapping is already available, use it |
| * directly instead of querying the firmware, since it represents |
| * the most recent mapping notified to us by the platform (eg: VPHN). |
| * Since cpu_to_node binding remains the same for all threads in the |
| * core. If a valid cpu-to-node mapping is already available, for |
| * the first thread in the core, use it. |
| */ |
| nid = numa_cpu_lookup_table[fcpu]; |
| if (nid >= 0) { |
| map_cpu_to_node(lcpu, nid); |
| return nid; |
| } |
| |
| nid = vphn_get_nid(lcpu); |
| if (nid != NUMA_NO_NODE) |
| goto out_present; |
| |
| cpu = of_get_cpu_node(lcpu, NULL); |
| |
| if (!cpu) { |
| WARN_ON(1); |
| if (cpu_present(lcpu)) |
| goto out_present; |
| else |
| goto out; |
| } |
| |
| nid = of_node_to_nid_single(cpu); |
| of_node_put(cpu); |
| |
| out_present: |
| if (nid < 0 || !node_possible(nid)) |
| nid = first_online_node; |
| |
| /* |
| * Update for the first thread of the core. All threads of a core |
| * have to be part of the same node. This not only avoids querying |
| * for every other thread in the core, but always avoids a case |
| * where virtual node associativity change causes subsequent threads |
| * of a core to be associated with different nid. However if first |
| * thread is already online, expect it to have a valid mapping. |
| */ |
| if (fcpu != lcpu) { |
| WARN_ON(cpu_online(fcpu)); |
| map_cpu_to_node(fcpu, nid); |
| } |
| |
| map_cpu_to_node(lcpu, nid); |
| out: |
| return nid; |
| } |
| |
| static void verify_cpu_node_mapping(int cpu, int node) |
| { |
| int base, sibling, i; |
| |
| /* Verify that all the threads in the core belong to the same node */ |
| base = cpu_first_thread_sibling(cpu); |
| |
| for (i = 0; i < threads_per_core; i++) { |
| sibling = base + i; |
| |
| if (sibling == cpu || cpu_is_offline(sibling)) |
| continue; |
| |
| if (cpu_to_node(sibling) != node) { |
| WARN(1, "CPU thread siblings %d and %d don't belong" |
| " to the same node!\n", cpu, sibling); |
| break; |
| } |
| } |
| } |
| |
| /* Must run before sched domains notifier. */ |
| static int ppc_numa_cpu_prepare(unsigned int cpu) |
| { |
| int nid; |
| |
| nid = numa_setup_cpu(cpu); |
| verify_cpu_node_mapping(cpu, nid); |
| return 0; |
| } |
| |
| static int ppc_numa_cpu_dead(unsigned int cpu) |
| { |
| #ifdef CONFIG_HOTPLUG_CPU |
| unmap_cpu_from_node(cpu); |
| #endif |
| return 0; |
| } |
| |
| /* |
| * Check and possibly modify a memory region to enforce the memory limit. |
| * |
| * Returns the size the region should have to enforce the memory limit. |
| * This will either be the original value of size, a truncated value, |
| * or zero. If the returned value of size is 0 the region should be |
| * discarded as it lies wholly above the memory limit. |
| */ |
| static unsigned long __init numa_enforce_memory_limit(unsigned long start, |
| unsigned long size) |
| { |
| /* |
| * We use memblock_end_of_DRAM() in here instead of memory_limit because |
| * we've already adjusted it for the limit and it takes care of |
| * having memory holes below the limit. Also, in the case of |
| * iommu_is_off, memory_limit is not set but is implicitly enforced. |
| */ |
| |
| if (start + size <= memblock_end_of_DRAM()) |
| return size; |
| |
| if (start >= memblock_end_of_DRAM()) |
| return 0; |
| |
| return memblock_end_of_DRAM() - start; |
| } |
| |
| /* |
| * Reads the counter for a given entry in |
| * linux,drconf-usable-memory property |
| */ |
| static inline int __init read_usm_ranges(const __be32 **usm) |
| { |
| /* |
| * For each lmb in ibm,dynamic-memory a corresponding |
| * entry in linux,drconf-usable-memory property contains |
| * a counter followed by that many (base, size) duple. |
| * read the counter from linux,drconf-usable-memory |
| */ |
| return read_n_cells(n_mem_size_cells, usm); |
| } |
| |
| /* |
| * Extract NUMA information from the ibm,dynamic-reconfiguration-memory |
| * node. This assumes n_mem_{addr,size}_cells have been set. |
| */ |
| static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb, |
| const __be32 **usm, |
| void *data) |
| { |
| unsigned int ranges, is_kexec_kdump = 0; |
| unsigned long base, size, sz; |
| int nid; |
| |
| /* |
| * Skip this block if the reserved bit is set in flags (0x80) |
| * or if the block is not assigned to this partition (0x8) |
| */ |
| if ((lmb->flags & DRCONF_MEM_RESERVED) |
| || !(lmb->flags & DRCONF_MEM_ASSIGNED)) |
| return 0; |
| |
| if (*usm) |
| is_kexec_kdump = 1; |
| |
| base = lmb->base_addr; |
| size = drmem_lmb_size(); |
| ranges = 1; |
| |
| if (is_kexec_kdump) { |
| ranges = read_usm_ranges(usm); |
| if (!ranges) /* there are no (base, size) duple */ |
| return 0; |
| } |
| |
| do { |
| if (is_kexec_kdump) { |
| base = read_n_cells(n_mem_addr_cells, usm); |
| size = read_n_cells(n_mem_size_cells, usm); |
| } |
| |
| nid = of_drconf_to_nid_single(lmb); |
| fake_numa_create_new_node(((base + size) >> PAGE_SHIFT), |
| &nid); |
| node_set_online(nid); |
| sz = numa_enforce_memory_limit(base, size); |
| if (sz) |
| memblock_set_node(base, sz, &memblock.memory, nid); |
| } while (--ranges); |
| |
| return 0; |
| } |
| |
| static int __init parse_numa_properties(void) |
| { |
| struct device_node *memory; |
| int default_nid = 0; |
| unsigned long i; |
| |
| if (numa_enabled == 0) { |
| printk(KERN_WARNING "NUMA disabled by user\n"); |
| return -1; |
| } |
| |
| min_common_depth = find_min_common_depth(); |
| |
| if (min_common_depth < 0) { |
| /* |
| * if we fail to parse min_common_depth from device tree |
| * mark the numa disabled, boot with numa disabled. |
| */ |
| numa_enabled = false; |
| return min_common_depth; |
| } |
| |
| dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); |
| |
| /* |
| * Even though we connect cpus to numa domains later in SMP |
| * init, we need to know the node ids now. This is because |
| * each node to be onlined must have NODE_DATA etc backing it. |
| */ |
| for_each_present_cpu(i) { |
| struct device_node *cpu; |
| int nid = vphn_get_nid(i); |
| |
| /* |
| * Don't fall back to default_nid yet -- we will plug |
| * cpus into nodes once the memory scan has discovered |
| * the topology. |
| */ |
| if (nid == NUMA_NO_NODE) { |
| cpu = of_get_cpu_node(i, NULL); |
| BUG_ON(!cpu); |
| nid = of_node_to_nid_single(cpu); |
| of_node_put(cpu); |
| } |
| |
| if (likely(nid > 0)) |
| node_set_online(nid); |
| } |
| |
| get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); |
| |
| for_each_node_by_type(memory, "memory") { |
| unsigned long start; |
| unsigned long size; |
| int nid; |
| int ranges; |
| const __be32 *memcell_buf; |
| unsigned int len; |
| |
| memcell_buf = of_get_property(memory, |
| "linux,usable-memory", &len); |
| if (!memcell_buf || len <= 0) |
| memcell_buf = of_get_property(memory, "reg", &len); |
| if (!memcell_buf || len <= 0) |
| continue; |
| |
| /* ranges in cell */ |
| ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); |
| new_range: |
| /* these are order-sensitive, and modify the buffer pointer */ |
| start = read_n_cells(n_mem_addr_cells, &memcell_buf); |
| size = read_n_cells(n_mem_size_cells, &memcell_buf); |
| |
| /* |
| * Assumption: either all memory nodes or none will |
| * have associativity properties. If none, then |
| * everything goes to default_nid. |
| */ |
| nid = of_node_to_nid_single(memory); |
| if (nid < 0) |
| nid = default_nid; |
| |
| fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); |
| node_set_online(nid); |
| |
| size = numa_enforce_memory_limit(start, size); |
| if (size) |
| memblock_set_node(start, size, &memblock.memory, nid); |
| |
| if (--ranges) |
| goto new_range; |
| } |
| |
| /* |
| * Now do the same thing for each MEMBLOCK listed in the |
| * ibm,dynamic-memory property in the |
| * ibm,dynamic-reconfiguration-memory node. |
| */ |
| memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
| if (memory) { |
| walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb); |
| of_node_put(memory); |
| } |
| |
| return 0; |
| } |
| |
| static void __init setup_nonnuma(void) |
| { |
| unsigned long top_of_ram = memblock_end_of_DRAM(); |
| unsigned long total_ram = memblock_phys_mem_size(); |
| unsigned long start_pfn, end_pfn; |
| unsigned int nid = 0; |
| struct memblock_region *reg; |
| |
| printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", |
| top_of_ram, total_ram); |
| printk(KERN_DEBUG "Memory hole size: %ldMB\n", |
| (top_of_ram - total_ram) >> 20); |
| |
| for_each_memblock(memory, reg) { |
| start_pfn = memblock_region_memory_base_pfn(reg); |
| end_pfn = memblock_region_memory_end_pfn(reg); |
| |
| fake_numa_create_new_node(end_pfn, &nid); |
| memblock_set_node(PFN_PHYS(start_pfn), |
| PFN_PHYS(end_pfn - start_pfn), |
| &memblock.memory, nid); |
| node_set_online(nid); |
| } |
| } |
| |
| void __init dump_numa_cpu_topology(void) |
| { |
| unsigned int node; |
| unsigned int cpu, count; |
| |
| if (!numa_enabled) |
| return; |
| |
| for_each_online_node(node) { |
| pr_info("Node %d CPUs:", node); |
| |
| count = 0; |
| /* |
| * If we used a CPU iterator here we would miss printing |
| * the holes in the cpumap. |
| */ |
| for (cpu = 0; cpu < nr_cpu_ids; cpu++) { |
| if (cpumask_test_cpu(cpu, |
| node_to_cpumask_map[node])) { |
| if (count == 0) |
| pr_cont(" %u", cpu); |
| ++count; |
| } else { |
| if (count > 1) |
| pr_cont("-%u", cpu - 1); |
| count = 0; |
| } |
| } |
| |
| if (count > 1) |
| pr_cont("-%u", nr_cpu_ids - 1); |
| pr_cont("\n"); |
| } |
| } |
| |
| /* Initialize NODE_DATA for a node on the local memory */ |
| static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) |
| { |
| u64 spanned_pages = end_pfn - start_pfn; |
| const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); |
| u64 nd_pa; |
| void *nd; |
| int tnid; |
| |
| nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); |
| if (!nd_pa) |
| panic("Cannot allocate %zu bytes for node %d data\n", |
| nd_size, nid); |
| |
| nd = __va(nd_pa); |
| |
| /* report and initialize */ |
| pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", |
| nd_pa, nd_pa + nd_size - 1); |
| tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); |
| if (tnid != nid) |
| pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); |
| |
| node_data[nid] = nd; |
| memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); |
| NODE_DATA(nid)->node_id = nid; |
| NODE_DATA(nid)->node_start_pfn = start_pfn; |
| NODE_DATA(nid)->node_spanned_pages = spanned_pages; |
| } |
| |
| static void __init find_possible_nodes(void) |
| { |
| struct device_node *rtas; |
| const __be32 *domains; |
| int prop_length, max_nodes; |
| u32 i; |
| |
| if (!numa_enabled) |
| return; |
| |
| rtas = of_find_node_by_path("/rtas"); |
| if (!rtas) |
| return; |
| |
| /* |
| * ibm,current-associativity-domains is a fairly recent property. If |
| * it doesn't exist, then fallback on ibm,max-associativity-domains. |
| * Current denotes what the platform can support compared to max |
| * which denotes what the Hypervisor can support. |
| */ |
| domains = of_get_property(rtas, "ibm,current-associativity-domains", |
| &prop_length); |
| if (!domains) { |
| domains = of_get_property(rtas, "ibm,max-associativity-domains", |
| &prop_length); |
| if (!domains) |
| goto out; |
| } |
| |
| max_nodes = of_read_number(&domains[min_common_depth], 1); |
| for (i = 0; i < max_nodes; i++) { |
| if (!node_possible(i)) |
| node_set(i, node_possible_map); |
| } |
| |
| prop_length /= sizeof(int); |
| if (prop_length > min_common_depth + 2) |
| coregroup_enabled = 1; |
| |
| out: |
| of_node_put(rtas); |
| } |
| |
| void __init mem_topology_setup(void) |
| { |
| int cpu; |
| |
| /* |
| * Linux/mm assumes node 0 to be online at boot. However this is not |
| * true on PowerPC, where node 0 is similar to any other node, it |
| * could be cpuless, memoryless node. So force node 0 to be offline |
| * for now. This will prevent cpuless, memoryless node 0 showing up |
| * unnecessarily as online. If a node has cpus or memory that need |
| * to be online, then node will anyway be marked online. |
| */ |
| node_set_offline(0); |
| |
| if (parse_numa_properties()) |
| setup_nonnuma(); |
| |
| /* |
| * Modify the set of possible NUMA nodes to reflect information |
| * available about the set of online nodes, and the set of nodes |
| * that we expect to make use of for this platform's affinity |
| * calculations. |
| */ |
| nodes_and(node_possible_map, node_possible_map, node_online_map); |
| |
| find_possible_nodes(); |
| |
| setup_node_to_cpumask_map(); |
| |
| reset_numa_cpu_lookup_table(); |
| |
| for_each_possible_cpu(cpu) { |
| /* |
| * Powerpc with CONFIG_NUMA always used to have a node 0, |
| * even if it was memoryless or cpuless. For all cpus that |
| * are possible but not present, cpu_to_node() would point |
| * to node 0. To remove a cpuless, memoryless dummy node, |
| * powerpc need to make sure all possible but not present |
| * cpu_to_node are set to a proper node. |
| */ |
| numa_setup_cpu(cpu); |
| } |
| } |
| |
| void __init initmem_init(void) |
| { |
| int nid; |
| |
| max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; |
| max_pfn = max_low_pfn; |
| |
| memblock_dump_all(); |
| |
| for_each_online_node(nid) { |
| unsigned long start_pfn, end_pfn; |
| |
| get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); |
| setup_node_data(nid, start_pfn, end_pfn); |
| } |
| |
| sparse_init(); |
| |
| /* |
| * We need the numa_cpu_lookup_table to be accurate for all CPUs, |
| * even before we online them, so that we can use cpu_to_{node,mem} |
| * early in boot, cf. smp_prepare_cpus(). |
| * _nocalls() + manual invocation is used because cpuhp is not yet |
| * initialized for the boot CPU. |
| */ |
| cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare", |
| ppc_numa_cpu_prepare, ppc_numa_cpu_dead); |
| } |
| |
| static int __init early_numa(char *p) |
| { |
| if (!p) |
| return 0; |
| |
| if (strstr(p, "off")) |
| numa_enabled = 0; |
| |
| if (strstr(p, "debug")) |
| numa_debug = 1; |
| |
| p = strstr(p, "fake="); |
| if (p) |
| cmdline = p + strlen("fake="); |
| |
| return 0; |
| } |
| early_param("numa", early_numa); |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| /* |
| * Find the node associated with a hot added memory section for |
| * memory represented in the device tree by the property |
| * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. |
| */ |
| static int hot_add_drconf_scn_to_nid(unsigned long scn_addr) |
| { |
| struct drmem_lmb *lmb; |
| unsigned long lmb_size; |
| int nid = NUMA_NO_NODE; |
| |
| lmb_size = drmem_lmb_size(); |
| |
| for_each_drmem_lmb(lmb) { |
| /* skip this block if it is reserved or not assigned to |
| * this partition */ |
| if ((lmb->flags & DRCONF_MEM_RESERVED) |
| || !(lmb->flags & DRCONF_MEM_ASSIGNED)) |
| continue; |
| |
| if ((scn_addr < lmb->base_addr) |
| || (scn_addr >= (lmb->base_addr + lmb_size))) |
| continue; |
| |
| nid = of_drconf_to_nid_single(lmb); |
| break; |
| } |
| |
| return nid; |
| } |
| |
| /* |
| * Find the node associated with a hot added memory section for memory |
| * represented in the device tree as a node (i.e. memory@XXXX) for |
| * each memblock. |
| */ |
| static int hot_add_node_scn_to_nid(unsigned long scn_addr) |
| { |
| struct device_node *memory; |
| int nid = NUMA_NO_NODE; |
| |
| for_each_node_by_type(memory, "memory") { |
| unsigned long start, size; |
| int ranges; |
| const __be32 *memcell_buf; |
| unsigned int len; |
| |
| memcell_buf = of_get_property(memory, "reg", &len); |
| if (!memcell_buf || len <= 0) |
| continue; |
| |
| /* ranges in cell */ |
| ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); |
| |
| while (ranges--) { |
| start = read_n_cells(n_mem_addr_cells, &memcell_buf); |
| size = read_n_cells(n_mem_size_cells, &memcell_buf); |
| |
| if ((scn_addr < start) || (scn_addr >= (start + size))) |
| continue; |
| |
| nid = of_node_to_nid_single(memory); |
| break; |
| } |
| |
| if (nid >= 0) |
| break; |
| } |
| |
| of_node_put(memory); |
| |
| return nid; |
| } |
| |
| /* |
| * Find the node associated with a hot added memory section. Section |
| * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that |
| * sections are fully contained within a single MEMBLOCK. |
| */ |
| int hot_add_scn_to_nid(unsigned long scn_addr) |
| { |
| struct device_node *memory = NULL; |
| int nid; |
| |
| if (!numa_enabled) |
| return first_online_node; |
| |
| memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
| if (memory) { |
| nid = hot_add_drconf_scn_to_nid(scn_addr); |
| of_node_put(memory); |
| } else { |
| nid = hot_add_node_scn_to_nid(scn_addr); |
| } |
| |
| if (nid < 0 || !node_possible(nid)) |
| nid = first_online_node; |
| |
| return nid; |
| } |
| |
| static u64 hot_add_drconf_memory_max(void) |
| { |
| struct device_node *memory = NULL; |
| struct device_node *dn = NULL; |
| const __be64 *lrdr = NULL; |
| |
| dn = of_find_node_by_path("/rtas"); |
| if (dn) { |
| lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); |
| of_node_put(dn); |
| if (lrdr) |
| return be64_to_cpup(lrdr); |
| } |
| |
| memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); |
| if (memory) { |
| of_node_put(memory); |
| return drmem_lmb_memory_max(); |
| } |
| return 0; |
| } |
| |
| /* |
| * memory_hotplug_max - return max address of memory that may be added |
| * |
| * This is currently only used on systems that support drconfig memory |
| * hotplug. |
| */ |
| u64 memory_hotplug_max(void) |
| { |
| return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| /* Virtual Processor Home Node (VPHN) support */ |
| #ifdef CONFIG_PPC_SPLPAR |
| static int topology_inited; |
| |
| /* |
| * Retrieve the new associativity information for a virtual processor's |
| * home node. |
| */ |
| static long vphn_get_associativity(unsigned long cpu, |
| __be32 *associativity) |
| { |
| long rc; |
| |
| rc = hcall_vphn(get_hard_smp_processor_id(cpu), |
| VPHN_FLAG_VCPU, associativity); |
| |
| switch (rc) { |
| case H_SUCCESS: |
| dbg("VPHN hcall succeeded. Reset polling...\n"); |
| goto out; |
| |
| case H_FUNCTION: |
| pr_err_ratelimited("VPHN unsupported. Disabling polling...\n"); |
| break; |
| case H_HARDWARE: |
| pr_err_ratelimited("hcall_vphn() experienced a hardware fault " |
| "preventing VPHN. Disabling polling...\n"); |
| break; |
| case H_PARAMETER: |
| pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. " |
| "Disabling polling...\n"); |
| break; |
| default: |
| pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n" |
| , rc); |
| break; |
| } |
| out: |
| return rc; |
| } |
| |
| int find_and_online_cpu_nid(int cpu) |
| { |
| __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; |
| int new_nid; |
| |
| /* Use associativity from first thread for all siblings */ |
| if (vphn_get_associativity(cpu, associativity)) |
| return cpu_to_node(cpu); |
| |
| new_nid = associativity_to_nid(associativity); |
| if (new_nid < 0 || !node_possible(new_nid)) |
| new_nid = first_online_node; |
| |
| if (NODE_DATA(new_nid) == NULL) { |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| /* |
| * Need to ensure that NODE_DATA is initialized for a node from |
| * available memory (see memblock_alloc_try_nid). If unable to |
| * init the node, then default to nearest node that has memory |
| * installed. Skip onlining a node if the subsystems are not |
| * yet initialized. |
| */ |
| if (!topology_inited || try_online_node(new_nid)) |
| new_nid = first_online_node; |
| #else |
| /* |
| * Default to using the nearest node that has memory installed. |
| * Otherwise, it would be necessary to patch the kernel MM code |
| * to deal with more memoryless-node error conditions. |
| */ |
| new_nid = first_online_node; |
| #endif |
| } |
| |
| pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__, |
| cpu, new_nid); |
| return new_nid; |
| } |
| |
| int cpu_to_coregroup_id(int cpu) |
| { |
| __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; |
| int index; |
| |
| if (cpu < 0 || cpu > nr_cpu_ids) |
| return -1; |
| |
| if (!coregroup_enabled) |
| goto out; |
| |
| if (!firmware_has_feature(FW_FEATURE_VPHN)) |
| goto out; |
| |
| if (vphn_get_associativity(cpu, associativity)) |
| goto out; |
| |
| index = of_read_number(associativity, 1); |
| if (index > min_common_depth + 1) |
| return of_read_number(&associativity[index - 1], 1); |
| |
| out: |
| return cpu_to_core_id(cpu); |
| } |
| |
| static int topology_update_init(void) |
| { |
| topology_inited = 1; |
| return 0; |
| } |
| device_initcall(topology_update_init); |
| #endif /* CONFIG_PPC_SPLPAR */ |