| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * {read,write}{b,w,l,q} based on arch/arm64/include/asm/io.h |
| * which was based on arch/arm/include/io.h |
| * |
| * Copyright (C) 1996-2000 Russell King |
| * Copyright (C) 2012 ARM Ltd. |
| * Copyright (C) 2014 Regents of the University of California |
| */ |
| |
| #ifndef _ASM_RISCV_IO_H |
| #define _ASM_RISCV_IO_H |
| |
| #include <linux/types.h> |
| #include <asm/mmiowb.h> |
| #include <asm/pgtable.h> |
| |
| extern void __iomem *ioremap(phys_addr_t offset, unsigned long size); |
| |
| /* |
| * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't |
| * change the properties of memory regions. This should be fixed by the |
| * upcoming platform spec. |
| */ |
| #define ioremap_nocache(addr, size) ioremap((addr), (size)) |
| #define ioremap_wc(addr, size) ioremap((addr), (size)) |
| #define ioremap_wt(addr, size) ioremap((addr), (size)) |
| |
| extern void iounmap(volatile void __iomem *addr); |
| |
| /* Generic IO read/write. These perform native-endian accesses. */ |
| #define __raw_writeb __raw_writeb |
| static inline void __raw_writeb(u8 val, volatile void __iomem *addr) |
| { |
| asm volatile("sb %0, 0(%1)" : : "r" (val), "r" (addr)); |
| } |
| |
| #define __raw_writew __raw_writew |
| static inline void __raw_writew(u16 val, volatile void __iomem *addr) |
| { |
| asm volatile("sh %0, 0(%1)" : : "r" (val), "r" (addr)); |
| } |
| |
| #define __raw_writel __raw_writel |
| static inline void __raw_writel(u32 val, volatile void __iomem *addr) |
| { |
| asm volatile("sw %0, 0(%1)" : : "r" (val), "r" (addr)); |
| } |
| |
| #ifdef CONFIG_64BIT |
| #define __raw_writeq __raw_writeq |
| static inline void __raw_writeq(u64 val, volatile void __iomem *addr) |
| { |
| asm volatile("sd %0, 0(%1)" : : "r" (val), "r" (addr)); |
| } |
| #endif |
| |
| #define __raw_readb __raw_readb |
| static inline u8 __raw_readb(const volatile void __iomem *addr) |
| { |
| u8 val; |
| |
| asm volatile("lb %0, 0(%1)" : "=r" (val) : "r" (addr)); |
| return val; |
| } |
| |
| #define __raw_readw __raw_readw |
| static inline u16 __raw_readw(const volatile void __iomem *addr) |
| { |
| u16 val; |
| |
| asm volatile("lh %0, 0(%1)" : "=r" (val) : "r" (addr)); |
| return val; |
| } |
| |
| #define __raw_readl __raw_readl |
| static inline u32 __raw_readl(const volatile void __iomem *addr) |
| { |
| u32 val; |
| |
| asm volatile("lw %0, 0(%1)" : "=r" (val) : "r" (addr)); |
| return val; |
| } |
| |
| #ifdef CONFIG_64BIT |
| #define __raw_readq __raw_readq |
| static inline u64 __raw_readq(const volatile void __iomem *addr) |
| { |
| u64 val; |
| |
| asm volatile("ld %0, 0(%1)" : "=r" (val) : "r" (addr)); |
| return val; |
| } |
| #endif |
| |
| /* |
| * Unordered I/O memory access primitives. These are even more relaxed than |
| * the relaxed versions, as they don't even order accesses between successive |
| * operations to the I/O regions. |
| */ |
| #define readb_cpu(c) ({ u8 __r = __raw_readb(c); __r; }) |
| #define readw_cpu(c) ({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; }) |
| #define readl_cpu(c) ({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; }) |
| |
| #define writeb_cpu(v,c) ((void)__raw_writeb((v),(c))) |
| #define writew_cpu(v,c) ((void)__raw_writew((__force u16)cpu_to_le16(v),(c))) |
| #define writel_cpu(v,c) ((void)__raw_writel((__force u32)cpu_to_le32(v),(c))) |
| |
| #ifdef CONFIG_64BIT |
| #define readq_cpu(c) ({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; }) |
| #define writeq_cpu(v,c) ((void)__raw_writeq((__force u64)cpu_to_le64(v),(c))) |
| #endif |
| |
| /* |
| * Relaxed I/O memory access primitives. These follow the Device memory |
| * ordering rules but do not guarantee any ordering relative to Normal memory |
| * accesses. These are defined to order the indicated access (either a read or |
| * write) with all other I/O memory accesses. Since the platform specification |
| * defines that all I/O regions are strongly ordered on channel 2, no explicit |
| * fences are required to enforce this ordering. |
| */ |
| /* FIXME: These are now the same as asm-generic */ |
| #define __io_rbr() do {} while (0) |
| #define __io_rar() do {} while (0) |
| #define __io_rbw() do {} while (0) |
| #define __io_raw() do {} while (0) |
| |
| #define readb_relaxed(c) ({ u8 __v; __io_rbr(); __v = readb_cpu(c); __io_rar(); __v; }) |
| #define readw_relaxed(c) ({ u16 __v; __io_rbr(); __v = readw_cpu(c); __io_rar(); __v; }) |
| #define readl_relaxed(c) ({ u32 __v; __io_rbr(); __v = readl_cpu(c); __io_rar(); __v; }) |
| |
| #define writeb_relaxed(v,c) ({ __io_rbw(); writeb_cpu((v),(c)); __io_raw(); }) |
| #define writew_relaxed(v,c) ({ __io_rbw(); writew_cpu((v),(c)); __io_raw(); }) |
| #define writel_relaxed(v,c) ({ __io_rbw(); writel_cpu((v),(c)); __io_raw(); }) |
| |
| #ifdef CONFIG_64BIT |
| #define readq_relaxed(c) ({ u64 __v; __io_rbr(); __v = readq_cpu(c); __io_rar(); __v; }) |
| #define writeq_relaxed(v,c) ({ __io_rbw(); writeq_cpu((v),(c)); __io_raw(); }) |
| #endif |
| |
| /* |
| * I/O memory access primitives. Reads are ordered relative to any |
| * following Normal memory access. Writes are ordered relative to any prior |
| * Normal memory access. The memory barriers here are necessary as RISC-V |
| * doesn't define any ordering between the memory space and the I/O space. |
| */ |
| #define __io_br() do {} while (0) |
| #define __io_ar(v) __asm__ __volatile__ ("fence i,r" : : : "memory"); |
| #define __io_bw() __asm__ __volatile__ ("fence w,o" : : : "memory"); |
| #define __io_aw() mmiowb_set_pending() |
| |
| #define readb(c) ({ u8 __v; __io_br(); __v = readb_cpu(c); __io_ar(__v); __v; }) |
| #define readw(c) ({ u16 __v; __io_br(); __v = readw_cpu(c); __io_ar(__v); __v; }) |
| #define readl(c) ({ u32 __v; __io_br(); __v = readl_cpu(c); __io_ar(__v); __v; }) |
| |
| #define writeb(v,c) ({ __io_bw(); writeb_cpu((v),(c)); __io_aw(); }) |
| #define writew(v,c) ({ __io_bw(); writew_cpu((v),(c)); __io_aw(); }) |
| #define writel(v,c) ({ __io_bw(); writel_cpu((v),(c)); __io_aw(); }) |
| |
| #ifdef CONFIG_64BIT |
| #define readq(c) ({ u64 __v; __io_br(); __v = readq_cpu(c); __io_ar(__v); __v; }) |
| #define writeq(v,c) ({ __io_bw(); writeq_cpu((v),(c)); __io_aw(); }) |
| #endif |
| |
| /* |
| * I/O port access constants. |
| */ |
| #define IO_SPACE_LIMIT (PCI_IO_SIZE - 1) |
| #define PCI_IOBASE ((void __iomem *)PCI_IO_START) |
| |
| /* |
| * Emulation routines for the port-mapped IO space used by some PCI drivers. |
| * These are defined as being "fully synchronous", but also "not guaranteed to |
| * be fully ordered with respect to other memory and I/O operations". We're |
| * going to be on the safe side here and just make them: |
| * - Fully ordered WRT each other, by bracketing them with two fences. The |
| * outer set contains both I/O so inX is ordered with outX, while the inner just |
| * needs the type of the access (I for inX and O for outX). |
| * - Ordered in the same manner as readX/writeX WRT memory by subsuming their |
| * fences. |
| * - Ordered WRT timer reads, so udelay and friends don't get elided by the |
| * implementation. |
| * Note that there is no way to actually enforce that outX is a non-posted |
| * operation on RISC-V, but hopefully the timer ordering constraint is |
| * sufficient to ensure this works sanely on controllers that support I/O |
| * writes. |
| */ |
| #define __io_pbr() __asm__ __volatile__ ("fence io,i" : : : "memory"); |
| #define __io_par(v) __asm__ __volatile__ ("fence i,ior" : : : "memory"); |
| #define __io_pbw() __asm__ __volatile__ ("fence iow,o" : : : "memory"); |
| #define __io_paw() __asm__ __volatile__ ("fence o,io" : : : "memory"); |
| |
| #define inb(c) ({ u8 __v; __io_pbr(); __v = readb_cpu((void*)(PCI_IOBASE + (c))); __io_par(__v); __v; }) |
| #define inw(c) ({ u16 __v; __io_pbr(); __v = readw_cpu((void*)(PCI_IOBASE + (c))); __io_par(__v); __v; }) |
| #define inl(c) ({ u32 __v; __io_pbr(); __v = readl_cpu((void*)(PCI_IOBASE + (c))); __io_par(__v); __v; }) |
| |
| #define outb(v,c) ({ __io_pbw(); writeb_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); }) |
| #define outw(v,c) ({ __io_pbw(); writew_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); }) |
| #define outl(v,c) ({ __io_pbw(); writel_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); }) |
| |
| #ifdef CONFIG_64BIT |
| #define inq(c) ({ u64 __v; __io_pbr(); __v = readq_cpu((void*)(c)); __io_par(__v); __v; }) |
| #define outq(v,c) ({ __io_pbw(); writeq_cpu((v),(void*)(c)); __io_paw(); }) |
| #endif |
| |
| /* |
| * Accesses from a single hart to a single I/O address must be ordered. This |
| * allows us to use the raw read macros, but we still need to fence before and |
| * after the block to ensure ordering WRT other macros. These are defined to |
| * perform host-endian accesses so we use __raw instead of __cpu. |
| */ |
| #define __io_reads_ins(port, ctype, len, bfence, afence) \ |
| static inline void __ ## port ## len(const volatile void __iomem *addr, \ |
| void *buffer, \ |
| unsigned int count) \ |
| { \ |
| bfence; \ |
| if (count) { \ |
| ctype *buf = buffer; \ |
| \ |
| do { \ |
| ctype x = __raw_read ## len(addr); \ |
| *buf++ = x; \ |
| } while (--count); \ |
| } \ |
| afence; \ |
| } |
| |
| #define __io_writes_outs(port, ctype, len, bfence, afence) \ |
| static inline void __ ## port ## len(volatile void __iomem *addr, \ |
| const void *buffer, \ |
| unsigned int count) \ |
| { \ |
| bfence; \ |
| if (count) { \ |
| const ctype *buf = buffer; \ |
| \ |
| do { \ |
| __raw_write ## len(*buf++, addr); \ |
| } while (--count); \ |
| } \ |
| afence; \ |
| } |
| |
| __io_reads_ins(reads, u8, b, __io_br(), __io_ar(addr)) |
| __io_reads_ins(reads, u16, w, __io_br(), __io_ar(addr)) |
| __io_reads_ins(reads, u32, l, __io_br(), __io_ar(addr)) |
| #define readsb(addr, buffer, count) __readsb(addr, buffer, count) |
| #define readsw(addr, buffer, count) __readsw(addr, buffer, count) |
| #define readsl(addr, buffer, count) __readsl(addr, buffer, count) |
| |
| __io_reads_ins(ins, u8, b, __io_pbr(), __io_par(addr)) |
| __io_reads_ins(ins, u16, w, __io_pbr(), __io_par(addr)) |
| __io_reads_ins(ins, u32, l, __io_pbr(), __io_par(addr)) |
| #define insb(addr, buffer, count) __insb((void __iomem *)(long)addr, buffer, count) |
| #define insw(addr, buffer, count) __insw((void __iomem *)(long)addr, buffer, count) |
| #define insl(addr, buffer, count) __insl((void __iomem *)(long)addr, buffer, count) |
| |
| __io_writes_outs(writes, u8, b, __io_bw(), __io_aw()) |
| __io_writes_outs(writes, u16, w, __io_bw(), __io_aw()) |
| __io_writes_outs(writes, u32, l, __io_bw(), __io_aw()) |
| #define writesb(addr, buffer, count) __writesb(addr, buffer, count) |
| #define writesw(addr, buffer, count) __writesw(addr, buffer, count) |
| #define writesl(addr, buffer, count) __writesl(addr, buffer, count) |
| |
| __io_writes_outs(outs, u8, b, __io_pbw(), __io_paw()) |
| __io_writes_outs(outs, u16, w, __io_pbw(), __io_paw()) |
| __io_writes_outs(outs, u32, l, __io_pbw(), __io_paw()) |
| #define outsb(addr, buffer, count) __outsb((void __iomem *)(long)addr, buffer, count) |
| #define outsw(addr, buffer, count) __outsw((void __iomem *)(long)addr, buffer, count) |
| #define outsl(addr, buffer, count) __outsl((void __iomem *)(long)addr, buffer, count) |
| |
| #ifdef CONFIG_64BIT |
| __io_reads_ins(reads, u64, q, __io_br(), __io_ar(addr)) |
| #define readsq(addr, buffer, count) __readsq(addr, buffer, count) |
| |
| __io_reads_ins(ins, u64, q, __io_pbr(), __io_par(addr)) |
| #define insq(addr, buffer, count) __insq((void __iomem *)addr, buffer, count) |
| |
| __io_writes_outs(writes, u64, q, __io_bw(), __io_aw()) |
| #define writesq(addr, buffer, count) __writesq(addr, buffer, count) |
| |
| __io_writes_outs(outs, u64, q, __io_pbr(), __io_paw()) |
| #define outsq(addr, buffer, count) __outsq((void __iomem *)addr, buffer, count) |
| #endif |
| |
| #include <asm-generic/io.h> |
| |
| #endif /* _ASM_RISCV_IO_H */ |